1
|
Das Roy R, Hallikas O, Christensen MM, Renvoisé E, Jernvall J. Chromosomal neighbourhoods allow identification of organ specific changes in gene expression. PLoS Comput Biol 2021; 17:e1008947. [PMID: 34506480 PMCID: PMC8457456 DOI: 10.1371/journal.pcbi.1008947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/22/2021] [Accepted: 08/26/2021] [Indexed: 11/19/2022] Open
Abstract
Although most genes share their chromosomal neighbourhood with other genes, distribution of genes has not been explored in the context of individual organ development; the common focus of developmental biology studies. Because developmental processes are often associated with initially subtle changes in gene expression, here we explored whether neighbouring genes are informative in the identification of differentially expressed genes. First, we quantified the chromosomal neighbourhood patterns of genes having related functional roles in the mammalian genome. Although the majority of protein coding genes have at least five neighbours within 1 Mb window around each gene, very few of these neighbours regulate development of the same organ. Analyses of transcriptomes of developing mouse molar teeth revealed that whereas expression of genes regulating tooth development changes, their neighbouring genes show no marked changes, irrespective of their level of expression. Finally, we test whether inclusion of gene neighbourhood in the analyses of differential expression could provide additional benefits. For the analyses, we developed an algorithm, called DELocal that identifies differentially expressed genes by comparing their expression changes to changes in adjacent genes in their chromosomal regions. Our results show that DELocal removes detection bias towards large changes in expression, thereby allowing identification of even subtle changes in development. Future studies, including the detection of differential expression, may benefit from, and further characterize the significance of gene-gene neighbour relationships. Development of organs is typically associated with small and hard to detect changes in gene expression. Here we examined how often genes regulating specific organs are neighbours to each other in the genome, and whether this gene neighbourhood helps in the detection of changes in gene expression. We found that genes regulating individual organ development are very rarely close to each other in the mouse and human genomes. We built an algorithm, called DELocal, to detect changes in gene expression that incorporates information about neighbouring genes. Using transcriptomes of developing mouse molar teeth containing gene expression profiles of thousands of genes, we show how genes regulating tooth development are ranked high by DELocal even if their expression level changes are subtle. We propose that developmental biology studies can benefit from gene neighbourhood analyses in the detection of differential expression and identification of organ specific genes.
Collapse
Affiliation(s)
- Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- * E-mail: (RDR); (JJ)
| | - Outi Hallikas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Elodie Renvoisé
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
- * E-mail: (RDR); (JJ)
| |
Collapse
|
2
|
Hallikas O, Das Roy R, Christensen MM, Renvoisé E, Sulic AM, Jernvall J. System-level analyses of keystone genes required for mammalian tooth development. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 336:7-17. [PMID: 33128445 PMCID: PMC7894285 DOI: 10.1002/jez.b.23009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/21/2022]
Abstract
When a null mutation of a gene causes a complete developmental arrest, the gene is typically considered essential for life. Yet, in most cases, null mutations have more subtle effects on the phenotype. Here we used the phenotypic severity of mutations as a tool to examine system‐level dynamics of gene expression. We classify genes required for the normal development of the mouse molar into different categories that range from essential to subtle modification of the phenotype. Collectively, we call these the developmental keystone genes. Transcriptome profiling using microarray and RNAseq analyses of patterning stage mouse molars show highly elevated expression levels for genes essential for the progression of tooth development, a result reminiscent of essential genes in single‐cell organisms. Elevated expression levels of progression genes were also detected in developing rat molars, suggesting evolutionary conservation of this system‐level dynamics. Single‐cell RNAseq analyses of developing mouse molars reveal that even though the size of the expression domain, measured in the number of cells, is the main driver of organ‐level expression, progression genes show high cell‐level transcript abundances. Progression genes are also upregulated within their pathways, which themselves are highly expressed. In contrast, a high proportion of the genes required for normal tooth patterning are secreted ligands that are expressed in fewer cells than their receptors and intracellular components. Overall, even though expression patterns of individual genes can be highly different, conserved system‐level principles of gene expression can be detected using phenotypically defined gene categories. The phenotypic severity of mutations on mouse teeth is used to classify genes. Genes essential for the progression of odontogenesis are highly expressed at the organ and cell level. Many of the genes required for normal patterning are locally expressed ligands.
Collapse
Affiliation(s)
- Outi Hallikas
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Rishi Das Roy
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Elodie Renvoisé
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Lycée des Métiers Claude Chappe, Arnage, France
| | - Ana-Marija Sulic
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jukka Jernvall
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.,Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland
| |
Collapse
|
3
|
Thesleff I. From understanding tooth development to bioengineering of teeth. Eur J Oral Sci 2019; 126 Suppl 1:67-71. [PMID: 30178557 DOI: 10.1111/eos.12421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 12/30/2022]
Abstract
Remarkable breakthroughs in the fields of developmental biology and stem cell biology during the last 15 yr have led to a new level of understanding regarding how teeth develop and how stem cells can be programmed. As a result, the possibilities of growing new teeth and of tooth bioengineering have been explored. Currently, a great deal is known about how signaling molecules and genes regulate tooth development, and modern research using transgenic mouse models has demonstrated that it is possible to induce the formation of new teeth by tinkering with the signaling networks that govern early tooth development. A breakthrough in stem cell biology in 2006 opened up the possibility that a patient's own cells can be programmed to develop into pluripotent stem cells and used for building new tissues and organs. At present, active research in numerous laboratories around the world addresses the question of how to program the stem and progenitor cells to develop into tooth-specific cell types. Taken together, the remarkable progress in developmental and stem cell biology is now feeding hopes of growing new teeth in the dental clinic in the not-too-distant future.
