1
|
Yang Z, Krammer S, Mitländer H, Grund JC, Zirlik S, Wirtz S, Rauh M, Shermeh AS, Finotto S. NFATc1 in CD4 + T cells and CD11c + dendritic cells drives T H2-mediated eosinophilic inflammation in allergic asthma. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2025; 4:100355. [PMID: 39629220 PMCID: PMC11613943 DOI: 10.1016/j.jacig.2024.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 12/07/2024]
Abstract
Background Asthma, a chronic lung disease, is a significant public health problem worldwide. It is marked by increased TH2 response resulting in eosinophil accumulation. The pathophysiology of asthma involves various cell types, including epithelial cells, dendritic cells (DCs), innate lymphoid cells, B cells, and effector cells. Nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), a critical transcription factor for immune regulation, is known for its role in T cells and, more recently, in myeloid cells. However, the specific contributions of NFATc1 in T cells and DCs in the context of asthma are not well understood. Objective We explored NFATc1's role in T cells and DCs in modulating TH2 immune responses within the pathophysiology of allergic asthma. Methods We induced asthma in mice lacking Nfatc1 in CD4+ T cells or CD11c+ DCs using house dust mite, thereby enabling investigation into NFATc1's role in both cell types in experimental allergic asthma. Additionally, we examined NFATc1 expression in these cell types and its correlation with blood eosinophil levels in an adult asthma cohort. Results In a house dust mite-induced asthma model, we found that Nfatc1 deficiency either in CD4+ T cells or CD11c+ DCs resulted in reduced TH2-driven eosinophilic inflammation, IgE levels, and mast cell presence in the lung of asthmatic mice. Nfatc1's absence in CD4+ T cells directly hampered TH2 cell polarization and functionality, whereas in CD11c+ DCs, it affected DC differentiation and maturation, thereby weakening T-cell priming, proliferation, and subsequent TH2 differentiation. Correspondingly, translational research indicated significant correlations between CD4+NFATc1+ and CD11c+NFATc1+ cell populations and eosinophil levels in asthmatic patients, but not in healthy controls. Conclusion NFATc1 in T cells and DCs modulates TH2-mediated eosinophilic inflammation in allergic asthma, thus offering insight into asthma pathogenesis and identifying NFATc1 as a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Zuqin Yang
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susanne Krammer
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hannah Mitländer
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Janina C. Grund
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Sabine Zirlik
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Wirtz
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Atefeh Sadeghi Shermeh
- Department of Immune Modulation, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-University Erlangen-Nürnberg, Universitätsklinikum Erlangen, Erlangen, Germany
- Bavarian Cancer Research Center, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
2
|
Seo S, Hattori M, Yoshida T. Establishing an evaluation system for T cell activation and anergy based on CD25 expression levels as an indicator. Cytotechnology 2024; 76:749-759. [PMID: 39435413 PMCID: PMC11490625 DOI: 10.1007/s10616-024-00651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/31/2024] [Indexed: 10/23/2024] Open
Abstract
T cell anergy refers to a state where T cells become unresponsive, playing an important role in several types of immune tolerance, such as oral tolerance. This tolerance is vital for preventing some diseases, including food allergies. Understanding the mechanism underlying T cell anergy is essential to addressing food allergies. Previous studies often identified anergic T cells by their decreased ability to produce cytokine compared to the control cells. In the studies, unstimulated or naïve T cells were commonly used as the control cells. These systems could evaluate the hyporesponsiveness of anergic T cells; however, it was challenging to distinguish whether the decrease in cytokine production by anergic T cells was owing to anergy induction or merely a temporarily response to a certain stimulation. This complexity arises because some T cell responses are temporarily suppressed, even by activating stimuli. Therefore, this study aims to explore a new evaluation index that can differentiate the responsiveness of activated T cells from that of anergic T cells compared to the control cells. It was demonstrated that CD25 expression levels serve as an appropriate indicator for distinguishing between T-cell activation and anergy. Conversely, cytokine-producing ability proved inadequate for this purpose. It was found that CD25 expression increased in activated T cells than in naïve T cells, whereas it decreased in anergic T cells after restimulation. This occurred despite decreased cytokine production in the activated and anergic T cells than in the naïve T cells. This new evaluation system, centered on CD25 expression, may help in identifying the mechanism for determining T cell activation and anergy.
Collapse
Affiliation(s)
- Sangwon Seo
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu City, Tokyo, 183-8509 Japan
| | - Makoto Hattori
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu City, Tokyo, 183-8509 Japan
| | - Tadashi Yoshida
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu City, Tokyo, 183-8509 Japan
| |
Collapse
|
3
|
Arbulo-Echevarria MM, Vico-Barranco I, Zhang F, Fernandez-Aguilar LM, Chotomska M, Narbona-Sánchez I, Zhang L, Malissen B, Liang Y, Aguado E. Mutation of the glycine residue preceding the sixth tyrosine of the LAT adaptor severely alters T cell development and activation. Front Immunol 2022; 13:1054920. [PMID: 36569841 PMCID: PMC9768323 DOI: 10.3389/fimmu.2022.1054920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The LAT transmembrane adaptor is essential to transduce intracellular signals triggered by the TCR. Phosphorylation of its four C-terminal tyrosine residues (136, 175, 195, and 235 in mouse LAT) recruits several proteins resulting in the assembly of the LAT signalosome. Among those tyrosine residues, the one found at position 136 of mouse LAT plays a critical role for T cell development and activation. The kinetics of phosphorylation of this residue is delayed as compared to the three other C-terminal tyrosines due to a conserved glycine residue found at position 135. Mutation of this glycine into an aspartate residue (denoted LATG135D) increased TCR signaling and altered antigen recognition in human Jurkat T cells and ex vivo mouse T cells. Here, using a strain of LATG135D knockin mice, we showed that the LATG135D mutation modifies thymic development, causing an increase in the percentage of CD4+CD8+ double-positive cells, and a reduction in the percentage of CD4+ and CD8+ single-positive cells. Interestingly, the LATG135D mutation alters thymic development even in a heterozygous state. In the periphery, the LATG135D mutation reduces the percentage of CD8+ T cells and results in a small increment of γδ T cells. Remarkably, the LATG135D mutation dramatically increases the percentage of central memory CD8+ T cells. Finally, analysis of the proliferation and activation of T lymphocytes shows increased responses of T cells from mutant mice. Altogether, our results reinforce the view that the residue preceding Tyr136 of LAT constitutes a crucial checkpoint in T cell development and activation.
Collapse
Affiliation(s)
- Mikel M. Arbulo-Echevarria
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Inmaculada Vico-Barranco
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Fanghui Zhang
- Centre d’Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France,Henan Key Laboratory for Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Luis M. Fernandez-Aguilar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Martyna Chotomska
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain
| | - Isaac Narbona-Sánchez
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain
| | - Lichen Zhang
- Henan Key Laboratory for Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France,Laboratory of Immunophenomics, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yinming Liang
- Henan Key Laboratory for Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), Universidad de Cádiz, Cádiz, Spain,Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain,*Correspondence: Enrique Aguado,
| |
Collapse
|
4
|
Wilson CS, Stocks BT, Hoopes EM, Rhoads JP, McNew KL, Major AS, Moore DJ. Metabolic preconditioning in CD4+ T cells restores inducible immune tolerance in lupus-prone mice. JCI Insight 2021; 6:e143245. [PMID: 34403367 PMCID: PMC8525586 DOI: 10.1172/jci.insight.143245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Autoimmune disease has presented an insurmountable barrier to restoration of durable immune tolerance. Previous studies indicate that chronic therapy with metabolic inhibitors can reduce autoimmune inflammation, but it remains unknown whether acute metabolic modulation enables permanent immune tolerance to be established. In an animal model of lupus, we determined that targeting glucose metabolism with 2-deoxyglucose (2DG) and mitochondrial metabolism with metformin enables endogenous immune tolerance mechanisms to respond to tolerance induction. A 2-week course of 2DG and metformin, when combined with tolerance-inducing therapy anti-CD45RB, prevented renal deposition of autoantibodies for 6 months after initial treatment and restored tolerance induction to allografts in lupus-prone mice. The restoration of durable immune tolerance was linked to changes in T cell surface glycosylation patterns, illustrating a role for glycoregulation in immune tolerance. These findings indicate that metabolic therapy may be applied as a powerful preconditioning to reinvigorate tolerance mechanisms in autoimmune and transplant settings that resist current immune therapies.
Collapse
Affiliation(s)
| | | | - Emilee M. Hoopes
- Ian Burr Division of Endocrinology and Diabetes, Department of Pediatrics
| | | | | | - Amy S. Major
- Department of Pathology, Microbiology, and Immunology; and
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel J. Moore
- Ian Burr Division of Endocrinology and Diabetes, Department of Pediatrics
- Department of Pathology, Microbiology, and Immunology; and
| |
Collapse
|
5
|
Abhimanyu, Ontiveros CO, Guerra-Resendez RS, Nishiguchi T, Ladki M, Hilton IB, Schlesinger LS, DiNardo AR. Reversing Post-Infectious Epigenetic-Mediated Immune Suppression. Front Immunol 2021; 12:688132. [PMID: 34163486 PMCID: PMC8215363 DOI: 10.3389/fimmu.2021.688132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022] Open
Abstract
The immune response must balance the pro-inflammatory, cell-mediated cytotoxicity with the anti-inflammatory and wound repair response. Epigenetic mechanisms mediate this balance and limit host immunity from inducing exuberant collateral damage to host tissue after severe and chronic infections. However, following treatment for these infections, including sepsis, pneumonia, hepatitis B, hepatitis C, HIV, tuberculosis (TB) or schistosomiasis, detrimental epigenetic scars persist, and result in long-lasting immune suppression. This is hypothesized to be one of the contributing mechanisms explaining why survivors of infection have increased all-cause mortality and increased rates of unrelated secondary infections. The mechanisms that induce epigenetic-mediated immune suppression have been demonstrated in-vitro and in animal models. Modulation of the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR), nuclear factor of activated T cells (NFAT) or nuclear receptor (NR4A) pathways is able to block or reverse the development of detrimental epigenetic scars. Similarly, drugs that directly modify epigenetic enzymes, such as those that inhibit histone deacetylases (HDAC) inhibitors, DNA hypomethylating agents or modifiers of the Nucleosome Remodeling and DNA methylation (NuRD) complex or Polycomb Repressive Complex (PRC) have demonstrated capacity to restore host immunity in the setting of cancer-, LCMV- or murine sepsis-induced epigenetic-mediated immune suppression. A third clinically feasible strategy for reversing detrimental epigenetic scars includes bioengineering approaches to either directly reverse the detrimental epigenetic marks or to modify the epigenetic enzymes or transcription factors that induce detrimental epigenetic scars. Each of these approaches, alone or in combination, have ablated or reversed detrimental epigenetic marks in in-vitro or in animal models; translational studies are now required to evaluate clinical applicability.
