1
|
Jana A, Naga R, Saha S, Banerjee DR. 3D QSAR pharmacophore based lead identification of G9a lysine methyltransferase towards epigenetic therapeutics. J Biomol Struct Dyn 2023; 41:8635-8653. [PMID: 36264111 DOI: 10.1080/07391102.2022.2135600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/08/2022] [Indexed: 10/24/2022]
Abstract
The G9a, Lysine Methyltransferase that methylates the histone 3 lysine 9 (H3K9) of the nucleosome, is an excellent epigenetic target having no clinically passed inhibitor currently owing to adverse in vivo ADMET toxicities. In this work, we have carried out detailed computational investigations to find novel and safer lead against the target using advanced 3 D QSAR pharmacophore screening of databases containing more than 400000 entrees of natural compounds. The screening was conducted at different levels at increasing stringencies by employing pharmacophore mapping, druglikenesses and interaction profiles of the selected to identify potential hit compounds. The potential hits were further screened by advanced flexible docking, ADME and toxicity analysis to eight hit compounds. Based on the comparative analysis of the hits with the reference inhibitor, we identified one lead inhibitor against the G9a, having better binding efficacy and a safer ADMET profile than the reference inhibitor. Finally, the results were further verified using robust molecular dynamics simulation and MM-GBSA binding energy calculation. The natural compounds are generally considered benign due to their long human uses and this is the first attempt of in silico screening of a large natural compound library against G9a to our best knowledge. Therefore, the finding of this study may add value towards the development of epigenetic therapeutics against the G9a.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Abhisek Jana
- Department of Chemistry, National Institute of technology Durgapur, Durgapur, India
| | - Rahul Naga
- Department of Biotechnology, National Institute of technology Durgapur, Durgapur, India
| | - Sougata Saha
- Department of Biotechnology, National Institute of technology Durgapur, Durgapur, India
| | - Deb Ranjan Banerjee
- Department of Chemistry, National Institute of technology Durgapur, Durgapur, India
| |
Collapse
|
2
|
Chen J, Lin X, Park KJ, Lee KR, Park HJ. Identification of protoberberine alkaloids as novel histone methyltransferase G9a inhibitors by structure-based virtual screening. J Comput Aided Mol Des 2018; 32:917-928. [DOI: 10.1007/s10822-018-0156-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
|
3
|
Di Tomaso MV, Gregoire E, Martínez-López W. Effects of Valproic Acid on Radiation-Induced Chromosomal Aberrations in Human Lymphocytes. Genome Integr 2017; 8:4. [PMID: 28250911 PMCID: PMC5320781 DOI: 10.4103/2041-9414.198909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One of the most widely employed histone deacetylases inhibitors in the clinic is the valproic acid (VA), proving to have a good tolerance and low side effects on human health. VA induces changes in chromatin structure making DNA more susceptible to damage induction and influence DNA repair efficiency. VA is also proposed as a radiosensitizing agent. To know if VA is suitable to sensitize human lymphocytes γ-irradiation in vitro, different types of chromosomal aberrations in the lymphocytes, either in the absence or presence of VA, were analyzed. For this purpose, blood samples from four healthy donors were exposed to γ-rays at a dose of 1.5 Gy and then treated with two different doses of VA (0.35 or 0.70 mM). Unstable and stable chromosomal aberrations were analyzed by means of fluorescence in situ hybridization. Human lymphocytes treated with VA alone did not show any increase in the frequency of chromosomal aberrations. However, a moderate degree of sensitization was observed, through the increase of chromosomal aberrations, when 0.35 mM VA was employed after γ-irradiation, whereas 0.70 mM VA did not modify chromosomal aberration frequencies. The lower number of chromosomal aberrations obtained when VA was employed at higher dose after γ-irradiation, could be related to the induction of a cell cycle arrest, a fact that should be taken into consideration when VA is employed in combination with physical or chemical agents.
