1
|
Liao S, Chen Y. The Role of Bioactive Small Molecules in COPD Pathogenesis. COPD 2024; 21:2307618. [PMID: 38329475 DOI: 10.1080/15412555.2024.2307618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is recognized as a predominant contributor to mortality worldwide, which causes significant burdens to both society and individuals. Given the limited treatment options for COPD, there lies a critical realization: the imperative for expeditious development of novel therapeutic modalities that can effectively alleviate disease progression and enhance the quality of life experienced by COPD patients. Within the intricate field of COPD pathogenesis, an assortment of biologically active small molecules, encompassing small protein molecules and their derivatives, assumes crucial roles through diverse mechanisms. These mechanisms relate to the regulation of redox balance, the inhibition of the release of inflammatory mediators, and the modulation of cellular functions. Therefore, the present article aims to explore and elucidate the distinct roles played by different categories of biologically active small molecules in contributing to the pathogenesis of COPD.
Collapse
Affiliation(s)
- Sha Liao
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Yahong Chen
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
2
|
Sogut I, Senat A, Kabadayi-Sahin E, Duymaz T, Erel O. Intra- and Extra-cellular Thiol–Disulfide Homeostasis in Blood of Patients with Alcohol Use Disorder. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Real-Time insight into in vivo redox status utilizing hyperpolarized [1- 13C] N-acetyl cysteine. Sci Rep 2021; 11:12155. [PMID: 34108512 PMCID: PMC8190077 DOI: 10.1038/s41598-021-90921-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/10/2021] [Indexed: 01/27/2023] Open
Abstract
Drastic sensitivity enhancement of dynamic nuclear polarization is becoming an increasingly critical methodology to monitor real-time metabolic and physiological information in chemistry, biochemistry, and biomedicine. However, the limited number of available hyperpolarized 13C probes, which can effectively interrogate crucial metabolic activities, remains one of the major bottlenecks in this growing field. Here, we demonstrate [1-13C] N-acetyl cysteine (NAC) as a novel probe for hyperpolarized 13C MRI to monitor glutathione redox chemistry, which plays a central part of metabolic chemistry and strongly influences various therapies. NAC forms a disulfide bond in the presence of reduced glutathione, which generates a spectroscopically detectable product that is separated from the main peak by a 1.5 ppm shift. In vivo hyperpolarized MRI in mice revealed that NAC was broadly distributed throughout the body including the brain. Its biochemical transformation in two human pancreatic tumor cells in vitro and as xenografts differed depending on the individual cellular biochemical profile and microenvironment in vivo. Hyperpolarized NAC can be a promising non-invasive biomarker to monitor in vivo redox status and can be potentially translatable to clinical diagnosis.
Collapse
|
4
|
Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark‐Hypoxia by Catalytic Microenvironment‐Tailored Nanoreactors for NIR‐II Fluorescence‐Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102097] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Peidong Hou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yafei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuanli Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology Chemical and Biomolecular Engineering, and Biomedical Engineering Yong Loo Lin School of Medicine and Faculty of Engineering National University of Singapore Singapore 117597 Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117599 Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine Yong Loo Lin School of Medicine National University of Singapore Singapore 117597 Singapore
| |
Collapse
|
5
|
Chen T, Hou P, Zhang Y, Ao R, Su L, Jiang Y, Zhang Y, Cai H, Wang J, Chen Q, Song J, Lin L, Yang H, Chen X. Singlet Oxygen Generation in Dark-Hypoxia by Catalytic Microenvironment-Tailored Nanoreactors for NIR-II Fluorescence-Monitored Chemodynamic Therapy. Angew Chem Int Ed Engl 2021; 60:15006-15012. [PMID: 33871140 DOI: 10.1002/anie.202102097] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/12/2021] [Indexed: 11/07/2022]
Abstract
Singlet oxygen (1 O2 ) has a potent anticancer effect, but photosensitized generation of 1 O2 is inhibited by tumor hypoxia and limited light penetration depth. Despite the potential of chemodynamic therapy (CDT) to circumvent these issues by exploration of 1 O2 -producing catalysts, engineering efficient CDT agents is still a formidable challenge since most catalysts require specific pH to function and become inactivated upon chelation by glutathione (GSH). Herein, we present a catalytic microenvironment-tailored nanoreactor (CMTN), constructed by encapsulating MoO4 2- catalyst and alkaline sodium carbonate within liposomes, which offers a favorable pH condition for MoO4 2- -catalyzed generation of 1 O2 from H2 O2 and protects MoO4 2- from GSH chelation owing to the impermeability of liposomal lipid membrane to ions and GSH. H2 O2 and 1 O2 can freely cross the liposomal membrane, allowing CMTN with a built-in NIR-II ratiometric fluorescent 1 O2 sensor to achieve monitored tumor CDT.
Collapse
Affiliation(s)
- Tao Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Peidong Hou
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yafei Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rujiang Ao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lichao Su
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yifan Jiang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuanli Zhang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huilan Cai
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qiushui Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lisen Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| |
Collapse
|
6
|
A Way Forward for Culturing Plasmodium vivax. Trends Parasitol 2020; 36:512-519. [PMID: 32360314 DOI: 10.1016/j.pt.2020.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/28/2020] [Accepted: 04/02/2020] [Indexed: 01/12/2023]
Abstract
Trager and Jensen established a method for culturing Plasmodium falciparum, a breakthrough for malaria research worldwide. Since then, multiple attempts to establish Plasmodium vivax in continuous culture have failed. Unlike P. falciparum, which can invade all aged erythrocytes, P. vivax is restricted to reticulocytes. Thus, a constant supply of reticulocytes is considered critical for continuous P. vivax growth in vitro. A critical question remains why P. vivax selectively invades reticulocytes? What do reticulocytes offer to P. vivax that is not present in mature erythrocytes? One possibility is protection from oxidative stress by glucose-6-phosphate dehydrogenase (G6PD). Here, we also suggest supplements to the media and procedures that may reduce oxidative stress and, as a result, establish a system for the continuous culture of P. vivax.
Collapse
|
7
|
Patel D, Mahimainathan L, Narasimhan M, Rathinam M, Henderson G. Ethanol (E) Impairs Fetal Brain GSH Homeostasis by Inhibiting Excitatory Amino-Acid Carrier 1 (EAAC1)-Mediated Cysteine Transport. Int J Mol Sci 2017; 18:ijms18122596. [PMID: 29206135 PMCID: PMC5751199 DOI: 10.3390/ijms18122596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 11/21/2017] [Accepted: 11/30/2017] [Indexed: 01/01/2023] Open
Abstract
Central among the fetotoxic responses to in utero ethanol (E) exposure is redox-shift related glutathione (GSH) loss and apoptosis. Previously, we reported that despite an E-generated Nrf2 upregulation, fetal neurons still succumb. In this study, we investigate if the compromised GSH results from an impaired inward transport of cysteine (Cys), a precursor of GSH in association with dysregulated excitatory amino acid carrier1 (EAAC1), a cysteine transporter. In utero binge model involves administration of isocaloric dextrose or 20% E (3.5 g/kg)/ by gavage at 12 h intervals to pregnant Sprague Dawley (SD) rats, starting gestation day (gd) 17 with a final dose on gd19, 2 h prior to sacrifice. Primary cerebral cortical neurons (PCNs) from embryonic day 16–17 fetal SD rats were the in vitro model. E reduced both PCN and cerebral cortical GSH and Cys up to 50% and the abridged GSH could be blocked by administration of N-acetylcysteine. E reduced EAAC1 protein expression in utero and in PCNs (p < 0.05). This was accompanied by a 60–70% decrease in neuron surface expression of EAAC1 along with significant reductions of EAAC1/Slc1a1 mRNA (p < 0.05). In PCNs, EAAC1 knockdown significantly decreased GSH but not oxidized glutathione (GSSG) illustrating that while not the sole provider of Cys, EAAC1 plays an important role in neuron GSH homeostasis. These studies strongly support the concept that in both E exposed intact fetal brain and cultured PCNs a mechanism underlying E impairment of GSH homeostasis is reduction of import of external Cys which is mediated by perturbations of EAAC1 expression/function.