Collapse
Affiliation(s)
- Abhimanyu
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| | - Carlos O Ontiveros
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States.,UT Health San Antonio, San Antonio, TX, United States
| | - Rosa S Guerra-Resendez
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States
| | - Tomoki Nishiguchi
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| | - Malik Ladki
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| | - Isaac B Hilton
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, United States.,Department of Bioengineering, Rice University, Houston, TX, United States.,Department of BioSciences, Rice University, Houston, TX, United States
| | - Larry S Schlesinger
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Andrew R DiNardo
- The Global Tuberculosis Program, William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Immigrant and Global Health, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Diacylglycerol kinase α inhibition cooperates with PD-1-targeted therapies to restore the T cell activation program. Cancer Immunol Immunother 2021; 70:3277-3289. [PMID: 33837851 DOI: 10.1007/s00262-021-02924-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Antibody-based therapies blocking the programmed cell death-1/ligand-1 (PD-1/PD-L1) axis have provided unprecedent clinical success in cancer treatment. Acquired resistance, however, frequently occurs, commonly associated with the upregulation of additional inhibitory molecules. Diacylglycerol kinase (DGK) α limits the extent of Ras activation in response to antigen recognition, and its upregulation facilitates hypofunctional, exhausted T cell states. Pharmacological DGKα targeting restores cytotoxic function of chimeric antigen receptor and CD8+ T cells isolated from solid tumors, suggesting a mechanism to reverse T cell exhausted phenotypes. Nevertheless, the contribution of DGKα downstream of the PD-1/PD-L1 inhibitory axis in human T cells and the consequences of combining DGKα and anti-PD-1/PD-L1 inhibitors are still unresolved relevant issues. MATERIALS AND METHODS We used a human triple parameter reporter cell line to investigate DGKα contribution to the PD-1/PD-L1 inhibitory pathway. We also addressed the impact of deleting DGKα expression in the growth dynamics and systemic tumor-derived effects of a PD-1-related tumor model, the MC38 colon adenocarcinoma. RESULTS We identify DGKα as a contributor to the PD-1/PD-L1 axis that strongly limits the Ras/ERK/AP-1 pathway. DGKα function reinforces exhausted T cell phenotypes ultimately promoting tumor growth and generalized immunosuppression. Pharmacological DGKα inhibition selectively enhances AP-1 transcription and, importantly, cooperates with antibodies blocking the PD-1/PD-L1 interrelation. CONCLUSIONS Our results indicate that DGKα inhibition could provide an important mechanism to revert exhausted T lymphocyte phenotypes and thus favor proper anti-tumor T cell responses. The cooperative effect observed after PD-1/PD-L1 and DGKα blockade offers a promising strategy to improve the efficacy of immunotherapy in the treatment of cancer.
Collapse
|
7
|
Nüssing S, Trapani JA, Parish IA. Revisiting T Cell Tolerance as a Checkpoint Target for Cancer Immunotherapy. Front Immunol 2020; 11:589641. [PMID: 33072137 PMCID: PMC7538772 DOI: 10.3389/fimmu.2020.589641] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 12/30/2022] Open
Abstract
Immunotherapy has revolutionized the treatment of cancer. Nevertheless, the majority of patients do not respond to therapy, meaning a deeper understanding of tumor immune evasion strategies is required to boost treatment efficacy. The vast majority of immunotherapy studies have focused on how treatment reinvigorates exhausted CD8+ T cells within the tumor. In contrast, how therapies influence regulatory processes within the draining lymph node is less well studied. In particular, relatively little has been done to examine how tumors may exploit peripheral CD8+ T cell tolerance, an under-studied immune checkpoint that under normal circumstances prevents detrimental autoimmune disease by blocking the initiation of T cell responses. Here we review the therapeutic potential of blocking peripheral CD8+ T cell tolerance for the treatment of cancer. We first comprehensively review what has been learnt about the regulation of CD8+ T cell peripheral tolerance from the non-tumor models in which peripheral tolerance was first defined. We next consider how the tolerant state differs from other states of negative regulation, such as T cell exhaustion and senescence. Finally, we describe how tumors hijack the peripheral tolerance immune checkpoint to prevent anti-tumor immune responses, and argue that disruption of peripheral tolerance may contribute to both the anti-cancer efficacy and autoimmune side-effects of immunotherapy. Overall, we propose that a deeper understanding of peripheral tolerance will ultimately enable the development of more targeted and refined cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
8
|
Arbulo-Echevarria MM, Vico-Barranco I, Narbona-Sánchez I, García-Cózar F, Miazek A, Aguado E. Increased Protein Stability and Interleukin-2 Production of a LAT G131D Variant With Possible Implications for T Cell Anergy. Front Cell Dev Biol 2020; 8:561503. [PMID: 33042995 PMCID: PMC7517355 DOI: 10.3389/fcell.2020.561503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
The adaptor LAT plays a crucial role in the transduction of signals coming from the TCR/CD3 complex. Phosphorylation of some of its tyrosines generates recruitment sites for other cytosolic signaling molecules. Tyrosine 132 in human LAT is essential for PLC-γ activation and calcium influx generation. It has been recently reported that a conserved glycine residue preceding tyrosine 132 decreases its phosphorylation kinetics, which constitutes a mechanism for ligand discrimination. Here we confirm that a LAT mutant in which glycine 131 has been substituted by an aspartate (LATG131D) increases phosphorylation of Tyr132, PLC-γ activation and calcium influx generation. Interestingly, the LATG131D mutant has a slower protein turnover while being equally sensitive to Fas-mediated protein cleavage by caspases. Moreover, J.CaM2 cells expressing LATG131D secrete greater amounts of interleukin-2 (IL-2) in response to CD3/CD28 engagement. However, despite this increased IL-2 secretion, J.CaM2 cells expressing the LATG131D mutant are more sensitive to inhibition of IL-2 production by pre-treatment with anti-CD3, which points to a possible role of this residue in the generation of anergy. Our results suggest that the increased kinetics of LAT Tyr132 phosphorylation could contribute to the establishment of T cell anergy, and thus constitutes an earliest known intracellular event responsible for the induction of peripheral tolerance.
Collapse
Affiliation(s)
| | | | | | - Francisco García-Cózar
- Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain.,Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| | - Arkadiusz Miazek
- Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Enrique Aguado
- Institute of Biomedical Research Cadiz (INIBICA), Cádiz, Spain.,Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cádiz and Puerto Real University Hospital Research Unit, Cádiz, Spain
| |
Collapse
|
9
|
Wei X, Li H, Zhang Y, Li C, Li K, Ai K, Yang J. Ca2+–Calcineurin Axis–Controlled NFAT Nuclear Translocation Is Crucial for Optimal T Cell Immunity in an Early Vertebrate. THE JOURNAL OF IMMUNOLOGY 2019; 204:569-585. [DOI: 10.4049/jimmunol.1901065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022]
|
10
|
Iyer RV, Maguire O, Kim M, Curtin LI, Sexton S, Fisher DT, Schihl SA, Fetterly G, Menne S, Minderman H. Dose-Dependent Sorafenib-Induced Immunosuppression Is Associated with Aberrant NFAT Activation and Expression of PD-1 in T Cells. Cancers (Basel) 2019; 11:cancers11050681. [PMID: 31100868 PMCID: PMC6562672 DOI: 10.3390/cancers11050681] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023] Open
Abstract
The multikinase inhibitor sorafenib is the only standard first-line therapy for hepatocellular carcinoma (HCC). Here, we report the dose-dependent effects of sorafenib on the immune response, which is related to nuclear factor of activated T cells 1 (NFAT1) activity. In vitro and in vivo experiments were performed with low and high doses of sorafenib using human T cells and spontaneous developed woodchuck HCC models. In vitro studies demonstrated that following exposure to a high dose of sorafenib the baseline activity of NFAT1 in T cells was significantly increased. In a parallel event, high dose sorafenib resulted in a significant decrease in T cell proliferation and increased the proportion of PD-1 expressing CD8+ T cells with NFAT1 activation. In the in vivo model, smaller tumors were detected in the low-dose sorafenib treated group compared to the placebo and high-dose treated groups. The low-dose sorafenib group showed a significant tumor growth delay with significantly more CD3+ cells in tumor. This study demonstrates that sorafenib has immunomodulatory effects in a dose- and time-dependent manner. Higher dose of sorafenib treatment was associated with immunosuppressive action. This observed effect of sorafenib should be taken into consideration in the selection of optimum starting dose for future trials.
Collapse
Affiliation(s)
- Renuka V Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Orla Maguire
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Minhyung Kim
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Leslie I Curtin
- Laboratory Animal Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Sandra Sexton
- Laboratory Animal Shared Resources, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Daniel T Fisher
- Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Sarah A Schihl
- Bioanalytics, Metabolomics, and Pharmacokinetics Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Gerald Fetterly
- Bioanalytics, Metabolomics, and Pharmacokinetics Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University, Washington, DC 20057, USA.
| | - Hans Minderman
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
11
|
Rodríguez-Jorge O, Kempis-Calanis LA, Abou-Jaoudé W, Gutiérrez-Reyna DY, Hernandez C, Ramirez-Pliego O, Thomas-Chollier M, Spicuglia S, Santana MA, Thieffry D. Cooperation between T cell receptor and Toll-like receptor 5 signaling for CD4 + T cell activation. Sci Signal 2019; 12:12/577/eaar3641. [PMID: 30992399 DOI: 10.1126/scisignal.aar3641] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD4+ T cells recognize antigens through their T cell receptors (TCRs); however, additional signals involving costimulatory receptors, for example, CD28, are required for proper T cell activation. Alternative costimulatory receptors have been proposed, including members of the Toll-like receptor (TLR) family, such as TLR5 and TLR2. To understand the molecular mechanism underlying a potential costimulatory role for TLR5, we generated detailed molecular maps and logical models for the TCR and TLR5 signaling pathways and a merged model for cross-interactions between the two pathways. Furthermore, we validated the resulting model by analyzing how T cells responded to the activation of these pathways alone or in combination, in terms of the activation of the transcriptional regulators CREB, AP-1 (c-Jun), and NF-κB (p65). Our merged model accurately predicted the experimental results, showing that the activation of TLR5 can play a similar role to that of CD28 activation with respect to AP-1, CREB, and NF-κB activation, thereby providing insights regarding the cross-regulation of these pathways in CD4+ T cells.