Collapse
Affiliation(s)
- María Vittoria Di Tomaso
- Clemente Estable Biological Research Institute, Montevideo, Uruguay; Laboratoire de Dosimétrie Biologique, Institut de Radiobiologie et de Sureté Nucléaire, Fontenay-Aux-Roses, France; Department of Genetics, Clemente Estable Biological Research Institute, Montevideo, Uruguay
| | - Eric Gregoire
- Laboratoire de Dosimétrie Biologique, Institut de Radiobiologie et de Sureté Nucléaire, Fontenay-Aux-Roses, France
| | - Wilner Martínez-López
- Clemente Estable Biological Research Institute, Montevideo, Uruguay; Epigenetics and Genomic Instability Laboratory, Clemente Estable Biological Research Institute, Montevideo, Uruguay
| |
Collapse
|
4
|
Huang R, Langdon SP, Tse M, Mullen P, Um IH, Faratian D, Harrison DJ. The role of HDAC2 in chromatin remodelling and response to chemotherapy in ovarian cancer. Oncotarget 2016; 7:4695-711. [PMID: 26683361 PMCID: PMC4826236 DOI: 10.18632/oncotarget.6618] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/26/2015] [Indexed: 12/29/2022] Open
Abstract
Chromatin undergoes structural changes in response to extracellular and environmental signals. We observed changes in nuclear morphology in cancer tissue biopsied after chemotherapy and hypothesised that these DNA damage-induced changes are mediated by histone deacetylases (HDACs). Nuclear morphological changes in cell lines (PE01 and PE04 models) and a xenograft model (OV1002) were measured in response to platinum chemotherapy by image analysis of nuclear texture. HDAC2 expression increased in PEO1 cells treated with cisplatin at 24h, which was accompanied by increased expression of heterochromatin protein 1 (HP1). HDAC2 and HP1 expression were also increased after carboplatin treatment in the OV1002 carboplatin-sensitive xenograft model but not in the insensitive HOX424 model. Expression of DNA damage response pathways (pBRCA1, γH2AX, pATM, pATR) showed time-dependent changes after cisplatin treatment. HDAC2 knockdown by siRNA reduced HP1 expression, induced DNA double strand breaks (DSB) measured by γH2AX, and interfered with the activation of DNA damage response induced by cisplatin. Furthermore, HDAC2 depletion affected γH2AX foci formation, cell cycle distribution, and apoptosis triggered by cisplatin, and was additive to the inhibitory effect of cisplatin in cell lines. By inhibiting expression of HDAC2, reversible alterations in chromatin patterns during cisplatin treatment were observed. These results demonstrate quantifiable alterations in nuclear morphology after chemotherapy, and implicate HDAC2 in higher order chromatin changes and cellular DNA damage responses in ovarian cancer cells in vitro and in vivo.
Collapse
Affiliation(s)
- Rui Huang
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Matthew Tse
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Peter Mullen
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| | - In Hwa Um
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| | - Dana Faratian
- Division of Pathology, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - David J Harrison
- School of Medicine, University of St Andrews, St Andrews, Fife KY16 9TF, UK
| |
Collapse
|
5
|
Chen WL, Wang ZH, Feng TT, Li DD, Wang CH, Xu XL, Zhang XJ, You QD, Guo XK. Discovery, design and synthesis of 6H-anthra[1,9-cd]isoxazol-6-one scaffold as G9a inhibitor through a combination of shape-based virtual screening and structure-based molecular modification. Bioorg Med Chem 2016; 24:6102-6108. [PMID: 27720557 DOI: 10.1016/j.bmc.2016.09.071] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/29/2023]
Abstract
Protein lysine methyltransferase G9a is widely considered as an appealing antineoplastic target. Herein we present an integrated workflow combining shape-based virtual screening and structure-based molecular modification for the identification of novel G9a inhibitors. The shape-based similarity screening through ROCS overlay on the basis of the structure of UNC0638 was performed to identify CPUY074001 contained a 6H-anthra[1,9-cd]isoxazol-6-one scaffold as a hit. Analysis of the binding mode of CPUY074001 with G9a and 3D-QSAR results, two series compounds were designed and synthesized. The derivatives were confirmed to be active by in vitro assay and the SAR was explored by docking stimulations. Besides, several analogues showed acceptable anti-proliferative effects against several cancer cell lines. Among them, CPUY074020 displayed potent dual G9a inhibitory activity and anti-proliferative activity. Furthermore, CPUY074020 induced cell apoptosis in a dose-dependent manner and displayed a significant decrease in dimethylation of H3K9. Simultaneously, CPUY074020 showed reasonable in vivo PK properties. Altogether, our workflow supplied a high efficient strategy in the identification of novel G9a inhibitors. Compounds reported here can serve as promising leads for further study.