Collapse
Affiliation(s)
- Dhyanesh Patel
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - Lenin Mahimainathan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - Madhusudhanan Narasimhan
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - Marylatha Rathinam
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| | - George Henderson
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
| |
Collapse
|
8
|
Ono K, Jung M, Zhang T, Tsutsuki H, Sezaki H, Ihara H, Wei FY, Tomizawa K, Akaike T, Sawa T. Synthesis of l-cysteine derivatives containing stable sulfur isotopes and application of this synthesis to reactive sulfur metabolome. Free Radic Biol Med 2017; 106:69-79. [PMID: 28189853 DOI: 10.1016/j.freeradbiomed.2017.02.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/11/2023]
Abstract
Cysteine persulfide is an L-cysteine derivative having one additional sulfur atom bound to a cysteinyl thiol group, and it serves as a reactive sulfur species that regulates redox homeostasis in cells. Here, we describe a rapid and efficient method of synthesis of L-cysteine derivatives containing isotopic sulfur atoms and application of this method to a reactive sulfur metabolome. We used bacterial cysteine syntheses to incorporate isotopic sulfur atoms into the sulfhydryl moiety of L-cysteine. We cloned three cysteine synthases-CysE, CysK, and CysM-from the Gram-negative bacterium Salmonella enterica serovar Typhimurium LT2, and we generated their recombinant enzymes. We synthesized 34S-labeled L-cysteine from O-acetyl-L-serine and 34S-labeled sodium sulfide as substrates for the CysK or CysM reactions. Isotopic labeling of L-cysteine at both sulfur (34S) and nitrogen (15N) atoms was also achieved by performing enzyme reactions with 15N-labeled L-serine, acetyl-CoA, and 34S-labeled sodium sulfide in the presence of CysE and CysK. The present enzyme systems can be applied to syntheses of a series of L-cysteine derivatives including L-cystine, L-cystine persulfide, S-sulfo-L-cysteine, L-cysteine sulfonate, and L-selenocystine. We also prepared 34S-labeled N-acetyl-L-cysteine (NAC) by incubating 34S-labeled L-cysteine with acetyl coenzyme A in test tubes. Tandem mass spectrometric identification of low-molecular-weight thiols after monobromobimane derivatization revealed the endogenous occurrence of NAC in the cultured mammalian cells such as HeLa cells and J774.1 cells. Furthermore, we successfully demonstrated, by using 34S-labeled NAC, metabolic conversion of NAC to glutathione and its persulfide, via intermediate formation of L-cysteine, in the cells. The approach using isotopic sulfur labeling combined with mass spectrometry may thus contribute to greater understanding of reactive sulfur metabolome and redox biology.
Collapse
Affiliation(s)
- Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Minkyung Jung
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8577, Japan
| | - Tianli Zhang
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiroshi Sezaki
- Life Sciences and Applied Markets Group, Agilent Technologies, Tokyo 192-8510, Japan
| | - Hideshi Ihara
- Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Fan-Yan Wei
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan; Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Takaaki Akaike
- Department of Environmental Health Sciences and Molecular Toxicology, Tohoku University Graduate School of Medicine, Sendai 980-8577, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| |
Collapse
|
9
|
Amen F, Machin A, Touriño C, Rodríguez I, Denicola A, Thomson L. N-acetylcysteine improves the quality of red blood cells stored for transfusion. Arch Biochem Biophys 2017; 621:31-37. [PMID: 28392212 DOI: 10.1016/j.abb.2017.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 12/20/2022]
Abstract
Storage inflicts a series of changes on red blood cells (RBC) that compromise the cell survival and functionality; largely these alterations (storage lesions) are due to oxidative modifications. The possibility of improving the quality of packed RBC stored for transfusion including N-acetylcysteine (NAC) in the preservation solution was explored. Relatively high concentrations of NAC (20-25 mM) were necessary to prevent the progressive leakage of hemoglobin, while lower concentrations (≥2.5 mM) were enough to prevent the loss of reduced glutathione during the first 21 days of storage. Peroxiredoxin-2 was also affected during storage, with a progressive accumulation of disulfide-linked dimers and hetero-protein complexes in the cytosol and also in the membrane of stored RBC. Although the presence of NAC in the storage solution was unable to avoid the formation of thiol-mediated protein complexes, it partially restored the capacity of the cell to metabolize H2O2, indicating the potential use of NAC as an additive in the preservation solution to improve RBC performance after transfusion.
Collapse
Affiliation(s)
- Florencia Amen
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Andrea Machin
- Cátedra y Departamento de Medicina Transfusional, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| | - Cristina Touriño
- Departamento Básico de Medicina, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| | - Ismael Rodríguez
- Cátedra y Departamento de Medicina Transfusional, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, 11200 Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, 11100 Montevideo, Uruguay
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, 11100 Montevideo, Uruguay.
| |
Collapse
|
10
|
Decreased cysteine uptake by EAAC1 gene deletion exacerbates neuronal oxidative stress and neuronal death after traumatic brain injury. Amino Acids 2016; 48:1619-29. [DOI: 10.1007/s00726-016-2221-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 03/21/2016] [Indexed: 12/22/2022]
|
11
|
Sanguinetti CM. N-acetylcysteine in COPD: why, how, and when? Multidiscip Respir Med 2016; 11:8. [PMID: 26855777 PMCID: PMC4744393 DOI: 10.1186/s40248-016-0039-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022] Open
Abstract
Oxidants have long been recognized to have an important role in the pathogenesis of COPD, and in this cigarette smoke has a strong responsibility, because it generates a conspicuous amount of oxidant radicals able to modify the structure of the respiratory tract and to enhance several mechanisms that sustain lung inflammation in COPD. In fact, oxidative stress is highly increased in COPD and natural antioxidant capacities, mainly afforded by reduced glutathione, are often overcome. Thus an exogenous supplementation of antioxidant compounds is mandatory to at least partially counteract the oxidative stress. For this purpose N-acetylcysteine has great potentialities due to its capacity of directly contrasting oxidants with its free thiols, and to the possibility it has of acting as donor of cysteine precursors aimed at glutathione restoration. Many studies in vitro and in vivo have already demonstrated the antioxidant capacity of NAC. Many clinical studies have long been performed to explore the efficacy of NAC in COPD with altern results, especially when the drug was used at very low dosage and/or for a short period of time. More recently, several trials have been conducted to verify the appropriateness of using high-dose NAC in COPD, above all to decrease the exacerbations rate. The results have been encouraging, even if some of the data come from the most widely sized trials that have been conducted in Chinese populations. Although other evidence should be necessary to confirm the results in other populations of patients, high-dose oral NAC nevertheless offers interesting perspectives as add-on therapy for COPD patients.
