1
|
Käfer H, Kovac H, Stabentheiner A. Habitat Temperatures of the Red Firebug, Pyrrhocoris apterus: The Value of Small-Scale Climate Data Measurement. INSECTS 2023; 14:843. [PMID: 37999042 PMCID: PMC10672010 DOI: 10.3390/insects14110843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 11/25/2023]
Abstract
Ambient temperature is a main parameter that determines the thriving and propagation of ectothermic insects. It affects egg and larval development as well as adults' survival and successful overwintering. Pyrrhocoris apterus is a herbivorous bug species almost ubiquitous in Eurasia. Its distribution extends from the Atlantic Coast to Siberia, Northwest China and Mongolia. After introduction, it established successfully in the USA, Central America, India and Australia, which indicates a high invasive potential of this species. We determined the climatic conditions in Central Europe in a habitat where P. apterus has been continuously observed for decades. We conducted temperature measurements in the habitat and in the microhabitats where individuals could be found during the year and set them against freely available climate data commonly used to characterize habitat climate. Our temperature measurements were also compared to thermal limits (critical thermal minima and maxima). Although ambient temperatures outside the thermal boundaries of P. apterus can and do occur in the habitat, the bugs thrive and propagate. Microhabitat measurement in winter showed that individuals sought areas with favorable temperatures for hibernation. In particular, these areas are not (always) represented in large-scale climate tables, leading to possible misinterpretation of future patterns of spread of invasive species spread.
Collapse
Affiliation(s)
- Helmut Käfer
- Institute of Biology, University of Graz, 8010 Graz, Austria;
| | - Helmut Kovac
- Institute of Biology, University of Graz, 8010 Graz, Austria;
| | | |
Collapse
|
2
|
Käfer H, Kovac H, Simov N, Battisti A, Erregger B, Schmidt AKD, Stabentheiner A. Temperature Tolerance and Thermal Environment of European Seed Bugs. INSECTS 2020; 11:E197. [PMID: 32245048 PMCID: PMC7143385 DOI: 10.3390/insects11030197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 01/16/2023]
Abstract
Heteroptera, or true bugs populate many climate zones, coping with different environmental conditions. The aim of this study was the evaluation of their thermal limits and derived traits, as well as climatological parameters which might influence their distribution. We assessed the thermal limits (critical thermal maxima, CTmax, and minima, CTmin) of eight seed bug species (Lygaeidae, Pyrrhocoridae) distributed over four Köppen-Geiger climate classification types (KCC), approximately 6° of latitude, and four European countries (Austria, Italy, Croatia, Bulgaria). In test tubes, a temperature ramp was driven down to -5 °C for CTmin and up to 50 °C for CTmax (0.25 °C/min) until the bugs' voluntary, coordinated movement stopped. In contrast to CTmin, CTmax depended significantly on KCC, species, and body mass. CTmax showed high correlation with bioclimatic parameters such as annual mean temperature and mean maximum temperature of warmest month (BIO5), as well as three parameters representing temperature variability. CTmin correlated with mean annual temperature, mean minimum temperature of coldest month (BIO6), and two parameters representing variability. Although the derived trait cold tolerance (TC = BIO6 - CTmin) depended on several bioclimatic variables, heat tolerance (TH = CTmax - BIO5) showed no correlation. Seed bugs seem to have potential for further range shifts in the face of global warming.
