1
|
A critical analysis of the cynomolgus macaque, Macaca fascicularis, as a model to test HIV-1/SIV vaccine efficacy. Vaccine 2014; 33:3073-83. [PMID: 25510387 DOI: 10.1016/j.vaccine.2014.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/26/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
Abstract
The use of a number of non-rhesus macaque species, but especially cynomolgus macaques as a model for HIV-1 vaccine development has increased in recent years. Cynomolgus macaques have been used in the United Kingdom, Europe, Canada and Australia as a model for HIV vaccine development for many years. Unlike rhesus macaques, cynomolgus macaques infected with SIV show a pattern of disease pathogenesis that more closely resembles that of human HIV-1 infection, exhibiting lower peak and set-point viral loads and slower progression to disease with more typical AIDS defining illnesses. Several advances have been made recently in the use of the cynomolgus macaque SIV challenge model that allow the demonstration of vaccine efficacy using attenuated viruses and vectors that are both viral and non-viral in origin. This review aims to probe the details of various vaccination trials carried out in cynomolgus macaques in the context of our modern understanding of the highly diverse immunogenetics of this species with a view to understanding the species-specific immune correlates of protection and the efficacy of vectors that have been used to design vaccines.
Collapse
|
2
|
Lifson JD, Rossio JL, Piatak M, Bess J, Chertova E, Schneider DK, Coalter VJ, Poore B, Kiser RF, Imming RJ, Scarzello AJ, Henderson LE, Alvord WG, Hirsch VM, Benveniste RE, Arthur LO. Evaluation of the safety, immunogenicity, and protective efficacy of whole inactivated simian immunodeficiency virus (SIV) vaccines with conformationally and functionally intact envelope glycoproteins. AIDS Res Hum Retroviruses 2004; 20:772-87. [PMID: 15307924 DOI: 10.1089/0889222041524661] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A novel, general approach to chemical inactivation of retroviruses was used to produce inactivated simian immunodeficiency virus (SIV) particles with functional envelope glycoproteins. Inactivated virions of three different virus isolates (SIVmne E11S, SIVmac239, and SIVmac239 g4,5), prepared by treatment with 2,2'-dithiodipyridine (aldrithol-2, AT-2), were not detectably infectious, in vitro or in vivo. Immunization of pigtailed macaques with inactivated SIVmne E11S particles, without adjuvant, induced both humoral and cellular immune responses. Four of six animals immunized with the inactivated particles did not show measurable SIV RNA in plasma (<100 copy Eq/ml) following intravenous challenge with pathogenic, homologous virus (SIVmne E11S), compared to peak values of > or =10(6) copy Eq/ml in challenged SIV-naive control animals (p = 0.0001). Despite the absence of measurable viral RNA in plasma in these animals, culturable virus and viral DNA were initially detectable in blood and lymph node specimens; in contrast to control animals, SIV DNA could no longer be detected in PBMC by 10 weeks postchallenge in five of six SIV-immunized animals (p = 0.0001). However, vaccines did not resist a sequential rechallenge with the heterologous pathogenic virus SIVsm E660. AT-2-inactivated virus with functional envelope glycoproteins is a novel class of vaccine immunogen and was noninfectious, under conditions of rigorous in vivo challenge, and induced both binding and neutralizing antibody responses, along with cellular immune responses. Results suggest that immunization facilitated effective containment of pathogenic homologous challenge virus. With further optimization, AT-2-inactivated viral particles may be a useful class of immunogen in the development of a vaccine to prevent AIDS.
