1
|
Abstract
Recombinant nucleic acids are considered as promising next-generation vaccines. These vaccines express the native antigen upon delivery into tissue, thus mimicking live attenuated vaccines without having the risk of reversion to pathogenicity. They also stimulate the innate immune system, thus potentiating responses. Nucleic acid vaccines are easy to produce at reasonable cost and are stable. During the past years, focus has been on the use of plasmid DNA for vaccination. Now mRNA and replicon vaccines have come into focus as promising technology platforms for vaccine development. This review discusses self-replicating RNA vaccines developed from alphavirus expression vectors. These replicon vaccines can be delivered as RNA, DNA or as recombinant virus particles. All three platforms have been pre-clinically evaluated as vaccines against a number of infectious diseases and cancer. Results have been very encouraging and propelled the first human clinical trials, the results of which have been promising.
Collapse
Affiliation(s)
- Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
2
|
Van Rompay KKA, Trott KA, Jayashankar K, Geng Y, LaBranche CC, Johnson JA, Landucci G, Lipscomb J, Tarara RP, Canfield DR, Heneine W, Forthal DN, Montefiori D, Abel K. Prolonged tenofovir treatment of macaques infected with K65R reverse transcriptase mutants of SIV results in the development of antiviral immune responses that control virus replication after drug withdrawal. Retrovirology 2012; 9:57. [PMID: 22805180 PMCID: PMC3419085 DOI: 10.1186/1742-4690-9-57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 07/17/2012] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND We reported previously that while prolonged tenofovir monotherapy of macaques infected with virulent simian immunodeficiency virus (SIV) resulted invariably in the emergence of viral mutants with reduced in vitro drug susceptibility and a K65R mutation in reverse transcriptase, some animals controlled virus replication for years. Transient CD8+ cell depletion or short-term tenofovir interruption within 1 to 5 years of treatment demonstrated that a combination of CD8+ cell-mediated immune responses and continued tenofovir therapy was required for sustained suppression of viremia. We report here follow-up data on 5 such animals that received tenofovir for 8 to 14 years. RESULTS Although one animal had a gradual increase in viremia from 3 years onwards, the other 4 tenofovir-treated animals maintained undetectable viremia with occasional viral blips (≤ 300 RNA copies/ml plasma). When tenofovir was withdrawn after 8 to 10 years from three animals with undetectable viremia, the pattern of occasional episodes of low viremia (≤ 3600 RNA/ml plasma) continued throughout the 10-month follow-up period. These animals had low virus levels in lymphoid tissues, and evidence of multiple SIV-specific immune responses. CONCLUSION Under certain conditions (i.e., prolonged antiviral therapy initiated early after infection; viral mutants with reduced drug susceptibility) a virus-host balance characterized by strong immunologic control of virus replication can be achieved. Although further research is needed to translate these findings into clinical applications, these observations provide hope for a functional cure of HIV infection via immunotherapeutic strategies that boost antiviral immunity and reduce the need for continuous antiretroviral therapy.
Collapse
Affiliation(s)
- Koen K A Van Rompay
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Kristin A Trott
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Kartika Jayashankar
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Yongzhi Geng
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | | | - Jeffrey A Johnson
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease control and Prevention, Atlanta, GE, 30333, USA
| | - Gary Landucci
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA
| | - Jonathan Lipscomb
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease control and Prevention, Atlanta, GE, 30333, USA
| | - Ross P Tarara
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Don R Canfield
- California National Primate Research Center, University of California, Davis, CA, 95616, USA
| | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease control and Prevention, Atlanta, GE, 30333, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, 92697, USA
| | | | - Kristina Abel
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
3
|
Uberla K, Rosenwirth B, Ten Haaft P, Heeney J, Sutter G, Erfle V. Therapeutic immunization with Modified Vaccinia Virus Ankara (MVA) vaccines in SIV-infected rhesus monkeys undergoing antiretroviral therapy. J Med Primatol 2007; 36:2-9. [PMID: 17359459 DOI: 10.1111/j.1600-0684.2006.00190.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The long-term benefits of highly active antiretroviral therapy in HIV-infected patients are limited by emergence of drug-resistant variants and side effects. Therefore, we studied the concept of therapeutic immunization in 18 rhesus monkeys infected with a highly pathogenic simian immunodeficiency virus (SIV) swarm. METHODS Monkeys were treated with the reverse transcriptase inhibitor (R)-9-(2-phosphonylmethoxypropyl)adenine (PMPA) for 19 weeks starting 10 days after infection. After suppression of viremia, one group of monkeys was immunized with recombinant modified vaccinia virus Ankara (MVA) vectors expressing gag-pol and env. A second group received MVA vectors expressing the regulatory genes tat, rev and nef, while a third group was not immunized. RESULTS Immunization with gag-pol and env expressing MVA enhanced SIV antibody titers. Following discontinuation of PMPA treatment, a rebound in viral load was observed. However, in three of six monkeys immunized with MVA gag-pol and MVA env, and two of six monkeys immunized MVA expressing regulatory genes set point RNA levels were below or close to a threshold level of 10(4) RNA copies/ml, while only one of six unvaccinated monkeys maintained such low RNA levels. CONCLUSIONS Although a subset of animals seem to benefit from therapeutic immunization with MVA vectors, the difference in set point RNA levels between the groups did not reach statistical significance.