Collapse
|
12
|
Protein Interacting with C-Kinase 1 Deficiency Impairs Glutathione Synthesis and Increases Oxidative Stress via Reduction of Surface Excitatory Amino Acid Carrier 1. J Neurosci 2015; 35:6429-43. [PMID: 25904794 DOI: 10.1523/jneurosci.3966-14.2015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Protein interacting with C-kinase 1 (PICK1) has received considerable attention, because it interacts with a broad range of neurotransmitter receptors, transporters, and enzymes and thereby influences their localization and function in the CNS. Although it is suggested that putative partners of PICK1 are involved in neurological diseases such as schizophrenia, Parkinson's disease, chronic pain, and amyotrophic lateral sclerosis, the functions of PICK1 in neurological disorders are not clear. Here, we show that oxidative stress, which is tightly associated with neurological diseases, occurs in PICK1(-/-) mice. The oxidation in PICK1(-/-) mice was found selectively in neurons and was age dependent, leading to microglial activation and the release of inflammatory factors. Neurons in the cortex and hippocampus from PICK1(-/-) mice showed increased vulnerability to oxidants and reduced capacity to metabolize reactive oxygen species (ROS); this was caused by reduced glutathione content and impaired cysteine transport. The dysregulated expression of glutathione was attributed to a decrease of the surface glutamate transporter excitatory amino acid carrier 1 (EAAC1). Overexpression of PICK1 could rescue the surface expression of EAAC1 and ameliorate the glutathione deficit in PICK1(-/-) neurons. Finally, reduced surface EAAC1 was associated with defective Rab11 activity. Transfection with dominant-negative Rab11 effectively suppressed surface EAAC1 and increased ROS production. Together, these results indicate that PICK1 is a crucial regulator in glutathione homeostasis and may play important roles in oxidative stress and its associated neurodegenerative diseases.
Collapse
|
13
|
Matté A, Pantaleo A, Ferru E, Turrini F, Bertoldi M, Lupo F, Siciliano A, Ho Zoon C, De Franceschi L. The novel role of peroxiredoxin-2 in red cell membrane protein homeostasis and senescence. Free Radic Biol Med 2014; 76:80-8. [PMID: 25151118 DOI: 10.1016/j.freeradbiomed.2014.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 11/28/2022]
Abstract
Peroxiredoxin-2 (Prx2), a typical two-cysteine peroxiredoxin, is the third most abundant protein in red cells. Although progress has been made in the functional characterization of Prx2, its role in red cell membrane protein homeostasis is still under investigation. Here, we studied Prx2(-/-) mouse red cells. The absence of Prx2 promotes (i) activation of the oxidative-induced Syk pathway; (ii) increased band 3 Tyr phosphorylation, with clustered band 3; and (iii) increased heat shock protein (HSP27 and HSP70) membrane translocation. This was associated with enhanced in vitro erythrophagocytosis of Prx2(-/-) red cells and reduced Prx2(-/-) red cell survival, indicating the possible role of Prx2 membrane recruitment in red cell aging and in the clearance of oxidized hemoglobin and damaged proteins through microparticles. Indeed, we observed an increased release of microparticles from Prx2(-/-) mouse red cells. The mass spectrometric analysis of erythroid microparticles found hemoglobin chains, membrane proteins, and HSPs. To test these findings, we treated Prx2(-/-) mice with antioxidants in vivo. We observed that N-acetylcysteine reduced (i) Syk activation, (ii) band 3 clusterization, (iii) HSP27 membrane association, and (iv) erythroid microparticle release, resulting in increased Prx2(-/-) mouse red cell survival. Thus, we propose that Prx2 may play a cytoprotective role in red cell membrane protein homeostasis and senescence.
Collapse
Affiliation(s)
- Alessandro Matté
- Department of Medicine, Section of Internal Medicine, University of Verona, AOUI-Policlinico GB Rossi, 37134 Verona, Italy
| | - Antonella Pantaleo
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Emanuela Ferru
- Department of Oncology, University of Torino, Torino, Italy
| | - Franco Turrini
- Department of Oncology, University of Torino, Torino, Italy
| | - Mariarita Bertoldi
- Department of Oncology, University of Torino, Torino, Italy; Department of Life and Reproduction Sciences, Section of Biochemistry, University of Verona, AOUI-Policlinico GB Rossi, 37134 Verona, Italy
| | - Francesca Lupo
- Department of Medicine, Section of Internal Medicine, University of Verona, AOUI-Policlinico GB Rossi, 37134 Verona, Italy
| | - Angela Siciliano
- Department of Medicine, Section of Internal Medicine, University of Verona, AOUI-Policlinico GB Rossi, 37134 Verona, Italy
| | - Chae Ho Zoon
- School of Biological Science and Technology, Chonnam National University, Gwangjiu, Korea
| | - Lucia De Franceschi
- Department of Medicine, Section of Internal Medicine, University of Verona, AOUI-Policlinico GB Rossi, 37134 Verona, Italy.
| |
Collapse
|
14
|
Choi BY, Kim JH, Kim HJ, Lee BE, Kim IY, Sohn M, Suh SW. EAAC1 gene deletion increases neuronal death and blood brain barrier disruption after transient cerebral ischemia in female mice. Int J Mol Sci 2014; 15:19444-57. [PMID: 25350110 PMCID: PMC4264121 DOI: 10.3390/ijms151119444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/13/2014] [Accepted: 10/16/2014] [Indexed: 01/07/2023] Open
Abstract
EAAC1 is important in modulating brain ischemic tolerance. Mice lacking EAAC1 exhibit increased susceptibility to neuronal oxidative stress in mice after transient cerebral ischemia. EAAC1 was first described as a glutamate transporter but later recognized to also function as a cysteine transporter in neurons. EAAC1-mediated transport of cysteine into neurons contributes to neuronal antioxidant function by providing cysteine substrates for glutathione synthesis. Here we evaluated the effects of EAAC1 gene deletion on hippocampal blood vessel disorganization after transient cerebral ischemia. EAAC1-/- female mice subjected to transient cerebral ischemia by common carotid artery occlusion for 30 min exhibited twice as much hippocampal neuronal death compared to wild-type female mice as well as increased reduction of neuronal glutathione, blood-brain barrier (BBB) disruption and vessel disorganization. Pre-treatment of N-acetyl cysteine, a membrane-permeant cysteine prodrug, increased basal glutathione levels in the EAAC1-/- female mice and reduced ischemic neuronal death, BBB disruption and vessel disorganization. These findings suggest that cysteine uptake by EAAC1 is important for neuronal antioxidant function under ischemic conditions.