Collapse
Affiliation(s)
- Jeffrey D Lifson
- AIDS Vaccine Program, SAIC Frederick, Inc., National Cancer Institute-Frederick, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Mossman SP, Pierce CC, Watson AJ, Robertson MN, Montefiori DC, Kuller L, Richardson BA, Bradshaw JD, Munn RJ, Hu SL, Greenberg PD, Benveniste RE, Haigwood NL. Protective immunity to SIV challenge elicited by vaccination of macaques with multigenic DNA vaccines producing virus-like particles. AIDS Res Hum Retroviruses 2004; 20:425-34. [PMID: 15157361 DOI: 10.1089/088922204323048177] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We utilized SIV(mne) infection of Macaca fascicularis to assess the efficacy of DNA vaccination alone, and as a priming agent in combination with subunit protein boosts. All SIV(mne) structural and regulatory genes were expressed using the human cytomegalovirus Immediate Early-1 promoter in plasmids that directed the formation of virus-like particles in vitro. Macaques (n = 4) were immunized intradermally and intramuscularly four times over 36 weeks with 3 mg plasmid DNA. A second group (n = 4) received two DNA priming inoculations followed by two intramuscular boosts consisting of 250 microg recombinant Env gp160 and 250 microg recombinant Gag-Pol particles in MF-59 adjuvant. These regimens elicited modest cellular immunity prior to challenge. Humoral immune responses to Env gp160 were elicited and sustained by both vaccine protocols, and as expected antibody titers were higher in the protein subunit-boosted animals. Neutralizing antibodies prior to challenge were measurable in two of four subunit-boosted macaques. The two vaccine regimens elicited comparable helper T cell responses at the time of challenge. Vaccinees and mock-immunized controls (n = 4) were challenged intrarectally at week 38 with uncloned SIV(mne). Following challenge all macaques became infected, but both vaccine regimens resulted in reduced peak virus loads (p = 0.07) and significantly improved maintenance of peripheral CD4(+) T cell counts postchallenge (p = 0.007, DNA alone and p = 0.01, all vaccinees). There was no significant difference between the two vaccine groups in levels of plasma viremia or maintenance of CD4(+) T cell counts postchallenge.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, Viral/immunology
- CD4 Lymphocyte Count
- Fusion Proteins, gag-pol/genetics
- Fusion Proteins, gag-pol/immunology
- Gene Products, env/immunology
- HIV Envelope Protein gp160/genetics
- HIV Envelope Protein gp160/immunology
- Immunity, Cellular
- Macaca fascicularis
- Neutralization Tests
- Plasmids
- Proviruses/genetics
- Proviruses/isolation & purification
- RNA, Viral/blood
- SAIDS Vaccines/administration & dosage
- SAIDS Vaccines/immunology
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/immunology
- Viral Load
Collapse
Affiliation(s)
- Sally P Mossman
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
This article gives an overview about the development of an HIV-1 vaccine. Tremendous numbers of papers have been published on this topic during the last 10 years, and this article can only touch on the different directions taken toward the development of an HIV-1 vaccine, and not give a complete overview of the entire field.
Collapse
Affiliation(s)
- James P McGettigan
- Department of Biochemistry and Molecular Pharmacology, Dorrance H. Hamilton Laboratories, Center for Human Virology, Philadelphia, PA 19107-6799, USA
| | | | | |
Collapse
|
5
|
Polacino PS, Stallard V, Klaniecki JE, Pennathur S, Montefiori DC, Langlois AJ, Richardson BA, Morton WR, Benveniste RE, Hu SL. Role of immune responses against the envelope and the core antigens of simian immunodeficiency virus SIVmne in protection against homologous cloned and uncloned virus challenge in Macaques. J Virol 1999; 73:8201-15. [PMID: 10482571 PMCID: PMC112838 DOI: 10.1128/jvi.73.10.8201-8215.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously showed that envelope (gp160)-based vaccines, used in a live recombinant virus priming and subunit protein boosting regimen, protected macaques against intravenous and intrarectal challenges with the homologous simian immunodeficiency virus SIVmne clone E11S. However, the breadth of protection appears to be limited, since the vaccines were only partially effective against intravenous challenge by the uncloned SIVmne. To examine factors that could affect the breadth and the efficacy of this immunization approach, we studied (i) the effect of priming by recombinant vaccinia virus; (ii) the role of surface antigen gp130; and (iii) the role of core antigens (Gag and Pol) in eliciting protective immunity. Results indicate that (i) priming with recombinant vaccinia virus was more effective than subunit antigen in eliciting protective responses; (ii) while both gp130 and gp160 elicited similar levels of SIV-specific antibodies, gp130 was not as effective as gp160 in protection, indicating a possible role for the transmembrane protein in presenting functionally important epitopes; and (iii) although animals immunized with core antigens failed to generate any neutralizing antibody and were infected upon challenge, their virus load was 50- to 100-fold lower than that of the controls, suggesting the importance of cellular immunity or other core-specific immune responses in controlling acute infection. Complete protection against intravenous infection by the pathogenic uncloned SIVmne was achieved by immunization with both the envelope and the core antigens. These results indicate that immune responses to both antigens may contribute to protection and thus argue for the inclusion of multiple antigens in recombinant vaccine designs.