Collapse
Affiliation(s)
- Irma Thesleff
- Developmental Biology Research Program, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Fauzi NH, Ardini YD, Zainuddin Z, Lestari W. A review on non-syndromic tooth agenesis associated with PAX9 mutations. JAPANESE DENTAL SCIENCE REVIEW 2018; 54:30-36. [PMID: 29628999 PMCID: PMC5884223 DOI: 10.1016/j.jdsr.2017.08.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/07/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022] Open
Abstract
Tooth agenesis in the reduction of tooth number which includes hypodontia, oligodontia and anodontia is caused by disturbances and gene mutations that occur during odontogenesis. To date, several genetic mutations that unlock the causes of non-syndromic tooth agenesis are being discovered; these have been associated with certain illnesses because tooth development involves the interaction of several genes for tooth epithelium and mesenchyme odontogenesis. Mutation of candidate genes PAX9 and MSX1 have been identified as the main causes of hypodontia and oligodontia; meanwhile, AXIN2 mutation is associated with anodontia. Previous study using animal models reported that PAX9-deficient knockout mice exhibit missing molars due to an arrest of tooth development at the bud stage. PAX9 frameshift, missense and nonsense mutations are reported to be responsible; however, the most severe condition showed by the phenotype is caused by haploinsufficiency. This suggests that PAX9 is dosage-sensitive. Understanding the mechanism of genetic mutations will benefit clinicians and human geneticists in future alternative treatment investigations.
Collapse
Affiliation(s)
- Nurul Hasyiqin Fauzi
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Malaysia
| | - Yunita Dewi Ardini
- Department of Pediatric Dentistry, Kulliyyah of Dentistry, International Islamic University Malaysia, Malaysia
| | - Zarina Zainuddin
- Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, Malaysia
| | - Widya Lestari
- Department of Oral Biology, Kulliyyah of Dentistry, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| |
Collapse
|
5
|
Yamaguchi T, Hosomichi K, Yano K, Kim YI, Nakaoka H, Kimura R, Otsuka H, Nonaka N, Haga S, Takahashi M, Shirota T, Kikkawa Y, Yamada A, Kamijo R, Park SB, Nakamura M, Maki K, Inoue I. Comprehensive genetic exploration of selective tooth agenesis of mandibular incisors by exome sequencing. Hum Genome Var 2017; 4:17005. [PMID: 28265457 PMCID: PMC5321669 DOI: 10.1038/hgv.2017.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/23/2016] [Accepted: 12/27/2016] [Indexed: 12/21/2022] Open
Abstract
Tooth agenesis is described as the absence of one or more teeth. It is caused by a failure in tooth development and is one of the most common human developmental anomalies. We herein report genomic analyses of selective mandibular incisor agenesis (SMIA) using exome sequencing. Two Japanese families with SMIA were subjected to exome sequencing, and family with sequence similarity 65 member A (FAM65), nuclear factor of activated T-cells 3 (NFATC3) and cadherin-related 23 gene (CDH23) were detected. In the follow-up study, 51 Japanese and 32 Korean sporadic patients with SMIA were subjected to exome analyses, and 18 reported variants in PAX9, AXIN2, EDA, EDAR, WNT10A, BMP2 and GREM2 and 27 variants of FAM65, NFATC3 and CDH23 were found in 38 patients. Our comprehensive genetic study of SMIA will pave the way for a full understanding of the genetic etiology of SMIA and provide targets for treatment.