Collapse
Affiliation(s)
- Otoniel Rodríguez-Jorge
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México.,Escuela de Estudios Superiores de Axochiapan, Universidad Autónoma del Estado de Morelos, 62951 Axochiapan, México
| | - Linda A Kempis-Calanis
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Wassim Abou-Jaoudé
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | - Darely Y Gutiérrez-Reyna
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Céline Hernandez
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | - Oscar Ramirez-Pliego
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Morgane Thomas-Chollier
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | | | - Maria A Santana
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México.
| | - Denis Thieffry
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France.
| |
Collapse
|
12
|
Reading JL, Gálvez-Cancino F, Swanton C, Lladser A, Peggs KS, Quezada SA. The function and dysfunction of memory CD8 + T cells in tumor immunity. Immunol Rev 2018; 283:194-212. [PMID: 29664561 DOI: 10.1111/imr.12657] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The generation and maintenance of CD8+ T cell memory is crucial to long-term host survival, yet the basic tenets of CD8+ T cell immunity are still being established. Recent work has led to the discovery of tissue-resident memory cells and refined our understanding of the transcriptional and epigenetic basis of CD8+ T cell differentiation and dysregulation. In parallel, the unprecedented clinical success of immunotherapy has galvanized an intense, global research effort to decipher and de-repress the anti-tumor response. However, the progress of immunotherapy is at a critical juncture, since the efficacy of immuno-oncology agents remains confined to a fraction of patients and often fails to provide durable benefit. Unlocking the potential of immunotherapy requires the design of strategies that both induce a potent effector response and reliably forge stable, functional memory T cell pools capable of protecting from recurrence or relapse. It is therefore essential that basic and emerging concepts of memory T cell biology are rapidly and faithfully transposed to advance therapeutic development in cancer immunotherapy. This review highlights seminal and recent reports in CD8+ T cell memory and tumor immunology, and evaluates recent data from solid cancer specimens in the context of the key paradigms from preclinical models. We elucidate the potential significance of circulating effector cells poised downstream of neoantigen recognition and upstream of T cell dysfunction and propose that cells in this immunological 'sweet spot' may be key anti-tumor effectors.
Collapse
Affiliation(s)
- James L Reading
- Cancer Immunology Unit, University College London Cancer Institute, University College London, London, UK
- Research Department of Haematology, University College London Cancer Institute, University College London, London, UK
| | | | | | - Alvaro Lladser
- Laboratory of Gene Immunotherapy, Fundación Ciencia & Vida, Santiago, Chile
| | - Karl S Peggs
- Cancer Immunology Unit, University College London Cancer Institute, University College London, London, UK
- Research Department of Haematology, University College London Cancer Institute, University College London, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, University College London Cancer Institute, University College London, London, UK
- Research Department of Haematology, University College London Cancer Institute, University College London, London, UK
| |
Collapse
|
13
|
Calcineurin-mediated IL-2 production by CD11c highMHCII + myeloid cells is crucial for intestinal immune homeostasis. Nat Commun 2018; 9:1102. [PMID: 29549257 PMCID: PMC5856784 DOI: 10.1038/s41467-018-03495-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 02/19/2018] [Indexed: 12/31/2022] Open
Abstract
The intestinal immune system can respond to invading pathogens yet maintain immune tolerance to self-antigens and microbiota. Myeloid cells are central to these processes, but the signaling pathways that underlie tolerance versus inflammation are unclear. Here we show that mice lacking Calcineurin B in CD11chighMHCII+ cells (Cnb1CD11c mice) spontaneously develop intestinal inflammation and are susceptible to induced colitis. In these mice, colitis is associated with expansion of T helper type 1 (Th1) and Th17 cell populations and a decrease in the number of FoxP3+ regulatory T (Treg) cells, and the pathology is linked to the inability of intestinal Cnb1-deficient CD11chighMHCII+ cells to express IL-2. Deleting IL-2 in CD11chighMHCII+ cells induces spontaneous colitis resembling human inflammatory bowel disease. Our findings identify that the calcineurin–NFAT–IL-2 pathway in myeloid cells is a critical regulator of intestinal homeostasis by influencing the balance of inflammatory and regulatory responses in the mouse intestine. Treg cells can maintain intestinal homeostasis and limit intestinal bowel disease. Here the authors use a mouse model of spontaneous colitis to show that calcineurin-NFAT-induced IL-2 production by dendritic cells regulates the balance between Treg and effector T cells in the gut lamina propria.
Collapse
|
14
|
Mencarelli A, Vacca M, Khameneh HJ, Acerbi E, Tay A, Zolezzi F, Poidinger M, Mortellaro A. Calcineurin B in CD4 + T Cells Prevents Autoimmune Colitis by Negatively Regulating the JAK/STAT Pathway. Front Immunol 2018. [PMID: 29515579 PMCID: PMC5826051 DOI: 10.3389/fimmu.2018.00261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcineurin (Cn) is a protein phosphatase that regulates the activation of the nuclear factor of activated T-cells (NFAT) family of transcription factors, which are key regulators of T-cell development and function. Here, we generated a conditional Cnb1 mouse model in which Cnb1 was specifically deleted in CD4+ T cells (Cnb1CD4 mice) to delineate the role of the Cn–NFAT pathway in immune homeostasis of the intestine. The Cnb1CD4 mice developed severe, spontaneous colitis characterized at the molecular level by an increased T helper-1-cell response but an unaltered regulatory T-cell compartment. Antibiotic treatment ameliorated the intestinal inflammation observed in Cnb1CD4 mice, suggesting that the microbiota contributes to the onset of colitis. CD4+ T cells isolated from Cnb1CD4 mice produced high levels of IFNγ due to increased activation of the JAK2/STAT4 pathway induced by IL-12. Our data highlight that Cn signaling in CD4+ T cells is critical for intestinal immune homeostasis in part by inhibiting IL-12 responsiveness of CD4+ T cells.
Collapse
Affiliation(s)
- Andrea Mencarelli
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Maurizio Vacca
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hanif Javanmard Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Enzo Acerbi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Alicia Tay
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Francesca Zolezzi
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Alessandra Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Domogalla MP, Rostan PV, Raker VK, Steinbrink K. Tolerance through Education: How Tolerogenic Dendritic Cells Shape Immunity. Front Immunol 2017; 8:1764. [PMID: 29375543 PMCID: PMC5770648 DOI: 10.3389/fimmu.2017.01764] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
Dendritic cells (DCs) are central players in the initiation and control of responses, regulating the balance between tolerance and immunity. Tolerogenic DCs are essential in the maintenance of central and peripheral tolerance by induction of clonal T cell deletion and T cell anergy, inhibition of memory and effector T cell responses, and generation and activation of regulatory T cells. Therefore, tolerogenic DCs are promising candidates for specific cellular therapy of allergic and autoimmune diseases and for treatment of transplant rejection. Studies performed in rodents have demonstrated the efficacy and feasibility of tolerogenic DCs for tolerance induction in various inflammatory diseases. In the last years, numerous protocols for the generation of human monocyte-derived tolerogenic DCs have been established and some first phase I trials have been conducted in patients suffering from autoimmune disorders, demonstrating the safety and efficiency of this cell-based immunotherapy. This review gives an overview about methods and protocols for the generation of human tolerogenic DCs and their mechanisms of tolerance induction with the focus on interleukin-10-modulated DCs. In addition, we will discuss the prerequisites for optimal clinical grade tolerogenic DC subsets and results of clinical trials with tolerogenic DCs in autoimmune diseases.
Collapse
Affiliation(s)
- Matthias P Domogalla
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Patricia V Rostan
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Verena K Raker
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kerstin Steinbrink
- Department of Dermatology, Division for Experimental and Translational Research, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Research Center for Immunotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
16
|
Uzhachenko R, Shanker A, Dupont G. Computational properties of mitochondria in T cell activation and fate. Open Biol 2017; 6:rsob.160192. [PMID: 27852805 PMCID: PMC5133440 DOI: 10.1098/rsob.160192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/12/2016] [Indexed: 01/09/2023] Open
Abstract
In this article, we review how mitochondrial Ca2+ transport (mitochondrial Ca2+ uptake and Na+/Ca2+ exchange) is involved in T cell biology, including activation and differentiation through shaping cellular Ca2+ signals. Based on recent observations, we propose that the Ca2+ crosstalk between mitochondria, endoplasmic reticulum and cytoplasm may form a proportional–integral–derivative (PID) controller. This PID mechanism (which is well known in engineering) could be responsible for computing cellular decisions. In addition, we point out the importance of analogue and digital signal processing in T cell life and implication of mitochondrial Ca2+ transport in this process.
Collapse
Affiliation(s)
- Roman Uzhachenko
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN, USA .,Host-Tumor Interactions Research Program, Vanderbilt-Ingram Cancer Center, and the Center for Immunobiology, Vanderbilt University, Nashville, TN, USA
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Université Libre de Bruxelles, CP231, Boulevard du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
17
|
Dar AA, Bhat SA, Gogoi D, Gokhale A, Chiplunkar SV. Inhibition of Notch signalling has ability to alter the proximal and distal TCR signalling events in human CD3 + αβ T-cells. Mol Immunol 2017; 92:116-124. [PMID: 29078088 DOI: 10.1016/j.molimm.2017.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 01/13/2023]
Abstract
The Notch signalling pathway is an important regulator of T cell function and is known to regulate the effector functions of T cells driven by T cell receptor (TCR). However, the mechanism integrating these pathways in human CD3+ αβ T cells is not well understood. The present study was carried out to investigate how Notch and TCR driven signalling are synchronized in human αβ T cells. Differential expression of Notch receptors, ligands, and target genes is observed on human αβ T cells which are upregulated on stimulation with α-CD3/CD28 mAb. Inhibition of Notch signalling by GSI-X inhibited the activation of T cells and affected proximal T cell signalling by regulating CD3-ζ chain expression. Inhibition of Notch signalling decreased the protein expression of CD3-ζ chain and induced expression of E3 ubiquitin ligase (GRAIL) in human αβ T cells. Apart from affecting proximal TCR signalling, Notch signalling also regulated the distal TCR signalling events. In the absence of Notch signalling, α-CD3/CD28 mAb induced activation and IFN-γ production by αβ T cells was down-modulated. The absence of Notch signalling in human αβ T cells inhibited proliferative responses despite strong signalling through TCR and IL-2 receptor. This study shows how Notch signalling cooperates with TCR signalling by regulating CD3-ζ chain expression to support proliferation and activation of human αβ T cells.