Collapse
Affiliation(s)
- P S Polacino
- Regional Primate Research Center, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Notka F, Stahl-Hennig C, Dittmer U, Wolf H, Wagner R. Accelerated clearance of SHIV in rhesus monkeys by virus-like particle vaccines is dependent on induction of neutralizing antibodies. Vaccine 1999; 18:291-301. [PMID: 10506654 DOI: 10.1016/s0264-410x(99)00200-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Recombinant, insect cell derived SIV Pr56(gag) virus-like particles (VLPs) have been modified either by inserting HIV-1 Gp160 derived peptides into the Pr56(gag) precursor or by integrating the complete HIV-1 gp120 in the particle membrane. To investigate the protective efficacy of these particulate antigens, rhesus macaques were immunized with VLPs both adjuvant-free or adsorbed to alum. In addition, recombinant Semliki Forest viruses (SFV) expressing proteins corresponding to the VLP constructs were established and administered as live vaccines in combination with particulate antigens. Vaccination induced specific humoral responses irrespective of the immunization regimen. However, in contrast to Pr56(gag)-specific antibodies, Env-specific antibody titers could not be increased by booster immunizations in this study. Cell-mediated immune responses were detected following vaccination with VLP-preparations as well as recombinant SFVs. A tendency towards stimulating both enhanced cell mediated as well as humoral immune responses was observed following priming with recombinant SFVs. Upon challenge with SHIV-4 all vaccinated monkeys became infected. However, animals, that were vaccinated with VLPs presenting the complete gp120, managed to clear virus faster than nonimmunized controls. The observed virus elimination significantly correlated with an anamnestic antibody response and an accelerated appearance of neutralizing antibodies postchallenge.
Collapse
Affiliation(s)
- F Notka
- Institute of Medical Microbiology, University of Regensburg, Franz-Josef-Strauss Allee 11, D-93053, Regensburg, Germany
| | | | | | | | | |
Collapse
|
7
|
Polacino P, Stallard V, Montefiori DC, Brown CR, Richardson BA, Morton WR, Benveniste RE, Hu SL. Protection of macaques against intrarectal infection by a combination immunization regimen with recombinant simian immunodeficiency virus SIVmne gp160 vaccines. J Virol 1999; 73:3134-46. [PMID: 10074165 PMCID: PMC104075 DOI: 10.1128/jvi.73.4.3134-3146.1999] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/1998] [Accepted: 01/03/1999] [Indexed: 11/20/2022] Open
Abstract
We previously reported that immunization with recombinant simian immunodeficiency virus SIVmne envelope (gp160) vaccines protected macaques against intravenous challenge by the cloned homologous virus E11S but that this protection was only partially effective against the uncloned virus, SIVmne. In the present study, we examine the protective efficacy of this immunization regimen against infection by a mucosal route. We found that the same gp160-based vaccines were highly effective against intrarectal infection not only with the E11S clone but also with the uncloned SIVmne. Protection against mucosal infection is therefore achievable by parenteral immunization with recombinant envelope vaccines. Protection appears to correlate with high levels of SIV-specific antibodies and, in animals protected against the uncloned virus, the presence of serum-neutralizing activities. To understand the basis for the differential efficacies against the uncloned virus by the intravenous versus the intrarectal routes, we examined viral sequences recovered from the peripheral blood mononuclear cells of animals early after infection by both routes. We previously showed that the majority (85%) of the uncloned SIVmne challenge stock contained V1 sequences homologous to the molecular clone from which the vaccines were made (E11S type), with the remainder (15%) containing multiple conserved changes (the variant types). In contrast to intravenously infected animals, from which either E11S-type or the variant type V1 sequences could be recovered in significant proportions, animals infected intrarectally had predominantly E11S-type sequences. Preferential transmission or amplification of the E11S-type viruses may therefore account in part for the enhanced efficacy of the recombinant gp160 vaccines against the uncloned virus challenge by the intrarectal route compared with the intravenous route.