Collapse
Affiliation(s)
- Wei-Lin Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Zhi-Hui Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Tao-Tao Feng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Dong-Dong Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Chu-Hui Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Li Xu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Jin Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Organic Chemistry, School of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Qi-Dong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao-Ke Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
6
|
Theophilou G, Paraskevaidi M, Lima KMG, Kyrgiou M, Martin-Hirsch PL, Martin FL. Extracting biomarkers of commitment to cancer development: potential role of vibrational spectroscopy in systems biology. Expert Rev Mol Diagn 2015; 15:693-713. [DOI: 10.1586/14737159.2015.1028372] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
7
|
Garai J, Uddo RB, Mohler MC, Pelligrino N, Scribner R, Sothern MS, Zabaleta J. At the crossroad between obesity and gastric cancer. Methods Mol Biol 2015; 1238:689-707. [PMID: 25421687 DOI: 10.1007/978-1-4939-1804-1_36] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Obesity has reached epidemic proportions worldwide with disproportionate prevalence in different communities and ethnic groups. Recently, the American Medical Association recognized obesity as a disease, which is a significant milestone that opens the possibilities of treating obesity under standardized health plans. Obesity is an inflammatory disease characterized by elevated levels of biomarkers associated with abnormal lipid profiles, glucose levels, and blood pressure that lead to the onset of metabolic syndrome. Interestingly, inflammatory biomarkers, in particular, have been implicated in the risk of developing several types of cancer. Likewise, obesity has been linked to esophageal, breast, gallbladder, kidney, pancreatic, and colorectal cancers. Thus, there exists a link between obesity status and tumor appearance, which may be associated to the differential levels and the circulating profiles of several inflammatory molecules. For example, mediators of the inflammatory responses in both obesity and gastric cancer risk are the same: pro-inflammatory molecules produced by the activated cells infiltrating the inflamed tissues. These molecules trigger pathways of activation shared by obesity and cancer. Therefore, understanding how these different pathways are modulated would help reduce the impact that both diseases, and their concomitant existence, have on society.
Collapse
Affiliation(s)
- Jone Garai
- Stanley S. Scott Cancer Center, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Konze KD, Ma A, Li F, Barsyte-Lovejoy D, Parton T, MacNevin° CJ, Liu F, Gao C, Huang XP, Kuznetsova E, Rougie° M, Jiang A, Pattenden SG, Norris JL, James LI, Roth BL, Brown PJ, Frye SV, Arrowsmith CH, Hahn° KM, Wang GG, Vedadi M, Jin J. An orally bioavailable chemical probe of the Lysine Methyltransferases EZH2 and EZH1. ACS Chem Biol 2013; 8:1324-34. [PMID: 23614352 PMCID: PMC3773059 DOI: 10.1021/cb400133j] [Citation(s) in RCA: 360] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
EZH2 or EZH1 is the catalytic subunit of the polycomb repressive complex 2 that catalyzes methylation of histone H3 lysine 27 (H3K27). The trimethylation of H3K27 (H3K27me3) is a transcriptionally repressive post-translational modification. Overexpression of EZH2 and hypertrimethylation of H3K27 have been implicated in a number of cancers. Several selective inhibitors of EZH2 have been reported recently. Herein we disclose UNC1999, the first orally bioavailable inhibitor that has high in vitro potency for wild-type and mutant EZH2 as well as EZH1, a closely related H3K27 methyltransferase that shares 96% sequence identity with EZH2 in their respective catalytic domains. UNC1999 was highly selective for EZH2 and EZH1 over a broad range of epigenetic and non-epigenetic targets, competitive with the cofactor SAM and non-competitive with the peptide substrate. This inhibitor potently reduced H3K27me3 levels in cells and selectively killed diffused large B cell lymphoma cell lines harboring the EZH2(Y641N) mutant. Importantly, UNC1999 was orally bioavailable in mice, making this inhibitor a valuable tool for investigating the role of EZH2 and EZH1 in chronic animal studies. We also designed and synthesized UNC2400, a close analogue of UNC1999 with potency >1,000-fold lower than that of UNC1999 as a negative control for cell-based studies. Finally, we created a biotin-tagged UNC1999 (UNC2399), which enriched EZH2 in pull-down studies, and a UNC1999-dye conjugate (UNC2239) for co-localization studies with EZH2 in live cells. Taken together, these compounds represent a set of useful tools for the biomedical community to investigate the role of EZH2 and EZH1 in health and disease.
