1
|
Liu S, Xue YJ, Yin RP, Wu BS, Yu YW, Zhou YY, Wang J, Ji KT. 3, 4-Benzopyrene (Bap) aggravated abdominal aortic aneurysm formation by targeting pyroptosis in smooth muscle cells through ET-1 mediated NLRP3-inflammasome activation. Int Immunopharmacol 2023; 124:110851. [PMID: 37651853 DOI: 10.1016/j.intimp.2023.110851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/12/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023]
Abstract
According to epidemiological studies, smoking is one of the leading causes of the high incidence of abdominal aortic aneurysms (AAA).3,4-Benzopyrene (Bap) is a by-product of coal tar and tobacco combustion produced by the incomplete combustion of organic fuels. It is an essential component of both automobile exhaust and tobacco smoke, it is also an important member of the air pollutants. However, the exact mechanism by which Bap can worsen the condition of patients with AAA and increase the mortality of patients with AAA remains unknown. This research aims to investigate the role of Bap in inducing pyroptosis in AAA. In vitro experiments, we revealed that pyroptosis-Gasdermin D (GSDMD) increased when Bap was used. Additionally, the release of inflammatory factors, such as IL-1β and IL-18 were also rising. An mRNA sequencing analysis revealed that macrophages expressed a high level of the endothelin gene when cells were stimulated by Bap. It seemed that smooth muscle cells pyroptosis was related to macrophages. Experiments revealed that endothelin could increase the calcium ion concentration in smooth muscle cells, resulting in a large amount of ROS and activation of NLRP3 inflammasomes. We discovered that treatment with endothelin receptor antagonist (ABT-546) in vivo and calcium ion chelator (BAPTA) in vitro decreased AAA diameter, downregulated NLRP3 inflammasomes and ROS, and significantly reduced the number of activated GSDMD. Inflammatory mediators were released at a lower level. These findings suggest that Bap-induced pyroptosis may be mediated by the ET-1-Ca2+-inflammasome pathway, providing a new way to reduce mortality in AAA patients.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Cardiology, The First People's Hospital oF Jiashan, Jiaxing, Zhejiang 314100, China
| | - Yang-Jing Xue
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Ri-Peng Yin
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Bo-Sen Wu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yong-Wei Yu
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Ying-Ying Zhou
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Jie Wang
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Kang-Ting Ji
- Department of Cardiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
2
|
Qian Z, Wang Q, Qiu Z, Li D, Zhang C, Xiong X, Zheng Z, Ruan Q, Guo Y, Guo J. Protein nanoparticle-induced osmotic pressure gradients modify pulmonary edema through hyperpermeability in acute respiratory distress syndrome. J Nanobiotechnology 2022; 20:314. [PMID: 35794575 PMCID: PMC9257569 DOI: 10.1186/s12951-022-01519-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/21/2022] [Indexed: 01/14/2023] Open
Abstract
AbstractAcute respiratory distress syndrome (ARDS), caused by noncardiogenic pulmonary edema (PE), contributes significantly to Coronavirus 2019 (COVID-19)-associated morbidity and mortality. We explored the effect of transmembrane osmotic pressure (OP) gradients in PE using a fluorescence resonance energy transfer-based Intermediate filament (IF) tension optical probe. Angiotensin-II- and bradykinin-induced increases in intracellular protein nanoparticle (PN)-OP were associated with inflammasome production and cytoskeletal depolymerization. Intracellular protein nanoparticle production also resulted in cytomembrane hyperpolarization and L-VGCC-induced calcium signals, which differed from diacylglycerol-induced calcium increment via TRPC6 activation. Both pathways involve voltage-dependent cation influx and OP upregulation via SUR1-TRPM4 channels. Meanwhile, intra/extracellular PN-induced OP gradients across membranes upregulated pulmonary endothelial and alveolar barrier permeability. Attenuation of intracellular PN, calcium signals, and cation influx by drug combinations effectively relieved intracellular OP and pulmonary endothelial nonselective permeability, and improved epithelial fluid absorption and PE. Thus, PN-OP is pivotal in pulmonary edema in ARDS and COVID-19, and transmembrane OP recovery could be used to treat pulmonary edema and develop new drug targets in pulmonary injury.
Graphical Abstract
Collapse
|
3
|
West SJ, Kodakandla G, Wang Q, Tewari R, Zhu MX, Boehning D, Akimzhanov AM. S-acylation of Orai1 regulates store-operated Ca2+ entry. J Cell Sci 2021; 135:269207. [PMID: 34156466 DOI: 10.1242/jcs.258579] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
Store-operated Ca2+ entry is a central component of intracellular Ca2+ signaling pathways. The Ca2+ release-activated channel (CRAC) mediates store-operated Ca2+ entry in many different cell types. The CRAC channel is composed of the plasma membrane (PM)-localized Orai1 channel and endoplasmic reticulum (ER)-localized STIM1 Ca2+ sensor. Upon ER Ca2+ store depletion, Orai1 and STIM1 form complexes at ER-PM junctions, leading to the formation of activated CRAC channels. Although the importance of CRAC channels is well described, the underlying mechanisms that regulate the recruitment of Orai1 to ER-PM junctions are not fully understood. Here, we describe the rapid and transient S-acylation of Orai1. Using biochemical approaches, we show that Orai1 is rapidly S-acylated at cysteine 143 upon ER Ca2+ store depletion. Importantly, S-acylation of cysteine 143 is required for Orai1-mediated Ca2+ entry and recruitment to STIM1 puncta. We conclude that store depletion-induced S-acylation of Orai1 is necessary for recruitment to ER-PM junctions, subsequent binding to STIM1 and channel activation.
Collapse
Affiliation(s)
- Savannah J West
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Goutham Kodakandla
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Qioachu Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ritika Tewari
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Darren Boehning
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Askar M Akimzhanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
4
|
Kawata K, Baba A, Shiota M, Wanibuchi H, Baba Y. ER membrane protein complex 1 interacts with STIM1 and regulates store-operated Ca2+ entry. J Biochem 2021; 170:483-488. [PMID: 34015095 DOI: 10.1093/jb/mvab063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 05/14/2021] [Indexed: 11/14/2022] Open
Abstract
Store-operated calcium entry (SOCE) is the process by which the emptying of endoplasmic reticulum (ER) Ca2+ stores causes an influx of Ca2+ across the plasma membrane. It is the major Ca2+ influx pathway in non-excitable cells and has a wide array of physiological functions. Upon store depletion, stromal interaction molecule 1 (STIM1), an ER calcium sensor relocates into discrete puncta at the ER-plasma membrane junction region, which results in the coupling of Ca2+ channels to initiate SOCE. However, the mechanism regulating STIM1 activity remains poorly understood. Here, we performed affinity purification of STIM1 and uncovered ER membrane protein complex 1 (EMC1) as a STIM1 binding partner. We showed that this interaction occurred in the ER through the intraluminal region of STIM1. After store depletion, EMC1 does not cluster adjacent to the plasma membrane, which suggests that it is distributed differently from STIM1. EMC1 knockdown with small interfering RNA resulted in a marked decrease in SOCE. Thus, these findings suggest that EMC1 functions as a positive regulator of SOCE.