Collapse
Affiliation(s)
- P Polacino
- Regional Primate Research Center, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Polacino P, Stallard V, Klaniecki JE, Montefiori DC, Langlois AJ, Richardson BA, Overbaugh J, Morton WR, Benveniste RE, Hu SL. Limited breadth of the protective immunity elicited by simian immunodeficiency virus SIVmne gp160 vaccines in a combination immunization regimen. J Virol 1999; 73:618-30. [PMID: 9847367 PMCID: PMC103868 DOI: 10.1128/jvi.73.1.618-630.1999] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We previously reported that immunization with recombinant simian immunodeficiency virus SIVmne envelope (gp160) vaccines protected macaques against an intravenous challenge by the cloned homologous virus, E11S. In this study, we confirmed this observation and found that the vaccines were effective not only against virus grown on human T-cell lines but also against virus grown on macaque peripheral blood mononuclear cells (PBMC). The breadth of protection, however, was limited. In three experiments, 3 of 10 animals challenged with the parental uncloned SIVmne were completely protected. Of the remaining animals, three were transiently virus positive and four were persistently positive after challenge, as were 10 nonimmunized control animals. Protection was not correlated with levels of serum-neutralizing antibodies against the homologous SIVmne or a related virus, SIVmac251. To gain further insight into the protective mechanism, we analyzed nucleotide sequences in the envelope region of the uncloned challenge virus and compared them with those present in the PBMC of infected animals. The majority (85%) of the uncloned challenge virus was homologous to the molecular clone from which the vaccines were made (E11S type). The remaining 15% contained conserved changes in the V1 region (variant types). Control animals infected with this uncloned virus had different proportions of the two genotypes, whereas three of four immunized but persistently infected animals had >99% of the variant types early after infection. These results indicate that the protective immunity elicited by recombinant gp160 vaccines is restricted primarily to the homologous virus and suggest the possibility that immune responses directed to the V1 region of the envelope protein play a role in protection.
Collapse
Affiliation(s)
- P Polacino
- Regional Primate Research Center, University of Washington, Seattle, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Allen TM, Sidney J, del Guercio MF, Glickman RL, Lensmeyer GL, Wiebe DA, DeMars R, Pauza CD, Johnson RP, Sette A, Watkins DI. Characterization of the Peptide Binding Motif of a Rhesus MHC Class I Molecule (Mamu-A*01) That Binds an Immunodominant CTL Epitope from Simian Immunodeficiency Virus. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.12.6062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The majority of immunogenic CTL epitopes bind to MHC class I molecules with high affinity. However, peptides longer or shorter than the optimal epitope rarely bind with high affinity. Therefore, identification of optimal CTL epitopes from pathogens may ultimately be critical for inducing strong CTL responses and developing epitope-based vaccines. The SIV-infected rhesus macaque is an excellent animal model for HIV infection of humans. Although a number of CTL epitopes have been mapped in SIV-infected rhesus macaques, the optimal epitopes have not been well defined, and their anchor residues are unknown. We have now defined the optimal SIV gag CTL epitope restricted by the rhesus MHC class I molecule Mamu-A*01 and defined a general peptide binding motif for this molecule that is characterized by a dominant position 3 anchor (proline). We used peptide elution and sequencing, peptide binding assays, and bulk and clonal CTL assays to demonstrate that the optimal Mamu-A*01-restricted SIV gag CTL epitope was CTPYDINQM181–189. Mamu-A*01 is unique in that it is found at a high frequency in rhesus macaques, and all SIV-infected Mamu-A*01-positive rhesus macaques studied to date develop an immunodominant gag-specific CTL response restricted by this molecule. Identification of the optimal SIV gag CTL epitope will be critical for a variety of studies designed to induce CD8+ CTL responses specific for SIV in the rhesus macaque.