Collapse
Affiliation(s)
- Tetsutaro Yamaguchi
- Department of Orthodontics, School of Dentistry, Showa University , Tokyo, Japan
| | - Kazuyoshi Hosomichi
- Division of Human Genetics, National Institute of Genetics, Shizuoka, Japan; Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | | | - Yong-Il Kim
- Department of Orthodontics, School of Dentistry, Pusan National University , Busan, South Korea
| | - Hirofumi Nakaoka
- Division of Human Genetics, National Institute of Genetics , Shizuoka, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus , Okinawa, Japan
| | - Hirotada Otsuka
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry , Tokyo, Japan
| | - Naoko Nonaka
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry , Tokyo, Japan
| | - Shugo Haga
- Department of Orthodontics, School of Dentistry, Showa University , Tokyo, Japan
| | - Masahiro Takahashi
- Department of Orthodontics, School of Dentistry, Showa University , Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University , Tokyo, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Tokyo Metropolitan Institute of Medical Science , Tokyo, Japan
| | - Atsushi Yamada
- Department of Biochemistry, School of Dentistry, Showa University , Tokyo, Japan
| | - Ryutaro Kamijo
- Department of Biochemistry, School of Dentistry, Showa University , Tokyo, Japan
| | - Soo-Byung Park
- Department of Orthodontics, School of Dentistry, Pusan National University , Busan, South Korea
| | - Masanori Nakamura
- Department of Oral Anatomy and Developmental Biology, Showa University School of Dentistry , Tokyo, Japan
| | - Koutaro Maki
- Department of Orthodontics, School of Dentistry, Showa University , Tokyo, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics , Shizuoka, Japan
| |
Collapse
|
6
|
Jussila M, Aalto AJ, Sanz Navarro M, Shirokova V, Balic A, Kallonen A, Ohyama T, Groves AK, Mikkola ML, Thesleff I. Suppression of epithelial differentiation by Foxi3 is essential for molar crown patterning. Development 2015; 142:3954-63. [PMID: 26450968 DOI: 10.1242/dev.124172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/27/2015] [Indexed: 12/27/2022]
Abstract
Epithelial morphogenesis generates the shape of the tooth crown. This is driven by patterned differentiation of cells into enamel knots, root-forming cervical loops and enamel-forming ameloblasts. Enamel knots are signaling centers that define the positions of cusp tips in a tooth by instructing the adjacent epithelium to fold and proliferate. Here, we show that the forkhead-box transcription factor Foxi3 inhibits formation of enamel knots and cervical loops and thus the differentiation of dental epithelium in mice. Conditional deletion of Foxi3 (Foxi3 cKO) led to fusion of molars with abnormally patterned shallow cusps. Foxi3 was expressed in the epithelium, and its expression was reduced in the enamel knots and cervical loops and in ameloblasts. Bmp4, a known inducer of enamel knots and dental epithelial differentiation, downregulated Foxi3 in wild-type teeth. Using genome-wide gene expression profiling, we showed that in Foxi3 cKO there was an early upregulation of differentiation markers, such as p21, Fgf15 and Sfrp5. Different signaling pathway components that are normally restricted to the enamel knots were expanded in the epithelium, and Sostdc1, a marker of the intercuspal epithelium, was missing. These findings indicated that the activator-inhibitor balance regulating cusp patterning was disrupted in Foxi3 cKO. In addition, early molar bud morphogenesis and, in particular, formation of the suprabasal epithelial cell layer were impaired. We identified keratin 10 as a marker of suprabasal epithelial cells in teeth. Our results suggest that Foxi3 maintains dental epithelial cells in an undifferentiated state and thereby regulates multiple stages of tooth morphogenesis.
Collapse
Affiliation(s)
- Maria Jussila
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Anne J Aalto
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Maria Sanz Navarro
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Vera Shirokova
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Anamaria Balic
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Aki Kallonen
- Division of Materials Physics, Department of Physics, University of Helsinki, PO Box 64, Helsinki 00014, Finland
| | - Takahiro Ohyama
- Department of Otolaryngology, Head & Neck Surgery and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033-4503, USA
| | - Andrew K Groves
- Program in Developmental Biology, Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, BCM295, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Marja L Mikkola
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| | - Irma Thesleff
- Research Program in Developmental Biology, Institute of Biotechnology, University of Helsinki, Biocenter 1, PO Box 56, Helsinki 00014, Finland
| |
Collapse
|
7
|
Towards unraveling the human tooth transcriptome: the dentome. PLoS One 2015; 10:e0124801. [PMID: 25849153 PMCID: PMC4388651 DOI: 10.1371/journal.pone.0124801] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/18/2015] [Indexed: 01/03/2023] Open
Abstract
The goal of the study was to characterize the transcriptome profiles of human ameloblasts and odontoblasts, evaluate molecular pathways and advance our knowledge of the human "dentome". Laser capture microdissection was used to isolate odontoblasts and ameloblasts from human tooth buds (15-20week gestational age) from 4 fetuses. RNA was examined using Agilent 41k whole genome arrays at 2 different stages of enamel formation, presecretory and secretory. Probe detection was considered against the array negative control to control for background noise. Differential expression was examined using Significance Analysis of Microarrays (SAM) 4.0 between different cell types and developmental stages with a false discovery rate of 20%. Pathway analysis was conducted using Ingenuity Pathway Analysis software. We found that during primary tooth formation, odontoblasts expressed 14,802 genes, presecretory ameloblasts 15,179 genes and secretory ameloblasts 14,526 genes. Genes known to be active during tooth development for each cell type (eg COL1A1, AMELX) were shown to be expressed by our approach. Exploring further into the list of differentially expressed genes between the motile odontoblasts and non-motile presecretory ameloblasts we found several genes of interest that could be involved in cell movement (FN1, LUM, ASTN1). Furthermore, our analysis indicated that the Phospholipase C and ERK5 pathways, that are important for cell movement, were activated in the motile odontoblasts. In addition our pathway analysis identified WNT3A and TGFB1 as important upstream contributors. Recent studies implicate these genes in the development of Schimke immuno-osseous dysplasia. The utility of laser capture microdissection can be a valuable tool in the examination of specific tissues or cell populations present in human tooth buds. Advancing our knowledge of the human dentome and related molecular pathways provides new insights into the complex mechanisms regulating odontogenesis and biomineralization. This knowledge could prove useful in future studies of odontogenic related pathologies.