Collapse
Affiliation(s)
- Kazuhiko Kawata
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Akemi Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masayuki Shiota
- Department of Molecular Biology of Medicine, Osaka City University Medical School, Osaka, 545-8585, Japan
| | - Hideki Wanibuchi
- Department of Pathology, Osaka City University Medical School, Osaka, 545-8585, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
5
|
Jain PP, Hosokawa S, Xiong M, Babicheva A, Zhao T, Rodriguez M, Rahimi S, Pourhashemi K, Balistrieri F, Lai N, Malhotra A, Shyy JYJ, Valdez-Jasso D, Thistlethwaite PA, Makino A, Yuan JXJ. Revisiting the mechanism of hypoxic pulmonary vasoconstriction using isolated perfused/ventilated mouse lung. Pulm Circ 2020; 10:2045894020956592. [PMID: 33282184 PMCID: PMC7691930 DOI: 10.1177/2045894020956592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
Hypoxic Pulmonary Vasoconstriction (HPV) is an important physiological mechanism of the lungs that matches perfusion to ventilation thus maximizing O2 saturation of the venous blood within the lungs. This study emphasizes on principal pathways in the initiation and modulation of hypoxic pulmonary vasoconstriction with a primary focus on the role of Ca2+ signaling and Ca2+ influx pathways in hypoxic pulmonary vasoconstriction. We used an ex vivo model, isolated perfused/ventilated mouse lung to evaluate hypoxic pulmonary vasoconstriction. Alveolar hypoxia (utilizing a mini ventilator) rapidly and reversibly increased pulmonary arterial pressure due to hypoxic pulmonary vasoconstriction in the isolated perfused/ventilated lung. By applying specific inhibitors for different membrane receptors and ion channels through intrapulmonary perfusion solution in isolated lung, we were able to define the targeted receptors and channels that regulate hypoxic pulmonary vasoconstriction. We show that extracellular Ca2+ or Ca2+ influx through various Ca2+-permeable channels in the plasma membrane is required for hypoxic pulmonary vasoconstriction. Removal of extracellular Ca2+ abolished hypoxic pulmonary vasoconstriction, while blockade of L-type voltage-dependent Ca2+ channels (with nifedipine), non-selective cation channels (with 30 µM SKF-96365), and TRPC6/TRPV1 channels (with 1 µM SAR-7334 and 30 µM capsazepine, respectively) significantly and reversibly inhibited hypoxic pulmonary vasoconstriction. Furthermore, blockers of Ca2+-sensing receptors (by 30 µM NPS2143, an allosteric Ca2+-sensing receptors inhibitor) and Notch (by 30 µM DAPT, a γ-secretase inhibitor) also attenuated hypoxic pulmonary vasoconstriction. These data indicate that Ca2+ influx in pulmonary arterial smooth muscle cells through voltage-dependent, receptor-operated, and store-operated Ca2+ entry pathways all contribute to initiation of hypoxic pulmonary vasoconstriction. The extracellular Ca2+-mediated activation of Ca2+-sensing receptors and the cell-cell interaction via Notch ligands and receptors contribute to the regulation of hypoxic pulmonary vasoconstriction.
Collapse
Affiliation(s)
- Pritesh P. Jain
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Susumu Hosokawa
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
- Department of Pediatrics, Tokyo Medical
and Dental University, Tokyo, Japan
| | - Mingmei Xiong
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
- Department of Critical Medicine, The
Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Aleksandra Babicheva
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Tengteng Zhao
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Marisela Rodriguez
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Shamin Rahimi
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Kiana Pourhashemi
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Francesca Balistrieri
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Ning Lai
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - Atul Malhotra
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| | - John Y.-J. Shyy
- Division of Cardiovascular Medicine,
Department of Medicine, University of California, San Diego, USA
| | | | | | - Ayako Makino
- Division of Endocrinology and
Metabolism, University of California, San Diego, CA, USA
| | - Jason X.-J. Yuan
- Section of Physiology, Division of
Pulmonary, Critical Care and Sleep Medicine, University of California, San Diego,
CA, USA
| |
Collapse
|
6
|
Yuan H, Xu J, Zhu Y, Li L, Wang Q, Yu Y, Zhou B, Liu Y, Xu X, Wang Z. Activation of calcium‑sensing receptor‑mediated autophagy in high glucose‑induced cardiac fibrosis in vitro. Mol Med Rep 2020; 22:2021-2031. [PMID: 32705187 PMCID: PMC7411369 DOI: 10.3892/mmr.2020.11277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/28/2020] [Indexed: 12/28/2022] Open
Abstract
Myocardial fibrosis is a major complication of diabetic cardiomyopathy (DCM) that is primarily caused by cardiac fibroblasts that are highly activated by persistent hyperglycemic stimulation, resulting in excessive collagen deposition. Calcium sensing receptor (CaSR) is a member of the G protein-coupled receptor superfamily and regulates intracellular calcium concentrations, which are associated with numerous diseases, including myocardial infarction, tumors and pulmonary hypertension. However, whether CaSR participates in the pathological process of myocardial fibrosis in DCM remains unknown. The present study aimed to investigate the mechanism via which CaSR regulates high glucose (HG)-induced cardiac fibrosis in vitro. HG treated-cardiac fibroblast (CFs) were used and western blotting, immunoprecipitation, Cell Counting Kit-8 assay, ELISA and transfection technology were performed to examine the role of CaSR. In the HG group, treatment with HG increased CaSR, α-smooth muscle actin, collagen I/III and matrix metalloproteinase 2/9 expression and enhanced autophagosome generation and CF proliferation. Furthermore, CaSR activation upregulated the expression of Smad ubiquitin regulatory factor 2 (Smurf2), which led to increased intracellular Ca2+ concentrations, increased ubiquitination levels of SKI like proto-oncogene and Smad7 and autophagy activation. Furthermore, the CaSR agonist (R568) or the CaSR inhibitor (Calhex231) and Smurf2-small interfering RNA promoted or inhibited HG-induced alterations, including the enhanced and weakened effects, respectively. Taken together, the results from the present study suggested that increased CaSR expression in CFs activated the Smurf2-ubiquitin proteasome and autophagy, causing excessive CF proliferation and extensive collagen deposition, which resulted in HG-induced myocardial fibrosis. These findings indicated a novel pathogenesis of DCM and may provide a novel strategy for the diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Medical Functional Experiment and Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jiyu Xu
- Department of Medical Functional Experiment and Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanfei Zhu
- Department of Medical Functional Experiment and Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Li Li
- Department of Medical Functional Experiment and Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Qi Wang
- Department of General Surgery, Mudanjiang First People's Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yaquan Yu
- Department of Gastroenterology, Yang Zhou Hong Quan Hospital, Yangzhou, Jiangsu 225000, P.R. China
| | - Bin Zhou
- Department of Endocrinology, Mudanjiang Cardiovascular Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yi Liu
- Department of Medical Functional Experiment and Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xiaoyi Xu
- Department of Medical Functional Experiment and Department of Pathophysiology, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Zhilong Wang
- Department of Postgraduate Management, The First Clinical Medicine School, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
7
|
IL-10-producing regulatory B cells and plasmocytes: Molecular mechanisms and disease relevance. Semin Immunol 2019; 44:101323. [DOI: 10.1016/j.smim.2019.101323] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/10/2019] [Indexed: 12/20/2022]
|
8
|
Debant M, Burgos M, Hemon P, Buscaglia P, Fali T, Melayah S, Le Goux N, Vandier C, Potier-Cartereau M, Pers JO, Tempescul A, Berthou C, Bagacean C, Mignen O, Renaudineau Y. STIM1 at the plasma membrane as a new target in progressive chronic lymphocytic leukemia. J Immunother Cancer 2019; 7:111. [PMID: 31014395 PMCID: PMC6480884 DOI: 10.1186/s40425-019-0591-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022] Open
Abstract
Background Dysregulation in calcium (Ca2+) signaling is a hallmark of chronic lymphocytic leukemia (CLL). While the role of the B cell receptor (BCR) Ca2+ pathway has been associated with disease progression, the importance of the newly described constitutive Ca2+ entry (CE) pathway is less clear. In addition, we hypothesized that these differences reflect modifications of the CE pathway and Ca2+ actors such as Orai1, transient receptor potential canonical (TRPC) 1, and stromal interaction molecule 1 (STIM1), the latter being the focus of this study. Methods An extensive analysis of the Ca2+ entry (CE) pathway in CLL B cells was performed including constitutive Ca2+ entry, basal Ca2+ levels, and store operated Ca2+ entry (SOCE) activated following B cell receptor engagement or using Thapsigargin. The molecular characterization of the calcium channels Orai1 and TRPC1 and to their partner STIM1 was performed by flow cytometry and/or Western blotting. Specific siRNAs for Orai1, TRPC1 and STIM1 plus the Orai1 channel blocker Synta66 were used. CLL B cell viability was tested in the presence of an anti-STIM1 monoclonal antibody (mAb, clone GOK) coupled or not with an anti-CD20 mAb, rituximab. The Cox regression model was used to determine the optimal threshold and to stratify patients. Results Seeking to explore the CE pathway, we found in untreated CLL patients that an abnormal CE pathway was (i) highly associated with the disease outcome; (ii) positively correlated with basal Ca2+ concentrations; (iii) independent from the BCR-PLCγ2-InsP3R (SOCE) Ca2+ signaling pathway; (iv) supported by Orai1 and TRPC1 channels; (v) regulated by the pool of STIM1 located in the plasma membrane (STIM1PM); and (vi) blocked when using a mAb targeting STIM1PM. Next, we further established an association between an elevated expression of STIM1PM and clinical outcome. In addition, combining an anti-STIM1 mAb with rituximab significantly reduced in vitro CLL B cell viability within the high STIM1PM CLL subgroup. Conclusions These data establish the critical role of a newly discovered BCR independent Ca2+ entry in CLL evolution, provide new insights into CLL pathophysiology, and support innovative therapeutic perspectives such as targeting STIM1 located at the plasma membrane. Electronic supplementary material The online version of this article (10.1186/s40425-019-0591-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marjolaine Debant
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Miguel Burgos
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Patrice Hemon
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Paul Buscaglia
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Tinhinane Fali
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Sarra Melayah
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHRU Brest Morvan, Brest, France
| | - Nelig Le Goux
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France
| | - Christophe Vandier
- INSERM U1069, N2C, 37032, University of Tours, Tours, France.,IC-CGO network from "Canceropole Grand Ouest", Brest, France
| | - Marie Potier-Cartereau
- INSERM U1069, N2C, 37032, University of Tours, Tours, France.,IC-CGO network from "Canceropole Grand Ouest", Brest, France
| | | | - Adrian Tempescul
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,Department of Haematology, CHRU Brest Morvan, Brest, France
| | - Christian Berthou
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,Department of Haematology, CHRU Brest Morvan, Brest, France
| | - Cristina Bagacean
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,Laboratory of Immunology and Immunotherapy, CHRU Brest Morvan, Brest, France.,Department of Haematology, CHRU Brest Morvan, Brest, France
| | - Olivier Mignen
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France.,IC-CGO network from "Canceropole Grand Ouest", Brest, France
| | - Yves Renaudineau
- INSERM U1227 B lymphocytes and autoimmunity, University of Brest, Brest, France. .,IC-CGO network from "Canceropole Grand Ouest", Brest, France. .,Laboratory of Immunology and Immunotherapy, CHRU Brest Morvan, Brest, France.