Collapse
Affiliation(s)
- Klaus Uberla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, Germany.
| | | | | | | | | | | |
Collapse
|
4
|
Van Rompay KKA, Johnson JA, Blackwood EJ, Singh RP, Lipscomb J, Matthews TB, Marthas ML, Pedersen NC, Bischofberger N, Heneine W, North TW. Sequential emergence and clinical implications of viral mutants with K70E and K65R mutation in reverse transcriptase during prolonged tenofovir monotherapy in rhesus macaques with chronic RT-SHIV infection. Retrovirology 2007; 4:25. [PMID: 17417971 PMCID: PMC1852805 DOI: 10.1186/1742-4690-4-25] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 04/06/2007] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND We reported previously on the emergence and clinical implications of simian immunodeficiency virus (SIVmac251) mutants with a K65R mutation in reverse transcriptase (RT), and the role of CD8+ cell-mediated immune responses in suppressing viremia during tenofovir therapy. Because of significant sequence differences between SIV and HIV-1 RT that affect drug susceptibilities and mutational patterns, it is unclear to what extent findings with SIV can be extrapolated to HIV-1 RT. Accordingly, to model HIV-1 RT responses, 12 macaques were inoculated with RT-SHIV, a chimeric SIV containing HIV-1 RT, and started on prolonged tenofovir therapy 5 months later. RESULTS The early virologic response to tenofovir correlated with baseline viral RNA levels and expression of the MHC class I allele Mamu-A*01. For all animals, sensitive real-time PCR assays detected the transient emergence of K70E RT mutants within 4 weeks of therapy, which were then replaced by K65R mutants within 12 weeks of therapy. For most animals, the occurrence of these mutations preceded a partial rebound of plasma viremia to levels that remained on average 10-fold below baseline values. One animal eventually suppressed K65R viremia to undetectable levels for more than 4 years; sequential experiments using CD8+ cell depletion and tenofovir interruption demonstrated that both CD8+ cells and continued tenofovir therapy were required for sustained suppression of viremia. CONCLUSION This is the first evidence that tenofovir therapy can select directly for K70E viral mutants in vivo. The observations on the clinical implications of the K65R RT-SHIV mutants were consistent with those of SIVmac251, and suggest that for persons infected with K65R HIV-1 both immune-mediated and drug-dependent antiviral activities play a role in controlling viremia. These findings suggest also that even in the presence of K65R virus, continuation of tenofovir treatment as part of HAART may be beneficial, particularly when assisted by antiviral immune responses.