Collapse
Affiliation(s)
- Asif A Dar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Sajad A Bhat
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Dimpu Gogoi
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India
| | - Abhiram Gokhale
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Shubhada V Chiplunkar
- Chiplunkar Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra 410210, India; Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai, Maharashtra 400094, India.
| |
Collapse
|
18
|
The Transcription Factor NFAT1 Participates in the Induction of CD4 + T Cell Functional Exhaustion during Plasmodium yoelii Infection. Infect Immun 2017. [PMID: 28630062 DOI: 10.1128/iai.00364-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repeated stimulation of T cells that occurs in the context of chronic infection results in progressively reduced responsiveness of T cells to pathogen-derived antigens. This phenotype, known as T cell exhaustion, occurs during chronic infections caused by a variety of pathogens, from persistent viruses to parasites. Unlike the memory cells that typically form after successful pathogen clearance following an acute infection, exhausted T cells secrete lower levels of effector cytokines, proliferate less in response to cognate antigen, and upregulate cell surface inhibitory molecules such as PD-1 and LAG-3. The molecular events that lead to the induction of this phenotype have, however, not been fully characterized. In T cells, members of the NFAT family of transcription factors not only are responsible for the expression of many activation-induced genes but also are crucial for the induction of transcriptional programs that inhibit T cell activation and maintain tolerance. Here we show that NFAT1-deficient CD4+ T cells maintain higher proliferative capacity and expression of effector cytokines following Plasmodium yoelii infection and are therefore more resistant to P. yoelii-induced exhaustion than their wild-type counterparts. Consequently, gene expression microarray analysis of CD4+ T cells following P. yoelii-induced exhaustion shows upregulation of effector T cell-associated genes in the absence of NFAT1 compared with wild-type exhausted T cells. Furthermore, adoptive transfer of NFAT1-deficient CD4+ T cells into mice infected with P. yoelii results in increased production of antibodies to cognate antigen. Our results support the idea that NFAT1 is necessary to fully suppress effector responses during Plasmodium-induced CD4+ T cell exhaustion.
Collapse
|
19
|
Immunological Disorders: Regulation of Ca 2+ Signaling in T Lymphocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:397-424. [PMID: 28900926 DOI: 10.1007/978-3-319-57732-6_21] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engagement of T cell receptors (TCRs) with cognate antigens triggers cascades of signaling pathways in helper T cells. TCR signaling is essential for the effector function of helper T cells including proliferation, differentiation, and cytokine production. It also modulates effector T cell fate by inducing cell death, anergy (nonresponsiveness), exhaustion, and generation of regulatory T cells. One of the main axes of TCR signaling is the Ca2+-calcineurin-nuclear factor of activated T cells (NFAT) signaling pathway. Stimulation of TCRs triggers depletion of intracellular Ca2+ store and, in turn, activates store-operated Ca2+ entry (SOCE) to raise the intracellular Ca2+ concentration. SOCE in T cells is mediated by the Ca2+ release-activated Ca2+ (CRAC) channels, which have been very well characterized in terms of their electrophysiological properties. Identification of STIM1 as a sensor to detect depletion of the endoplasmic reticulum (ER) Ca2+ store and Orai1 as the pore subunit of CRAC channels has dramatically advanced our understanding of the regulatory mechanism of Ca2+ signaling in T cells. In this review, we discuss our current understanding of Ca2+ signaling in T cells with specific focus on the mechanism of CRAC channel activation and regulation via protein interactions. In addition, we will discuss the role of CRAC channels in effector T cells, based on the analyses of genetically modified animal models.
Collapse
|
20
|
Monaco S, Jahraus B, Samstag Y, Bading H. Nuclear calcium is required for human T cell activation. J Cell Biol 2016; 215:231-243. [PMID: 27810914 PMCID: PMC5084645 DOI: 10.1083/jcb.201602001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 09/27/2016] [Indexed: 01/12/2023] Open
Abstract
Monaco et al. demonstrate that calcium signals in activated human T cells consist of a cytoplasmic and a nuclear component, which are both required for the immune response. Blockade of nuclear calcium signaling inhibits T cell activation and induces an anergy-like state. Calcium signals in stimulated T cells are generally considered single entities that merely trigger immune responses, whereas costimulatory events specify the type of reaction. Here we show that the “T cell calcium signal” is a composite signal harboring two distinct components that antagonistically control genomic programs underlying the immune response. Using human T cells from healthy individuals, we establish nuclear calcium as a key signal in human T cell adaptogenomics that drives T cell activation and is required for signaling to cyclic adenosine monophosphate response element–binding protein and the induction of CD25, CD69, interleukin-2, and γ-interferon. In the absence of nuclear calcium signaling, cytosolic calcium activating nuclear factor of activated T cells translocation directed the genomic response toward enhanced expression of genes that negatively modulate T cell activation and are associated with a hyporesponsive state. Thus, nuclear calcium controls the T cell fate decision between a proliferative immune response and tolerance. Modulators of nuclear calcium–driven transcription may be used to develop a new type of pro-tolerance immunosuppressive therapy.
Collapse
Affiliation(s)
- Sara Monaco
- Interdisciplinary Center for Neurosciences, Department of Neurobiology, Heidelberg University, 69120 Heidelberg, Germany
| | - Beate Jahraus
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, 69120 Heidelberg, Germany
| | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology, Heidelberg University, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Interdisciplinary Center for Neurosciences, Department of Neurobiology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
21
|
Ohtsuka S, Ogawa S, Wakamatsu E, Abe R. Cell cycle arrest caused by MEK/ERK signaling is a mechanism for suppressing growth of antigen-hyperstimulated effector T cells. Int Immunol 2016; 28:547-557. [PMID: 27543653 DOI: 10.1093/intimm/dxw037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/17/2016] [Indexed: 12/17/2022] Open
Abstract
Suppression of T-cell growth is an important mechanism for establishment of self-tolerance and prevention of unwanted prolonged immune responses that may cause tissue damage. Although negative selection of potentially self-reactive T cells in the thymus as well as in peripheral tissues has been extensively investigated and well documented, regulatory mechanisms to dampen proliferation of antigen-specific effector T cells in response to antigen stimulation remain largely unknown. Thus, in this work, we focus on the identification of growth suppression mechanisms of antigen-specific effector T cells. In order to address this issue, we investigated the cellular and molecular events in growth suppression of an ovalbumin (OVA)-specific T-cell clone after stimulation with a wide range of OVA-peptide concentrations. We observed that while an optimal dose of peptide leads to cell cycle progression and proliferation, higher doses of peptide reduced cell growth, a phenomenon that was previously termed high-dose suppression. Our analysis of this phenomenon indicated that high-dose suppression is a consequence of cell cycle arrest, but not Fas-Fas ligand-dependent apoptosis or T-cell anergy, and that this growth arrest occurs in S phase, accompanied by reduced expression of CDK2 and cyclin A. Importantly, inhibition of MEK/ERK activation eliminated this growth suppression and cell cycle arrest, while it reduced the proliferative response to optimal antigenic stimulation. These results suggest that cell cycle arrest is the major mechanism regulating antigen-specific effector T-cell expansion, and that the MEK/ERK signaling pathway has both positive and negative effects, depending on the strength of antigenic stimulation.
Collapse
Affiliation(s)
- Shizuka Ohtsuka
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba 278-0022, Japan
| | - Shuhei Ogawa
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba 278-0022, Japan
| | - Ei Wakamatsu
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba 278-0022, Japan
| | - Ryo Abe
- Division of Immunobiology, Research Institute for Biomedical Sciences, Tokyo University of Science, 2669 Yamazaki, Noda City, Chiba 278-0022, Japan
| |
Collapse
|
22
|
Kogut MH, Swaggerty CL, Byrd JA, Selvaraj R, Arsenault RJ. Chicken-Specific Kinome Array Reveals that Salmonella enterica Serovar Enteritidis Modulates Host Immune Signaling Pathways in the Cecum to Establish a Persistence Infection. Int J Mol Sci 2016; 17:ijms17081207. [PMID: 27472318 PMCID: PMC5000605 DOI: 10.3390/ijms17081207] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 02/07/2023] Open
Abstract
Non-typhoidal Salmonella enterica induces an early, short-lived pro-inflammatory response in chickens that is asymptomatic of clinical disease and results in a persistent colonization of the gastrointestinal (GI) tract that transmits infections to naïve hosts via fecal shedding of bacteria. The underlying mechanisms that control this persistent colonization of the ceca of chickens by Salmonella are only beginning to be elucidated. We hypothesize that alteration of host signaling pathways mediate the induction of a tolerance response. Using chicken-specific kinomic immune peptide arrays and quantitative RT-PCR of infected cecal tissue, we have previously evaluated the development of disease tolerance in chickens infected with Salmonella enterica serovar Enteritidis (S. Enteritidis) in a persistent infection model (4-14 days post infection). Here, we have further outlined the induction of an tolerance defense strategy in the cecum of chickens infected with S. Enteritidis beginning around four days post-primary infection. The response is characterized by alterations in the activation of T cell signaling mediated by the dephosphorylation of phospholipase c-γ1 (PLCG1) that inhibits NF-κB signaling and activates nuclear factor of activated T-cells (NFAT) signaling and blockage of interferon-γ (IFN-γ) production through the disruption of the JAK-STAT signaling pathway (dephosphorylation of JAK2, JAK3, and STAT4). Further, we measured a significant down-regulation reduction in IFN-γ mRNA expression. These studies, combined with our previous findings, describe global phenotypic changes in the avian cecum of Salmonella Enteritidis-infected chickens that decreases the host responsiveness resulting in the establishment of persistent colonization. The identified tissue protein kinases also represent potential targets for future antimicrobial compounds for decreasing Salmonella loads in the intestines of food animals before going to market.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Resarch Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA.
| | - Christina L Swaggerty
- Southern Plains Agricultural Resarch Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA.