Collapse
Affiliation(s)
- Kyle D. Konze
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anqi Ma
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Fengling Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Trevor Parton
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States°Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | - Feng Liu
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cen Gao
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xi-Ping Huang
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ekaterina Kuznetsova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | | | - Alice Jiang
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Samantha G. Pattenden
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jacqueline L. Norris
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bryan L. Roth
- National Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Klaus M. Hahn°
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Gang Greg Wang
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States°Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| | - Jian Jin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20:300-7. [DOI: 10.1038/nsmb.2480] [Citation(s) in RCA: 1087] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022]
|
10
|
Blancafort P, Jin J, Frye S. Writing and rewriting the epigenetic code of cancer cells: from engineered proteins to small molecules. Mol Pharmacol 2012; 83:563-76. [PMID: 23150486 DOI: 10.1124/mol.112.080697] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The epigenomic era has revealed a well-connected network of molecular processes that shape the chromatin landscape. These processes comprise abnormal methylomes, transcriptosomes, genome-wide histone post-transcriptional modifications patterns, histone variants, and noncoding RNAs. The mapping of these processes in large scale by chromatin immunoprecipitation sequencing and other methodologies in both cancer and normal cells reveals novel therapeutic opportunities for anticancer intervention. The goal of this minireview is to summarize pharmacological strategies to modify the epigenetic landscape of cancer cells. These approaches include the use of novel small molecule inhibitors of epigenetic processes specifically deregulated in cancer cells and the design of engineered proteins able to stably reprogram the epigenetic code in cancer cells in a way that is similar to normal cells.
Collapse
Affiliation(s)
- Pilar Blancafort
- School of Anatomy, Physiology, and Human Biology, M309, the University of Western Australia, 35 Stirling Highway, Crawley, 6009, WA, Australia.
| | | | | |
Collapse
|
11
|
Chanda K, Maiti B, Tseng CC, Sun CM. Microwave-assisted linear approach toward highly substituted benzo[d]oxazol-5-yl-1H-benzo[d]imidazole on ionic liquid support. ACS COMBINATORIAL SCIENCE 2012; 14:115-23. [PMID: 22263632 DOI: 10.1021/co200188g] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A novel and efficient diversity-oriented synthetic approach was employed to access the benzo[d]oxazol-5-yl-1H-benzo[d]imidazole on ionic liquid support, which helps to absorb microwave irradiation. In this paper, we successfully coupled 4-hydroxy-3-nitrobenzoic acid onto ionic liquid-immobilized o-phenylenediamine, which subsequently underwent an acid mediated, ring closure reaction leading to benzimidazole derivatives. After hydrogenation of the nitro group to an amine, the resulting ionic liquid conjugate was reacted with 1,1-thiocarbonyldiimidazols to yield an ionic liquid tagged-benzoxazol. Final skeletal diversity of the present scaffold was further achieved by S-alkylation with alkyl and aryl bromides. The benzo[d]oxazol-5-yl-1H-benzo[d]imidazole was finally cleaved smoothly from the ionic liquid support with sodium methoxide in methanol under microwave irradiation. This methodology has provided access to a small, diverse library by straightforward and simple operations and could be applied readily in various drug discovery programs.
Collapse
Affiliation(s)
- Kaushik Chanda
- Laboratory of Combinatorial Drug Design, Department
of Applied Chemistry, National Chiao-Tung University, Hsinchu 300-10, Taiwan
| | - Barnali Maiti
- Laboratory of Combinatorial Drug Design, Department
of Applied Chemistry, National Chiao-Tung University, Hsinchu 300-10, Taiwan
| | - Chih-Chung Tseng
- Laboratory of Combinatorial Drug Design, Department
of Applied Chemistry, National Chiao-Tung University, Hsinchu 300-10, Taiwan
| | - Chung-Ming Sun
- Laboratory of Combinatorial Drug Design, Department
of Applied Chemistry, National Chiao-Tung University, Hsinchu 300-10, Taiwan
| |
Collapse
|
12
|
Liu F, Barsyte-Lovejoy D, Allali-Hassani A, He Y, Herold JM, Chen X, Yates CM, Frye SV, Brown PJ, Huang J, Vedadi M, Arrowsmith CH, Jin J. Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-quinazolines. J Med Chem 2011; 54:6139-50. [PMID: 21780790 PMCID: PMC3171737 DOI: 10.1021/jm200903z] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Protein lysine methyltransferase G9a plays key roles in the transcriptional repression of a variety of genes via dimethylation of lysine 9 on histone H3 (H3K9me2) of chromatin as well as dimethylation of nonhistone proteins including tumor suppressor p53. We previously reported the discovery of UNC0321 (3), the most potent G9a inhibitor to date, via structure-based design and structure-activity relationship (SAR) exploration of the quinazoline scaffold represented by BIX01294 (1). Despite its very high in vitro potency, compound 3 lacks sufficient cellular potency. The design and synthesis of several generations of new analogues aimed at improving cell membrane permeability while maintaining high in vitro potency resulted in the discovery of a number of novel G9a inhibitors such as UNC0646 (6) and UNC0631 (7) with excellent potency in a variety of cell lines and excellent separation of functional potency versus cell toxicity. The design, synthesis, and cellular SAR of these potent G9a inhibitors are described.