Collapse
Affiliation(s)
- Koen KA Van Rompay
- California National Primate Research Center, University of California, Davis, USA
| | - Jeffrey A Johnson
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - Emily J Blackwood
- California National Primate Research Center, University of California, Davis, USA
| | - Raman P Singh
- California National Primate Research Center, University of California, Davis, USA
| | - Jonathan Lipscomb
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | | | - Marta L Marthas
- California National Primate Research Center, University of California, Davis, USA
| | - Niels C Pedersen
- Department of Medicine and Epidemiology, School of Veterinary Medicine; University of California, Davis, USA
| | | | - Walid Heneine
- Division of HIV/AIDS Prevention, National Center for HIV, STD and Tuberculosis Prevention, Centers for Disease Control and Prevention, Atlanta, USA
| | - Thomas W North
- Center for Comparative Medicine, University of California, Davis, USA
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|
5
|
Argyris EG, Dornadula G, Nunnari G, Acheampong E, Zhang C, Mehlman K, Pomerantz RJ, Zhang H. Inhibition of endogenous reverse transcription of human and nonhuman primate lentiviruses: potential for development of lentivirucides. Virology 2006; 353:482-90. [PMID: 16859727 PMCID: PMC1626530 DOI: 10.1016/j.virol.2006.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/02/2006] [Accepted: 06/10/2006] [Indexed: 02/07/2023]
Abstract
In the current study, we extended our previous works on natural endogenous reverse transcription (NERT) and further examined its potential as a virucide molecular target in sexual transmission of primate lentiviruses. HIV-1 and SIV virions were pretreated with select nucleoside (NRTIs) and nonnucleoside RT inhibitors (NNRTIs), either alone or in combination with NERT-stimulating substances. The effects of these antiretrovirals on virion inactivation were analyzed in human T cell lines and primary cell cultures. Pretreatment of HIV-1 virions with physiologic NERT-stimulants and 3'-azido-3'-deoxythymidine 5'-triphosphate (AZT-TP) or nevirapine potently inactivated cell-free HIV-1 virions and resulted in strong inhibition of the viral infectivity. Pretreatment of chimeric SHIV-RT virions with NERT-stimulating cocktail and select antiretrovirals also resulted in virion inactivation and inhibition of viral infectivity in T cell lines. Our findings demonstrate the potential clinical utility of approaches based on inhibiting NERT in sexual transmission of HIV-1, through the development of effective anti-HIV-1 microbicides, such as NRTIs and NNRTIs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hui Zhang
- * Corresponding author. Fax: +1 215 923 1956. E-mail address: (H. Zhang)
| |
Collapse
|
6
|
Abstract
The challenge for an immunotherapeutic vaccine is to increase antiviral responses in an increasingly immunocompromised host and to provide immunity to epitopes that have been neglected by the infected host. Therapeutic vaccination with structural and regulatory genes and proteins of HIV are reviewed. The most promising clinical results consist of short-term improvement in survival without antiretroviral therapy. Together with antiviral therapy, it is reported that immunization has provided a prolonged time to virological failure. It is clear, however, that additional help will be needed from adjuvants and/or modulators that activate natural killer and T-cells, or other immune molecules. Vaccine therapy should start early, while adequate reservoirs of appropriate T-helper and memory cells are available and still inducible.
Collapse
Affiliation(s)
- Britta Wahren
- Dept of Microbiology and Tumorbiology, Karolinska Institute, Swedish Institute for Infectious Disease Control, 171 82 Stockholm, Sweden.
| | | |
Collapse
|
7
|
Ambrose Z, Boltz V, Palmer S, Coffin JM, Hughes SH, Kewalramani VN. In vitro characterization of a simian immunodeficiency virus-human immunodeficiency virus (HIV) chimera expressing HIV type 1 reverse transcriptase to study antiviral resistance in pigtail macaques. J Virol 2004; 78:13553-61. [PMID: 15564466 PMCID: PMC533891 DOI: 10.1128/jvi.78.24.13553-13561.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antiviral resistance is a significant obstacle in the treatment of human immunodeficiency virus type 1 (HIV-1)-infected individuals. Because nonnucleoside reverse transcriptase inhibitors (NNRTIs) specifically target HIV-1 reverse transcriptase (RT) and do not effectively inhibit simian immunodeficiency virus (SIV) RT, the development of animal models to study the evolution of antiviral resistance has been problematic. To facilitate in vivo studies of NNRTI resistance, we examined whether a SIV that causes immunopathogenesis in pigtail macaques could be made sensitive to NNRTIs. Two simian-human immunodeficiency viruses (SHIVs) were derived from the genetic background of SIV(mne): SIV-RT-YY contains RT substitutions intended to confer NNRTI susceptibility (V181Y and L188Y), and RT-SHIV(mne) contains the entire HIV-1 RT coding region. Both mutant viruses grew to high titers in vitro but had reduced fitness relative to wild-type SIV(mne). Although the HIV-1 RT was properly processed into p66 and p51 subunits in RT-SHIV(mne) particles, the RT-SHIV(mne) virions had lower levels of RT per viral genomic RNA than HIV-1. Correspondingly, there was decreased RT activity in RT-SHIV(mne) and SIV-RT-YY particles. HIV-1 and RT-SHIV(mne) were similarly susceptible to the NNRTIs efavirenz, nevirapine, and UC781. However, SIV-RT-YY was less sensitive to NNRTIs than HIV-1 or RT-SHIV(mne). Classical NNRTI resistance mutations were selected in RT-SHIV(mne) after in vitro drug treatment and were monitored in a sensitive allele-specific real-time RT-PCR assay. Collectively, these results indicate that RT-SHIV(mne) may be a useful model in macaques for the preclinical evaluation of NNRTIs and for studies of the development of drug resistance in vivo.