Collapse
Affiliation(s)
| | - John Sidney
- ‡Eppimune, San Diego, CA 92121; Division of Immunology, New England Regional Primate Research Center, Harvard Medical School, Southborough, MA 01772; and
| | - Marie-France del Guercio
- ‡Eppimune, San Diego, CA 92121; Division of Immunology, New England Regional Primate Research Center, Harvard Medical School, Southborough, MA 01772; and
| | - Rhona L. Glickman
- ¶Infectious Disease Unit and Partners AIDS Research Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Gary L. Lensmeyer
- †Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53715
| | - Donald A. Wiebe
- †Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53715
| | - R. DeMars
- ∥Laboratory of Genetics, University of Wisconsin, Madison, WI 53706
| | - C. David Pauza
- *Wisconsin Regional Primate Research Center and
- †Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53715
| | - R. Paul Johnson
- ¶Infectious Disease Unit and Partners AIDS Research Center, Massachusetts General Hospital, Charlestown, MA 02129
| | - Alessandro Sette
- ‡Eppimune, San Diego, CA 92121; Division of Immunology, New England Regional Primate Research Center, Harvard Medical School, Southborough, MA 01772; and
| | - David I. Watkins
- *Wisconsin Regional Primate Research Center and
- †Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI 53715
| |
Collapse
|
10
|
Heidecker G, Muñoz H, Lloyd PA, Hodge DR, Pei GK, Rick SW, Brehm K, Ruscetti FW, Kuller L, Polacino P, Hu SL, Morton WR, Benveniste RE. Sequence diversity of SIV(Mne) Nef in vivo and in vitro. J Med Primatol 1998; 27:73-80. [PMID: 9747946 DOI: 10.1111/j.1600-0684.1998.tb00229.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We have compared nef gene sequences isolated by PCR from peripheral blood lymphocyte DNA of macaques which had been inoculated with either biologically or molecularly cloned SIV(Mne). Two samples from each animal obtained either early after infection (week 2-8) or after significant CD4+ depletion (week 21-137) were analyzed. Three substitutions in the predicted Nef amino acid sequence were seen in all animals at the late time point, and two more in all but one. Two of the common exchanges are located about 40 residues apart in the Nef core sequence, but are in proximity on the tertiary structure as judged by computer modelling using the structure of the HIV Nef core protein as a guide. Most recurring in vivo changes replaced a residue found in the cloned Nef sequence with one present in a consensus derived by aligning the Nef sequences of the SIVsm/HIV-2 groups. Animals inoculated with virus already containing the "late version" nef gene developed a more aggressive disease. The macaque adapted (MA)nef conferred a threefold higher infectivity to the cloned virus, but had no effects on CD4 downregulation. Propagation of virus with MAnef in tissue culture resulted in the rapid emergence of variants with newly attenuated nef. These findings suggest that the selective pressure on nef in vivo and in vitro are different.