Collapse
|
8
|
Mu YD, Xu Z, Contreras CI, McDaniel JS, Donly KJ, Chen S. Mutational analysis of AXIN2, MSX1, and PAX9 in two Mexican oligodontia families. GENETICS AND MOLECULAR RESEARCH 2013; 12:4446-58. [PMID: 24222224 DOI: 10.4238/2013.october.10.10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The genes for axin inhibition protein 2 (AXIN2), msh homeobox 1 (MSX1), and paired box gene 9 (PAX9) are involved in tooth root formation and tooth development. Mutations of the AXIN2, MSX1, and PAX9 genes are associated with non-syndromic oligodontia. In this study, we investigated phenotype and AXIN2, MSX1, and PAX9 gene variations in two Mexican families with non-syndromic oligodontia. Individuals from two families underwent clinical examinations, including an intra-oral examination and panoramic radiograph. Retrospective data were reviewed, and peripheral blood samples were collected. The exons and exon-intronic boundaries of the AXIN2, MSX1, and PAX9 genes were sequenced and analyzed. Protein and messenger RNA structures were predicted using bioinformative software programs. Clinical and oral examinations revealed isolated non-syndromic oligodontia in the two Mexican families. The average number of missing teeth was 12. The sequence analysis of exons and exon-intronic regions of AXIN2, MSX1, and PAX9 revealed 11 single-nucleotide polymorphisms (SNPs), including seven in AXIN2, two in MSX1, and three in PAX9. One novel SNP of MSX1, c.476T>G (Leu159Arg), was found in all of the studied patients in the families. MSX1 Leu159Arg and PAX9 Ala240Pro change protein and messenger RNA structures. Our findings suggested that a combined reduction of MSX1 and PAX9 gene dosages increased the risk for oligodontia in the Mexican families, as in vivo investigation has indicated that interaction between Msx1 and Pax9 is required for tooth development.
Collapse
Affiliation(s)
- Y D Mu
- Department of Developmental Dentistry, Dental School, University of Texas Health Science Center, San Antonio, Texas, USA
| | | | | | | | | | | |
Collapse
|
9
|
Mu Y, Xu Z, Contreras CI, McDaniel JS, Donly KJ, Chen S. Phenotype characterization and sequence analysis of BMP2 and BMP4 variants in two Mexican families with oligodontia. GENETICS AND MOLECULAR RESEARCH 2012; 11:4110-20. [PMID: 23079991 DOI: 10.4238/2012.september.25.5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Both BMP2 and BMP4 are involved in tooth development. We examined phenotypes and BMP2 and BMP4 gene variations in two Mexican oligodontia families. Physical and oral examinations and panoramic radiographs were performed on affected and unaffected members in these two families. The affected members lacked six or more teeth. DNA sequencing was performed to detect BMP2 and BMP4 gene variations. Three single nucleotide polymorphisms (SNPs) in BMP2 and BMP4 genes were identified in the two families, including one synonymous and two missense SNPs: BMP2 c261A>G, pS87S, BMP2 c570A>T, pR190S, and BMP4 c455T>C, pV152A. Among the six affected patients, 67% carried "GG" or "AG" genotype in BMP2 c261A>G and four were "TT" or "AT" genotype in BMP2 c570A>T (pR190S). Polymorphism of BMP4 c455T>C resulted in amino acid changes of Val/Ala (pV152A). BMP2 c261A>G and BMP4 c455T>C affect mRNA stability. This was the first time that BMP2 and BMP4 SNPs were observed in Mexican oligodontia families.
Collapse
Affiliation(s)
- Y Mu
- Department of Developmental Dentistry, Dental School, University of Texas, Health Science Center, San Antonio, TX, USA
| | | | | | | | | | | |
Collapse
|
10
|
Laugel-Haushalter V, Langer A, Marrie J, Fraulob V, Schuhbaur B, Koch-Phillips M, Dollé P, Bloch-Zupan A. From the transcription of genes involved in ectodermal dysplasias to the understanding of associated dental anomalies. Mol Syndromol 2012; 3:158-68. [PMID: 23239958 DOI: 10.1159/000342833] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2012] [Indexed: 01/17/2023] Open
Abstract
Orodental anomalies are one aspect of rare diseases and are increasingly identified as diagnostic and predictive traits. To understand the rationale behind gene expression during tooth or other ectodermal derivative development and the disruption of odontogenesis or hair and salivary gland formation in human syndromes we analyzed the expression patterns of a set of genes (Irf6, Nfkbia, Ercc3, Evc2, Map2k1) involved in human ectodermal dysplasias in mouse by in situ hybridization. The expression patterns of Nfkbia, Ercc3 and Evc2 during odontogenesis had never been reported previously. All genes were indeed transcribed in different tissues/organs of ectodermal origin. However, for Nfkbia, Ercc3, Evc2, and Map2k1, signals were also present in the ectomesenchymal components of the tooth germs. These expression patterns were consistent in timing and localization with the known dental anomalies (tooth agenesis, microdontia, conical shape, enamel hypoplasia) encountered in syndromes resulting from mutations in those genes. They could also explain the similar orodental anomalies encountered in some of the corresponding mutant mouse models. Translational approaches in development and medicine are relevant to gain understanding of the molecular events underlying clinical manifestations.