Collapse
Affiliation(s)
- Helmut Käfer
- Institute of Biology, University of Graz, 8010 Graz, Austria
| | - Helmut Kovac
- Institute of Biology, University of Graz, 8010 Graz, Austria
| | - Nikolay Simov
- National Museum of Natural History, 1000 Sofia, Bulgaria;
| | - Andrea Battisti
- School of Agricultural Sciences and Veterinary Medicine, University of Padova, 35122 Padova, Italy;
| | - Bettina Erregger
- Institute of Biology, University of Graz, 8010 Graz, Austria
- Institute of Animal Nutrition, Livestock Products, and Nutrition Physiology, University of Natural Resources and Life Sciences, 1180 Vienna, Austria;
| | - Arne K. D. Schmidt
- Institute of Biology, University of Graz, 8010 Graz, Austria
- AGES, The Austrian Agency for Health and Food Safety, 1220 Vienna, Austria;
| | | |
Collapse
|
3
|
Hiyama A, Otaki JM. Dispersibility of the Pale Grass Blue Butterfly Zizeeria m aha (Lepidoptera: Lycaenidae) Revealed by One-Individual Tracking in the Field: Quantitative Comparisons between Subspecies and between Sexes. INSECTS 2020; 11:insects11020122. [PMID: 32074952 PMCID: PMC7073966 DOI: 10.3390/insects11020122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 11/16/2022]
Abstract
The pale grass blue butterfly Zizeeria maha (Lepidoptera: Lycaenidae) has been used as an environmental indicator species for radioactive pollution after the Fukushima nuclear accident. Here, based on the one-individual tracking method in the field, we examined dispersal-associated and other behavioral traits of this butterfly, focusing on two subspecies, Z. maha argia in mainland Japan and Z. maha okinawana in Okinawa. The accumulated distances in the adult lifespan were 18.9 km and 38.2 km in mainland and Okinawa males, respectively, and 15.0 km and 7.8 km in mainland and Okinawa females, respectively. However, the mean distance from the starting point was only 24.2 m and 21.1 m in the mainland and Okinawa males, respectively, and 13.7 m and 7.4 m in the mainland and Okinawa females, respectively. Some quantitative differences in resting and feeding were found between subspecies and between sexes. The ARIMA (autoregressive integrated moving average) model indicated that the dispersal distance was 52.3 m (99% confidence interval value of 706.6 m) from the starting point in mainland males. These results support the idea that despite some behavioral differences, both subspecies of this butterfly are suitable as an environmental indicator because of the small dispersal ranges.
Collapse
Affiliation(s)
- Atsuki Hiyama
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
- Laboratory of Conservation Ecology, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
- Japan Butterfly Conservation Society, Tokyo 140-0014, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
- Correspondence: ; Tel.: +81-98-895-8557
| |
Collapse
|
4
|
Reim E, Eichhorn D, Roy JD, Steinhoff POM, Fischer K. Nutritional stress reduces flight performance and exploratory behavior in a butterfly. INSECT SCIENCE 2019; 26:897-910. [PMID: 29660804 DOI: 10.1111/1744-7917.12596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/23/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Anthropogenic global change, including agricultural intensification and climate change, poses a substantial challenge to many herbivores due to a reduced availability of feeding resources. The concomitant food stress is expected to detrimentally affect performance, amongst others in dispersal-related traits. Thus, while dispersal is of utmost importance to escape from deteriorating habitat conditions, such conditions may negatively feedback on the ability to do so. Therefore, we here investigate the impact of larval and adult food stress on traits related to dispersal ability, including morphology, physiology, flight performance, and exploratory behavior, in a butterfly. We show that inadequate nutrition during development and in the adult stage diminishes flight performance, despite some re-allocation of somatic resources. Detrimental effects of food stress on flight performance were mainly caused by reductions in body mass and storage reserves. Similar results were found for exploratory behavior. Furthermore, exploratory behavior was found to be (moderately) repeatable at the individual level, which might indicate the existence of a personality trait. This notion is further supported by the fact that flight performance and exploratory behavior were positively correlated, potentially suggesting the existence of a dispersal syndrome. In summary, our findings may have important implications for dispersal in natural environments, as the conditions requiring dispersal the most impair flight ability and thereby likely dispersal rates.
Collapse
Affiliation(s)
- Elisabeth Reim
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Danny Eichhorn
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Jan D Roy
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | | | - Klaus Fischer
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| |
Collapse
|
5
|
Larranaga N, Baguette M, Calvez O, Legrand D. Mobility affects copulation and oviposition dynamics in Pieris brassicae in seminatural cages. INSECT SCIENCE 2019; 26:743-752. [PMID: 29319228 DOI: 10.1111/1744-7917.12568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/25/2017] [Indexed: 06/07/2023]
Abstract
When, how often and for how long organisms mate can have strong consequences for individual fitness and are crucial aspects of evolutionary ecology. Such determinants are likely to be of even greater importance in monandrous species and species with short adult life stages. Previous work suggests that mobility, a key dispersal-related trait, may affect the dynamics of copulations, but few studies have investigated the impact of individual mobility on mating latency, copulation duration and oviposition latency simultaneously. In this paper, we monitored the copulation dynamics of 40 males and 40 females, as well as the oviposition dynamics of the females of the Large White butterfly Pieris brassicae, a facultative long-distance disperser butterfly. Individuals from a breeding were selected to create a uniform distribution of mobility and we recorded the timing, number and duration of all copulations in a semiexperimental system. We showed that mobility, measured as the time spent in flight under stressful conditions (a proxy of dispersal tendency), correlates with all aspects of copulation dynamics: mobile males and females mated earlier and for shorter periods than less mobile individuals. In turn, late mating females increased the time between copulation and oviposition. These results feed the previously described mobility syndrome of P. brassicae, involving morphological and physiological characters, with life-history traits. We suggest that the reduction of mating latency and copulation duration has an adaptive value in dispersing individuals, as their life expectancy might be shorter than that of sedentary individuals.