Collapse
Affiliation(s)
- Zandrea Ambrose
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | | | |
Collapse
|
8
|
Egan MA. Current prospects for the development of a therapeutic vaccine for the treatment of HIV type 1 infection. AIDS Res Hum Retroviruses 2004; 20:794-806. [PMID: 15320982 DOI: 10.1089/0889222041725244] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michael A Egan
- Department of Immunobiology, Wyeth Vaccines Research, Pearl River, New York, 10965, USA.
| |
Collapse
|
9
|
Fung HB, Stone EA, Piacenti FJ. Tenofovir disoproxil fumarate: a nucleotide reverse transcriptase inhibitor for the treatment of HIV infection. Clin Ther 2002; 24:1515-48. [PMID: 12462284 DOI: 10.1016/s0149-2918(02)80058-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Tenofovir disoproxil fumarate (DF) is the first nucleotide reverse transcriptase inhibitor approved for use in combination with other antiretroviral agents in the treatment of HIV-1 infection in the United States. Unlike the nucleoside reverse transcriptase inhibitors, which must undergo 3 intracellular phosphorylation steps for activation. nucleotide analogues such as tenofovir require only 2 such steps. This reduction in the phosphorylation requirement has the potential to produce more rapid and complete conversion of the drug to its pharmacologically active metabolite. OBJECTIVE This article describes the pharmacologic properties and potential clinical usefulness of tenofovir DF. METHODS Relevant information was identified through searches of MEDLINE (1996-April 2002), Iowa Drug Information Service (1996-April 2002), and International Pharmaceutical Abstracts (1970-April 2002), as well as from meeting abstracts of major HIV/AIDS conferences (1996-2002), using the search terms tenofovir tenofovir disoproxil fumarate, PMPA, bis(POC)PMPA, GS-4331-05, acyclic nucleoside phosphonate, and nucleotide reverse transcriptase inhibitor. Additional information was obtained from material submitted to the US Food and Drug Administration by the manufacturer of tenofovir DF in support of its New Drug Application. RESULTS In vitro, tenofovir DF has exhibited anti-HIV activity in various HIV-infected cell lines and has produced a synergistic or additive effect against HIV when combined with other antiretroviral agents. In adult humans, tenofovir has a volume of distribution of 0.813 L/kg, is minimally bound to plasma protein (7.2%), has a plasma elimination half-life of 12.0 to 14.4 hours, and is mainly excreted unchanged in urine (70%-80%). Dose adjustment based on sex or body weight does not appear to be necessary, although dose reduction may be necessary in the elderly; there are currently no data on tenofovir DF in renal or hepatic insufficiency. The results of clinical trials suggest the efficacy of tenofovir DF in reducing plasma levels of HIV-1 RNA when used as an add-on to a stable antiretroviral regimen. The most commonly (>3%) reported adverse events in clinical trials have included nausea, diarrhea, asthenia, headache, vomiting, flatulence, abdominal pain, and anorexia. The most commonly (>2%) reported laboratory abnormalities (grade III or IV) included increases in creatine kinase, triglycerides, amylase, aspartate aminotransferase, and alanine aminotransferase, as well as hyperglycemia and glucosuria. Serious adverse events leading to discontinuation of tenofovir DF were infrequent (5%), occurring with an incidence similar to that with placebo (8%). The recommended dosage of tenofovir DF in adults is 300 mg/d PO; pharmacokinetic and efficacy studies in children are ongoing. CONCLUSION Although additional studies are needed, tenofovir DF appears to be a promising agent for the treatment of HIV infection.