Collapse
Affiliation(s)
- V Laugel-Haushalter
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (UMR 7104), Institut National de la Santé et de la Recherche Médicale (U 964), Université de Strasbourg, Illkirch, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Boeira Junior BR, Echeverrigaray S. Novel missense mutation in PAX9 gene associated with familial tooth agenesis. J Oral Pathol Med 2012; 42:99-105. [DOI: 10.1111/j.1600-0714.2012.01193.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
12
|
Boeira Junior BR, Echeverrigaray S. Polymorphism in the MSX1 gene in a family with upper lateral incisor agenesis. Arch Oral Biol 2012; 57:1423-8. [PMID: 22591773 DOI: 10.1016/j.archoralbio.2012.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/06/2012] [Accepted: 04/22/2012] [Indexed: 11/29/2022]
Abstract
OBJECTIVE The MSX1 gene plays a key role in odontogenesis regulation, particularly during early stages. Since only a few genetic variants have thus far been associated with non-syndromic tooth agenesis, we screened for mutations in this gene, aiming to detect a relationship between genotype and phenotype. DESIGN The sample consisted of one proband with non-syndromic hypodontia involving upper lateral incisors, three relatives and ten unaffected controls. The proband and two affected relatives showed the same phenotype. DNA was extracted from buccal epithelial cells, and direct sequencing was performed. The two exons of MSX1 were first sequenced in the proband. When an alteration was detected, his relatives were investigated by the same method. RESULTS We identified the known polymorphism *6C>T in the homozygous state in all three affected family members. The unaffected father was heterozygous and ten control samples were negative for the *6C>T polymorphism. CONCLUSIONS The *6C>T polymorphism, when homozygous, may contribute to agenesis of upper lateral incisors. However, since the *6C>T polymorphism is quite common, additional genes must be involved in this phenotype.
Collapse
Affiliation(s)
- B R Boeira Junior
- Institute of Biotechnology, Biological Sciences Center, University of Caxias do Sul, Caxias do Sul, Brazil.
| | | |
Collapse
|
13
|
Michon F. Tooth evolution and dental defects: From genetic regulation network to micro-RNA fine-tuning. ACTA ACUST UNITED AC 2011; 91:763-9. [DOI: 10.1002/bdra.20787] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 12/09/2010] [Accepted: 01/10/2011] [Indexed: 11/06/2022]
|
14
|
Tooth morphogenesis and ameloblast differentiation are regulated by micro-RNAs. Dev Biol 2010; 340:355-68. [DOI: 10.1016/j.ydbio.2010.01.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Revised: 01/13/2010] [Accepted: 01/18/2010] [Indexed: 12/26/2022]
|
15
|
Silva ER, Reis-Filho CR, Napimoga MH, Alves JB. Polymorphism in the Msx1 gene associated with hypodontia in a Brazilian family. J Oral Sci 2010; 51:341-5. [PMID: 19776500 DOI: 10.2334/josnusd.51.341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Tooth development is regulated by a reciprocal series of epithelial-mesenchymal interactions. With the large number of genes involved in the odontogenesis process, the opportunity for mutations to disrupt this process is high. Mutational analysis has revealed genes that are major causes of non-syndromic hypodontia. The most common permanent missing teeth are the third molars, second premolars, and maxillary lateral incisors. Although hypodontia does not represent a serious public health problem, it may cause masticatory and speech dysfunctions and esthetic problems. Msx1 (Muscle Segment Box) is believed to play an important role in tooth development. To further investigate the role of the gene in human hypodontia, we analyzed genotypes in a family with hypodontia using the SSCP assay. Examinations of all affected and unaffected members of the family studied indicated that 5 of the 10 family members had hypodontia, and it was possible to observe polymorphisms/mutation by SSCP as bands with an anomalous migration pattern in individuals with hypodontia. Our data suggest that Msx1 gene polymorphism is associated with hypodontia.
Collapse
Affiliation(s)
- Elisângela R Silva
- Laboratory of Biopathology and Molecular Biology, University of Uberaba, Minas Gerais, Brazil.
| | | | | | | |
Collapse
|
16
|
Swinnen S, Bailleul-Forestier I, Arte S, Nieminen P, Devriendt K, Carels C. Investigating the etiology of multiple tooth agenesis in three sisters with severe oligodontia. Orthod Craniofac Res 2008; 11:24-31. [PMID: 18199077 DOI: 10.1111/j.1601-6343.2008.00410.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To describe the dentofacial phenotypes of three sisters with severe non-syndromic oligodontia, to report on the mutation analysis in three genes, previously shown to cause various phenotypes of non-syndromic oligodontia and in two other suspected genes. Based on the phenotypes in the pedigree of this family, the different possible patterns of transmission are discussed. METHODS Anamnestic data and a panoramic radiograph were taken to study the phenotype of the three sisters and their first-degree relatives. Blood samples were also taken to obtain their karyotypes and DNA samples. Mutational screening was performed for the MSX1, PAX9, AXIN2, DLX1 and DLX2 genes. RESULTS The probands' pedigree showed evidence for a recessive or multifactorial inheritance pattern. Normal chromosomal karyotypes were found and - despite the severe oligodontia present in all three sisters - no mutation appeared to be present in the five genes studied so far in these patients. CONCLUSIONS In the three sisters reported, their common oligodontia phenotype is not caused by mutations in the coding regions of MSX1, PAX9, AXIN2, DLX1 or DLX2 genes, but genetic factors most probably play a role as all three sisters were affected. Environmental and epigenetic factors as well as genes regulating odontogenesis need further in vivo and in vitro investigation to explain the phenotypic heterogeneity and to increase our understanding of the odontogenic processes.