| | - James Allen Byrd
- Southern Plains Agricultural Resarch Center, United States Department of Agriculture, Agricultural Research Service, College Station, TX 77845, USA.
| | - Ramesh Selvaraj
- Ohio Agricultural Research Center, The Ohio State University, Wooster, OH 44691, USA.
| | - Ryan J Arsenault
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
23
|
Ananth AA, Tai LH, Lansdell C, Alkayyal AA, Baxter KE, Angka L, Zhang J, Tanese de Souza C, Stephenson KB, Parato K, Bramson JL, Bell JC, Lichty BD, Auer RC. Surgical Stress Abrogates Pre-Existing Protective T Cell Mediated Anti-Tumor Immunity Leading to Postoperative Cancer Recurrence. PLoS One 2016; 11:e0155947. [PMID: 27196057 PMCID: PMC4873120 DOI: 10.1371/journal.pone.0155947] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/06/2016] [Indexed: 12/19/2022] Open
Abstract
Anti-tumor CD8+ T cells are a key determinant for overall survival in patients following surgical resection for solid malignancies. Using a mouse model of cancer vaccination (adenovirus expressing melanoma tumor-associated antigen (TAA)-dopachrome tautomerase (AdDCT) and resection resulting in major surgical stress (abdominal nephrectomy), we demonstrate that surgical stress results in a reduction in the number of CD8+ T cell that produce cytokines (IFNγ, TNFα, Granzyme B) in response to TAA. This effect is secondary to both reduced proliferation and impaired T cell function following antigen binding. In a prophylactic model, surgical stress completely abrogates tumor protection conferred by vaccination in the immediate postoperative period. In a clinically relevant surgical resection model, vaccinated mice undergoing a positive margin resection with surgical stress had decreased survival compared to mice with positive margin resection alone. Preoperative immunotherapy with IFNα significantly extends survival in surgically stressed mice. Importantly, myeloid derived suppressor cell (MDSC) population numbers and functional impairment of TAA-specific CD8+ T cell were altered in surgically stressed mice. Our observations suggest that cancer progression may result from surgery-induced suppression of tumor-specific CD8+ T cells. Preoperative immunotherapies aimed at targeting the prometastatic effects of cancer surgery will reduce recurrence and improve survival in cancer surgery patients.
Collapse
Affiliation(s)
- Abhirami A. Ananth
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Lee-Hwa Tai
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Casey Lansdell
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Almohanad A. Alkayyal
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Department of Medical Laboratory Technology, University of Tabuk, Tabuk, Saudi Arabia
| | - Katherine E. Baxter
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Leonard Angka
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jiqing Zhang
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Neurosurgery, The Second Hospital of Shandong University, Shandong, China
| | | | - Kyle B. Stephenson
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kelley Parato
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Jonathan L. Bramson
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - John C. Bell
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Brian D. Lichty
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Rebecca C. Auer
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Department of Surgery, University of Ottawa, Ottawa, ON, Canada
- * E-mail:
| |
Collapse
|
24
|
Lutz MB. Induction of CD4(+) Regulatory and Polarized Effector/helper T Cells by Dendritic Cells. Immune Netw 2016; 16:13-25. [PMID: 26937228 PMCID: PMC4770096 DOI: 10.4110/in.2016.16.1.13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are considered to play major roles during the induction of T cell immune responses as well as the maintenance of T cell tolerance. Naive CD4(+) T cells have been shown to respond with high plasticity to signals inducing their polarization into effector/helper or regulatory T cells. Data obtained from in vitro generated bone-marrow (BM)-derived DCs as well as genetic mouse models revealed an important but not exclusive role of DCs in shaping CD4(+) T cell responses. Besides the specialization of some conventional DC subsets for the induction of polarized immunity, also the maturation stage, activation of specialized transcription factors and the cytokine production of DCs have major impact on CD4(+) T cells. Since in vitro generated BM-DCs show a high diversity to shape CD4(+) T cells and their high similarity to monocyte-derived DCs in vivo, this review reports data mainly on BM-DCs in this process and only touches the roles of transcription factors or of DC subsets, which have been discussed elsewhere. Here, recent findings on 1) the conversion of naive into anergic and further into Foxp3(-) regulatory T cells (Treg) by immature DCs, 2) the role of RelB in steady state migratory DCs (ssmDCs) for conversion of naive T cells into Foxp3(+) Treg, 3) the DC maturation signature for polarized Th2 cell induction and 4) the DC source of IL-12 for Th1 induction are discussed.
Collapse
Affiliation(s)
- Manfred B Lutz
- Institute of Virology and Immunobiology, University of Würzburg, 97078 Würzburg, Germany
| |
Collapse
|
25
|
Kogut MH, Arsenault RJ. A Role for the Non-Canonical Wnt-β-Catenin and TGF-β Signaling Pathways in the Induction of Tolerance during the Establishment of a Salmonella enterica Serovar Enteritidis Persistent Cecal Infection in Chickens. Front Vet Sci 2015; 2:33. [PMID: 26664962 PMCID: PMC4672200 DOI: 10.3389/fvets.2015.00033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/24/2015] [Indexed: 12/14/2022] Open
Abstract
Non-typhoidal Salmonella enterica induce an early pro-inflammatory response in chickens. However, the response is short-lived, asymptomatic of disease, resulting in a persistent colonization of the ceca, and fecal shedding of bacteria. The underlying mechanisms that control this persistent infection of chickens by Salmonella are unknown. Recently, we found an expansion of the Treg population and subsequent increased in vitro immunosuppressive functions of the CD4(+)CD25(+) cells isolated from the ceca of the Salmonella-infected chickens by day 4 post-infection that increased steadily throughout the course of the 14 days of infection, whereas the number of CD4(+)CD25(+) cells in the non-infected controls remained steady throughout the study. CD4(+)CD25(+) cells from cecal tonsils of S. enteritidis-infected birds had greater expression of IL-10 mRNA content than the CD4(+)CD25(+) cells from the non-infected controls at all the time points studied. These results suggest the development of a tolerogenic immune response in the cecum of Salmonella-infected chickens may contribute to the persistance of Salmonella cecal colonization. Using a chicken-specific kinome peptide immune array, we have analyzed the signaling pathways altered during the establishment of this tolerogenic state. This analysis has revealed a role for the non-canonical Wnt signaling pathway in the cecum at 4 days post-infection. Infection induced the significant (p < 0.01) phosphorylation of the G-protein-coupled transmembrane protein, Frizzled 1 (FZD1), resulting in an influx of intracellular Ca(2+) and the phosphorylation of the Ca(2+)-dependent effector molecules calcium/calmodulin-dependent kinase II (CamKII), β-catenin, protein kinase C, and the activation of the transcription factor, NFAT. Nuclear translocation of NFAT resulted in a significant increase in the expression of the anti-inflammatory cytokines IL-10 and TGF-β. Increased expression of TGF-β4 mRNA activates the TGF-β signaling pathway that phosphorylates the receptor-activated Smads, Smad2 and Smad3. Combined with the results from our Treg studies, these studies describe kinome-based phenotypic changes in the cecum of chickens during Salmonella Enteritidis infection starting 4 days post-infection that leads to an anti-inflammatory, tolerogenic local environment, and results in the establishment of persistent intestinal colonization.
Collapse
Affiliation(s)
- Michael H Kogut
- Southern Plains Agricultural Research Center (SPARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA) , College Station, TX , USA
| | - Ryan J Arsenault
- Southern Plains Agricultural Research Center (SPARC), Agricultural Research Service (ARS), United States Department of Agriculture (USDA) , College Station, TX , USA
| |
Collapse
|
26
|
Abstract
In this issue of Molecular Cell, Kar and Parekh (2015) reveal the remarkable intricacy and accuracy of Ca(2+) signals in differentially controlling the function of closely related transcription factors.
Collapse
Affiliation(s)
- Yandong Zhou
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, Hershey, PA 17033, USA.
| |
Collapse
|
27
|
Merida I, Andrada E, Gharbi SI, Avila-Flores A. Redundant and specialized roles for diacylglycerol kinases and in the control of T cell functions. Sci Signal 2015; 8:re6. [DOI: 10.1126/scisignal.aaa0974] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
28
|
Affiliation(s)
- Michael M Lederman
- Case Western Reserve University, University Hospitals Case Medical Center, Cleveland, Ohio, USA
| |
Collapse
|
29
|
Pletinckx K, Vaeth M, Schneider T, Beyersdorf N, Hünig T, Berberich-Siebelt F, Lutz MB. Immature dendritic cells convert anergic nonregulatory T cells into Foxp3- IL-10+ regulatory T cells by engaging CD28 and CTLA-4. Eur J Immunol 2014; 45:480-91. [PMID: 25382658 DOI: 10.1002/eji.201444991] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/29/2014] [Accepted: 11/06/2014] [Indexed: 12/17/2022]
Abstract
Anergic T cells can survive for long time periods passively in a hyporesponsive state without obvious active functions. Thus, the immunological reason for their maintenance is unclear. Here, we induced peptide-specific anergy in T cells from mice by coculturing these cells with immature murine dendritic cells (DCs). We found that these anergic, nonsuppressive IL-10(-) Foxp3(-) CTLA-4(+) CD25(low) Egr2(+) T cells could be converted into suppressive IL-10(+) Foxp3(-) CTLA-4(+) CD25(high) Egr2(+) cells resembling type-1 Treg cells (Tr1) when stimulated a second time by immature DCs in vitro. Addition of TGF-β during anergy induction favored Foxp3(+) Treg-cell induction, while TGF-β had little effect when added to the second stimulation. Expression of both CD28 and CTLA-4 molecules on anergic T cells was required to allow their conversion into Tr1-like cells. Suppressor activity was enabled via CD28-mediated CD25 upregulation, acting as an IL-2 sink, together with a CTLA-4-mediated inhibition of NFATc1/α activation to shut down IL-2-mediated proliferation. Together, these data provide evidence and mechanistical insights into how persistent anergic T cells may serve as a resting memory pool for Tr1-like cells.