Collapse
Affiliation(s)
- Nicolas Larranaga
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
| | - Michel Baguette
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
- Muséum National d'Histoire Naturelle (Sorbonne Universités), Institut de Systématique, Evolution et Biodiversité, UMR 7205, 57 rue Cuvier, 75005, Paris, cedex 5, France
| | - Olivier Calvez
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
| | - Delphine Legrand
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
| |
Collapse
|
6
|
Le Roy C, Debat V, Llaurens V. Adaptive evolution of butterfly wing shape: from morphology to behaviour. Biol Rev Camb Philos Soc 2019; 94:1261-1281. [PMID: 30793489 DOI: 10.1111/brv.12500] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/07/2023]
Abstract
Butterflies display extreme variation in wing shape associated with tremendous ecological diversity. Disentangling the role of neutral versus adaptive processes in wing shape diversification remains a challenge for evolutionary biologists. Ascertaining how natural selection influences wing shape evolution requires both functional studies linking morphology to flight performance, and ecological investigations linking performance in the wild with fitness. However, direct links between morphological variation and fitness have rarely been established. The functional morphology of butterfly flight has been investigated but selective forces acting on flight behaviour and associated wing shape have received less attention. Here, we attempt to estimate the ecological relevance of morpho-functional links established through biomechanical studies in order to understand the evolution of butterfly wing morphology. We survey the evidence for natural and sexual selection driving wing shape evolution in butterflies, and discuss how our functional knowledge may allow identification of the selective forces involved, at both the macro- and micro-evolutionary scales. Our review shows that although correlations between wing shape variation and ecological factors have been established at the macro-evolutionary level, the underlying selective pressures often remain unclear. We identify the need to investigate flight behaviour in relevant ecological contexts to detect variation in fitness-related traits. Identifying the selective regime then should guide experimental studies towards the relevant estimates of flight performance. Habitat, predators and sex-specific behaviours are likely to be major selective forces acting on wing shape evolution in butterflies. Some striking cases of morphological divergence driven by contrasting ecology involve both wing and body morphology, indicating that their interactions should be included in future studies investigating co-evolution between morphology and flight behaviour.
Collapse
Affiliation(s)
- Camille Le Roy
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier CP50, 75005, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 12 rue de l'École de Médecine, 75006, Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier CP50, 75005, Paris, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 57 rue Cuvier CP50, 75005, Paris, France
| |
Collapse
|
7
|
Bauerfeind SS, Schäfer MA, Berger D, Blanckenhorn WU, Fox CW. Replicated latitudinal clines in reproductive traits of European and North American yellow dung flies. OIKOS 2018. [DOI: 10.1111/oik.05421] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Martin A. Schäfer
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich; Zurich Switzerland
| | - David Berger
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich; Zurich Switzerland
- Dept of Ecology and Genetics, Univ. of Uppsala; Uppsala Sweden
| | - Wolf U. Blanckenhorn
- Dept of Evolutionary Biology and Environmental Studies, Univ. of Zurich; Zurich Switzerland
| | - Charles W. Fox
- Dept of Entomology, Univ. of Kentucky; S225 Ag Science Center North Lexington KY 40546-0091 USA
| |
Collapse
|
8
|
Effect of Climatic Conditions and Land Cover on Genetic Structure and Diversity of Eunica tatila (Lepidoptera) in the Yucatan Peninsula, Mexico. DIVERSITY 2018. [DOI: 10.3390/d10030079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fragmentation is the third cause of the biodiversity declination. Population genetic studies using Lepidoptera as the model species in the context of loss of habitat are scarce, particularly for tropical areas. We chose a widespread butterfly from Mexico as the model species to explore how changes of habitat characteristics (undisturbed forest, anthropogenic disturbances, and coastal areas), and climatic conditions affect genetic diversity and population structure. The Nymphalidae Eunica tatila is a common species in the Yucatan Peninsula considered to be a bio-indicator of undisturbed tropical forest, with migratory potential and a possible sex-biased dispersal. We genotyped 323 individuals collected in eight undisturbed areas, using four Inter Simple Sequence Repeats primers. Results show a high genetic diversity and no population structure. Temperature and shrub density present a positive and significant relationship with polymorphism values. Furthermore, our results show the positive effect of surrounding forest habitat on genetic diversity, confirming that E. tatila is a bio-indicator of undisturbed tropical forest. We found evidence of sex-biased dispersal. This paper represents one of the few studies on population genetics of tropical butterfly in a fragmented landscape and is, therefore, an important step in understanding the impact of habitat fragmentation on the risk of a butterflies’ decline.