Collapse
Affiliation(s)
- S Swinnen
- Department of Orthodontics, School of Dentistry, Oral Pathology and Maxillofacial Surgery, Catholic University Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
17
|
Davit-Béal T, Chisaka H, Delgado S, Sire JY. Amphibian teeth: current knowledge, unanswered questions, and some directions for future research. Biol Rev Camb Philos Soc 2007; 82:49-81. [PMID: 17313524 DOI: 10.1111/j.1469-185x.2006.00003.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elucidation of the mechanisms controlling early development and organogenesis is currently progressing in several model species and a new field of research, evolutionary developmental biology, which integrates developmental and comparative approaches, has emerged. Although the expression pattern of many genes during tooth development in mammals is known, data on other lineages are virtually non-existent. Comparison of tooth development, and particularly of gene expression (and function) during tooth morphogenesis and differentiation, in representative species of various vertebrate lineages is a prerequisite to understand what makes one tooth different from another. Amphibians appear to be good candidates for such research for several reasons: tooth structure is similar to that in mammals, teeth are renewed continuously during life (=polyphyodonty), some species are easy to breed in the laboratory, and a large amount of morphological data are already available on diverse aspects of tooth biology in various species. The aim of this review is to evaluate current knowledge on amphibian teeth, principally concerning tooth development and replacement (including resorption), and changes in morphology and structure during ontogeny and metamorphosis. Throughout this review we highlight important questions which remain to be answered and that could be addressed using comparative morphological studies and molecular techniques. We illustrate several aspects of amphibian tooth biology using data obtained for the caudate Pleurodeles waltl. This salamander has been used extensively in experimental embryology research during the past century and appears to be one of the most favourable amphibian species to use as a model in studies of tooth development.
Collapse
Affiliation(s)
- Tiphaine Davit-Béal
- UMR 7138-Systématique, Adaptation, Evolution, Université Pierre & Marie Curie-Paris 6 Case 7077, 7 Quai St-Bernard, Paris 75005, France
| | | | | | | |
Collapse
|
18
|
Foster BL, Popowics TE, Fong HK, Somerman MJ. Advances in defining regulators of cementum development and periodontal regeneration. Curr Top Dev Biol 2007; 78:47-126. [PMID: 17338915 DOI: 10.1016/s0070-2153(06)78003-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Substantial advancements have been made in defining the cells and molecular signals that guide tooth crown morphogenesis and development. As a result, very encouraging progress has been made in regenerating crown tissues by using dental stem cells and recombining epithelial and mesenchymal tissues of specific developmental ages. To date, attempts to regenerate a complete tooth, including the critical periodontal tissues of the tooth root, have not been successful. This may be in part due to a lesser degree of understanding of the events leading to the initiation and development of root and periodontal tissues. Controversies still exist regarding the formation of periodontal tissues, including the origins and contributions of cells, the cues that direct root development, and the potential of these factors to direct regeneration of periodontal tissues when they are lost to disease. In recent years, great strides have been made in beginning to identify and characterize factors contributing to formation of the root and surrounding tissues, that is, cementum, periodontal ligament, and alveolar bone. This review focuses on the most exciting and important developments over the last 5 years toward defining the regulators of tooth root and periodontal tissue development, with special focus on cementogenesis and the potential for applying this knowledge toward developing regenerative therapies. Cells, genes, and proteins regulating root development are reviewed in a question-answer format in order to highlight areas of progress as well as areas of remaining uncertainty that warrant further study.
Collapse
Affiliation(s)
- Brian L Foster
- Department of Periodontics, School of Dentistry, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
19
|
Borday-Birraux V, Van der Heyden C, Debiais-Thibaud M, Verreijdt L, Stock DW, Huysseune A, Sire JY. Expression of Dlx genes during the development of the zebrafish pharyngeal dentition: evolutionary implications. Evol Dev 2006; 8:130-41. [PMID: 16509892 DOI: 10.1111/j.1525-142x.2006.00084.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to investigate similarities and differences in genetic control of development among teeth within and between species, we determined the expression pattern of all eight Dlx genes of the zebrafish during development of the pharyngeal dentition and compared these data with that reported for mouse molar tooth development. We found that (i) dlx1a and dlx6a are not expressed in teeth, in contrast to their murine orthologs, Dlx1 and Dlx6; (ii) the expression of the six other zebrafish Dlx genes overlaps in time and space, particularly during early morphogenesis; (iii) teeth in different locations and generations within the zebrafish dentition differ in the number of genes expressed; (iv) expression similarities and differences between zebrafish Dlx genes do not clearly follow phylogenetic and linkage relationships; and (v) similarities and differences exist in the expression of zebrafish and mouse Dlx orthologs. Taken together, these results indicate that the Dlx gene family, despite having been involved in vertebrate tooth development for over 400 million years, has undergone extensive diversification of expression of individual genes both within and between dentitions. The latter type of difference may reflect the highly specialized dentition of the mouse relative to that of the zebrafish, and/or genome duplication in the zebrafish lineage facilitating a redistribution of Dlx gene function during odontogenesis.