| |
Collapse
|
9
|
Li J, Luo Y, Wang X, Feng G. Regulatory B cells and advances in transplantation. J Leukoc Biol 2018; 105:657-668. [PMID: 30548970 DOI: 10.1002/jlb.5ru0518-199r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/03/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022] Open
Abstract
The effects of B cell subsets with regulatory activity on the immune response to an allograft have evoked increasing interest. Here, we summarize the function and signaling of regulatory B cells (Bregs) and their potential effects on transplantation. These cells are able to suppress the immune system directly via ligand-receptor interactions and indirectly by secretion of immunosuppressive cytokines, particularly IL-10. In experimental animal models, the extensively studied IL-10-producing B cells have shown unique therapeutic advantages in the transplant field. In addition, adoptive transfer of B cell subsets with regulatory activity may reveal a new approach to prolonging allograft survival. Recent clinical observations on currently available therapies targeting B cells have revealed that Bregs play an important role in immune tolerance and that these cells are expected to become a new target of immunotherapy for transplant-related diseases.
Collapse
Affiliation(s)
- Jinfeng Li
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongsheng Luo
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xu Wang
- Institute of Medical Microbiology and Hospital Hygiene, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Guiwen Feng
- Kidney Transplantation Unit, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Tang H, Wang H, Lin Q, Fan F, Zhang F, Peng X, Fang X, Liu J, Ouyang K. Loss of IP3 Receptor–Mediated Ca2+ Release in Mouse B Cells Results in Abnormal B Cell Development and Function. THE JOURNAL OF IMMUNOLOGY 2017; 199:570-580. [DOI: 10.4049/jimmunol.1700109] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 05/17/2017] [Indexed: 12/16/2022]
|
11
|
Hemon P, Renaudineau Y, Debant M, Le Goux N, Mukherjee S, Brooks W, Mignen O. Calcium Signaling: From Normal B Cell Development to Tolerance Breakdown and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:141-165. [DOI: 10.1007/s12016-017-8607-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev 2015; 95:645-90. [PMID: 25834234 DOI: 10.1152/physrev.00026.2014] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mammalian genome encodes 28 distinct members of the transient receptor potential (TRP) superfamily of cation channels, which exhibit varying degrees of selectivity for different ionic species. Multiple TRP channels are present in all cells and are involved in diverse aspects of cellular function, including sensory perception and signal transduction. Notably, TRP channels are involved in regulating vascular function and pathophysiology, the focus of this review. TRP channels in vascular smooth muscle cells participate in regulating contractility and proliferation, whereas endothelial TRP channel activity is an important contributor to endothelium-dependent vasodilation, vascular wall permeability, and angiogenesis. TRP channels are also present in perivascular sensory neurons and astrocytic endfeet proximal to cerebral arterioles, where they participate in the regulation of vascular tone. Almost all of these functions are mediated by changes in global intracellular Ca(2+) levels or subcellular Ca(2+) signaling events. In addition to directly mediating Ca(2+) entry, TRP channels influence intracellular Ca(2+) dynamics through membrane depolarization associated with the influx of cations or through receptor- or store-operated mechanisms. Dysregulation of TRP channels is associated with vascular-related pathologies, including hypertension, neointimal injury, ischemia-reperfusion injury, pulmonary edema, and neurogenic inflammation. In this review, we briefly consider general aspects of TRP channel biology and provide an in-depth discussion of the functions of TRP channels in vascular smooth muscle cells, endothelial cells, and perivascular cells under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Scott Earley
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| | - Joseph E Brayden
- Department of Pharmacology, University of Nevada School of Medicine, Reno, Nevada; and Department of Pharmacology, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
13
|
Sogkas G, Stegner D, Syed SN, Vögtle T, Rau E, Gewecke B, Schmidt RE, Nieswandt B, Gessner JE. Cooperative and alternate functions for STIM1 and STIM2 in macrophage activation and in the context of inflammation. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:154-70. [PMID: 26417434 PMCID: PMC4578517 DOI: 10.1002/iid3.56] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Abstract
Calcium (Ca(2+)) signaling in immune cells, including macrophages, controls a wide range of effector functions that are critical for host defense and contribute to inflammation and autoimmune diseases. However, receptor-mediated Ca(2+) responses consist of complex mechanisms that make it difficult to identify the pathogenesis and develop therapy. Previous studies have revealed the importance of the Ca(2+) sensor STIM1 and store-operated Ca(2+)-entry (SOCE) for Fcγ-receptor activation and IgG-induced inflammation. Here, we identify the closely related STIM2 as mediator of cell migration and cytokine production downstream of GPCR and TLR4 activation in macrophages and show that mice lacking STIM2 are partially resistant to inflammatory responses in peritonitis and LPS-induced inflammation. Interestingly, STIM2 modulates the migratory behavior of macrophages independent from STIM1 and without a strict requirement for Ca(2+) influx. While STIM2 also contributes in part to FcγR activation, the C5a-induced amplification of IgG-mediated phagocytosis is mainly dependent on STIM1. Blockade of STIM-related functions limits mortality in experimental models of AIHA and LPS-sepsis in normal mice. These results suggest benefits of Ca(2+)-inhibition for suppression of exacerbated immune reactions and illustrate the significance of alternate functions of STIM proteins in macrophage activation and in the context of innate immune inflammation.