Collapse
Affiliation(s)
- G Heidecker
- SAIC/NCI-FCRDC, Frederick, Maryland 21702, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Looney DJ, McClure J, Kent SJ, Radaelli A, Kraus G, Schmidt A, Steffy K, Greenberg P, Hu SL, Morton WR, Wong-Staal F. A minimally replicative HIV-2 live-virus vaccine protects M. nemestrina from disease after HIV-2(287) challenge. Virology 1998; 242:150-60. [PMID: 9501043 DOI: 10.1006/viro.1997.8992] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
M. nemestrina immunized with an apathogenic HIV-2 molecular clone (HIV-2KR) were protected from CD4 decline and disease upon challenge with HIV-2(287), after any immunizing virus could be detected. Higher but not lower inocula of HIV-2KR were protective against intravenous inoculation of either 10(5) or 10(1) TCID50 of HIV-2(287). Protected animals displayed substantial reductions in PBMC proviral burden (1-3 logs), viral titers (1-2 logs), and plasma viral RNA (2-4 logs) compared to unprotected or naive animals as early as 1 week postinfection. Plasma viral RNA became undetectable after 24 weeks in protected animals, but remained high in unprotected animals. No viral RNA was present in the spleen of the protected animal necropsied more than a year after challenge (though viral DNA was still present). No neutralizing responses could be demonstrated, but CTL activity was detected sooner and at higher levels after challenge in protected than in unprotected macaques. In this novel HIV-2 vaccine model, protection was clearly dose-dependent, and clearance of challenge virus RNA from the plasma did not require detectable ongoing replication of the immunizing virus at the time of challenge.
Collapse
Affiliation(s)
- D J Looney
- Infectious Diseases, VA San Diego Healthcare System, California 92161, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- S Lu
- Department of Medicine, University of Massachusetts Medical Center, Worcester 01655, USA
| |
Collapse
|
13
|
Rowland-Jones S, Tan R, McMichael A. Role of cellular immunity in protection against HIV infection. Adv Immunol 1997. [PMID: 9238512 DOI: 10.1016/s0065-2776(08)60745-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- S Rowland-Jones
- Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, United Kingdom
| | | | | |
Collapse
|
14
|
Kent SJ, Hu SL, Corey L, Morton WR, Greenberg PD. Detection of simian immunodeficiency virus (SIV)-specific CD8+ T cells in macaques protected from SIV challenge by prior SIV subunit vaccination. J Virol 1996; 70:4941-7. [PMID: 8763998 PMCID: PMC190445 DOI: 10.1128/jvi.70.8.4941-4947.1996] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Vaccines for lentiviruses would ideally induce in the host complete resistance to infection of host cells. However, such sterilizing immunity may be neither readily achievable nor absolutely necessary to provide protection from exposure to the immunodeficiency viruses. To examine the nature of protective immunity to simian immunodeficiency virus (SIV), we studied three macaques that had been immunized with a recombinant vaccinia virus-based SIV subunit vaccine regimen and exhibited protection from a challenge with cell-free SIV (MNE) as determined by viral cultures, serology, and PCR for viral genomes. Peripheral blood mononuclear cells were obtained from the protected macaques and analyzed for CD8+ cytotoxic T-lymphocyte (CTL) responses to SIV proteins. CTL reactive to SIV proteins not included in the subunit vaccine, and thus to which these animals had not been exposed prior to challenge, were detected postchallenge in the vaccine-protected animals and persisted for up to 1 year. These CTL, as reflected by studies of cytolytic lines and derived T-cell clones, were CD8+, did not recognize allogeneic targets, and recognized the SIV proteins in the context of class I major histocompatibility complex molecules. The frequency of precursor CD8+ CTL reactive to SIV proteins was determined by limiting-dilution analysis and demonstrated that the responses elicited following challenge of protected animals to SIV proteins not present in the vaccine were quantitatively similar to those of animals persistently infected with SIV. The presence of these CD8+ CTL responses to SIV proteins present only in the challenge virus suggests that infection of some host cells occurred postchallenge. These results suggest that the development of a low level of SIV infection following exposure of vaccinated hosts to SIV does not preclude protection from lethal SIV disease by vaccine-induced immunity.