Collapse
|
20
|
Van der Heyden C, Allizard F, Sire JY, Huysseune A. Tooth development in vitro in two teleost fish, the cichlid Hemichromis bimaculatus and the cyprinid Danio rerio. Cell Tissue Res 2005; 321:375-89. [PMID: 15968550 DOI: 10.1007/s00441-004-1036-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 11/02/2004] [Indexed: 10/25/2022]
Abstract
A technique for organotypic in vitro culture with serum-free medium was tested for its appropriateness to mimic normal odontogenesis in the cichlid fish Hemichromis bimaculatus and the zebrafish Danio rerio. Serial semithin sections were observed by light microscopy to collect data on tooth patterning and transmission electron microscopy was used to compare cellular and extracellular features of tooth germs developing in vitro with the situation in vivo. Head explants of H. bimaculatus from 120 h post-fertilization (hPF) to 8.5 days post-fertilization (dPF) and of zebrafish from 45 hPF to 79 hPF and adults kept in culture for 3, 4 or 7 days revealed that tooth germs developed in vitro from explants in which the buccal or pharyngeal epithelium was apparently undifferentiated and, when present at the time of explantation, they continued their development up to a stage of attachment. In addition, the medium allowed the morphogenesis and cytodifferentiation of the tooth germs similar to that observed in vivo and the establishment of a dental pattern (place and order of tooth appearance and of attachment) that mimicked that in vivo. Organotypic culture in serum-free conditions thus provides us with the means of studying epithelial-mesenchymal interactions during tooth development in teleost fish and of analysing the genetic control of either mandibular or pharyngeal tooth development and replacement in these polyphyodont species. Importantly, it allows heads from embryonically lethal (zebrafish) mutants or from early lethal knockdown experiments to develop beyond the point at which the embryos normally die. Such organotypic culture in serum-free conditions could therefore become a powerful tool in developmental studies and open new perspectives for craniofacial research.
Collapse
Affiliation(s)
- C Van der Heyden
- Biology Department, Ghent University, K.L. Ledeganckstraat 35, 9000 Gent, Belgium
| | | | | | | |
Collapse
|
21
|
Fong HK, Foster BL, Popowics TE, Somerman MJ. The Crowning Achievement: Getting to the Root of the Problem. J Dent Educ 2005. [DOI: 10.1002/j.0022-0337.2005.69.5.tb03942.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Hanson K. Fong
- Department of Material Science and EngineeringUniversity of Washington
| | | | | | | |
Collapse
|
22
|
Laurenti P, Thaëron C, Allizard F, Huysseune A, Sire JY. Cellular expression of eve1 suggests its requirement for the differentiation of the ameloblasts and for the initiation and morphogenesis of the first tooth in the zebrafish (Danio rerio). Dev Dyn 2005; 230:727-33. [PMID: 15254906 DOI: 10.1002/dvdy.20080] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
even-skipped-related (evx) genes encode homeodomain-containing transcription factors that are involved in a series of developmental processes such as posterior body patterning and neurodifferentiation. Although evx1 and evx2 were not reported to be expressed during mammalian tooth development, we present here evidence that eve1, the closest paralog of evx1 in the actinopterygian lineage, is expressed during pharyngeal tooth formation in the zebrafish, Danio rerio. We have performed whole-mount in situ hybridization on zebrafish embryos and larvae ranging from 24 to 192 hours postfertilization (hpf). A detailed analysis of serial sections through the pharyngeal region of whole-mount hybridized and control specimens indicates that only dental epithelial cells express eve1. eve1 transcription was activated at 48 hpf, in the placode of the first tooth (i.e., the initiation site of tooth 4V(1)), and maintained in the dental epithelium throughout morphogenesis. Then, by 72 hpf, eve1 expression was restricted to the differentiating ameloblasts of the enamel organ during early differentiation stage, and this expression decreased as soon as matrix was deposited. In subsequent primary teeth (3 V(1) and 5 V(1)) as well as in their successors (replacement teeth 4V(2), 3V(2), and 5V(2)), eve1 expression was restricted to the differentiating ameloblasts and, again, disappeared when matrix was deposited. Therefore, in the zebrafish, eve1 expression in the pharyngeal region is correlated with two key steps of tooth development: initiation and morphogenesis of the first tooth, and ameloblast differentiation of all developing teeth.
Collapse
|
23
|
Jumlongras D, Lin JY, Chapra A, Seidman CE, Seidman JG, Maas RL, Olsen BR. A novel missense mutation in the paired domain of PAX9 causes non-syndromic oligodontia. Hum Genet 2003; 114:242-9. [PMID: 14689302 DOI: 10.1007/s00439-003-1066-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Accepted: 11/19/2003] [Indexed: 10/26/2022]
Abstract
PAX9, a paired domain transcription factor, has important functions in craniofacial and limb development. Heterozygous mutations of PAX9, including deletion, nonsense, or frameshift mutations that lead to a premature stop codon, and missense mutations, were previously shown to be associated with autosomal dominant oligodontia. Here, we report a novel missense mutation that lies in the highly conserved paired domain of PAX9 and that is associated with non-syndromic oligodontia in one family. The mutation, 83G-->C, is predicted to result in the substitution of arginine by proline (R28P) in the N-terminal subdomain of PAX9 paired domain. To rule out the possibility that this substitution is a rare polymorphism and to test whether the predicted amino acid substitution disrupts protein-DNA binding, we analyzed the binding of wild-type and mutant PAX9 paired domain to double-stranded DNA targets. The R28P mutation dramatically reduces DNA binding of the PAX9 paired domain and supports the hypothesis that loss of DNA binding is the pathogenic mechanism by which the mutation causes oligodontia.