Collapse
Affiliation(s)
- Horatio B Fung
- Critical Care Center, Veterans Affairs Medical Center, Bronx, New York 10468, USA.
| | | | | |
Collapse
|
10
|
Warren J. Preclinical AIDS vaccine research: survey of SIV, SHIV, and HIV challenge studies in vaccinated nonhuman primates. J Med Primatol 2002; 31:237-56. [PMID: 12390546 DOI: 10.1034/j.1600-0684.2002.02010.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This current supplementary and systematic survey of 237 preclinical AIDS vaccine challenge/protection studies in nonhuman primates enumerates and broadly describes the recent status of different vaccine strategies in macaque and chimpanzee experimental models. Published studies since the previous survey were compiled and categorized by their vaccine types, challenge parameters, and challenge results. These models have supportively verified that some prophylactic vaccine approaches, though rarely preventing infection (which is observed in these models with some passively administered antibody-based vaccines), can control to some degree primate lentivirus replication and disease development, and this is encouraging because it places more potentially effective immunogens on the precipice for early clinical studies. Many of these promising approaches may benefit from more testing in mucosal challenge models, and resources will be needed to follow more of these partially protected vaccinees for longer periods.
Collapse
Affiliation(s)
- Jon Warren
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-7628, USA.
| |
Collapse
|
11
|
Buonaguro L, Racioppi L, Tornesello ML, Arra C, Visciano ML, Biryahwaho B, Sempala SDK, Giraldo G, Buonaguro FM. Induction of neutralizing antibodies and cytotoxic T lymphocytes in Balb/c mice immunized with virus-like particles presenting a gp120 molecule from a HIV-1 isolate of clade A. Antiviral Res 2002; 54:189-201. [PMID: 12062391 DOI: 10.1016/s0166-3542(02)00004-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have recently developed a candidate HIV-1 vaccine based on virus-like particles (VLPs) expressing a gp120 from an Ugandan HIV-1 isolate of the clade A (HIV-VLP(A)s). In vivo immunogenicity experiments were performed in Balb/c mice, with an immunization schedule based on a multiple-dose regimen of HIV-VLP(A)s without adjuvants, showing a significant induction of both humoral and cellular immunity. The Env-specific cellular response was investigated in vitro, scoring for both the proliferative response of T helper cells and the cytolytic activity of cytotoxic T lymphocytes (CTLs). Furthermore, immune sera showed >50% neutralization activity against both the autologous field isolate and the heterologous T cell adapted B-clade HIV-1(IIIB) viral strain. This is one of the first examples of HIV-1 vaccines based on antigens derived from the A clade, which represents >25% of all isolates identified world wide. In particular, the A clade is predominant in sub-Saharan countries, where 70% of the global HIV-1 infections occur, and where vaccination is the only rational strategy for an affordable prevention against HIV-1 infection.
Collapse
Affiliation(s)
- L Buonaguro
- Division of Viral Oncology and AIDS Reference Center, Ist. Naz. Tumori Fond. G. Pascale, Cappella dei Cangiani, 80131 Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Vaccine-induced immunity to HIV/AIDS is a world wide health priority and a necessity in order to prevent or curb the transmission of this infection in the different human populations at risk. Failing to prevent infection, it would be desirable to generate sufficient immunity to control viremia in individuals which become infected, given that this would provide sufficient protection to prevent progression to AIDS. From several different pre-clinical settings data revealed that although CTL or neutralising antibodies were necessary immune responses for protection from infection, they were alone or together insufficient for providing solid protective immunity. What was invariably necessary was a strong specific CD4(+) T-cell response. Protective T-helper responses were not skewed towards an IFN-gamma (Th1) or IL-4 (Th2) type response, but were balanced and characterised by the presence of a strong Ag-specific IL-2 response.
Collapse
Affiliation(s)
- Jonathan Luke Heeney
- Department of Virology, Biomedical Primate Research Centre, P.O. Box 3306, 2280-GH Rijswijk, The Netherlands.