Collapse
Affiliation(s)
- Georgios Sogkas
- Clinical Department of Immunology and Rheumatology, Hannover Medical School Germany
| | - David Stegner
- Chair of Experimental Biomedicine University Hospital and Rudolf Virchow Center DFG Research Center for Experimental Biomedicine, University of Würzburg Würzburg, Germany
| | - Shahzad N Syed
- Clinical Department of Immunology and Rheumatology, Hannover Medical School Germany
| | - Timo Vögtle
- Chair of Experimental Biomedicine University Hospital and Rudolf Virchow Center DFG Research Center for Experimental Biomedicine, University of Würzburg Würzburg, Germany
| | - Eduard Rau
- Clinical Department of Immunology and Rheumatology, Hannover Medical School Germany
| | - Britta Gewecke
- Clinical Department of Immunology and Rheumatology, Hannover Medical School Germany
| | - Reinhold E Schmidt
- Clinical Department of Immunology and Rheumatology, Hannover Medical School Germany
| | - Bernhard Nieswandt
- Chair of Experimental Biomedicine University Hospital and Rudolf Virchow Center DFG Research Center for Experimental Biomedicine, University of Würzburg Würzburg, Germany
| | | |
Collapse
|
14
|
Baba Y, Matsumoto M, Kurosaki T. Signals controlling the development and activity of regulatory B-lineage cells. Int Immunol 2015; 27:487-93. [PMID: 25957265 DOI: 10.1093/intimm/dxv027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/01/2015] [Indexed: 12/25/2022] Open
Abstract
The fundamental concepts surrounding B cells with inhibitory function (regulatory B cells) are now being established. In the context of autoimmune and inflammatory animal models, B cells play an immunomodulatory role via IL-10 production and contribute to limitation of the pathogenesis. Recent studies have notably identified the human counterparts of these cells, which have been suggested to be relevant to the pathophysiology of disease. Clear criteria to identify these cell subsets and the key molecular mechanisms underlying their physiological features are required for understanding the big picture of regulatory B cells. Plasmablasts have recently been identified as a major IL-10-producing regulatory B-cell subset and Ca(2+) signaling has furthermore been found to contribute to B-cell IL-10 expression. In this review, the signaling components controlling IL-10-dependent B-cell regulatory function and the development of IL-10-competent/-producing B cells and plasmablasts are discussed.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Masanori Matsumoto
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
15
|
Hou PF, Liu ZH, Li N, Cheng WJ, Guo SW. Knockdown of STIM1 improves neuronal survival after traumatic neuronal injury through regulating mGluR1-dependent Ca(2+) signaling in mouse cortical neurons. Cell Mol Neurobiol 2015; 35:283-92. [PMID: 25304289 PMCID: PMC11486307 DOI: 10.1007/s10571-014-0123-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 10/05/2014] [Indexed: 01/05/2023]
Abstract
Activation of glutamate receptors and followed increase of intracellular calcium concentration is a key pathological mechanism involved in secondary neuronal injury after traumatic brain injury (TBI). Stromal interaction molecule (STIM) proteins are considered to be important players in regulating neuronal Ca(2+) homeostasis under normal aging and pathological conditions. Here, we investigated the role of STIM1 in regulating metabotropic glutamate receptor 1 (mGluR1)-related Ca(2+) signaling and neuronal survival by using an in vitro traumatic neuronal injury (TNI) model. The expression of STIM1 was significantly increased at both mRNA and protein levels after TNI. Down-regulation of STIM1 by specific small interfere RNA significantly preserved neuronal viability, decreased lactate dehydrogenase release, and inhibited apoptotic cell death after traumatic injury. Moreover, knockdown of STIM1 significantly alleviated the mGluR1-related increase of cytoplasmic Ca(2+) levels after TNI. By analyzing Ca(2+) imaging in Ca(2+)-free conditions, we demonstrated that the mGluR1-dependent inositol trisphosphate receptor and/or ryanodine receptor-mediated Ca(2+) release from the endoplasmic reticulum after TNI is strongly attenuated in the absence of STIM1. Together, our results demonstrate that in the mammalian nervous system, STIM1 is a key regulator of mGluR1-dependent Ca(2+) signaling and knockdown of STIM1 might be an effective intervention target in TBI.
Collapse
Affiliation(s)
- Peng-Fei Hou
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an, 710061 Shaanxi China
- Department of Neurosurgery, Ninth Hospital of Xi’an, Xi’an, 710054 Shaanxi China
| | - Zhan-Hui Liu
- Department of Neurosurgery, Ninth Hospital of Xi’an, Xi’an, 710054 Shaanxi China
| | - Nan Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an, 710061 Shaanxi China
- Department of Neurosurgery, Xi’an Chidren’s Hospital, Xi’an, 710043 Shaanxi China
| | - Wen-Jia Cheng
- Department of Pathology, Ninth Hospital of Xi’an, Xi’an, 710054 Shaanxi China
| | - Shi-Wen Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi’an Jiaotong University, 277 West Yanta Road, Xi’an, 710061 Shaanxi China
| |
Collapse
|
16
|
Baba Y, Kurosaki T. Role of Calcium Signaling in B Cell Activation and Biology. Curr Top Microbiol Immunol 2015; 393:143-174. [PMID: 26369772 DOI: 10.1007/82_2015_477] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Increase in intracellular levels of calcium ions (Ca2+) is one of the key triggering signals for the development of B cell response to the antigen. The diverse Ca2+ signals finely controlled by multiple factors participate in the regulation of gene expression, B cell development, and effector functions. B cell receptor (BCR)-initiated Ca2+ mobilization is sourced from two pathways: one is the release of Ca2+ from the intracellular stores, endoplasmic reticulum (ER), and other is the prolonged influx of extracellular Ca2+ induced by depleting the stores via store-operated calcium entry (SOCE) and calcium release-activated calcium (CRAC) channels. The identification of stromal interaction molecule 1(STIM1), the ER Ca2+ sensor, and Orai1, a key subunit of the CRAC channel pore, has now provided the tools to understand the mode of Ca2+ influx regulation and physiological relevance. Herein, we discuss our current understanding of the molecular mechanisms underlying BCR-triggered Ca2+ signaling as well as its contribution to the B cell biological processes and diseases.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan. .,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan.
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka, 565-0871, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Yokohama, 230-0045, Japan
| |
Collapse
|
17
|
STIM1 for stimulation of phagocyte NADPH oxidase. Blood 2014; 123:2129-30. [PMID: 24700712 DOI: 10.1182/blood-2014-02-555789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this issue of Blood, Zhang et al show that mice lacking the stromal-interacting molecule 1 (STIM1) gene in bone marrow cells are more susceptible to bacterial infection but are resistant to ischemia/reperfusion injury because of defective activation of phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase.
Collapse
|
18
|
KCa and Ca(2+) channels: the complex thought. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2322-33. [PMID: 24613282 DOI: 10.1016/j.bbamcr.2014.02.019] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/13/2014] [Accepted: 02/26/2014] [Indexed: 01/30/2023]
Abstract
Potassium channels belong to the largest and the most diverse super-families of ion channels. Among them, Ca(2+)-activated K(+) channels (KCa) comprise many members. Based on their single channel conductance they are divided into three subfamilies: big conductance (BKCa), intermediate conductance (IKCa) and small conductance (SKCa; SK1, SK2 and SK3). Ca(2+) channels are divided into two main families, voltage gated/voltage dependent Ca(2+) channels and non-voltage gated/voltage independent Ca(2+) channels. Based on their electrophysiological and pharmacological properties and on the tissue where there are expressed, voltage gated Ca(2+) channels (Cav) are divided into 5 families: T-type, L-type, N-type, P/Q-type and R-type Ca(2+). Non-voltage gated Ca(2+) channels comprise the TRP (TRPC, TRPV, TRPM, TRPA, TRPP, TRPML and TRPN) and Orai (Orai1 to Orai3) families and their partners STIM (STIM1 to STIM2). A depolarization is needed to activate voltage-gated Ca(2+) channels while non-voltage gated Ca(2+) channels are activated by Ca(2+) depletion of the endoplasmic reticulum stores (SOCs) or by receptors (ROCs). These two Ca(2+) channel families also control constitutive Ca(2+) entries. For reducing the energy consumption and for the fine regulation of Ca(2+), KCa and Ca(2+) channels appear associated as complexes in excitable and non-excitable cells. Interestingly, there is now evidence that KCa-Ca(2+) channel complexes are also found in cancer cells and contribute to cancer-associated functions such as cell proliferation, cell migration and the capacity to develop metastases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.