Collapse
Affiliation(s)
- Bo Young Choi
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 200-702, Korea.
| | - Jin Hee Kim
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 200-702, Korea.
| | - Hyun Jung Kim
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 200-702, Korea.
| | - Bo Eun Lee
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 200-702, Korea.
| | - In Yeol Kim
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 200-702, Korea.
| | - Min Sohn
- Department of Nursing, Inha University, Incheon 402-751, Korea.
| | - Sang Won Suh
- Department of Physiology, Hallym University, College of Medicine, Chuncheon 200-702, Korea.
| |
Collapse
|
15
|
Characteristic Changes in Korean Native Cattle Spermatozoa Frozen-Thawed with L-Cysteine and/or Catalase. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2014. [DOI: 10.12750/jet.2014.29.2.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
16
|
Storing red blood cells with vitamin C and N-acetylcysteine prevents oxidative stress-related lesions: a metabolomics overview. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2014; 12:376-87. [PMID: 25074788 DOI: 10.2450/2014.0266-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/03/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Recent advances in red blood cell metabolomics have paved the way for further improvements of storage solutions. MATERIALS AND METHODS In the present study, we exploited a validated high performance liquid chromatography-mass spectrometry analytical workflow to determine the effects of vitamin C and N-acetylcysteine supplementation (anti-oxidants) on the metabolome of erythrocytes stored in citrate-phosphate-dextrose saline-adenine-glucose-mannitol medium under blood bank conditions. RESULTS We observed decreased energy metabolism fluxes (glycolysis and pentose phosphate pathway). A tentative explanation of this phenomenon could be related to the observed depression of the uptake of glucose, since glucose and ascorbate are known to compete for the same transporter. Anti-oxidant supplementation was effective in modulating the redox poise, through the promotion of glutathione homeostasis, which resulted in decreased haemolysis and less accumulation of malondialdehyde and oxidation by-products (including oxidized glutathione and prostaglandins). DISCUSSION Anti-oxidants improved storage quality by coping with oxidative stress at the expense of glycolytic metabolism, although reservoirs of high energy phosphate compounds were preserved by reduced cyclic AMP-mediated release of ATP.
Collapse
|
17
|
Lee SH, Cheong HT, Yang BK, Park CK. Storage of Bull and Boar Semen : Novel Concepts Derived Using Magnetized Water and Antioxidants. ACTA ACUST UNITED AC 2014. [DOI: 10.12749/rdb.2014.38.1.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Sarıözkan S, Bucak MN, Tuncer PB, Büyükleblebici S, Cantürk F. Influence of various antioxidants added to TCM-199 on post-thaw bovine sperm parameters, DNA integrity and fertilizing ability. Cryobiology 2014; 68:129-33. [DOI: 10.1016/j.cryobiol.2014.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 01/14/2014] [Accepted: 01/15/2014] [Indexed: 10/25/2022]
|
19
|
Abstract
Zofenopril, an inhibitor of the angiotensin-converting enzyme (ACE), has recently been widely introduced into the pharmaceutical market. Its clinical safety and efficacy has been demonstrated in patients with hypertension and in patients with acute myocardial infarction (AMI). The Survival of Myocardial Infarction Long-term Evaluation (SMILE) project provided valuable information regarding the safety of early onset ACE inhibition with zofenopril after AMI and a greater perception of the early and late benefits. The SMILE-I study demonstrated that most benefits of ACE inhibition may be obtained early after AMI and persist after discontinuation of treatment. The SMILE-II study demonstrated that early zofenopril treatment (initiated <12 h) is safe and associated with a low rate of severe hypotension in thrombolyzed patients with acute myocardial infarction when administered in accordance with an adequate dose-titration scheme. Many other studies of clinical ACE-inhibitors (ACEIs) over the last 30 years have provided us with information in order to understand the effects of ACEIs and have demonstrated that patients benefit from ACEI treatment at different stages of the pathophysiological continuum of cardiovascular diseases. The current guidelines recommend that ACEIs should be used for routine secondary prevention in all patients with coronary artery disease and should be considered for all other patients with coronary or other vascular disease unless contraindicated.
Collapse
Affiliation(s)
- Hendrik Buikema
- University of Groningen, Department of Clinical Pharmacology, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
20
|
Samuni Y, Goldstein S, Dean OM, Berk M. The chemistry and biological activities of N-acetylcysteine. Biochim Biophys Acta Gen Subj 2013; 1830:4117-29. [PMID: 23618697 DOI: 10.1016/j.bbagen.2013.04.016] [Citation(s) in RCA: 544] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/11/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022]
Abstract
BACKGROUND N-acetylcysteine (NAC) has been in clinical practice for several decades. It has been used as a mucolytic agent and for the treatment of numerous disorders including paracetamol intoxication, doxorubicin cardiotoxicity, ischemia-reperfusion cardiac injury, acute respiratory distress syndrome, bronchitis, chemotherapy-induced toxicity, HIV/AIDS, heavy metal toxicity and psychiatric disorders. SCOPE OF REVIEW The mechanisms underlying the therapeutic and clinical applications of NAC are complex and still unclear. The present review is focused on the chemistry of NAC and its interactions and functions at the organ, tissue and cellular levels in an attempt to bridge the gap between its recognized biological activities and chemistry. MAJOR CONCLUSIONS The antioxidative activity of NAC as of other thiols can be attributed to its fast reactions with OH, NO2, CO3(-) and thiyl radicals as well as to restitution of impaired targets in vital cellular components. NAC reacts relatively slowly with superoxide, hydrogen-peroxide and peroxynitrite, which cast some doubt on the importance of these reactions under physiological conditions. The uniqueness of NAC is most probably due to efficient reduction of disulfide bonds in proteins thus altering their structures and disrupting their ligand bonding, competition with larger reducing molecules in sterically less accessible spaces, and serving as a precursor of cysteine for GSH synthesis. GENERAL SIGNIFICANCE The outlined reactions only partially explain the diverse biological effects of NAC, and further studies are required for determining its ability to cross the cell membrane and the blood-brain barrier as well as elucidating its reactions with components of cell signaling pathways.
Collapse
|
21
|
Jang BG, Won SJ, Kim JH, Choi BY, Lee MW, Sohn M, Song HK, Suh SW. EAAC1 gene deletion alters zinc homeostasis and enhances cortical neuronal injury after transient cerebral ischemia in mice. J Trace Elem Med Biol 2012; 26:85-8. [PMID: 22575539 DOI: 10.1016/j.jtemb.2012.04.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 04/02/2012] [Indexed: 12/31/2022]
Abstract
The excitatory amino acids glutamate and cysteine are actively transported into neurons from the extracellular space by the high affinity glutamate transporter EAAC1. The astrocyte glutamate transporters, GLT1 and GLAST, are the primary mediators of glutamate clearance. EAAC1 has a limited role in this function. However, uptake of cysteine into neurons via EAAC1 contributes to neuronal antioxidant function by providing cysteine substrate for glutathione synthesis. Mice in which the EAAC1 gene has been deleted were seen to have enhanced susceptibility to neuronal oxidative stress and developed brain atrophy and cognitive function decline with aging. The aim of the current study was to evaluate if EAAC1 confers protection against ischemic events. Young adult CD-1 wild-type or EAAC1(-/-) mice were subjected to 30 min of bilateral common carotid artery occlusion and evaluated for neuronal death and zinc translocation. The intensity of TSQ fluorescence in the cytoplasm of cortical neurons in the EAAC1(-/-) mice was significantly higher than wild-type mice, indicating that the cortical neurons of EAAC1(-/-) mice contain higher cytoplasmic concentrations of labile (or free) zinc. Zinc translocation into cortical neurons was also enhanced in EAAC1(-/-) mice. Three days after ischemia, Fluoro-Jade B staining revealed that EAAC1(-/-) mice had more than twice as many degenerating neurons as wild-type mice. N-acetylcysteine, a membrane-permeant cysteine pro-drug, normalized basal zinc levels, reduced TSQ (+) neurons and reduced ischemic neuronal death in the EAAC1(-/-) mice when delivered in a pre-treatment fashion. Taken together, this study implicates EAAC1-dependent cysteine uptake as an endogenous source of enhancing antioxidant function and zinc homeostasis in neurons in the ischemic brain.