Collapse
|
9
|
Reim E, Blesinger S, Förster L, Fischer K. Successful despite poor flight performance: range expansion is associated with enhanced exploratory behaviour and fast development. J Evol Biol 2018; 31:1165-1179. [PMID: 29845691 DOI: 10.1111/jeb.13294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/15/2018] [Indexed: 11/28/2022]
Abstract
Anthropogenic interference forces species to respond to changing environmental conditions. One possible response is dispersal and concomitant range shifts, allowing individuals to escape unfavourable conditions or to track the shifting climate niche. Range expansions depend on both dispersal capacity and the ability to establish populations beyond the former range. We here compare well-established core populations with recently established edge populations in the currently northward expanding butterfly Lycaena tityrus. Edge populations were characterized by shorter development times and smaller size, a higher sensitivity to high temperature and an enhanced exploratory behaviour. The differences between core and edge populations found suggest adaptation to local climates and an enhanced dispersal ability in edge populations. In particular, enhanced exploratory behaviour may be advantageous in all steps of the dispersal process and may have facilitated the current range expansion. This study describes differences associated with a current range expansion, knowledge which might be useful for a better understanding of species responses to environmental change. We further report on variation between males and females in morphology and flight behaviour, with males showing a longer flight endurance and more pronounced exploratory behaviour than females.
Collapse
Affiliation(s)
- Elisabeth Reim
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Simone Blesinger
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Lisa Förster
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| | - Klaus Fischer
- Zoological Institute and Museum, Greifswald University, Greifswald, Germany
| |
Collapse
|
10
|
Tüzün N, Op de Beeck L, Stoks R. Sexual selection reinforces a higher flight endurance in urban damselflies. Evol Appl 2017; 10:694-703. [PMID: 28717389 PMCID: PMC5511363 DOI: 10.1111/eva.12485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/06/2017] [Indexed: 01/15/2023] Open
Abstract
Urbanization is among the most important and globally rapidly increasing anthropogenic processes and is known to drive rapid evolution. Habitats in urbanized areas typically consist of small, fragmented and isolated patches, which are expected to select for a better locomotor performance, along with its underlying morphological traits. This, in turn, is expected to cause differentiation in selection regimes, as populations with different frequency distributions for a given trait will span different parts of the species' fitness function. Yet, very few studies considered differentiation in phenotypic traits associated with patterns in habitat fragmentation and isolation along urbanization gradients, and none considered differentiation in sexual selection regimes. We investigated differentiation in flight performance and flight-related traits and sexual selection on these traits across replicated urban and rural populations of the scrambling damselfly Coenagrion puella. To disentangle direct and indirect paths going from phenotypic traits over performance to mating success, we applied a path analysis approach. We report for the first time direct evidence for the expected better locomotor performance in urban compared to rural populations. This matches a scenario of spatial sorting, whereby only the individuals with the best locomotor abilities colonize the isolated urban populations. The covariation patterns and causal relationships among the phenotypic traits, performance and mating success strongly depended on the urbanization level. Notably, we detected sexual selection for a higher flight endurance only in urban populations, indicating that the higher flight performance of urban males was reinforced by sexual selection. Taken together, our results provide a unique proof of the interplay between sexual selection and adaptation to human-altered environments.