Collapse
|
19
|
Abstract
Mast cells are major players in allergic responses. IgE-dependent activation through Fc epsilon RI leads to degranulation and cytokine production, both of which require Gab2. To clarify how the signals diverge at Gab2, we established Gab2 knock-in mice that express Gab2 mutated at either the PI-3K- or SHP-2-binding sites. Examination of these mutants showed that both binding sites were required for the degranulation and anaphylaxis response, but not for cytokine production or contact hypersensitivity. Furthermore, the PI-3K- but not the SHP-2-binding site was important for granule translocation during degranulation. We also identified a small GTPase, ARF1, as the downstream target of PI-3K that regulates granule translocation. Fc epsilon RI-stimulation induced ARF1 activation, and this response was dependent on Fyn and the PI-3K-binding site of Gab2. ARF1 activity was required for the Fc epsilon RI-mediated granule translocation. These results indicate that Fyn/Gab2/PI-3K/ARF1-mediated signaling is specifically involved in granule translocation and the anaphylaxis response. In this review, I discussed how Gab2 controls biological events especially for mast cell degranulation and allergy response.
Collapse
Affiliation(s)
- Keigo Nishida
- Laboratory for Cytokine Signaling, RIKEN Research Center for Allergy and Immunology, Yokohama 230-0045, Japan
| |
Collapse
|
20
|
Umemura M, Baljinnyam E, Feske S, De Lorenzo MS, Xie LH, Feng X, Oda K, Makino A, Fujita T, Yokoyama U, Iwatsubo M, Chen S, Goydos JS, Ishikawa Y, Iwatsubo K. Store-operated Ca2+ entry (SOCE) regulates melanoma proliferation and cell migration. PLoS One 2014; 9:e89292. [PMID: 24586666 PMCID: PMC3931742 DOI: 10.1371/journal.pone.0089292] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 01/21/2014] [Indexed: 11/18/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a major mechanism of Ca2+ import from extracellular to intracellular space, involving detection of Ca2+ store depletion in endoplasmic reticulum (ER) by stromal interaction molecule (STIM) proteins, which then translocate to plasma membrane and activate Orai Ca2+ channels there. We found that STIM1 and Orai1 isoforms were abundantly expressed in human melanoma tissues and multiple melanoma/melanocyte cell lines. We confirmed that these cell lines exhibited SOCE, which was inhibited by knockdown of STIM1 or Orai1, or by a pharmacological SOCE inhibitor. Inhibition of SOCE suppressed melanoma cell proliferation and migration/metastasis. Induction of SOCE was associated with activation of extracellular-signal-regulated kinase (ERK), and was inhibited by inhibitors of calmodulin kinase II (CaMKII) or Raf-1, suggesting that SOCE-mediated cellular functions are controlled via the CaMKII/Raf-1/ERK signaling pathway. Our findings indicate that SOCE contributes to melanoma progression, and therefore may be a new potential target for treatment of melanoma, irrespective of whether or not Braf mutation is present.
Collapse
Affiliation(s)
- Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
- * E-mail: (KI); (MU)
| | - Erdene Baljinnyam
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Stefan Feske
- Department of Pathology, New York University School of Medicine, New York, New York, United States of America
| | - Mariana S. De Lorenzo
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Xianfeng Feng
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kayoko Oda
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Ayako Makino
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Takayuki Fujita
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Mizuka Iwatsubo
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
| | - Suzie Chen
- Department of Chemical Biology, Susan Lehman Cullen Laboratory of Cancer Research in the Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - James S. Goydos
- Division of Surgical Oncology, Department of Surgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
| | - Kousaku Iwatsubo
- Cardiovascular Research Institute, Yokohama City University School of Medicine, Yokohama, Japan
- Department of Cell Biology and Molecular Medicine, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, New Jersey, United States of America
- * E-mail: (KI); (MU)
| |
Collapse
|
21
|
Calcium signaling in B cells: regulation of cytosolic Ca2+ increase and its sensor molecules, STIM1 and STIM2. Mol Immunol 2013; 62:339-43. [PMID: 24246800 DOI: 10.1016/j.molimm.2013.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/27/2013] [Accepted: 10/08/2013] [Indexed: 01/30/2023]
Abstract
Calcium signals are crucial for diverse cellular functions including adhesion, differentiation, proliferation, effector functions and gene expression. After engagement of the B cell receptor, the intracellular calcium ion (Ca(2+)) concentration is increased promoting the activation of various signaling cascades. While elevated Ca(2+) in the cytosol initially comes from the endoplasmic reticulum (ER), a continuous influx of extracellular Ca(2+) is required to maintain the increased level of cytosolic Ca(2+). Store-operated Ca(2+) entry manages this process, which is regulated by an ER calcium sensor, stromal interaction molecule (STIM). STIM proteins sense changes in the levels of Ca(2+) stored within the ER lumen and regulates the Ca(2+)-release activated Ca(2+) channel in the plasma membrane. This review focuses on the signaling pathways leading to Ca(2+) influx and the role of Ca(2+) signals in B cell functions.
Collapse
|
22
|
Ikeda M, Tsuno S, Sugiyama T, Hashimoto A, Yamoto K, Takeuchi K, Kishi H, Mizuguchi H, Kohsaka SI, Yoshioka T. Ca(2+) spiking activity caused by the activation of store-operated Ca(2+) channels mediates TNF-α release from microglial cells under chronic purinergic stimulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:2573-2585. [PMID: 23830920 DOI: 10.1016/j.bbamcr.2013.06.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 02/07/2023]
Abstract
Cytokines released from microglia mediate defensive responses in the brain, but the underlying mechanisms are obscure. One proposed process is that nucleotide leakage or release from surrounding cells is sensed by metabotropic (P2Y) and ionotropic (P2X) purinergic receptors, which may trigger long-term intracellular Ca(2+) flux and tumor necrosis factor α (TNF-α) release. Indeed, 3h of exposure to ATP was required to evoke TNF-α release from a murine microglial cell line (MG5). A Ca(2+) chelator, ethylene glycol tetraacetic acid (EGTA), reduced ATP-induced TNF-α release, suggesting that intracellular Ca(2+) is important in this response. Therefore, Ca(2+) sensor genes (YC3.6) were transfected into MG5 cells to investigate the Ca(2+) dynamics underlying ATP-induced TNF-α release. The results demonstrated ATP-induced biphasic Ca(2+) mobilization mediated by P2Y (~5min) and P2X7 receptors (5-30min). Moreover, Ca(2+) spiking activity in cell processes progressively increased with a reduction in P2X7 receptor-mediated Ca(2+) elevation during 3-h ATP stimulation. Increased Ca(2+) spiking activity paralleled the reduction in thapsigargin-sensitive internal Ca(2+) stores, dendrite extension, and expression of macrophage scavenger receptors with collagenous structure. The Ca(2+) spiking activity was enhanced by a P2X7 receptor antagonist (A438079), but inhibited by a store-operated channel antagonist (SKF96365) or by co-transfection of small interference ribonucleic acid (siRNA) targeted on the channel component (Orai1). Furthermore, ATP-induced TNF-α release was enhanced by A438079 but was inhibited by SKF96365. Because store-operated channels (Stim1/Orai1) were expressed both in MG5 and primary microglial cultures, we suggest that P2X7 receptor signaling inhibits store-operated channels during ATP stimulation, and disinhibition of this process gates TNF-α release from microglial cells.