Collapse
Affiliation(s)
- Bong Geom Jang
- Department of Physiology, Hallym University, School of Medicine, Chuncheon, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
22
|
TRPM2 channel protective properties of N-acetylcysteine on cytosolic glutathione depletion dependent oxidative stress and Ca2+ influx in rat dorsal root ganglion. Physiol Behav 2012; 106:122-8. [DOI: 10.1016/j.physbeh.2012.01.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 01/05/2023]
|
23
|
Çoyan K, Başpınar N, Bucak MN, Akalın PP. Effects of cysteine and ergothioneine on post-thawed Merino ram sperm and biochemical parameters. Cryobiology 2011; 63:1-6. [DOI: 10.1016/j.cryobiol.2011.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 11/25/2022]
|
24
|
Tuncer PB, Bucak MN, Büyükleblebici S, Sarıözkan S, Yeni D, Eken A, Akalın PP, Kinet H, Avdatek F, Fidan AF, Gündoğan M. The effect of cysteine and glutathione on sperm and oxidative stress parameters of post-thawed bull semen. Cryobiology 2010; 61:303-7. [DOI: 10.1016/j.cryobiol.2010.09.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 09/09/2010] [Accepted: 09/20/2010] [Indexed: 10/18/2022]
|
25
|
Intracellular redox state alters NMDA receptor response during aging through Ca2+/calmodulin-dependent protein kinase II. J Neurosci 2010; 30:1914-24. [PMID: 20130200 DOI: 10.1523/jneurosci.5485-09.2010] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The contribution of the NMDA receptors (NMDARs) to synaptic plasticity declines during aging, and the decline is thought to contribute to memory deficits. Here, we demonstrate that an age-related shift in intracellular redox state contributes to the decline in NMDAR responses through Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). The oxidizing agent xanthine/xanthine oxidase (X/XO) decreased the NMDAR-mediated synaptic responses at hippocampal CA3-CA1 synapses in slices from young (3-8 months) but not aged (20-25 months) rats. Conversely, the reducing agent dithiothreitol (DTT) selectively enhanced NMDAR response to a greater extent in aged hippocampal slices. The enhancement of NMDAR responses facilitated induction of long-term potentiation in aged but not young animals. The DTT-mediated growth in the NMDAR response was not observed for the AMPA receptor-mediated synaptic responses. A similar increase was observed by intracellular application of the membrane-impermeable reducing agent, L-glutathione (L-GSH), through the intracellular recording pipette, indicating that the increased NMDAR response was dependent on intracellular redox state. DTT enhancement of the NMDAR response was dependent on CaMKII activity and was blocked by the CaMKII inhibitor--myristoylated autocamtide-2-related inhibitory peptide (myr-AIP)--but not by inhibition of the activity of protein phosphatases--PP1 and calcineurin (CaN/PP2B) or protein kinase C. CaMKII activity assays established that DTT increased CaMKII activity in CA1 cytosolic extracts in aged but not in young animals. These findings indicate a link between oxidation of CaMKII during aging, a decline in NMDAR responses, and altered synaptic plasticity.
Collapse
|
26
|
Rachmilovich-Calis S, Meyerstein N, Meyerstein D. A mechanistic study of the effects of antioxidants on the formation of malondialdehyde-like products in the reaction of hydroxyl radicals with deoxyribose. Chemistry 2009; 15:7717-23. [PMID: 19551771 DOI: 10.1002/chem.200802272] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The reactions of (*)OH radicals with deoxyribose, DR, form five different DR(*) radicals, only one of which is transformed into malondialdehyde (MDA)-like products. The radiolytic yield of the MDA-like products increases with the increase in the DR concentration indicating that some of the initially formed "unproductive" radicals react with DR to form the "productive" radicals. The yield of the MDA-like products also increases with the dose rate delivered to the solution suggesting that the formation of the MDA-like products involves the reaction of the "productive" radicals with a radical. The addition of ascorbate, AH(-), to the solution decreases the yield of the MDA-like products as expected from the relative rates of the reaction of DR and AH(-) with (*)OH radicals. On the other hand the addition of the exogenous thiol, N-acetylcysteine (NAC), to the solutions decreases the yield of the MDA-like products considerably more than expected from the rate constants of the reaction with (*)OH radicals. The addition of the endogenous thiol, glutathione (GSH), to the solutions affects the yield of the MDA-like products at low concentration less than expected and at "high" concentrations more than expected from the rate constant of the reaction. Addition of low concentration of AH(-) to solutions containing GSH increases considerably its antioxidant activity whereas addition of small concentrations of AH(-) to solutions containing NAC has no effect on its antioxidant activity. The results point out that the DR(*) radicals react differently with NAC and GSH and that the GS(*) and NAC(*) radicals react differently with DR, the GS(*) radical being considerably more active than the NAC(*) radical. Thus it has to be concluded that the relative activity of antioxidants depends also on the rate constants of many secondary reactions and on the concentrations of all the solutes present in the system.
Collapse
|
27
|
Sarıözkan S, Bucak MN, Tuncer PB, Ulutaş PA, Bilgen A. The influence of cysteine and taurine on microscopic–oxidative stress parameters and fertilizing ability of bull semen following cryopreservation. Cryobiology 2009; 58:134-8. [DOI: 10.1016/j.cryobiol.2008.11.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 11/24/2008] [Accepted: 11/25/2008] [Indexed: 11/30/2022]
|
28
|
Effect of anti-oxidants and oxidative stress parameters on ram semen after the freeze–thawing process. Small Rumin Res 2008. [DOI: 10.1016/j.smallrumres.2007.09.002] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Aoyama K, Matsumura N, Watabe M, Nakaki T. Oxidative stress on EAAC1 is involved in MPTP-induced glutathione depletion and motor dysfunction. Eur J Neurosci 2007; 27:20-30. [DOI: 10.1111/j.1460-9568.2007.05979.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Nagasawa K, Kakuda T, Higashi Y, Fujimoto S. Possible involvement of 12-lipoxygenase activation in glucose-deprivation/reload-treated neurons. Neurosci Lett 2007; 429:120-5. [DOI: 10.1016/j.neulet.2007.09.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 09/25/2007] [Accepted: 09/28/2007] [Indexed: 10/22/2022]
|
31
|
Maksimchik YZ, Lapshina EA, Sudnikovich EY, Zabrodskaya SV, Zavodnik IB. Protective effects of N-acetyl-L-cysteine against acute carbon tetrachloride hepatotoxicity in rats. Cell Biochem Funct 2007; 26:11-8. [PMID: 17200984 DOI: 10.1002/cbf.1382] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In recent years, N-acetyl-L-cysteine (NAC) has been widely investigated as a potentially useful protective and antioxidative agent to be applied in many pathological states. The aim of the present work was further evaluation of the mechanisms of the NAC protective effect under carbon tetrachloride-induced acute liver injuries in rats. The rat treatment with CCl4 (4 g/kg, intragastrically) caused pronounced hepatolysis observed as an increase in blood plasma bilirubin levels and hepatic enzyme activities, which agreed with numerous previous observations. The rat intoxication was accompanied by an enhancement of membrane lipid peroxidation (1.4-fold) and protein oxidative damage (protein carbonyl group and mixed protein-glutathione disulphide formations) in the rat liver. The levels of nitric oxide in blood plasma and liver tissue significantly increased (5.3- and 1.5-fold, respectively) as blood plasma triacylglycerols decreased (1.6-fold). The NAC administration to control and intoxicated animals (three times at doses of 150 mg/kg) elevated low-molecular-weight thiols in the liver. The NAC administration under CCl4-induced intoxication prevented oxidative damage of liver cells, decreased membrane lipid peroxidation, protein carbonyls and mixed protein-glutathione disulphides formation, and partially normalized plasma triacylglycerols. At the same time the NAC treatment of intoxicated animals did not produce a marked decrease of the elevated levels of blood plasma ALT and AST activities and bilirubin. The in vitro exposure of human red blood cells to NAC increased the cellular low-molecular-weight thiol levels and retarded tert-butylhydroperoxide-induced cellular thiol depletion and membrane lipid peroxidation as well as effectively inhibited hypochlorous acid-induced erythrocyte lysis. Thus, NAC can replenish non-protein cellular thiols and protect membrane lipids and proteins due to its direct radical-scavenging properties, but it did not attenuate hepatotoxicity in the acute rat CCl4-intoxication model.