Collapse
Affiliation(s)
- Nedim Tüzün
- Laboratory of Aquatic Ecology, Evolution and ConservationUniversity of LeuvenLeuvenBelgium
| | - Lin Op de Beeck
- Laboratory of Aquatic Ecology, Evolution and ConservationUniversity of LeuvenLeuvenBelgium
| | - Robby Stoks
- Laboratory of Aquatic Ecology, Evolution and ConservationUniversity of LeuvenLeuvenBelgium
| |
Collapse
|
11
|
Ecotypic differentiation matters for latitudinal variation in energy metabolism and flight performance in a butterfly under climate change. Sci Rep 2016; 6:36941. [PMID: 27845372 PMCID: PMC5109404 DOI: 10.1038/srep36941] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/05/2016] [Indexed: 12/04/2022] Open
Abstract
Life histories of organisms may vary with latitude as they experience different thermal constraints and challenges. This geographic, intraspecific variation could be of significance for range dynamics under climate change beyond edge-core comparisons. In this study, we did a reciprocal transplant experiment between the temperature-regimes of two latitudes with an ectotherm insect, examining the effects on energy metabolism and flight performance. Pararge aegeria expanded its ecological niche from cool woodland (ancestral) to warmer habitat in agricultural landscape (novel ecotype). Northern males had higher standard metabolic rates than southern males, but in females these rates depended on their ecotype. Southern males flew for longer than northern ones. In females, body mass-corrected flight performance depended on latitude and thermal treatment during larval development and in case of the southern females, their interaction. Our experimental study provides evidence for the role of ecological differentiation at the core of the range to modulate ecophysiology and flight performance at different latitudes, which in turn may affect the climatic responsiveness of the species.
Collapse
|
12
|
Legrand D, Larranaga N, Bertrand R, Ducatez S, Calvez O, Stevens VM, Baguette M. Evolution of a butterfly dispersal syndrome. Proc Biol Sci 2016; 283:20161533. [PMID: 27683371 PMCID: PMC5046905 DOI: 10.1098/rspb.2016.1533] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/06/2016] [Indexed: 11/12/2022] Open
Abstract
The existence of dispersal syndromes contrasting disperser from resident phenotypes within populations has been intensively documented across taxa. However, how such suites of phenotypic traits emerge and are maintained is largely unknown, although deciphering the processes shaping the evolution of dispersal phenotypes is a key in ecology and evolution. In this study, we created artificial populations of a butterfly, in which we controlled for individual phenotypes and measured experimentally the roles of selection and genetic constraints on the correlations between dispersal-related traits: flight performance and wing morphology. We demonstrate that (i) trait covariations are not due to genetic correlations, (ii) the effects of selection are sex-specific, and (iii) both divergent and stabilizing selection maintain specific flight performance phenotypes and wing morphologies. Interestingly, some trait combinations are also favoured, depending on sex and fitness components. Moreover, we provide evidence for the role of (dis)assortative mating in the evolution of these dispersal-related traits. Our results suggest that dispersal syndromes may have high evolutionary potential, but also that they may be easily disrupted under particular environmental conditions.