Collapse
Affiliation(s)
- Feng Liu
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Yunlong He
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - J. Martin Herold
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xin Chen
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Jing Huang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Jian Jin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
13
|
Yost JM, Korboukh I, Liu F, Gao C, Jin J. Targets in epigenetics: inhibiting the methyl writers of the histone code. CURRENT CHEMICAL GENOMICS 2011; 5:72-84. [PMID: 21966347 PMCID: PMC3178896 DOI: 10.2174/1875397301005010072] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 07/11/2011] [Accepted: 07/18/2011] [Indexed: 01/11/2023]
Abstract
Growing evidence suggests that protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) are associated with the development of various human diseases, including cancer, inflammation, and psychiatric disorders. Given the significant role of these proteins in human disease, efforts to discover selective small-molecule inhibitors of these enzymes are quickly gaining momentum. In this review, we focus on the recent progress in the discovery of selective PKMT and PRMT inhibitors. A future perspective on developing methyltransferase inhibitors is also offered.
Collapse
Affiliation(s)
| | | | | | | | - Jian Jin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
14
|
Hernández-Ledesma B, Hsieh CC, de Lumen BO. Relationship between lunasin's sequence and its inhibitory activity of histones H3 and H4 acetylation. Mol Nutr Food Res 2011; 55:989-98. [DOI: 10.1002/mnfr.201000632] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 02/04/2011] [Accepted: 02/21/2011] [Indexed: 02/04/2023]
|
15
|
Hatziapostolou M, Iliopoulos D. Epigenetic aberrations during oncogenesis. Cell Mol Life Sci 2011; 68:1681-702. [PMID: 21249513 PMCID: PMC11114845 DOI: 10.1007/s00018-010-0624-z] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/02/2010] [Accepted: 12/28/2010] [Indexed: 12/18/2022]
Abstract
The aberrant epigenetic landscape of a cancer cell is characterized by global genomic hypomethylation, CpG island promoter hypermethylation of tumor suppressor genes, and changes in histone modification patterns, as well as altered expression profiles of chromatin-modifying enzymes. Recent advances in the field of epigenetics have revealed that microRNAs' expression is also under epigenetic regulation and that certain microRNAs control elements of the epigenetic machinery. The reversibility of epigenetic marks catalyzed the development of epigenetic-altering drugs. However, a better understanding of the intertwined relationship between genetics, epigenetics and microRNAs is necessary in order to resolve how gene expression aberrations that contribute to tumorigenesis can be therapeutically corrected.
Collapse
Affiliation(s)
- Maria Hatziapostolou
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115 USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| | - Dimitrios Iliopoulos
- Department of Cancer Immunology & AIDS, Dana-Farber Cancer Institute, Boston, MA 02115 USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
16
|
Bountra C, Oppermann U, Heightman TD. Animal models of epigenetic regulation in neuropsychiatric disorders. Curr Top Behav Neurosci 2011; 7:281-322. [PMID: 21225415 DOI: 10.1007/7854_2010_104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Epigenetics describes the phenomenon of heritable changes in gene regulation that are governed by non-Mendelian processes, primarily through biochemical modifications to chromatin structure that occur during cell development and differentiation. Numerous lines of evidence link abnormal levels of chromatin modifications (either to DNA, histones, or both) in patients with a wide variety of diseases including cancer, psychiatry, neurodegeneration, metabolic and inflammatory disorders. Drugs that target the proteins controlling chromatin modifications can modulate the expression of clusters of genes, potentially offering higher therapeutic efficacy than classical agents with single target pharmacologies that are susceptible to biochemical pathway degeneracy. Here, we summarize recent research linking epigenetic dysregulation with diseases in neurosciences, the application of relevant animal models, and the potential for small molecule modulator development to facilitate target discovery, validation and translation into clinical treatments.