Collapse
Affiliation(s)
- Yu Z Maksimchik
- Institute of Biochemistry, National Academy of Sciences of Belarus, Len. Kom. Blvd., Grodno, Belarus
| | | | | | | | | |
Collapse
|
32
|
Sadowska AM, Manuel-Y-Keenoy B, De Backer WA. Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther 2006; 20:9-22. [PMID: 16458553 DOI: 10.1016/j.pupt.2005.12.007] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 12/16/2005] [Indexed: 01/07/2023]
Abstract
In order to develop efficient therapeutic regimes for chronic obstructive pulmonary disease (COPD), N-acetylcysteine (NAC) has been tested as a medication which can suppress various pathogenic processes in this disease. Besides its well-known and efficient mucolytic action, NAC meets these needs by virtue of its antioxidant and anti-inflammatory modes of action. NAC is a thiol compound which by providing sulfhydryl groups, can act both as a precursor of reduced glutathione and as a direct ROS scavenger, hence regulating the redox status in the cells. In this way it can interfere with several signaling pathways that play a role in regulating apoptosis, angiogenesis, cell growth and arrest and inflammatory response. Overall, the antioxidant effects of NAC are well documented in in vivo and in vitro studies. It successfully inhibits oxidative stress at both high and low concentrations, under acute (in vitro) and chronic administration (in vivo). With regard to its anti-inflammatory action, in contrast, the effects of NAC differ in vivo and in vitro and are highly dose-dependent. In the in vitro settings anti-inflammatory effects are seen at high but not at low concentrations. On the other hand, some long-term effectiveness is reported in several in vivo studies even at low dosages. Increasing the dose seems to improve NAC bioavailability and may also consolidate some of its effects. In this way, the effects that are observed in the clinical and in vivo studies do not always reflect the success of the in vitro experiments. Furthermore, the results obtained with healthy volunteers do not always provide incontrovertible proof of its usefulness in COPD especially when number of exacerbations and changes in lung function are chosen as the primary outcomes. Despite these considerations and in view of the present lack of effective therapies to inhibit disease progression in COPD, NAC and its derivatives, because of their multiple molecular modes of action, remain promising medication once doses and route of administration are optimized.
Collapse
Affiliation(s)
- A M Sadowska
- Department of Respiratory Medicine, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | | | | |
Collapse
|
33
|
Aoyama K, Suh SW, Hamby AM, Liu J, Chan WY, Chen Y, Swanson RA. Neuronal glutathione deficiency and age-dependent neurodegeneration in the EAAC1 deficient mouse. Nat Neurosci 2005; 9:119-26. [PMID: 16311588 DOI: 10.1038/nn1609] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2005] [Accepted: 10/28/2005] [Indexed: 11/09/2022]
Abstract
Uptake of the neurotransmitter glutamate is effected primarily by transporters expressed on astrocytes, and downregulation of these transporters leads to seizures and neuronal death. Neurons also express a glutamate transporter, termed excitatory amino acid carrier-1 (EAAC1), but the physiological function of this transporter remains uncertain. Here we report that genetically EAAC1-null (Slc1a1(-/-)) mice have reduced neuronal glutathione levels and, with aging, develop brain atrophy and behavioral changes. EAAC1 can also rapidly transport cysteine, an obligate precursor for neuronal glutathione synthesis. Neurons in the hippocampal slices of EAAC1(-/-) mice were found to have reduced glutathione content, increased oxidant levels and increased susceptibility to oxidant injury. These changes were reversed by treating the EAAC1(-/-) mice with N-acetylcysteine, a membrane-permeable cysteine precursor. These findings suggest that EAAC1 is the primary route for neuronal cysteine uptake and that EAAC1 deficiency thereby leads to impaired neuronal glutathione metabolism, oxidative stress and age-dependent neurodegeneration.
Collapse
Affiliation(s)
- Koji Aoyama
- Department of Neurology, University of California San Francisco, San Francisco, California 94143, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Roes EM, Raijmakers MT, Boo TMD, Zusterzeel PL, Merkus HM, Peters WH, Steegers EA. Oral N-acetylcysteine administration does not stabilise the process of established severe preeclampsia. Eur J Obstet Gynecol Reprod Biol 2005; 127:61-7. [PMID: 16243427 DOI: 10.1016/j.ejogrb.2005.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2004] [Revised: 08/22/2005] [Accepted: 09/21/2005] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To stabilise the disease process in women with early onset severe preeclampsia and/or HELLP syndrome by enhancing maternal antioxidants effects of glutathione. STUDY DESIGN In a randomised, double-blind, placebo-controlled trial, women with severe preeclampsia and/or HELLP syndrome received oral N-acetylcysteine. Primary outcome measures were disease stabilisation expressed as treatment-to-delivery interval and biochemical assessment of glutathione and parameters of oxidative stress. Secondary outcome measures were maternal complications, rate of caesarean section, stay at intensive care unit, postpartum hospital stay and neonatal morbidity and mortality. Analyses were done by intention-to-treat using Wilcoxon's two-sample test and regression analysis. RESULTS Median treatment-to-delivery interval was not significantly different between the N-acetylcysteine and placebo group. The whole blood and plasma levels of glutathione and other thiols were not affected by N-acetylcysteine administration, except for plasma homocysteine concentrations, which were lower in the N-acetylcysteine group. There were no differences found in maternal nor neonatal secondary outcome measures between both groups. CONCLUSION Oral N-acetylcysteine administration does not stabilise the disease process of early onset severe preeclampsia and/or HELLP syndrome.
Collapse
Affiliation(s)
- Eva Maria Roes
- Department of Obstetrics & Gynaecology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Amer J, Fibach E. Chronic oxidative stress reduces the respiratory burst response of neutrophils from beta-thalassaemia patients. Br J Haematol 2005; 129:435-41. [PMID: 15842669 DOI: 10.1111/j.1365-2141.2005.05463.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Beta-thalassaemia patients are susceptible to infections by mechanisms that are not fully understood. Polymorphonuclear neutrophils (PMN) destroy microbes by producing a burst of reactive oxygen species (ROS) (respiratory burst) in response to bacterial components, as well as to phorbol-myristate-acetate (PMA). In the present study, we compared ROS generation by normal and beta-thalassaemia PMN and assessed their response to PMA. Blood cells were subjected to gelatin separation, staining with dichlorofluorescin-diacetate and flow cytometry. At basal level, the fluorescence (mean fluorescence channel) of normal and thalassaemia PMN were 12.7 +/- 4.5 and 95.6 +/- 19.8 respectively; it changed to 283.4 +/- 72.5 and 39.5 +/- 14.3, respectively, upon PMA stimulation, indicating that thalassaemia PMN have a higher basal ROS but a reduced response to PMA. When normal PMN were treated with the oxidants hydrogen peroxide and butyl-hydroxyperoxide, as well as iron and haemin, which are elevated in thalassaemia, their basal ROS increased 5-22-fold, but the PMA response was abolished. Treating thalassaemic PMN with antioxidants (N-acetyl-L-cysteine or vitamins C and E) reduced their basal ROS but enhanced their PMA response. Our findings indicate that chronically stressed PMN, e.g. in thalassaemia, have reduced capacity to elicit a respiratory burst, which may compromise their antibacterial capacity, and imply prophylactic treatment with antioxidants for recurrent infections.