Collapse
Affiliation(s)
- Masayuki Ikeda
- Graduate School of Science and Engineering, University of Toyama, Toyama City, Toyama 930-8555, Japan; Graduate School of Innovative Life Science, University of Toyama, Toyama City, Toyama 930-8555, Japan.
| | - Saki Tsuno
- Graduate School of Science and Engineering, University of Toyama, Toyama City, Toyama 930-8555, Japan
| | - Takashi Sugiyama
- Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan; Advanced Core Technology Department, Research and Development Division, Corporate R&D Center, Olympus Corporation, Hachioji, Tokyo 192-8512, Japan
| | - Ayami Hashimoto
- Graduate School of Science and Engineering, University of Toyama, Toyama City, Toyama 930-8555, Japan
| | - Kurumi Yamoto
- Graduate School of Science and Engineering, University of Toyama, Toyama City, Toyama 930-8555, Japan
| | - Kouhei Takeuchi
- Graduate School of Innovative Life Science, University of Toyama, Toyama City, Toyama 930-8555, Japan
| | - Hiroyuki Kishi
- Graduate School of Innovative Life Science, University of Toyama, Toyama City, Toyama 930-8555, Japan; Department of Immunology, Faculty of Medicine, University of Toyama, 2630, Sugitani, Toyama 930-01, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka 565-0871, Japan; Laboratory of Stem Cell Regulation, National Institute of Biomedical Innovation, Suita City, Osaka 567-0085, Japan; The Center for Advanced Medical Engineering and Informatics, Osaka University, Suita City, Osaka, 565-0871, Japan
| | - Shin-Ichi Kohsaka
- Department of Neurochemistry, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Tohru Yoshioka
- Advanced Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan; Graduate School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
23
|
Félix R, Crottès D, Delalande A, Fauconnier J, Lebranchu Y, Le Guennec JY, Velge-Roussel F. The Orai-1 and STIM-1 complex controls human dendritic cell maturation. PLoS One 2013; 8:e61595. [PMID: 23700407 PMCID: PMC3659124 DOI: 10.1371/journal.pone.0061595] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/11/2013] [Indexed: 11/18/2022] Open
Abstract
Ca(2+) signaling plays an important role in the function of dendritic cells (DC), the professional antigen presenting cells. Here, we described the role of Calcium released activated (CRAC) channels in the maturation and cytokine secretion of human DC. Recent works identified STIM1 and Orai1 in human T lymphocytes as essential for CRAC channel activation. We investigated Ca(2+) signaling in human DC maturation by imaging intracellular calcium signaling and pharmalogical inhibitors. The DC response to inflammatory mediators or PAMPs (Pathogen-associated molecular patterns) is due to a depletion of intracellular Ca(2+) stores that results in a store-operated Ca(2+) entry (SOCE). This Ca(2+) influx was inhibited by 2-APB and exhibited a Ca(2+)permeability similar to the CRAC (Calcium-Released Activated Calcium), found in T lymphocytes. Depending on the PAMPs used, SOCE profiles and amplitudes appeared different, suggesting the involvement of different CRAC channels. Using siRNAi, we identified the STIM1 and Orai1 protein complex as one of the main pathways for Ca(2+) entry for LPS- and TNF-α-induced maturation in DC. Cytokine secretions also seemed to be SOCE-dependent with profile differences depending on the maturating agents since IL-12 and IL10 secretions appeared highly sensitive to 2-APB whereas IFN-γ was less affected. Altogether, these results clearly demonstrate that human DC maturation and cytokine secretions depend on SOCE signaling involving STIM1 and Orai1 proteins.
Collapse
Affiliation(s)
- Romain Félix
- EA 4245 Cellules Dendritiques, Immunomodulation et Greffes, Université François Rabelais, IFR-136 Agents Transmissibles et Infectiologie, UFR de Médecine, Tours, France
| | - David Crottès
- EA 4245 Cellules Dendritiques, Immunomodulation et Greffes, Université François Rabelais, IFR-136 Agents Transmissibles et Infectiologie, UFR de Médecine, Tours, France
| | - Anthony Delalande
- Centre de Biophysique Moléculaire CNRS UPR 4301, Orléans, France
- Institut National de la Santé et de la Recherche Médical U930 Imagerie et Cerveau, Equipe 5, Tours, France
| | - Jérémy Fauconnier
- Institut National de la Santé et de la Recherche Médical U637, Physiopathologie Cardiovasculaire, Montpellier, France
| | - Yvon Lebranchu
- EA 4245 Cellules Dendritiques, Immunomodulation et Greffes, Université François Rabelais, IFR-136 Agents Transmissibles et Infectiologie, UFR de Médecine, Tours, France
- Service de Néphrologie et d'Immunologie Clinique, CHRU Tours, Tours, France
| | - Jean-Yves Le Guennec
- Institut National de la Santé et de la Recherche Médical U637, Physiopathologie Cardiovasculaire, Montpellier, France
| | - Florence Velge-Roussel
- EA 4245 Cellules Dendritiques, Immunomodulation et Greffes, Université François Rabelais, IFR-136 Agents Transmissibles et Infectiologie, UFR de Médecine, Tours, France
- UFR des Sciences Pharmaceutiques, Tours, France
- * E-mail:
| |
Collapse
|
24
|
Baumann D, Hofmann D, Nullmeier S, Panther P, Dietze C, Musyanovych A, Ritz S, Landfester K, Mailänder V. Complex encounters: nanoparticles in whole blood and their uptake into different types of white blood cells. Nanomedicine (Lond) 2013; 8:699-713. [DOI: 10.2217/nnm.12.111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: A whole blood assay for evaluating the uptake of nanoparticles into white blood cells in order to close the gap between basic studies in cell culture and pharmacokinetic studies in animals was developed. Materials & methods: After drawing peripheral blood into standard blood collection vials with different anticoagulants, amino- and carboxy-functionalized polymeric styrene nanoparticles were added and uptake was evaluated by flow cytometry. Results: By counterstaining surface markers of leukocytes (e.g., monocytes, neutrophil granulocytes, B or T lymphocytes), investigations of different cell types can be conducted in a single run by flow cytometry. The authors demonstrated that anticoagulation should be done with heparin, and not EDTA, in order to prevent hampering of uptake mechanisms. Conclusion: By using heparinized whole blood, the authors demonstrated differences and usefulness of this assay for screening cellular uptake as it should occur in the bloodstream. Nevertheless, animal studies are warranted for final assessment of the nanoparticles. Original submitted 11 November 2011; Revised submitted 1 July 2012; Published online 31 August 2012
Collapse
Affiliation(s)
- Daniela Baumann
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Daniel Hofmann
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sven Nullmeier
- Institute of Anatomy, University of Magdeburg, Haus 43, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Patricia Panther
- Institute of Anatomy, University of Magdeburg, Haus 43, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Claudia Dietze
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Anna Musyanovych
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sandra Ritz
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Katharina Landfester
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Volker Mailänder
- Third Department of Medicine (Hematology, Oncology & Pneumology), University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Max-Planck-Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
25
|
Matsumoto M, Baba Y. Role of STIM-dependent Ca 2+ Influx in Regulatory B Cells. YAKUGAKU ZASSHI 2013; 133:419-25. [DOI: 10.1248/yakushi.12-00227-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Masanori Matsumoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University
| | - Yoshihiro Baba
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University
| |
Collapse
|
26
|
Fujimoto T, Matsuzaki H, Tanaka M, Shirasawa S. Tespa1 protein is phosphorylated in response to store-operated calcium entry. Biochem Biophys Res Commun 2013; 434:162-5. [PMID: 23541577 DOI: 10.1016/j.bbrc.2013.02.128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 02/27/2013] [Indexed: 10/27/2022]
Abstract
We previously reported that Tespa1 (thymocyte-expressed, positive selection-associated gene 1) protein expressed in lymphocytes physically interacts with IP3R (Inositol 1,4,5-trisphosphate receptor), a Ca(2+) channel protein spanning endoplasmic reticulum (ER) membrane. However, the biochemical characterization of Tespa1 protein remains unknown. In this study, we have found that Tespa1 protein was posttranslationally modified upon intracellular Ca(2+) increase in thymocytes. Through the analyses using various inhibitors, store-operated Ca(2+) entry (SOCE) was found to be an essential factor for the Tespa1 protein modification induced by T cell receptor (TCR)-stimulation. Remarkably, the Ca(2+)-dependent Tespa1 protein modification was restored by in vitro protein phosphatase treatment, indicating that this modification was due to phosphorylation. Moreover, we examined whether Ca(2+)-dependent phosphorylation of Tespa1 protein would affect the physical association between Tespa1 and IP3R proteins, revealing that physical association of these proteins is maintained regardless of the presence or absence of phosphorylation of Tespa1. In addition, KRAP protein which represents substantial amino acid sequence homology to Tespa1 was also posttranslationally phosphorylated by intracellular Ca(2+) increase in HCT116 human colon cancer cells and HEK293 human embryonic kidney cells, suggesting that common signaling mechanism(s) may contribute to the molecular modification of Tespa1 and KRAP in different cellular processes. All these results suggested a novel molecular modification of Tespa1 and the existence of the regulatory pathway that SOCE affects the Tespa1-IP3R molecular complex.