Collapse
Affiliation(s)
- Chas Bountra
- Structural Genomics Consortium, University of Oxford, Oxford, OX3 7DQ, UK,
| | | | | |
Collapse
|
17
|
Millau JF, Bandele OJ, Perron J, Bastien N, Bouchard EF, Gaudreau L, Bell DA, Drouin R. Formation of stress-specific p53 binding patterns is influenced by chromatin but not by modulation of p53 binding affinity to response elements. Nucleic Acids Res 2010; 39:3053-63. [PMID: 21177650 PMCID: PMC3082904 DOI: 10.1093/nar/gkq1209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The p53 protein is crucial for adapting programs of gene expression in response to stress. Recently, we revealed that this occurs partly through the formation of stress-specific p53 binding patterns. However, the mechanisms that generate these binding patterns remain largely unknown. It is not established whether the selective binding of p53 is achieved through modulation of its binding affinity to certain response elements (REs) or via a chromatin-dependent mechanism. To shed light on this issue, we used a microsphere assay for protein-DNA binding to measure p53 binding patterns on naked DNA. In parallel, we measured p53 binding patterns within chromatin using chromatin immunoprecipitation and DNase I coupled to ligation-mediated polymerase chain reaction footprinting. Through this experimental approach, we revealed that UVB and Nutlin-3 doses, which lead to different cellular outcomes, induce similar p53 binding patterns on naked DNA. Conversely, the same treatments lead to stress-specific p53 binding patterns on chromatin. We show further that altering chromatin remodeling using an histone acetyltransferase inhibitor reduces p53 binding to REs. Altogether, our results reveal that the formation of p53 binding patterns is not due to the modulation of sequence-specific p53 binding affinity. Rather, we propose that chromatin and chromatin remodeling are required in this process.
Collapse
Affiliation(s)
- Jean-François Millau
- Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Liu F, Chen X, Allali-Hassani A, Quinn AM, Wigle TJ, Wasney GA, Dong A, Senisterra G, Chau I, Siarheyeva A, Norris JL, Kireev DB, Jadhav A, Herold JM, Janzen WP, Arrowsmith CH, Frye SV, Brown PJ, Simeonov A, Vedadi M, Jin J. Protein lysine methyltransferase G9a inhibitors: design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines. J Med Chem 2010; 53:5844-57. [PMID: 20614940 PMCID: PMC2920043 DOI: 10.1021/jm100478y] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein lysine methyltransferase G9a, which catalyzes methylation of lysine 9 of histone H3 (H3K9) and lysine 373 (K373) of p53, is overexpressed in human cancers. Genetic knockdown of G9a inhibits cancer cell growth, and the dimethylation of p53 K373 results in the inactivation of p53. Initial SAR exploration of the 2,4-diamino-6,7-dimethoxyquinazoline template represented by 3a (BIX01294), a selective small molecule inhibitor of G9a and GLP, led to the discovery of 10 (UNC0224) as a potent G9a inhibitor with excellent selectivity. A high resolution X-ray crystal structure of the G9a-10 complex, the first cocrystal structure of G9a with a small molecule inhibitor, was obtained. On the basis of the structural insights revealed by this cocrystal structure, optimization of the 7-dimethylaminopropoxy side chain of 10 resulted in the discovery of 29 (UNC0321) (Morrison K(i) = 63 pM), which is the first G9a inhibitor with picomolar potency and the most potent G9a inhibitor to date.