Collapse
Affiliation(s)
- Katrien Pletinckx
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
30
|
Shin DS, Jordan A, Basu S, Thomas RM, Bandyopadhyay S, de Zoeten EF, Wells AD, Macian F. Regulatory T cells suppress CD4+ T cells through NFAT-dependent transcriptional mechanisms. EMBO Rep 2014; 15:991-9. [PMID: 25074018 DOI: 10.15252/embr.201338233] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Regulatory T cells (Tregs) control autoreactive T cells by inhibiting activation-induced proliferation and cytokine expression. The molecular mechanisms responsible for the inactivation of effector T cells by Tregs remain yet to be fully characterized. We report that T-helper cells stimulated in the presence of Tregs quickly activate NFAT1 and have increased NFAT1-dependent expression of the transcription repressor Ikaros. NFAT1 deficiency or dominant-negative Ikaros compromises Treg-mediated inhibition of T-helper cells in vitro and in vivo. Thus, our results place NFAT-dependent mechanisms as general regulators of T-cell tolerance and show that Treg-mediated suppression of T-helper cells results from the activation of NFAT-regulated gene expression.
Collapse
Affiliation(s)
- Daniel S Shin
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ayana Jordan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samik Basu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Rajan M Thomas
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania and Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | | | - Edwin F de Zoeten
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania and Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Andrew D Wells
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine University of Pennsylvania and Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Fernando Macian
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
31
|
Sag D, Krause P, Hedrick CC, Kronenberg M, Wingender G. IL-10-producing NKT10 cells are a distinct regulatory invariant NKT cell subset. J Clin Invest 2014; 124:3725-40. [PMID: 25061873 DOI: 10.1172/jci72308] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/05/2014] [Indexed: 12/11/2022] Open
Abstract
Invariant natural killer T (iNKT) cells rapidly produce copious amounts of multiple cytokines after activation, thereby impacting a wide variety of different immune reactions. However, strong activation of iNKT cells with α-galactosylceramide (αGalCer) reportedly induces a hyporeactive state that resembles anergy. In contrast, we determined here that iNKT cells from mice pretreated with αGalCer retain cytotoxic activity and maintain the ability to respond to TCR-dependent as well as TCR-independent cytokine-mediated stimulation. Additionally, αGalCer-pretreated iNKT cells acquired characteristics of regulatory cells, including production and secretion of the immunomodulatory cytokine IL-10. Through the production of IL-10, αGalCer-pretreated iNKT cells impaired antitumor responses and reduced disease in experimental autoimmune encephalomyelitis, a mouse model of autoimmune disease. Furthermore, a subset of iNKT cells with a similar inhibitory phenotype and function were present in mice not exposed to αGalCer and were enriched in mouse adipose tissue and detectable in human PBMCs. These data demonstrate that IL-10-producing iNKT cells with regulatory potential (NKT10 cells) represent a distinct iNKT cell subset.
Collapse
|
32
|
Nfatc2 and Tob1 have non-overlapping function in T cell negative regulation and tumorigenesis. PLoS One 2014; 9:e100629. [PMID: 24945807 PMCID: PMC4063948 DOI: 10.1371/journal.pone.0100629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022] Open
Abstract
Nfatc2 and Tob1 are intrinsic negative regulators of T cell activation. Nfatc2-deficient and Tob1-deficient T cells show reduced thresholds of activation; however, whether these factors have independent or overlapping roles in negative regulation of T cell responses has not been previously examined. Here, we show that Nfatc2 knockout (KO) but not Tob1 KO mice have age-associated accumulation of persistently activated T cells in vivo and expansion of the CD44+ memory cell compartment and age-associated lymphocytic infiltrates in visceral organs, without significant changes in numbers of CD4+CD25+Foxp3+ regulatory T cells (Treg). In vitro, CD4+CD25- "conventional" T cells (Tconvs) from both KO strains showed greater proliferation than wild type (WT) Tconvs. However, while Tregs from Nfatc2 KO mice retained normal suppressive function, Tregs from Tob1 KOs had enhanced suppressive activity. Nfatc2 KO Tconvs expanded somewhat more rapidly than WT Tconvs under conditions of homeostatic proliferation, but their accelerated growth capacity was negated, at least acutely, in a lymphoreplete environment. Finally, Nfatc2 KO mice developed a previously uncharacterized increase in B-cell malignancies, which was not accelerated by the absence of Tob1. The data thus support the prevailing hypothesis that Nfatc2 and Tob1 are non-redundant regulators of lymphocyte homeostasis.
Collapse
|
33
|
Li S, Symonds ALJ, Miao T, Sanderson I, Wang P. Modulation of antigen-specific T-cells as immune therapy for chronic infectious diseases and cancer. Front Immunol 2014; 5:293. [PMID: 24987395 PMCID: PMC4060297 DOI: 10.3389/fimmu.2014.00293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022] Open
Abstract
T-cell responses are induced by antigen presenting cells (APC) and signals from the microenvironment. Antigen persistence and inflammatory microenvironments in chronic infections and cancer can induce a tolerant state in T-cells resulting in hyporesponsiveness, loss of effector function, and weak biochemical signaling patterns in response to antigen stimulation. Although the mechanisms of T-cell tolerance induced in chronic infection and cancer may differ from those involved in tolerance to self-antigen, the impaired proliferation and production of IL-2 in response to antigen stimulation are hallmarks of all tolerant T cells. In this review, we will summarize the evidence that the immune responses change from non-self to “self”-like in chronic infection and cancer, and will provide an overview of strategies for re-balancing the immune response of antigen-specific T cells in chronic infection and cancer without affecting the homeostasis of the immune system.
Collapse
Affiliation(s)
- Suling Li
- Bioscience, Brunel University , London , UK
| | - Alistair L J Symonds
- Blizard Institute (BICMS), Barts and the London School of Medicine and Dentistry , London , UK
| | - Tizong Miao
- Blizard Institute (BICMS), Barts and the London School of Medicine and Dentistry , London , UK
| | - Ian Sanderson
- Blizard Institute (BICMS), Barts and the London School of Medicine and Dentistry , London , UK
| | - Ping Wang
- Blizard Institute (BICMS), Barts and the London School of Medicine and Dentistry , London , UK
| |
Collapse
|
34
|
Abstract
Regulatory T (Treg) cells, as central mediators of immune suppression, play crucial roles in many aspects of immune system's physiology and pathophysiology. The transcription factor Foxp3 has been characterized as a master gene of Tregs. Yet Treg cells possess a distinct pattern of gene expression, including upregulation of immune-suppressive genes and silencing of inflammatory cytokine genes. Recent studies have revealed the molecular mechanisms that establish and maintain such gene regulation in Treg cells. This review discusses recent progress in our understanding of molecular features of Treg cells, with particular attention to Treg-cell lineage commitment and stability.
Collapse
|
35
|
Abstract
One of the mechanisms that are in place to control the activation of mature T cells that bear self-reactive antigen receptors is anergy, a long-term state of hyporesponsiveness that is established in T cells in response to suboptimal stimulation. T cells receive signals that result not only from antigen recognition and costimulation but also from other sources, including cytokine receptors, inhibitory receptors or metabolic sensors. Integration of those signals will determine T cell fate. Under conditions that induce anergy, T cells activate a program of gene expression that leads to the production of proteins that block T cell receptor signaling and inhibit cytokine gene expression. In this review we will examine those signals that determine functional outcome following antigen encounter, review current knowledge of the factors that ensure signaling inhibition and epigenetic gene silencing in anergic cells and explore the mechanisms that lead to the reversal of anergy and the reacquisition of effector functions.
Collapse
Affiliation(s)
- Rut Valdor
- Department of Pathology. Albert Einstein College of Medicine. Bronx, NY. USA
| | - Fernando Macian
- Department of Pathology. Albert Einstein College of Medicine. Bronx, NY. USA
| |
Collapse
|
36
|
Tle4 regulates epigenetic silencing of gamma interferon expression during effector T helper cell tolerance. Mol Cell Biol 2013; 34:233-45. [PMID: 24190972 DOI: 10.1128/mcb.00902-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In response to suboptimal activation, T cells become hyporesponsive, with a severely reduced capacity to proliferate and produce cytokines upon reencounter with antigen. Chromatin analysis of T cells made tolerant by use of different in vitro and in vivo approaches reveals that the expression of gamma interferon (IFN-γ) is epigenetically silenced in anergic effector TH1 cells. In those T cells, calcium signaling triggers the expression of Tle4, a member of the Groucho family of corepressors, which is then recruited to a distal regulatory element in the Ifng locus and causes the establishment of repressive epigenetic marks at the Ifng gene regulatory elements. Consequently, impaired Tle4 activity results in a markedly reduced capacity to inhibit IFN-γ production in tolerized T cells. We propose that Blimp1-dependent recruitment of Tle4 to the Ifng locus causes epigenetic silencing of the expression of the Ifng gene in anergic TH1 cells. These results define a novel function of Groucho family corepressors in peripheral T cells and demonstrate that specific mechanisms are activated in tolerant T helper cells to directly repress expression of effector cytokines, supporting the hypothesis that stable epigenetic imprinting contributes to the maintenance of the tolerance-associated hyporesponsive phenotype in T cells.
Collapse
|
37
|
Daniel C, Gerlach K, Väth M, Neurath MF, Weigmann B. Nuclear factor of activated T cells - a transcription factor family as critical regulator in lung and colon cancer. Int J Cancer 2013; 134:1767-75. [PMID: 23775822 DOI: 10.1002/ijc.28329] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/21/2013] [Accepted: 05/28/2013] [Indexed: 01/03/2023]
Abstract
Nuclear factor of activated T cells (NFAT) was first identified as a transcription factor which is activated upon T cell stimulation. Subsequent studies uncovered that a whole family of individual NFAT proteins exists with pleiotropic functions not only in immune but also in nonimmune cells. However, dysregulation of NFAT thereby favors malignant growth and cancer. Summarizing the recent advances in understanding how individual NFAT factors regulate the immune system, this review gives new insights into the critical role of NFAT in cancer development with special focus on inflammation-associated colorectal cancer.
Collapse
Affiliation(s)
- Carolin Daniel
- Institute of Diabetes Research, Helmholtz Zentrum Muenchen,German Research Center for Environmental Health (GmbH), Munich, Germany
| | | | | | | | | |
Collapse
|
38
|
Expression profiling of TCR-engineered T cells demonstrates overexpression of multiple inhibitory receptors in persisting lymphocytes. Blood 2013; 122:1399-410. [PMID: 23861247 DOI: 10.1182/blood-2013-04-495531] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Despite significant progress in the development of adoptive cell-transfer therapies (ACTs) using gene-engineered T cells, little is known about the fate of cells following infusion. To address that, we performed a comparative analysis of gene expression between T-cell receptor-engineered lymphocytes persisting in the circulation 1 month after administration and the product that was infused. We observed that 156 genes related to immune function were differentially expressed, including underexpression of stimulators of lymphocyte function and overexpression of inhibitory genes in postinfusion cells. Of genes overexpressed postinfusion, the product of programmed cell death 1 (PDCD1), coinhibitory receptor PD-1, was expressed at a higher percentage in postinfusion lymphocytes than in the infusion product. This was associated with a higher sensitivity to inhibition of cytokine production by interaction with its ligand PD-L1. Coinhibitory receptor CD160 was also overexpressed in persisting cells, and its expression was associated with decreased reactivity, which surprisingly was found to be ligand-independent. These results contribute to a deeper understanding of the properties of transgenic lymphocytes used to treat human malignancies and may provide a rationale for the development of combination therapies as a method to improve ACT.