Collapse
Affiliation(s)
- Delphine Legrand
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
| | - Nicolas Larranaga
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
| | - Romain Bertrand
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France Centre for Biodiversity Theory and Modelling (CBTM), route du CNRS, 09200 Moulis, France
| | - Simon Ducatez
- Biological Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Olivier Calvez
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
| | - Virginie M Stevens
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France
| | - Michel Baguette
- Centre National de la Recherche Scientifique and Université Paul Sabatier Toulouse III, SETE Station d'Ecologie Théorique et Expérimentale, UMR 5321, Moulis, France Muséum National d'Histoire Naturelle, Institut de Systématique, Evolution et Biodiversité, UMR 7205, 57 rue Cuvier, 75005 Paris cedex 5, France
| |
Collapse
|
13
|
Bestion E, Teyssier A, Richard M, Clobert J, Cote J. Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change. PLoS Biol 2015; 13:e1002281. [PMID: 26501958 PMCID: PMC4621050 DOI: 10.1371/journal.pbio.1002281] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/17/2015] [Indexed: 11/21/2022] Open
Abstract
Evidence has accumulated in recent decades on the drastic impact of climate change on biodiversity. Warming temperatures have induced changes in species physiology, phenology, and have decreased body size. Such modifications can impact population dynamics and could lead to changes in life cycle and demography. More specifically, conceptual frameworks predict that global warming will severely threaten tropical ectotherms while temperate ectotherms should resist or even benefit from higher temperatures. However, experimental studies measuring the impacts of future warming trends on temperate ectotherms' life cycle and population persistence are lacking. Here we investigate the impacts of future climates on a model vertebrate ectotherm species using a large-scale warming experiment. We manipulated climatic conditions in 18 seminatural populations over two years to obtain a present climate treatment and a warm climate treatment matching IPCC predictions for future climate. Warmer temperatures caused a faster body growth, an earlier reproductive onset, and an increased voltinism, leading to a highly accelerated life cycle but also to a decrease in adult survival. A matrix population model predicts that warm climate populations in our experiment should go extinct in around 20 y. Comparing our experimental climatic conditions to conditions encountered by populations across Europe, we suggest that warming climates should threaten a significant number of populations at the southern range of the distribution. Our findings stress the importance of experimental approaches on the entire life cycle to more accurately predict population and species persistence in future climates. Warmer climates accelerate the pace of life of lizards and this demographic change leads to a strong decrease in population growth rate that may ultimately result in population extinctions. Ongoing climate change has potentially drastic impacts on biodiversity. Because their body temperature depends on their external environment, ectotherm (“cold-blooded”) species are thought to be more at risk from warming climates than endotherm (“warm-blooded”) species that regulate their temperature internally. Tropical ectotherms should be particularly threatened by climate change, while temperate ectotherms should resist or even benefit from higher temperatures. While most of the evidence on the impacts of climate change comes from long-term field studies, experimental evidence of the impact of future climatic conditions is still lacking. Here we investigate the impacts of future climates on a temperate lizard using a seminatural warming experiment. We find that warmer temperatures led to a highly accelerated life cycle and a decrease in adult survival. As a result, we postulate that populations in such warm climates would be expected to go extinct in around 20 y. Comparing our experimental conditions to climatic conditions in European populations of common lizards, we show that many populations should be threatened in the next century, particularly in Southern Europe. Our findings challenge the optimistic view that climate change is only a threat for tropical ectotherms and stress the importance of experimental approaches to predicting the consequences of future warming trends.
Collapse
Affiliation(s)
- Elvire Bestion
- CNRS USR 2936, Station d'Ecologie Expérimentale de Moulis, Moulis, France
- CNRS, Université Toulouse III Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
- Environmental and Sustainability Institute, College of Life and Environmental Sciences, University of Exeter, Penryn, United Kingdom
- * E-mail: (EB); (JC)
| | - Aimeric Teyssier
- CNRS, Université Toulouse III Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
- Terrestrial Ecology Unit, Ghent University, Ghent, Belgium
| | - Murielle Richard
- CNRS USR 2936, Station d'Ecologie Expérimentale de Moulis, Moulis, France
| | - Jean Clobert
- CNRS USR 2936, Station d'Ecologie Expérimentale de Moulis, Moulis, France
| | - Julien Cote
- CNRS, Université Toulouse III Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
- * E-mail: (EB); (JC)
| |
Collapse
|
14
|
Morphological clines and weak drift along an urbanization gradient in the butterfly, Pieris rapae. PLoS One 2013; 8:e83095. [PMID: 24386146 PMCID: PMC3873920 DOI: 10.1371/journal.pone.0083095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 11/04/2013] [Indexed: 01/28/2023] Open
Abstract
Urban areas are increasing globally, providing opportunities for biodiversity researchers to study the process in which species become established in novel, highly disturbed habitats. This ecological process can be understood through analyses of morphological and genetic variation, which can shed light on patterns of neutral and adaptive evolution. Previous studies have shown that urban populations often diverge genetically from non-urban source populations. This could occur due to neutral genetic drift, but an alternative is that selection could lead to allele frequency changes in urban populations. The development of genome scan methods provides an opportunity to investigate these outcomes from samples of genetic variation taken along an urbanization gradient. Here we examine morphological variation in wing size and diversity at neutral amplified fragment length polymorphisms in the butterfly Pieris rapae L. (Lepidoptera, Pieridae) sampled from the center to the periphery of Marseille. We utilize established and novel environmental correlation approaches to scan genetic variation for evidence of selection. We find significant morphological differences in urban populations, as well as weak genetic structure and decreased genetic diversity in urban versus non-urban sites. However, environmental correlation tests provide little support for selection in our dataset. Our comparison of different methods and allele frequency clines suggests that loci identified as significant are false positives. Although there is some indication that selection may be acting on wing size in urban butterflies, genetic analyses suggest P. rapae are undergoing neutral drift.