Collapse
Affiliation(s)
- Feng Liu
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Xin Chen
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Abdellah Allali-Hassani
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Amy M. Quinn
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Tim J. Wigle
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Gregory A. Wasney
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Aiping Dong
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Guillermo Senisterra
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Irene Chau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Alena Siarheyeva
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Jacqueline L. Norris
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Dmitri B. Kireev
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - J. Martin Herold
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - William P. Janzen
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Stephen V. Frye
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Peter J. Brown
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Ontario, Canada
| | - Jian Jin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Medicinal Chemistry and Natural Products, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
19
|
Abstract
Human cancer represents a heterogeneous group of diseases that are driven by progressive genetic and epigenetic abnormalities. The latter alterations involve hypermethylation and hypomethylation of DNA, and changed patterns of histone modification, with resultant remodeling of the chromatin structure that cause deregulation of the transcription activity of many genes. Unlike the remarkable progress in understanding the processes by which DNA methyltransferases can regulate gene expression and histone deacetylases can induce alteration of chromatin structure, the roles of epigenetic events in tumors remain insufficiently explained. In contrast to genetic changes, the epigenetic alterations in cancer cells can be reversed by the inhibition of DNA methylation and histone deacetylation. Therefore, many inhibition agents for re-expression, predominantly of tumor-suppressor genes, have been identified and tested in laboratory models and numerous clinical trials. Despite in-vitro evidence that a single drug can lead to reactivation of methylated genes, inhibitors of DNA methyltransferases and histone deacetylases have been investigated in combination, or together with cytotoxic chemotherapy, radiotherapy, immunotherapy, or hormonal therapy to improve the therapeutic effect. Ongoing trials are recognizing that the identification of a target group of patients who are more likely to respond to the epigenetic therapy, defining of an optimal dose and schedule of treatment, and the development of more specific inhibitors with minimal unwanted side effects are necessary. Thus, new combinations of anticancer agents, including epigenetic modulators, may lead to a more effective control of cancer.
Collapse
|
20
|
Abstract
Epigenetics refers to heritable changes that control how the genome is accessed in different cell-types and during development and differentiation. Even though each cell contains essentially the same genetic code, epigenetic mechanisms permit specialization of function between cells. The state of chromatin, the complex of histone proteins, RNA and DNA that efficiently package the genome, is largely regulated by specific modifications to histone proteins and DNA, and the recognition of these marks by other proteins and protein complexes. The enzymes that produce these modifications (the 'writers'), the proteins that recognize them (the 'readers'), and the enzymes that remove them (the 'erasers') are critical targets for manipulation in order to further understand the histone code and its role in biology and human disease.
Collapse
|
21
|
Mascolo M, Vecchione ML, Ilardi G, Scalvenzi M, Molea G, Di Benedetto M, Nugnes L, Siano M, De Rosa G, Staibano S. Overexpression of Chromatin Assembly Factor-1/p60 helps to predict the prognosis of melanoma patients. BMC Cancer 2010; 10:63. [PMID: 20178651 PMCID: PMC2843674 DOI: 10.1186/1471-2407-10-63] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 02/24/2010] [Indexed: 02/02/2023] Open
Abstract
Background Cutaneous melanoma (CM) is the most lethal form of skin malignancy, which registers a constant increase in incidence worldwide. The identification of molecular alteration(s) involved in its biological aggressiveness represents a major challenge for researchers, considering that existing therapies are ineffective to treat metastasizing cases. The epigenetic control of chromatin dynamics during DNA synthesis, replication, and repair is fundamental for the orderly progression of cell proliferation. The Chromatin Assembly Factor 1 (CAF-1) complex acts as a major regulator of this process; its intermediate (p60) subunit has been recently proposed as a novel proliferation and prognostic marker for several tumors. We aimed to establish if the evaluation of the expression of CAF-1/p60 in primary CM may help define the prevision of outcome of patients. Methods Immunohistochemistry with anti-CAF-1/p60 was performed on paraffin-embedded tissue sections of 130 cases of primary CM retrieved from the archive files of the Department of Biomorphological and Functional Sciences, Section of Pathology, University "Federico II" of Naples, Italy. Results were compared with histopathological and follow-up data of patients. Results CAF-1/p60 was expressed in all CM. A significant statistical association between the overexpression of the protein and the occurrence of skin, node and/or distant metastases (P < 0.05) emerged, independently from histopathological prognostic factors. Conclusions CAF-1/p60 looks promising as a new prognostic marker for CM and sheds new light on the molecular events associated with photocancerogenesis and melanoma biology. The screening for CAF-1/p60 might contribute to the molecular sub-classification of CM, with improved translational outcomes.