Collapse
Affiliation(s)
- S J Kent
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
15
|
Myagkikh M, Alipanah S, Markham PD, Tartaglia J, Paoletti E, Gallo RC, Franchini G, Robert-Guroff M. Multiple immunizations with attenuated poxvirus HIV type 2 recombinants and subunit boosts required for protection of rhesus macaques. AIDS Res Hum Retroviruses 1996; 12:985-92. [PMID: 8827214 DOI: 10.1089/aid.1996.12.985] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Vaccine protocols involving multiple immunizations with molecularly attenuated vaccinia virus (NYVAC) or naturally attenuated canarypox virus (ALVAC) HIV-2 recombinants and subunit boosts have conferred longlasting protection against HIV-2 infection of macaques. Similar complex protocols using HIV-1 NYVAC and ALVAC recombinants and subunit boosts have provided cross-protection against HIV-2 challenge. Here a simplified three-immunization regimen over 24 weeks was tested in 18 juvenile rhesus macaques. Twelve macaques were immunized twice with NYVAC or ALVAC recombinants carrying HIV-2 env, gag, and pol genes. Subsequently, macaques in groups of three received either an additional recombinant immunization or an HIV-2 gp160 boost. Six control macaques received three immunizations of NYVAC or ALVAC vector alone and additionally alum at the third immunization. Macaques primed with ALVAC recombinant exhibited sporadic T cell proliferative activity, and all but one failed to develop neutralizing antibodies. In contrast, macaques primed with NYVAC recombinants had no T cell proliferative activity but exhibited neutralizing antibody titers (highest in the three recombinant group) that declined by the time of challenge. None of the macaques exhibited significant cytotoxic T lymphocyte activity. Following challenge at 32 weeks with HIV-2SBL6669 all macaques became infected. Thus, the three-immunization regimen is not sufficient to confer protective immunity in the HIV-2 rhesus macaque model. However, delayed infection in macaques immunized with the NYVAC-HIV-2 recombinant may have been associated with the development of memory B cells capable of providing a neutralizing antibody response on challenge.
Collapse
Affiliation(s)
- M Myagkikh
- Laboratory of Tumor Cell Biology, DBS, NCI, NIH, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Hu SL, Polacino P, Stallard V, Klaniecki J, Pennathur S, Travis BM, Misher L, Kornas H, Langlois AJ, Morton WR, Benveniste RE. Recombinant subunit vaccines as an approach to study correlates of protection against primate lentivirus infection. Immunol Lett 1996; 51:115-9. [PMID: 8811354 DOI: 10.1016/0165-2478(96)02564-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using pathogenic simian immunodeficiency virus (SIV) infection of macaques as a model, we explored the limits of the protective immunity elicited by recombinant subunit vaccines and examined factors that affect their efficacy. Envelope gp 160 vaccines, when used in a live recombinant virus-priming and subunit-protein-boosting regimen, protected macaques against a low-dose, intravenous infection by a cloned homologous virus SIVmne E11S. The same regimen was also effective against intrarectal challenge by the same virus and against intravenous challenge by E11S grown on primary macaque peripheral blood mononuclear cells (PBMC). However, only limited protection was observed against uncloned SIVmne. Priming with live recombinant virus was more effective than immunization with subunit gp 160 alone, indicating a potential advantage of native antigen presentation and the possible role of cell-mediated immunity in protection. Whole gp 160 was more effective than the surface antigen (gp 130), even though both antigens elicited similar levels of neutralizing antibodies. Animals immunized with the core (gag-pol) antigens failed to generate any neutralizing antibody and were all infected following challenge. However, their proviral load was 10-100-fold lower than that of the control animals, indicating that immune mechanisms such as cytotoxic T lymphocytes (CTL) may play a role. Finally, animals immunized with both the core and the envelope antigens generated significant protective immunity, even with relatively low neutralizing antibodies. Taken together, these results indicate that multiple mechanisms may contribute to protection. It may therefore be advantageous to incorporate multiple antigens in the design of recombinant subunit vaccines against acquired immunodeficiency syndrome (AIDS).