Collapse
Affiliation(s)
- Johnny Amer
- Department of Haematology, Hadassah-Hebrew University Medical Centre, Jerusalem 91120, Israel
| | | |
Collapse
|
36
|
Grinberg L, Fibach E, Amer J, Atlas D. N-acetylcysteine amide, a novel cell-permeating thiol, restores cellular glutathione and protects human red blood cells from oxidative stress. Free Radic Biol Med 2005; 38:136-45. [PMID: 15589382 DOI: 10.1016/j.freeradbiomed.2004.09.025] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 09/21/2004] [Indexed: 12/15/2022]
Abstract
Oxidative stress plays an important role in the progression of neurodegenerative and age-related diseases, causing damage to proteins, DNA, and lipids. A novel thiol N-acetylcysteine amide (AD4), the amide form of N-acetylcysteine (NAC) and a Cu(2+) chelator, was assessed for its antioxidant and protective effects using human red blood cells (RBCs) as a model. AD4 was shown by flow cytometry to inhibit tert.-butylhydroxyperoxide (BuOOH)-induced intracellular oxidation in RBCs stained with the oxidant-sensitive probe 2',7'-dichlorofluorescein diacetate. In addition, AD4 retarded BuOOH-induced thiol depletion and hemoglobin oxidation. Restoration of the thiol-depleted RBCs by externally applied AD4 was significantly greater compared with NAC and, unlike NAC, was accompanied by hemoglobin protection from oxidation. In a cell-free system we have demonstrated that AD4 reacted with oxidized glutathione (GSSG) to generate reduced glutathione (GSH). The formation of GSH was determined enzymatically using GSH peroxidase and by HPLC. Based on these results a thiol-disulfide exchange between AD4 and GSSG is proposed as the mechanism underlying the antioxidant effects of AD4 on BuOOH-treated RBCs. Together, these studies demonstrate that AD4 readily crosses cell membranes, replenishes intracellular GSH, and, by incorporating into the redox machinery, defends the cell from oxidation. These results provide further evidence for the efficient membrane permeation of AD4 over NAC, and support the possibility that it could be explored for treatment of neurodegeneration and other oxidation-mediated disorders.
Collapse
Affiliation(s)
- Leonid Grinberg
- Department of Molecular Biology, Faculty of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
37
|
Amer J, Goldfarb A, Fibach E. Flow cytometric analysis of the oxidative status of normal and thalassemic red blood cells. ACTA ACUST UNITED AC 2004; 60:73-80. [PMID: 15229859 DOI: 10.1002/cyto.a.20017] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The oxidative status of cells has been shown to modulate various cell functions and be involved in physiological and pathological conditions, including hereditary chronic anemias, such as thalassemia. It is maintained by the balance between oxidants, such as reactive oxygen species (ROS), and antioxidants, such as reduced glutathione (GSH). METHODS We studied peripheral RBC derived from normal and thalassemic donors. Flow cytometric methods were used to measure (1) generation of ROS; (2) the content of reduced GSH; and (3) peroxidation of membrane lipids as an indication of membrane damage. RESULTS ROS and lipid peroxidation were found to be higher, and GSH lower, in thalassemic RBC compared with normal RBC, both at baseline as well as following oxidative stress, such as exposure to hydrogen peroxide. To simulate a state of iron overload, normal RBC were exposed to extracellular ferric ammonium citrate or hemin, or their Hb was denatured by phenylhydrazine. All these treatments increased ROS and lipid peroxidation and decreased GSH. These effects were reversed by N-acetyl cysteine, a known ROS scavenger. CONCLUSIONS Flow cytometry can be useful for measuring oxidative stress and its effects on RBC in various diseases and for studying various chemical agents as antioxidants.
Collapse
Affiliation(s)
- Johnny Amer
- Department of Hematology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
38
|
Stuhlmeier KM, Kao JJ, Wallbrandt P, Lindberg M, Hammarström B, Broell H, Paigen B. Antioxidant protein 2 prevents methemoglobin formation in erythrocyte hemolysates. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:334-41. [PMID: 12605684 DOI: 10.1046/j.1432-1033.2003.03393.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antioxidant protein 2 (AOP2) is a member of a family of thiol-specific antioxidants, recently renamed peroxiredoxins, that evolved as part of an elaborate system to counteract and control detrimental effects of oxygen radicals. AOP2 is found in endothelial cells, erythrocytes, monocytes, T and B cells, but not in granulocytes. AOP2 was found solely in the cytoplasm and was not associated with the nuclear or membrane fractions; neither was it detectable in plasma. Further experiments focused on the function of AOP2 in erythrocytes where it is closely associated with the hemoglobin complex, particularly with the heme. An investigation of the mechanism of this interaction demonstrated that the conserved cysteine-47 in AOP2 seems to play a role in AOP2-heme interactions. Recombinant AOP2 prevented induced as well as noninduced methemoglobin formation in erythrocyte hemolysates, indicating its antioxidant properties. We conclude that AOP2 is part of a sophisticated system developed to protect and support erythrocytes in their many physiological functions.
Collapse
Affiliation(s)
- Karl M Stuhlmeier
- Ludwig Boltzmann Institute for Rheumatology and Balneology, Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
39
|
Shimizu E, Hashimoto K, Komatsu N, Iyo M. Roles of endogenous glutathione levels on 6-hydroxydopamine-induced apoptotic neuronal cell death in human neuroblastoma SK-N-SH cells. Neuropharmacology 2002; 43:434-43. [PMID: 12243773 DOI: 10.1016/s0028-3908(02)00108-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the roles of endogenous glutathione on 6-hydroxydopamine (6-OHDA)-induced apoptosis in human neuroblastoma SK-N-SH cells using DNA fragmentation enzyme-immunoassay and the DNA dye Hoechst 33258 staining. We observed that exogenous reduced glutathione (GSH), but not oxidized glutathione (GSSG), protected 6-OHDA (25 micro M)-induced apoptosis in a dose-dependent manner. Preincubation (18 h) with the glutathione synthesis inhibitor DL-buthionine-(S,R)-sulfoximine (BSO) significantly potentiated the toxic effects of 6-OHDA (12.5 or 25 micro M). In contrast to BSO, N-acetylcysteine (NAC) blocked, and L-(-)-cystine, the glutathione precursor, significantly attenuated 6-OHDA (25 micro M)-induced apoptosis, respectively. No alterations in endogenous glutathione concentrations were detected at 5, 15, 30, 60 min, 1 hour, 3 hours, or 6 hours after 6-OHDA (25 micro M) treatment. However, we found a 3.5-fold increase of intracellular glutathione levels 24 hours later. On the contrary, higher concentration (100 micro M) of 6-OHDA treatment, which caused more severe cell death, showed no changes of glutathione levels. These results suggest that delayed induction of endogenous glutathione might play an important role in the neuroprotective mechanism against dopamine cell death. In addition, we found that NAC might work as a beneficial catecholaminergic neuron-survival factor more efficiently than exogenous glutathione or L-cystine.