Collapse
|
39
|
Ward JM, Rider V, Abdou NI, Kimler B. Estradiol differentially regulates calreticulin: a potential link with abnormal T cell function in systemic lupus erythematosus? Lupus 2013; 22:583-96. [PMID: 23535532 DOI: 10.1177/0961203313482742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is an autoimmune disease that affects women nine times more often than men. The present study investigates estradiol-dependent control of the calcium-buffering protein, calreticulin, to gain further insight into the molecular basis of abnormal T cell signaling in SLE T cells. METHODS T cells were purified from blood samples obtained from healthy females and SLE patients. Calreticulin expression was quantified by real-time polymerase chain amplification. Calreticulin and estrogen receptor-α were co-precipitated and analyzed by Western blotting to determine if the proteins associate in T cells. RESULTS Calreticulin expression increased (p = 0.034) in activated control T cells, while estradiol decreased (p = 0.044) calreticulin in resting T cells. Calreticulin expression decreased in activated SLE T cell samples and increased in approximately 50% of resting T cell samples. Plasma estradiol was similar (p > 0.05) among SLE patients and control volunteers. Estrogen receptor-α and calreticulin co-precipitated from nuclear and cytoplasmic T cell compartments. CONCLUSIONS The results indicate that estradiol tightly regulates calreticulin expression in normal human T cells, and the dynamics are different between activated and resting T cells. The absence of this tight regulation in SLE T cells could contribute to abnormal T cell function.
Collapse
Affiliation(s)
- J M Ward
- Department of Biology, Pittsburg State University, Pittsburg, Kansas 66762, USA
| | | | | | | |
Collapse
|
40
|
Xie JJ, Liang JQ, Diao LH, Altman A, Li Y. TNFR-associated factor 6 regulates TCR signaling via interaction with and modification of LAT adapter. THE JOURNAL OF IMMUNOLOGY 2013; 190:4027-36. [PMID: 23514740 DOI: 10.4049/jimmunol.1202742] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
TNFR-associated factor (TRAF)6 is an essential ubiquitin E3 ligase in immune responses, but its function in adaptive immunity is not well understood. In this study, we show that TRAF6 is recruited to the peripheral ring of the T cell immunological synapse in Jurkat T cells or human primary CD4(+) T cells conjugated with staphylococcal enterotoxin E-pulsed B cells. This recruitment depends on TRAF6 interacting with linker for activation of T cells (LAT) via its TRAF domain. Although LAT was indispensable for TCR/CD28-induced TRAF6 ubiquitination and its ligase activity, RNA interference-induced TRAF6 knockdown in T cells decreased TCR/CD28-induced LAT ubiquitination, tyrosine phosphorylation, and association with tyrosine kinase ZAP70. Overexpression of TRAF6 or its catalytically inactive form C70A promoted and decreased, respectively, LAT tyrosine phosphorylation upon stimulation. Moreover, LAT was ubiquitinated at Lys(88) by TRAF6 via K63-linked chain. In addition, TRAF6 was required for and synergized with LAT to promote the TCR/CD28-induced activation of NFAT. These results reveal a novel function and mechanism of TRAF6 action in the TCR-LAT signaling pathway distinct from its role in TCR-induced NF-κB activation, indicating that LAT also plays an adapter role in TCR/CD28-induced activation of TRAF6.
Collapse
Affiliation(s)
- Ji-Ji Xie
- State Key Laboratory of Biocontrol, Key Laboratory of Gene Engineering of Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | |
Collapse
|
41
|
Srikanth S, Gwack Y. Orai1-NFAT signalling pathway triggered by T cell receptor stimulation. Mol Cells 2013; 35:182-94. [PMID: 23483280 PMCID: PMC3887911 DOI: 10.1007/s10059-013-0073-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022] Open
Abstract
T cell receptor (TCR) stimulation plays a crucial role in development, homeostasis, proliferation, cell death, cytokine production, and differentiation of T cells. Thus, in depth understanding of TCR signalling is crucial for development of therapy targeting inflammatory diseases, improvement of vaccination efficiency, and cancer therapy utilizing T cell-based strategies. TCR activation turns on various signalling pathways, one of the important one being the Ca(2+)-calcineurin-nuclear factor of activated T cells (NFAT) signalling pathway. Stimulation of TCRs triggers depletion of intracellular Ca(2+) store and in turn, initiates store-operated Ca(2+) entry (SOCE), one of the major mechanisms to raise the intracellular Ca(2+) concentrations in T cells. Ca(2+)-release-activated-Ca(2+) (CRAC) channels are a prototype of store-operated Ca(2+) (SOC) channels in immune cells that are very well characterized. Recent identification of STIM1 as the endoplasmic reticulum (ER) Ca(2+) sensor and Orai1 as the pore subunit has dramatically advanced the understanding of CRAC channels and provides a molecular tool to investigate the physiological outcomes of Ca(2+) signalling during immune responses. In this review, we focus on our current understanding of CRAC channel activation, regulation, and downstream calcineurin-NFAT signaling pathway.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095,
USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095,
USA
| |
Collapse
|
42
|
A novel assay for antibody-dependent cell-mediated cytotoxicity against HIV-1- or SIV-infected cells reveals incomplete overlap with antibodies measured by neutralization and binding assays. J Virol 2012; 86:12039-52. [PMID: 22933282 DOI: 10.1128/jvi.01650-12] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The resistance of human immunodeficiency virus type 1 (HIV-1) to antibody-mediated immunity often prevents the detection of antibodies that neutralize primary isolates of HIV-1. However, conventional assays for antibody functions other than neutralization are suboptimal. Current methods for measuring the killing of virus-infected cells by antibody-dependent cell-mediated cytotoxicity (ADCC) are limited by the number of natural killer (NK) cells obtainable from individual donors, donor-to-donor variation, and the use of nonphysiological targets. We therefore developed an ADCC assay based on NK cell lines that express human or macaque CD16 and a CD4(+) T-cell line that expresses luciferase from a Tat-inducible promoter upon HIV-1 or simian immunodeficiency virus (SIV) infection. NK cells and virus-infected targets are mixed in the presence of serial plasma dilutions, and ADCC is measured as the dose-dependent loss of luciferase activity. Using this approach, ADCC titers were measured in plasma samples from HIV-infected human donors and SIV-infected macaques. For the same plasma samples paired with the same test viruses, this assay was approximately 2 orders of magnitude more sensitive than optimized assays for neutralizing antibodies-frequently allowing the measurement of ADCC in the absence of detectable neutralization. Although ADCC correlated with other measures of Env-specific antibodies, neutralizing and gp120 binding titers did not consistently predict ADCC activity. Hence, this assay affords a sensitive method for measuring antibodies capable of directing ADCC against HIV- or SIV-infected cells expressing native conformations of the viral envelope glycoprotein and reveals incomplete overlap of the antibodies that direct ADCC and those measured in neutralization and binding assays.
Collapse
|
43
|
Abstract
Cancer cells express antigens that elicit T cell-mediated responses, but these responses are limited during malignant progression by the development of immunosuppressive mechanisms in the tumor microenvironment that drive immune escape. T-cell hyporesponsiveness can be caused by clonal anergy or adaptive tolerance, but the pathophysiological roles of these processes in specific tumor contexts has yet to be understood. In CD4+ T cells, clonal anergy occurs when the T-cell receptor is activated in the absence of a costimulatory signal. Here we report that the key T-cell transcription factor NFAT mediates expression of anergy-associated genes in the context of cancer. Specifically, in a murine model of melanoma, we found that cancer cells induced anergy in antigen-specific CD4+ T-cell populations, resulting in defective production of several key effector cytokines. NFAT1 deficiency blunted the induction of anergy in tumor antigen-specific CD4+ T cells, enhancing antitumor responses. These investigations identified tumor-induced T-cell hyporesponsiveness as a form of clonal anergy, and they supported an important role for CD4+ T-cell anergy in driving immune escape. By illustrating the dependence of tumor-induced CD4+ T-cell anergy on NFAT1, our findings open the possibility of targeting this transcription factor to improve the efficacy of cancer immunotherapy or immunochemotherapy.
Collapse
Affiliation(s)
- Brian T Abe
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
44
|
Bandyopadhyay S, Montagna C, Macian F. Silencing of the Il2 gene transcription is regulated by epigenetic changes in anergic T cells. Eur J Immunol 2012; 42:2471-83. [PMID: 22684523 DOI: 10.1002/eji.201142307] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/24/2012] [Accepted: 05/30/2012] [Indexed: 11/11/2022]
Abstract
Anergy is induced in T cells as a consequence of a partial or suboptimal stimulation. Anergic T cells become unresponsive and fail to proliferate and produce cytokines. We had previously shown that in anergic CD4(+) T cells, Ikaros participates in the transcriptional repression of the Il2 gene by recruiting histone deacetylases that cause core histone deacetylation at the Il2 promoter. Here we show that deacetylation at the Il2 promoter is the initial step in a process that leads to the stable silencing of the Il2 gene transcription in anergic T cells. We have found that anergy-induced deacetylation of the Il2 promoter permits binding of the histone methyl-transferase Suv39H1, which trimethylates lysine-9 of histone H3 (Me3H3-K9). Furthermore, the establishment of the Me3H3-K9 mark allows the recruitment of the heterochromatin protein HP1, allowing the silenced Il2 loci to reposition close to heterochromatin-rich regions. Our results indicate that silencing of Il2 transcription in anergic T cells is attained through a series of epigenetic changes that involve the establishment of repressive marks and the subsequent nuclear repositioning of the Il2 loci, which become juxtaposed to transcriptionally silent regions. This mechanism may account for the stable nature of the inhibition of IL-2 production in anergic cells.