| |
Collapse
|
13
|
Abstract
The drug treatments introduced in recent years for HIV infection have enabled a marked reduction in morbidity and prolongation of life. These treatments, however, are often associated with acute and chronic toxicities, the development of resistant virus can limit their effectiveness, and they are too expensive and difficult to administer in most third world settings. A successful HIV immunotherapeutic vaccine has the potential to overcome these problems, and would be a valuable advance. The most promising approaches have induced the type of immune response found to correlate with reduced activity of HIV in man, especially cytotoxic T-cell responses, or have led to reduced HIV or SIV viral load and increased CD4 counts in non-human primates or man. The agents that have led to one or both of these effects have been selected for review, and include inactivated envelope depleted virus, recombinant envelope glycoprotein, DNA vaccines utilising HIV peptides or gene products, viral vectors, such as canarypox or attenuated vaccinia, with HIV core proteins. There are other approaches, such as alloimmunity, for which no candidate products yet exist, but which conceptually appear promising. Currently, however, only a few phase III studies of HIV therapeutic vaccines have been completed in man, and there has been a modest therapeutic effect. Further development of both existing and new candidates remains one of the key priorities in our fight against HIV.
Collapse
Affiliation(s)
- B S Peters
- Department of GU Medicine, GKT School of Medicine, Harrison Wing, St. Thomas' Hospital, Lambeth Palace Road, London SE1 7EH, UK.
| |
Collapse
|
14
|
Nilsson C, Mäkitalo B, Berglund P, Bex F, Liljeström P, Sutter G, Erfle V, ten Haaft P, Heeney J, Biberfeld G, Thorstensson R. Enhanced simian immunodeficiency virus-specific immune responses in macaques induced by priming with recombinant Semliki Forest virus and boosting with modified vaccinia virus Ankara. Vaccine 2001; 19:3526-36. [PMID: 11348720 DOI: 10.1016/s0264-410x(01)00034-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The immunogenicity of two vector-based vaccines, either given alone or in a prime-boost regimen, was investigated. Cynomolgus macaques were immunised with modified vaccinia virus Ankara (MVA) expressing simian immunodeficiency virus (SIV)macJ5 env, gag-pol, nef, rev, and tat genes (MVA-SIVmac) or primed with a Semliki forest virus (SFV) vaccine expressing the same genes (SFV-SIVmac) and boosted with MVA-SIVmac. Generally, antibody responses, T-cell proliferative responses and cytotoxic T-cell responses remained low or undetectable in vaccinees receiving MVA-SIVmac or SFV-SIVmac alone. In contrast, monkeys who first received SFV-SIVmac twice and then were boosted with MVA-SIVmac showed increased antibody responses as well as high T-cell proliferative responses. Three of these vaccinees had cytotoxic T-lymphocytes directed against three or four of the gene products. No evidence of protection was seen against an intrarectal heterologous SIVsm challenge given 3 months after the last immunisation. The study demonstrates a prime-boost strategy that efficiently induces both humoral and cellular immune responses.
Collapse
Affiliation(s)
- C Nilsson
- Swedish Institute for Infectious Disease Control, SE-171 82, Solna, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Colmenero P, Berglund P, Kambayashi T, Biberfeld P, Liljeström P, Jondal M. Recombinant Semliki Forest virus vaccine vectors: the route of injection determines the localization of vector RNA and subsequent T cell response. Gene Ther 2001; 8:1307-14. [PMID: 11571567 DOI: 10.1038/sj.gt.3301501] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2001] [Accepted: 03/12/2001] [Indexed: 11/09/2022]
Abstract
Vectors based on Semliki Forest virus (SFV) have been widely used in vitro and in vivo to express heterologous genes in animal cells. In particular, the ability of recombinant SFV (rSFV) to elicit specific, protective immune responses in animal models suggests that rSFV may be used as a vaccine vehicle. In this study, we examined the distribution of rSFV in vivo by immunohistochemistry and RT-PCR after intravenous, intramuscular and subcutaneous injection of rSFV particles and related this to the degree of cytotoxic T lymphocyte (CTL) responses and frequency of specific T cells detected by MHC-I tetramers. We found that after i.v. injection, rSFV-RNA was distributed to a variety of different tissues, whereas it was confined locally after i.m. and s.c. injections. The persistence of the rSFV vector was transient, and no viral RNA could be detected 10 days after inoculation. All tested routes of immunization generated significant levels of antigen-specific CTL responses and increased numbers of specific CD8+ T cells, as detected by tetramer binding. The distribution of antigen-specific CTLs correlated with the in vivo distribution pattern of rSFV, with a highest frequency in the spleen or local lymph node, depending on the injection route.
Collapse
Affiliation(s)
- P Colmenero
- Microbiology and Tumorbiology Center, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|