Collapse
Affiliation(s)
- Eiji Shimizu
- Department of Psychiatry (K2), Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuouku, Chiba 260-8670, Japan.
| | | | | | | |
Collapse
|
40
|
Yang KD, Chen MZ, Teng RJ, Yang MY, Liu HC, Chen RF, Hsu TY, Shaio MF. A model to study antioxidant regulation of endotoxemia-modulated neonatal granulopoiesis and granulocyte apoptosis. Pediatr Res 2000; 48:829-34. [PMID: 11102554 DOI: 10.1203/00006450-200012000-00021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neonates with septicemia tend to develop granulocytopenia, which may, in part, be due to septic mediators such as oxygen free radicals and tumor necrosis factor alpha (TNF-alpha). Granulocytopenia may be caused by a decrease in granulocyte growth and/or an increase in granulocyte destruction. In the present study, we investigated antioxidant regulation of endotoxin-modulated neonatal granulopoiesis and granulocyte apoptosis. Using human umbilical cord blood (HUCB), we found that simulating endotoxemia in vitro elicited significant superoxide production within a few minutes. Endotoxin exposure suppressed colony-forming unit-granulocyte and monocyte formation in a dose-dependent fashion. Addition of antioxidants such as N-acetyl-cysteine could reverse the endotoxin suppression of colony-forming unit-granulocyte and monocyte formation (13 +/- 5 versus 75 +/- 5 colony-forming units/mL). Spontaneous in vitro granulocyte apoptosis in 6 h, as reflected by phosphatidylserine expression on the cell surface, was higher in granulocytes from HUCB than in those from adult blood (10.8 +/- 1.0% versus 5.6 +/- 1.2%). The addition of endotoxin or IL-8 to the cells in the in vitro model did not promote granulocyte apoptosis, but TNF-alpha, a major mediator of the effects of endotoxin, significantly induced granulocyte apoptosis in HUCB (control versus TNF-alpha: 8.9 +/- 1.2% versus 35.9 +/- 2.9%). Addition of the antioxidant N-acetyl-cysteine effectively blocked TNF-alpha-induced granulocyte apoptosis as demonstrated by DNA fragmentation. Results from these studies indicate that oxygen radicals are directly involved in endotoxin suppression of granulopoiesis, and indirectly promote granulocyte apoptosis, presumably through TNF-alpha-mediated action. Thus, under certain conditions, modulation of oxygen radical production in the blood may benefit neonates with granulocytopenia.
Collapse
Affiliation(s)
- K D Yang
- Chang Gung Children's Hospital at Kaohsiung, Kaohsiung 833, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Buikema H, Monnink SH, Tio RA, Crijns HJ, de Zeeuw D, van Gilst WH. Comparison of zofenopril and lisinopril to study the role of the sulfhydryl-group in improvement of endothelial dysfunction with ACE-inhibitors in experimental heart failure. Br J Pharmacol 2000; 130:1999-2007. [PMID: 10952693 PMCID: PMC1572262 DOI: 10.1038/sj.bjp.0703498] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
We evaluated the role of SH-groups in improvement of endothelial dysfunction with ACE-inhibitors in experimental heart failure. To this end, we compared the vasoprotective effect of chronic treatment with zofenopril (plus SH-group) versus lisinopril (no SH-group), or N-acetylcysteine (only SH-group) in myocardial infarcted (MI) heart failure rats. After 11 weeks of treatment, aortas were obtained and studied as ring preparations for endothelium-dependent and -independent dilatation in continuous presence of indomethacin to avoid interference of vasoactive prostanoids, and the selective presence of the NOS-inhibitor L-NMMA to determine NO-contribution. Total dilatation after receptor-dependent stimulation with acetylcholine (ACh) was attenuated (-49%, P<0.05) in untreated MI (n=11), compared to control rats with no-MI (n=8). This was in part due to impaired NO-contribution in MI (-50%, P<0.05 versus no-MI). At the same time the capacity for generation of biologically active NO after receptor-independent stimulation with A23187 remained intact. Chronic treatment with n-acetylcysteine (n=8) selectively restored NO-contribution in total dilatation to ACh. In contrast, both ACE-inhibitors fully normalized total dilatation to ACh, including the part mediated by NO (no significant differences between zofenopril (n=10) and lisinopril (n=8)). Zofenopril, but not lisinopril, additionally potentiated the effect of endogenous NO after A23187-induced release from the endothelium (+100%) as well as that of exogenous NO provided by nitroglycerin (+22%) and sodium nitrite (+36%) (for all P<0.05 versus no-MI). We conclude that ACE-inhibition with a SH-group has a potential advantage in improvement of endothelial dysfunction through increased activity of NO after release from the endothelium into the vessel wall. Furthermore, this is the first study demonstrating the selective normalizing effect of N-actylcysteine on NO-contribution to ACh-induced dilatation in experimental heart failure.
Collapse
Affiliation(s)
- H Buikema
- Department of Clinical Pharmacology, University of Groningen, A. Deusinglaan l, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Methemoglobin (MHb) may arise from a variety of etiologies including genetic, dietary, idiopathic, and toxicologic sources. Symptoms vary from mild headache to coma/death and may not correlate with measured MHb concentrations. Toxin-induced MHb may be complicated by the drug's effect on other organ systems such as the liver or lungs. The existence of underlying heart, lung, or blood disease may exacerbate the toxicity of MHb. The diagnosis may be complicated by the effect of MHb on arterial blood gas and pulse oximeter oxygen saturation results. In addition, other dyshemoglobins may be confused with MHb. Treatment with methylene blue can be complicated by the presence of underlying enzyme deficiencies, including glucose-6-phosphate dehydrogenase deficiency. Experimental antidotes for MHb may provide alternative treatments in the future, but require further study.
Collapse
Affiliation(s)
- R O Wright
- Department of Pediatrics, Division of Emergency Medicine, Hasbro Children's Hospital, Brown Medical School, Rhode Island Poison Control Center, Providence, RI 02903, USA.
| | | | | |
Collapse
|
43
|
Knapen MF, Zusterzeel PL, Peters WH, Steegers EA. Glutathione and glutathione-related enzymes in reproduction. A review. Eur J Obstet Gynecol Reprod Biol 1999; 82:171-84. [PMID: 10206412 DOI: 10.1016/s0301-2115(98)00242-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glutathione and glutathione-related enzymes are pivotal for the normal functioning of several important biological processes in humans. Glutathione and glutathione-related enzymes are involved in the metabolism and detoxification of cytotoxic and carcinogenic compounds as well as reactive oxygen species. The role of reactive oxygen species in reproduction was the subject of many investigations, and there is compelling evidence for the involvement of these species in the physiology and pathology of both male and female reproductive systems. The glutathione/glutathione-related enzyme system was extensively studied in gynaecological oncology, but to a lesser extent in other topics related to reproduction. In this paper a review is provided on the glutathione/glutathione-related enzyme system in reproduction. Attention is given to its role as a detoxicating system, and as an early marker for disease.
Collapse
Affiliation(s)
- M F Knapen
- Department of Obstetrics and Gynaecology, University Hospital St. Radboud, Nijmegen, The Netherlands
| | | | | | | |
Collapse
|