Collapse
Affiliation(s)
- Sanmay Bandyopadhyay
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
45
|
Shaw PJ, Feske S. Regulation of lymphocyte function by ORAI and STIM proteins in infection and autoimmunity. J Physiol 2012; 590:4157-67. [PMID: 22615435 DOI: 10.1113/jphysiol.2012.233221] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Store-operated Ca(2+) entry (SOCE) in cells of the immune system is mediated by Ca(2+) release-activated Ca(2+) (CRAC) channels that are formed by ORAI1 and its homologues ORAI2 and ORAI3. They are activated by stromal interaction molecules (STIM) 1 and 2 in response to depletion of endoplasmic reticulum Ca(2+) stores. Loss-of-function mutations in the human ORAI1 and STIM1 genes abolish CRAC channel function and SOCE in a variety of non-excitable cells including lymphocytes and other immune cells, resulting in a unique clinical syndrome termed CRAC channelopathy. It is dominated by severe immunodeficiency and autoimmunity due to impaired SOCE and defects in the function of several lymphocyte subsets. These include CD8(+) T cells, CD4(+) effector and regulatory T cells, natural killer (NK) cells and B cells. This review provides a concise discussion of the role of CRAC channels in these lymphocyte populations and the regulation of adaptive immune responses to infection, in autoimmunity and inflammation.
Collapse
Affiliation(s)
- Patrick J Shaw
- Department of Pathology, New York University Medical Center, 550 First Avenue, SRB 316, New York, NY 10016, USA
| | | |
Collapse
|
46
|
Prinz PU, Mendler AN, Masouris I, Durner L, Oberneder R, Noessner E. High DGK-α and Disabled MAPK Pathways Cause Dysfunction of Human Tumor-Infiltrating CD8+ T Cells That Is Reversible by Pharmacologic Intervention. THE JOURNAL OF IMMUNOLOGY 2012; 188:5990-6000. [DOI: 10.4049/jimmunol.1103028] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Gao X, Wang Q, Wang J, Wang C, Lu L, Gao R, Huan F, Dixon D, Xiao H. Expression of calmodulin in germ cells is associated with fenvalerate-induced male reproductive toxicity. Arch Toxicol 2012; 86:1443-51. [PMID: 22437841 DOI: 10.1007/s00204-012-0825-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 02/27/2012] [Indexed: 01/31/2023]
Abstract
Exposure to fenvalerate was demonstrated to be toxic to the male reproductive system. Our previous data revealed that intracellular calcium plays an important role in regulating the above toxicity, through actions on both T-type calcium channels and endoplasmic reticulum calcium signals. The present study explored the effects of fenvalerate on the expression of calmodulin in mouse testis and GC-2spd(ts) cells, and its association with fenvalerate-induced male reproductive toxicity. Male mice were subjected to different doses (3.71, 18.56, 37.12, 92.81 mg/kg bw) of fenvalerate or vehicle control for 4 weeks. Expression of calmodulin was determined by real-time polymerase chain reaction (PCR) and Western blot analysis in mouse testis. Similar approaches were utilized in GC-2spd(ts) cells cultured with 5 μM fenvalerate at different time points. In the in vivo study, all mice survived through the entire 4 weeks. Administration of fenvalerate resulted in a dose-dependent reduction in testis weight/body weight, sperm motility, and increased head abnormality rate. By histological staining, mice treated with fenvalerate at higher doses showed dilated seminiferous tubules and disturbed arrangement of spermatogenic cells. Meanwhile, both mRNA and protein expression of calmodulin were significantly increased in the testes of mice exposed to fenvalerate compared to control mice. Moreover, in the in vitro study, 5 μM fenvalerate significantly increased the expression of calmodulin at the mRNA and protein levels in GC-2spd(ts) cells after 8 h of incubation and sustained these levels for at least 24 h. Collectively, these data suggested that enhanced expression of calmodulin correlates with male reproductive damage induced by fenvalerate.
Collapse
Affiliation(s)
- Xiaohua Gao
- Department of Toxicology and Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Smeets RL, Fleuren WWM, He X, Vink PM, Wijnands F, Gorecka M, Klop H, Bauerschmidt S, Garritsen A, Koenen HJPM, Joosten I, Boots AMH, Alkema W. Molecular pathway profiling of T lymphocyte signal transduction pathways; Th1 and Th2 genomic fingerprints are defined by TCR and CD28-mediated signaling. BMC Immunol 2012; 13:12. [PMID: 22413885 PMCID: PMC3355027 DOI: 10.1186/1471-2172-13-12] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/14/2012] [Indexed: 12/13/2022] Open
Abstract
Background T lymphocytes are orchestrators of adaptive immunity. Naïve T cells may differentiate into Th1, Th2, Th17 or iTreg phenotypes, depending on environmental co-stimulatory signals. To identify genes and pathways involved in differentiation of Jurkat T cells towards Th1 and Th2 subtypes we performed comprehensive transcriptome analyses of Jurkat T cells stimulated with various stimuli and pathway inhibitors. Results from these experiments were validated in a human experimental setting using whole blood and purified CD4+ Tcells. Results Calcium-dependent activation of T cells using CD3/CD28 and PMA/CD3 stimulation induced a Th1 expression profile reflected by increased expression of T-bet, RUNX3, IL-2, and IFNγ, whereas calcium-independent activation via PMA/CD28 induced a Th2 expression profile which included GATA3, RXRA, CCL1 and Itk. Knock down with siRNA and gene expression profiling in the presence of selective kinase inhibitors showed that proximal kinases Lck and PKCθ are crucial signaling hubs during T helper cell activation, revealing a clear role for Lck in Th1 development and for PKCθ in both Th1 and Th2 development. Medial signaling via MAPkinases appeared to be less important in these pathways, since specific inhibitors of these kinases displayed a minor effect on gene expression. Translation towards a primary, whole blood setting and purified human CD4+ T cells revealed that PMA/CD3 stimulation induced a more pronounced Th1 specific, Lck and PKCθ dependent IFNγ production, whereas PMA/CD28 induced Th2 specific IL-5 and IL-13 production, independent of Lck activation. PMA/CD3-mediated skewing towards a Th1 phenotype was also reflected in mRNA expression of the master transcription factor Tbet, whereas PMA/CD28-mediated stimulation enhanced GATA3 mRNA expression in primary human CD4+ Tcells. Conclusions This study identifies stimulatory pathways and gene expression profiles for in vitro skewing of T helper cell activation. PMA/CD3 stimulation enhances a Th1-like response in an Lck and PKCθ dependent fashion, whereas PMA/CD28 stimulation results in a Th2-like phenotype independent of the proximal TCR-tyrosine kinase Lck. This approach offers a robust and fast translational in vitro system for skewed T helper cell responses in Jurkat T cells, primary human CD4+ Tcells and in a more complex matrix such as human whole blood.
Collapse
Affiliation(s)
- Ruben L Smeets
- Department of Immune Therapeutics, Merck Research Laboratories-MRL, MSD, Oss, the Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Analysis of sirtuin 1 expression reveals a molecular explanation of IL-2-mediated reversal of T-cell tolerance. Proc Natl Acad Sci U S A 2012; 109:899-904. [PMID: 22219356 DOI: 10.1073/pnas.1118462109] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type III histone deacetylase sirtuin 1 (Sirt1) is a suppressor of both innate and adoptive immune responses. We have recently found that Sirt1 expression is highly induced in anergic T cells. However, the transcriptional program to regulate Sirt1 expression in T cells remains uncharacterized. Here we report that the early responsive genes 2 and 3, which can be up-regulated by T-cell receptor-mediated activation of nuclear factor of activated T-cell transcription factors and are involved in peripheral T-cell tolerance, bind to the sirt1 promoter to transcript sirt1 mRNA. In addition, the forkhead transcription factor, FoxO3a, interacts with early responsive genes 2/3 on the sirt1 promoter to synergistically regulate Sirt1 expression. Interestingly, IL-2, a cytokine that can reverse T-cell anergy, suppresses sirt1 transcription by sequestering FoxO3a to the cytoplasm through activating the PI3K-AKT pathway. Expression of the constitutively active form of FoxO3a blocks IL-2-mediated reversal of T-cell tolerance by retaining sirt1 expression. Our findings here provide a molecular explanation of IL-2-mediated reversion of T-cell anergy.
Collapse
|
50
|
Schmidt A, Oberle N, Weiss EM, Vobis D, Frischbutter S, Baumgrass R, Falk CS, Haag M, Brügger B, Lin H, Mayr GW, Reichardt P, Gunzer M, Suri-Payer E, Krammer PH. Human regulatory T cells rapidly suppress T cell receptor-induced Ca(2+), NF-κB, and NFAT signaling in conventional T cells. Sci Signal 2011; 4:ra90. [PMID: 22375050 DOI: 10.1126/scisignal.2002179] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CD4(+)CD25(hi)Foxp3(+) regulatory T cells (T(regs)) are critical mediators of self-tolerance, which is crucial for the prevention of autoimmune disease, but T(regs) can also inhibit antitumor immunity. T(regs) inhibit the proliferation of CD4(+)CD25(-) conventional T cells (T(cons)), as well as the ability of these cells to produce effector cytokines; however, the molecular mechanism of suppression remains unclear. Here, we showed that human T(regs) rapidly suppressed the release of calcium ions (Ca(2+)) from intracellular stores in response to T cell receptor (TCR) activation in T(cons). The inhibition of Ca(2+) signaling resulted in decreased dephosphorylation, and thus decreased activation, of the transcription factor nuclear factor of activated T cells 1 (NFAT1) and reduced the activation of nuclear factor κB (NF-κB). In contrast, Ca(2+)-independent events in T(cons), such as TCR-proximal signaling and activation of the transcription factor activator protein 1 (AP-1), were not affected during coculture with T(regs). Despite suppressing intracellular Ca(2+) mobilization, coculture with T(regs) did not block the generation of inositol 1,4,5-trisphosphate in TCR-stimulated T(cons). The T(reg)-induced suppression of the activity of NFAT and NF-κB and of the expression of the gene encoding the cytokine interleukin-2 was reversed in T(cons) by increasing the concentration of intracellular Ca(2+). Our results elucidate a previously unrecognized and rapid mechanism of T(reg)-mediated suppression. This increased understanding of T(reg) function may be exploited to generate possible therapies for the treatment of autoimmune diseases and cancer.
Collapse
Affiliation(s)
- Angelika Schmidt
- Division of Immunogenetics (D030), Tumor Immunology Program, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|