Collapse
Affiliation(s)
- Takahiro Fujimoto
- Department of Cell Biology, Faculty of Medicine, Fukuoka University, 7-45-1 Nanakuma, Fukuoka 814-0180, Japan
| | | | | | | |
Collapse
|
27
|
Morgan AJ, Parrington J, Galione A. The luminal Ca(2+) chelator, TPEN, inhibits NAADP-induced Ca(2+) release. Cell Calcium 2012; 52:481-7. [PMID: 23099186 PMCID: PMC3526783 DOI: 10.1016/j.ceca.2012.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 08/06/2012] [Accepted: 09/19/2012] [Indexed: 10/31/2022]
Abstract
The regulation of Ca(2+) release by luminal Ca(2+) has been well studied for the ryanodine and IP(3) receptors but has been less clear for the NAADP-regulated channel. In view of conflicting reports, we have re-examined the issue by manipulating luminal Ca(2+) with the membrane-permeant, low affinity Ca(2+) buffer, TPEN, and monitoring NAADP-induced Ca(2+) release in sea urchin egg homogenate. NAADP-induced Ca(2+) release was almost entirely blocked by TPEN (IC(50) 17-25μM) which suppressed the maximal extent of Ca(2+) release without altering NAADP sensitivity. In contrast, Ca(2+) release via IP(3) receptors was 3- to 30-fold less sensitive to TPEN whereas that evoked by ionomycin was essentially unaffected. The effect of TPEN on NAADP-induced Ca(2+) release was not due to an increase in the luminal pH or chelation of trace metals since it could not be mimicked by NH(4)Cl or phenanthroline. The fact that TPEN had no effect upon ionophore-induced Ca(2+) release also argued against a substantial reduction in the driving force for Ca(2+) efflux. We propose that, in the sea urchin egg, luminal Ca(2+) is important for gating native NAADP-regulated two-pore channels.
Collapse
|
28
|
Zhu-Mauldin X, Marsh SA, Zou L, Marchase RB, Chatham JC. Modification of STIM1 by O-linked N-acetylglucosamine (O-GlcNAc) attenuates store-operated calcium entry in neonatal cardiomyocytes. J Biol Chem 2012; 287:39094-106. [PMID: 22992728 DOI: 10.1074/jbc.m112.383778] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Store-operated calcium entry (SOCE) is a major Ca(2+) signaling pathway responsible for regulating numerous transcriptional events. In cardiomyocytes SOCE has been shown to play an important role in regulating hypertrophic signaling pathways, including nuclear translocation of NFAT. Acute activation of pathways leading to O-GlcNAc synthesis have been shown to impair SOCE-mediated transcription and in diabetes, where O-GlcNAc levels are chronically elevated, cardiac hypertrophic signaling is also impaired. Therefore the goal of this study was to determine whether changes in cardiomyocyte O-GlcNAc levels impaired the function of STIM1, a widely recognized mediator of SOCE. We demonstrated that acute activation of SOCE in neonatal cardiomyocytes resulted in STIM1 puncta formation, which was inhibited in a dose-dependent manner by increasing O-GlcNAc synthesis with glucosamine or inhibiting O-GlcNAcase with thiamet-G. Glucosamine and thiamet-G also inhibited SOCE and were associated with increased O-GlcNAc modification of STIM1. These results suggest that activation of cardiomyocyte O-GlcNAcylation attenuates SOCE via STIM1 O-GlcNAcylation and that this may represent a new mechanism by which increased O-GlcNAc levels regulate Ca(2+)-mediated events in cardiomyocytes. Further, since SOCE is a fundamental mechanism underlying Ca(2+) signaling in most cells and tissues, it is possible that STIM1 represents a nexus linking protein O-GlcNAcylation with Ca(2+)-mediated transcription.
Collapse
Affiliation(s)
- Xiaoyuan Zhu-Mauldin
- Department of Cell Biology, University of Alabama at Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
29
|
Fujii Y, Shiota M, Ohkawa Y, Baba A, Wanibuchi H, Kinashi T, Kurosaki T, Baba Y. Surf4 modulates STIM1-dependent calcium entry. Biochem Biophys Res Commun 2012; 422:615-20. [PMID: 22609200 DOI: 10.1016/j.bbrc.2012.05.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Accepted: 05/09/2012] [Indexed: 10/28/2022]
Abstract
Store-operated Ca(2+) entry (SOCE) is crucial for various physiological responses in immune cells. Although it is known that STIM1 relocates into discrete puncta juxtaposed to the plasma membrane to initiate SOCE, the machinery modulating the function of STIM1 remains unclear. We explored to find its modulators using affinity purification for STIM1-binding proteins and identified surfeit locus protein 4 (Surf4). Surf4 associated with STIM1 in the endoplasmic reticulum. Deletion of Surf4 in DT40 B cells resulted in marked increase of SOCE and facilitation of STIM1 clustering upon store-depletion. These findings suggest the modulatory function of Surf4 for STIM1-mediated SOCE.
Collapse
Affiliation(s)
- Yoko Fujii
- Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Junek S, Engelke M, Schild D, Wienands J. Spatiotemporal resolution of Ca2+signaling events by real time imaging of single B cells. FEBS Lett 2012; 586:1452-8. [DOI: 10.1016/j.febslet.2012.03.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 03/13/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
|
31
|
Putney JW, Tomita T. Phospholipase C signaling and calcium influx. Adv Biol Regul 2012; 52:152-64. [PMID: 21933679 PMCID: PMC3560308 DOI: 10.1016/j.advenzreg.2011.09.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 09/06/2011] [Indexed: 04/18/2023]
Affiliation(s)
- James W Putney
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences - NIH, Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
32
|
Lewis RS. Store-operated calcium channels: new perspectives on mechanism and function. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003970. [PMID: 21791698 DOI: 10.1101/cshperspect.a003970] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Store-operated calcium channels (SOCs) are a nearly ubiquitous Ca(2+) entry pathway stimulated by numerous cell surface receptors via the reduction of Ca(2+) concentration in the ER. The discovery of STIM proteins as ER Ca(2+) sensors and Orai proteins as structural components of the Ca(2+) release-activated Ca(2+) (CRAC) channel, a prototypic SOC, opened the floodgates for exploring the molecular mechanism of this pathway and its functions. This review focuses on recent advances made possible by the use of STIM and Orai as molecular tools. I will describe our current understanding of the store-operated Ca(2+) entry mechanism and its emerging roles in physiology and disease, areas of uncertainty in which further progress is needed, and recent findings that are opening new directions for research in this rapidly growing field.
Collapse
Affiliation(s)
- Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, California 94305, USA.
| |
Collapse
|
33
|
Baba Y, Kurosaki T. Impact of Ca2+ signaling on B cell function. Trends Immunol 2011; 32:589-94. [PMID: 22000665 DOI: 10.1016/j.it.2011.09.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/26/2011] [Accepted: 09/09/2011] [Indexed: 10/16/2022]
|
34
|
Differential pathways for calcium influx activated by concanavalin A and CD3 stimulation in Jurkat T cells. Pflugers Arch 2011; 463:309-18. [DOI: 10.1007/s00424-011-1039-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/03/2011] [Accepted: 10/05/2011] [Indexed: 01/31/2023]
|
35
|
Saitoh N, Oritani K, Saito K, Yokota T, Ichii M, Sudo T, Fujita N, Nakajima K, Okada M, Kanakura Y. Identification of functional domains and novel binding partners of STIM proteins. J Cell Biochem 2011; 112:147-56. [PMID: 21053360 DOI: 10.1002/jcb.22910] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
With a signal trap method, we previously identified stromal interaction molecule (STIM: originally named as SIM) as a protein, which has a signal peptide in 1996. However, recent works have accumulated evidences that STIM1 and STIM2 reside in endoplasmic reticulum (ER) and that both mainly sense ER Ca(2+) depletion, which plays an essential role in store operated calcium entry. In the present study, we extensively analyzed the domain functions and associated molecules of STIMs. A STIM1 mutant lacking the coiled-coil domains was massively expressed on the cell surface while mutants with the coiled-coil domains localized in ER. In addition, STIM1 mutants with the coiled-coil domains showed a longer half-life of proteins than those without them. These results are likely to indicate that the coiled-coil domains of STIM1 are essential for its ER-retention and its stability. Furthermore, we tried to comprehensively identify STIM1-associated molecules with mass spectrometry analysis of co-immunoprecipitated proteins for STIM1. This screening clarified that both STIM1 and STIM2 have a capacity to bind to a chaperone, calnexin as well as two protein-transporters, exportin1 and transportin1. Of importance, our result that glycosylation on STIM1 was not required for the association between STIM1 and calnexin seems to indicate that calnexin might function on STIM1 beyond a chaperone protein. Further information concerning regulatory mechanisms for STIM proteins including the data shown here will provide a model of Ca(2+) control as well as a useful strategy to develop therapeutic drugs for intracellular Ca(2+)-related diseases including inflammation and allergy.