Collapse
Affiliation(s)
- Massimo Mascolo
- Department of Biomorphological and Functional Sciences, Pathology Section, University of Naples Federico II, School of Medicine, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Liu F, Chen X, Allali-Hassani A, Quinn AM, Wasney GA, Dong A, Barsyte D, Kozieradzki I, Senisterra G, Chau I, Siarheyeva A, Kireev DB, Jadhav A, Herold JM, Frye SV, Arrowsmith CH, Brown PJ, Simeonov A, Vedadi M, Jin J. Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a. J Med Chem 2010; 52:7950-3. [PMID: 19891491 DOI: 10.1021/jm901543m] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SAR exploration of the 2,4-diamino-6,7-dimethoxyquinazoline template led to the discovery of 8 (UNC0224) as a potent and selective G9a inhibitor. A high resolution X-ray crystal structure of the G9a-8 complex, the first cocrystal structure of G9a with a small molecule inhibitor, was obtained. The cocrystal structure validated our binding hypothesis and will enable structure-based design of novel inhibitors. 8 is a useful tool for investigating the biology of G9a and its roles in chromatin remodeling.
Collapse
Affiliation(s)
- Feng Liu
- Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Targeting Methyl Lysine. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2010. [DOI: 10.1016/s0065-7743(10)45020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
24
|
Yang Z, Tang H, Huang H, Deng H. RTA promoter demethylation and histone acetylation regulation of murine gammaherpesvirus 68 reactivation. PLoS One 2009; 4:e4556. [PMID: 19234612 PMCID: PMC2644783 DOI: 10.1371/journal.pone.0004556] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 01/15/2009] [Indexed: 01/24/2023] Open
Abstract
Gammaherpesviruses have a common biological characteristic, latency and lytic replication. The balance between these two phases in murine gammaherpesvirus 68 (MHV-68) is controlled by the replication and transcription activator (RTA) gene. In this report, we investigated the effect of DNA demethylation and histone acetylation on MHV-68 replication. We showed that distinctive methylation patterns were associated with MHV-68 at the RTA promoter during latency or lytic replication. Treatment of MHV-68 latently-infected S11E cells with a DNA methyltransferases (DNMTs) inhibitor 5-azacytidine (5-AzaC), only weakly reactivated MHV-68, despite resulted in demethylation of the viral RTA promoter. In contrast, treatment with a histone deacetylase (HDAC) inhibitor trichostatin A (TSA) strongly reactivated MHV-68 from latency, and this was associated with significant change in histone H3 and H4 acetylation levels at the RTA promoter. We further showed that HDAC3 was recruited to the RTA promoter and inhibited RTA transcription during viral latency. However, TSA treatment caused rapid removal of HDAC3 and also induced passive demethylation at the RTA promoter. In vivo, we found that the RTA promoter was hypomethylated during lytic infection in the lung and that methylation level increased with virus latent infection in the spleen. Collectively, our data showed that histone acetylation, but not DNA demethylation, is sufficient for effective reactivation of MHV-68 from latency in S11E cells.
Collapse
Affiliation(s)
- Zhangsheng Yang
- Center for Infection and Immunity and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Haidong Tang
- Center for Infection and Immunity and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Hai Huang
- Center for Infection and Immunity and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Hongyu Deng
- Center for Infection and Immunity and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- School of Dentistry, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
25
|
Lafon-Hughes L, Di Tomaso MV, Méndez-Acuña L, Martínez-López W. Chromatin-remodelling mechanisms in cancer. Mutat Res 2008; 658:191-214. [PMID: 18403253 DOI: 10.1016/j.mrrev.2008.01.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 01/29/2008] [Accepted: 01/29/2008] [Indexed: 02/06/2023]
Abstract
Chromatin-remodelling mechanisms include DNA methylation, histone-tail acetylation, poly-ADP-ribosylation, and ATP-dependent chromatin-remodelling processes. Some epigenetic modifications among others have been observed in cancer cells, namely (1) local DNA hypermethylation and global hypomethylation, (2) alteration in histone acetylation/deacetylation balance, (3) increased or decreased poly-ADP-ribosylation, and (4) failures in ATP-dependent chromatin-remodelling mechanisms. Moreover, these alterations can influence the response to classical anti-tumour treatments. Drugs targeting epigenetic alterations are under development. Currently, DNA methylation and histone deacetylase inhibitors are in use in cancer therapy, and poly-ADP-ribosylation inhibitors are undergoing clinical trials. Epigenetic therapy is gaining in importance in pharmacology as a new tool to improve anti-cancer therapies.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Genetic Toxicology Department, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | |
Collapse
|