Collapse
Affiliation(s)
- S L Hu
- Bristol-Myers Squibb Pharmaceutical Research Institute, Seattle, WA 98121, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lu S, Arthos J, Montefiori DC, Yasutomi Y, Manson K, Mustafa F, Johnson E, Santoro JC, Wissink J, Mullins JI, Haynes JR, Letvin NL, Wyand M, Robinson HL. Simian immunodeficiency virus DNA vaccine trial in macaques. J Virol 1996; 70:3978-91. [PMID: 8648735 PMCID: PMC190276 DOI: 10.1128/jvi.70.6.3978-3991.1996] [Citation(s) in RCA: 187] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
An experimental vaccine consisting of five DNA plasmids expressing different combinations and forms of simian immunodeficiency virus-macaque (SIVmac) proteins has been evaluated for the ability to protect against a highly pathogenic uncloned SIVmac251 challenge. One vaccine plasmid encoded nonreplicating SIVmac239 virus particles. The other four plasmids encoded secreted forms of the envelope glycoproteins of two T-cell-tropic relatives (SIVmac239 and SIVmac251) and one monocyte/macrophage-tropic relative (SIVmac316) of the uncloned challenge virus. Rhesus macaques were inoculated with DNA at 1 and 3, 11 and 13, and 21 and 23 weeks. Four macaques were inoculated intravenously, intramuscularly, and by gene gun inoculations. Three received only gene gun inoculations. Two control monkeys were inoculated with control plasmids by all three routes of inoculation. Neutralizing antibody titers of 1:216 to 1:768 were present in all of the vaccinated monkeys after the second cluster of inoculations. These titers were transient, were not boosted by the third cluster of inoculations, and had fallen to 1:24 to 1:72 by the time of challenge. Cytotoxic T-cell activity for Env was also raised in all of the vaccinated animals. The temporal appearance of cytotoxic T cells was similar to that of antibody. However, while antibody responses fell with time, cytotoxic T-cell responses persisted. The SIVmac251 challenge was administered intravenously at 2 weeks following the last immunization. The DNA immunizations did not prevent infection or protect against CD4+ cell loss. Long-term chronic levels of infection were similar in the vaccinated and control animals, with 1 in 10,000 to 1 in 100,000 peripheral blood cells carrying infectious virus. However, viral loads were reduced to the chronic level over a shorter period of time in the vaccinated groups (6 weeks) than in the control group (12 weeks). Thus, the DNA vaccine raised both neutralizing antibody and cytotoxic T-lymphocyte responses and provided some attenuation of the acute phase of infection, but it did not prevent the loss of CD4+ cells.
Collapse
Affiliation(s)
- S Lu
- Department of Pathology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Schultz AM. Changing paradigms for an HIV vaccine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 397:79-90. [PMID: 8718586 DOI: 10.1007/978-1-4899-1382-1_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- A M Schultz
- Vaccine and Prevention Research Program, Division of AIDS, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, Maryland 20852, USA
| |
Collapse
|
19
|
Fast PE, Sawyer LA, Wescott SL. Clinical considerations in vaccine trials with special reference to candidate HIV vaccines. PHARMACEUTICAL BIOTECHNOLOGY 1995; 6:97-134. [PMID: 7551256 DOI: 10.1007/978-1-4615-1823-5_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- P E Fast
- Vaccine and Prevention Research Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
20
|
Benveniste RE, Roodman ST, Hill RW, Knott WB, Ribas JL, Lewis MG, Eddy GA. Infectivity of titered doses of simian immunodeficiency virus clone E11S inoculated intravenously into rhesus macaques (Macaca mulatta). J Med Primatol 1994; 23:83-8. [PMID: 7966238 DOI: 10.1111/j.1600-0684.1994.tb00106.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The macaque infectious dose (MID) of a single-cell clone of simian immunodeficiency virus isolated from a pig-tailed macaque (SIV/Mne clone E11S) was determined in rhesus macaques (Macaca mulatta). Twenty-one macaques were inoculated with 10-fold dilutions of the virus stock (three or four animals per dose). The virologic and clinical status of these animals was monitored for 26 weeks. The 25% MID (MID25) occurred at a 10(5)-fold dilution of the viral stock.
Collapse
Affiliation(s)
- R E Benveniste
- Laboratory of Viral Carcinogenesis, National Cancer Institute, Frederick, MD 21702-1201
| | | | | | | | | | | | | |
Collapse
|