Collapse
Affiliation(s)
- Norimitsu Saitoh
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Baba Y. [Function of store-operated calcium entry in immune cells]. Nihon Yakurigaku Zasshi 2011; 137:202-6. [PMID: 21558669 DOI: 10.1254/fpj.137.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
The calcium sensors STIM1 and STIM2 control B cell regulatory function through interleukin-10 production. Immunity 2011; 34:703-14. [PMID: 21530328 DOI: 10.1016/j.immuni.2011.03.016] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 02/02/2011] [Accepted: 03/03/2011] [Indexed: 12/20/2022]
Abstract
A chief Ca(2+) entry pathway in immune cells is store-operated Ca(2+) (SOC) influx, which is triggered by depletion of Ca(2+) from the endoplasmic reticulum (ER). However, its physiological role in B cells remains elusive. Here, we show that ER calcium sensors STIM1- and STIM2-induced SOC influx is critical for B cell regulatory function. B cell-specific deletion of STIM1 and STIM2 in mice caused a profound defect in B cell receptor (BCR)-induced SOC influx and proliferation. However, B cell development and antibody responses were unaffected. Remarkably, B cells lacking both STIM proteins failed to produce the anti-inflammatory cytokine IL-10 because of defective activation of nuclear factor of activated T cells (NFAT) after BCR stimulation. This resulted in exacerbation of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. Our data establish STIM-dependent SOC influx as a key signal for B cell regulatory function required to limit autoimmunity.
Collapse
|
38
|
Johnstone LS, Graham SJL, Dziadek MA. STIM proteins: integrators of signalling pathways in development, differentiation and disease. J Cell Mol Med 2010; 14:1890-903. [PMID: 20561111 PMCID: PMC3823271 DOI: 10.1111/j.1582-4934.2010.01097.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The stromal interaction molecules STIM1 and STIM2 are endoplasmic reticulum Ca2+ sensors, serving to detect changes in receptor-mediated ER Ca2+ store depletion and to relay this information to plasma membrane localized proteins, including the store-operated Ca2+ channels of the ORAI family. The resulting Ca2+ influx sustains the high cytosolic Ca2+ levels required for activation of many intracellular signal transducers such as the NFAT family of transcription factors. Models of STIM protein deficiency in mice, Drosophila melanogaster and Caenorhabditis elegans, in addition to the phenotype of patients bearing mutations in STIM1 have provided great insight into the role of these proteins in cell physiology and pathology. It is now becoming clear that STIM1 and STIM2 are critical for the development and functioning of many cell types, including lymphocytes, skeletal and smooth muscle myoblasts, adipocytes and neurons, and can interact with a variety of signalling proteins and pathways in a cell- and tissue-type specific manner. This review focuses on the role of STIM proteins in development, differentiation and disease, in particular highlighting the functional differences between STIM1 and STIM2.
Collapse
Affiliation(s)
- Lorna S Johnstone
- School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | | | | |
Collapse
|
39
|
Roberts-Thomson SJ, Peters AA, Grice DM, Monteith GR. ORAI-mediated calcium entry: mechanism and roles, diseases and pharmacology. Pharmacol Ther 2010; 127:121-30. [PMID: 20546784 DOI: 10.1016/j.pharmthera.2010.04.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 04/28/2010] [Indexed: 12/22/2022]
Abstract
ORAI1 is a protein located on the plasma membrane that acts as a calcium channel. Calcium enters via ORAI1 as a mechanism to refill the sarcoplasmic/endoplasmic reticulum calcium stores, the depletion of which can be detected by the sensor protein STIM1. Isoforms of these proteins ORAI2, ORAI3 and STIM2 also have roles in cellular calcium homeostasis but are less well characterized. This pathway of filling the calcium stores is termed store-operated calcium entry and while the pathway itself was proposed in 1986, the identity of the key molecular components was only discovered in 2005 and 2006. The characterization of the ORAI and STIM proteins has provided clearer information on some calcium-regulated pathways that are important in processes from gene transcription to immune cell function. Recent studies have also suggested the importance of the components of ORAI-mediated calcium entry in some diseases or processes significant in disease including the migration of breast cancer cells and thrombus formation. This review will provide a brief overview of ORAI-mediated calcium entry, its role in physiological and pathophysiological processes, as well as current and potential pharmacological modulators of the components of this important cellular calcium entry pathway.
Collapse
|
40
|
Hogan PG, Lewis RS, Rao A. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu Rev Immunol 2010; 28:491-533. [PMID: 20307213 DOI: 10.1146/annurev.immunol.021908.132550] [Citation(s) in RCA: 612] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ca(2+) entry into cells of the peripheral immune system occurs through highly Ca(2+)-selective channels known as CRAC (calcium release-activated calcium) channels. CRAC channels are a very well-characterized example of store-operated Ca(2+) channels, so designated because they open when the endoplasmic reticulum (ER) Ca(2+) store becomes depleted. Physiologically, Ca(2+) is released from the ER lumen into the cytoplasm when activated receptors couple to phospholipase C and trigger production of the second messenger inositol 1,4,5-trisphosphate (IP(3)). IP(3) binds to IP(3) receptors in the ER membrane and activates Ca(2+) release. The proteins STIM and ORAI were discovered through limited and genome-wide RNAi screens, respectively, performed in Drosophila cells and focused on identifying modulators of store-operated Ca(2+) entry. STIM1 and STIM2 sense the depletion of ER Ca(2+) stores, whereas ORAI1 is a pore subunit of the CRAC channel. In this review, we discuss selected aspects of Ca(2+) signaling in cells of the immune system, focusing on the roles of STIM and ORAI proteins in store-operated Ca(2+) entry.
Collapse
Affiliation(s)
- Patrick G Hogan
- Department of Pathology, Harvard Medical School, Immune Disease Institute, Children's Hospital Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
41
|
Srikanth S, Jung HJ, Kim KD, Souda P, Whitelegge J, Gwack Y. A novel EF-hand protein, CRACR2A, is a cytosolic Ca2+ sensor that stabilizes CRAC channels in T cells. Nat Cell Biol 2010; 12:436-46. [PMID: 20418871 PMCID: PMC2875865 DOI: 10.1038/ncb2045] [Citation(s) in RCA: 187] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 03/18/2010] [Indexed: 12/11/2022]
Abstract
Orai1 and STIM1 are critical components of Ca(2+) release-activated Ca(2+) (CRAC) channels that mediate store-operated Ca(2+) entry (SOCE) in immune cells. Although it is known that Orai1 and STIM1 co-cluster and physically interact to mediate SOCE, the cytoplasmic machinery modulating these functions remains poorly understood. We sought to find modulators of Orai1 and STIM1 using affinity protein purification and identified a novel EF-hand protein, CRACR2A (also called CRAC regulator 2A, EFCAB4B or FLJ33805). We show that CRACR2A interacts directly with Orai1 and STIM1, forming a ternary complex that dissociates at elevated Ca(2+) concentrations. Studies using knockdown mediated by small interfering RNA (siRNA) and mutagenesis show that CRACR2A is important for clustering of Orai1 and STIM1 upon store depletion. Expression of an EF-hand mutant of CRACR2A enhanced STIM1 clustering, elevated cytoplasmic Ca(2+) and induced cell death, suggesting its active interaction with CRAC channels. These observations implicate CRACR2A, a novel Ca(2+) binding protein that is highly expressed in T cells and conserved in vertebrates, as a key regulator of CRAC channel-mediated SOCE.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at the University of California, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
42
|
Affiliation(s)
- Anjana Rao
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
| | | |
Collapse
|