Collapse
|
15
|
Trochet A, Legrand D, Larranaga N, Ducatez S, Calvez O, Cote J, Clobert J, Baguette M. Population sex ratio and dispersal in experimental, two-patch metapopulations of butterflies. J Anim Ecol 2013; 82:946-55. [PMID: 23600890 DOI: 10.1111/1365-2656.12082] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 03/10/2013] [Indexed: 11/27/2022]
Abstract
1. Sex-biased dispersal, that is, the difference in dispersal between males and females, is thought to be the consequence of any divergent evolutionary responses between sexes. In anisogamous species, asymmetry in parental investment may lead to sexual conflict, which entails male-male competition (for sexual partner access), female-female competition (for feeding or egg-laying habitat patches) and/or male-female competition (antagonistic co-evolution). 2. As competition is one of the main causes of dispersal evolution, intra- and intersexual competition should have strong consequences on sex-biased dispersal. However, very few experimental studies, if any, have simultaneously addressed the effect of biased sex ratio on (i) each dispersal stage (emigration, transience, immigration), (ii) the dispersal phenotype and (iii) the colonization success of new habitat in order to fully separate the effects of varying male and female density. 3. Here, we used the Metatron, a unique experimental system composed of 48 interconnected enclosed patches dedicated to the study of dispersal in meta-ecosystems, to investigate the effect of sex ratio on dispersal in a butterfly. We created six populations with three different sex ratios in pairs of patches and recorded individual movements in these simple metapopulations. 4. Emigration was higher when the proportion of males was higher, and individuals reached the empty patch at a higher rate when the sex ratio in the departure patch was balanced. Males had a better dispersal success than females, which had a lower survival rate during dispersal and after colonization. We also showed that sex and wing size are major components of the dispersal response. 5. We did not observe sex-biased dispersal; our results thus suggest that female harassment by males and male-male competition might be more important mechanisms for the dispersal of females and males, than the search for a mating partner. Furthermore, the demonstration of a differential mortality between males and females during dispersal provides causal hypotheses of the evolution of sex-biased dispersal.
Collapse
Affiliation(s)
- Audrey Trochet
- CNRS USR 2936. Station d'Ecologie Expérimentale du CNRS, route du CNRS, 09200 Moulis, France
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Larranaga N, Baguette M, Calvez O, Trochet A, Ducatez S, Legrand D. Intra- and inter-individual variations in flight direction in a migratory butterfly co-vary with individual mobility. J Exp Biol 2013; 216:3156-63. [DOI: 10.1242/jeb.082883] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Flight direction is a major component of animal's migratory success. However, few studies focused on variation in flight direction both between and within individuals, which is likely to be correlated with other traits implied in migration processes. We report patterns of intra- and inter-individual variation in flight direction in the large white butterfly Pieris brassicae (Linnaeus, 1758). The presence of inter-individual variation in flight direction for individuals tested in the same conditions suggests that this trait is inherited in P. brassicae and we propose that a rapid loss of migratory skills may exist in the absence of selection for migration. The magnitude of intra-individual variation was negatively correlated to two surrogates of the potential for migration: mobility and wing length. Highly mobile and longed-winged individuals within the same family were found to fly in similar directions, whereas less mobile and short-winged individuals displayed divergent flight direction compared to the average direction of their kin. There was also a negative correlation between the variance to the mean flight direction of a family and its average mobility, but no correlation with wing length. We discuss these issues in terms of evolution of traits potentially implied both in migration and dispersal in P. brassicae.
Collapse
|