Collapse
Affiliation(s)
- Dolrudee Jumlongras
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Vandevska-Radunovic V, Fristad I, Wimalawansa SJ, Kvinnsland IH. CGRP1 and NK1 receptors in postnatal, developing rat dental tissues. Eur J Oral Sci 2003; 111:497-502. [PMID: 14632686 DOI: 10.1111/j.0909-8836.2003.00086.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is little evidence that neuropeptides such as substance P (SP) and calcitonin gene-related peptide (CGRP) participate in the regulation of tooth development. The aim of this study was to analyse the expression of their respective receptors, neurokinin (NK) 1 and CGRP1 receptor, in postnatal developing rat molars and supporting tissues, thereby localizing the target areas for neuropeptide activity. Mol:WIST rats were killed at 7, 14 and 21 d after birth and upper and lower jaws were processed for immunohistochemistry. At early crown stage (P7), only a few individual cells in the dental follicle were receptor positive. At the onset of root formation (P14), post-secretory ameloblasts, cells in the stratum intermedium, the reduced enamel epithelium and the developing alveolar bone demonstrated both NK1 and CGRP1 receptor immunoreactivity. The CGRP1 receptor sites were occasionally evident on cells in the odontoblast layer. At advanced root development (P21), neuropeptide receptor expression was evident on cells close to the developing dentin, cementum and alveolar bone. These data demonstrate dynamic changes in the localization of NK1 and CGRP1 receptors in developing rat dental tissues and indicate an active role for their ligands in the regulation of crown and root development.
Collapse
|
25
|
Abstract
For decades, the understanding of craniofacial development has been a central issue in odontology and developmental biology. As a consequence, a significant number of deformities are being studied for their variety of genotype and phenotype. Although there is little doubt about the essential roles of homeobox genes, transcription factors, and growth factors, we now know at least the fundamental strategy of craniofacial biology. The tooth as an organ performs a whole range of functions, each of which is truly indispensable for the maintenance of life. The possession of teeth is, therefore, obviously coupled with the complication of the natural structure of an individual organism. In the following, we shall focus on a brief history of tooth studies and some suggestions for obtaining a full understanding of teeth in the future.
Collapse
Affiliation(s)
- Han-Sung Jung
- Department of Oral Biology, College of Dentistry, Institute of Life Science and Biotechnology, Brain Korea 21 Project of Medical Sciences, Yonsei University, Seoul, Korea.
| | | | | |
Collapse
|
26
|
Abstract
The mammalian jaw apparatus is ultimately derived from the first branchial arch derivatives, the maxillary and mandibular processes, and composed of a highly specialised group of structures. Principle amongst these are the skeletal components of the mandible and maxilla and the teeth of the mature dentition. Integral to the development of these structures are signalling interactions between the stomodeal ectoderm and underlying neural crest-derived ectomesenchymal cells that populate this region. Recent evidence suggests that in the early mouse embryo, regionally restricted expression of homeobox-containing genes, such as members of the Dlx, Lhx and Gsc classes, are responsible for generating early polarity in the first branchial arch and establishing the molecular foundations for patterning of the skeletal elements. Teeth also develop on the first branchial arch and are derived from both ectoderm and the underlying ectomesenchyme. Reciprocal signalling interactions between these cell populations also control the odontogenic developmental programme, from early patterning of the future dental axis to the initiation of tooth development at specific sites within the ectoderm. In particular, members of the Fibroblast growth factor (Fgf), Bmp, Hedgehog and Wnt families of signalling molecules induce regionally restricted expression of downstream target genes in the odontogenic ectomesenchyme. Finally, the processes of morphogenesis and cellular differentiation ultimately generate a tooth of specific class. Many of the same genetic interactions that are involved in early tooth development mediate these effects through the activity of localised signalling centres within the developing tooth germ.
Collapse
|
27
|
Thesleff I, Mikkola M. The role of growth factors in tooth development. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:93-135. [PMID: 12019566 DOI: 10.1016/s0074-7696(02)17013-6] [Citation(s) in RCA: 183] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Growth factors and other paracrine signal molecules regulate communication between cells in all developing organs. During tooth morphogenesis, molecules in several conserved signal families mediate interactions both between and within the epithelial and mesenchymal tissue layers. The same molecules are used repeatedly during advancing development, and several growth factors are coexpressed in epithelial signaling centers. The enamel knots are signaling centers that regulate the patterning of teeth and are associated with foldings of the epithelial sheet. Different signaling pathways form networks and are integrated at many levels. Many targets of the growth factors have been identified, and mutations in several genes within the signaling networks cause defective tooth formation in both humans and mice.
Collapse
Affiliation(s)
- Irma Thesleff
- Developmental Biology Research Program, Institute of Biotechnology, Viikki Biocenter, University of Helsinki, Finland
| | | |
Collapse
|
28
|
Heikinheimo K, Jee KJ, Niini T, Aalto Y, Happonen RP, Leivo I, Knuutila S. Gene expression profiling of ameloblastoma and human tooth germ by means of a cDNA microarray. J Dent Res 2002; 81:525-30. [PMID: 12147741 DOI: 10.1177/154405910208100805] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The molecular and genetic characteristics of ameloblastoma are still poorly understood. We analyzed gene expression in fresh-frozen ameloblastomas and human fetal tooth germs, using a cDNA microarray. Thirty-four genes exhibited significant changes in expression levels in the ameloblastoma. Eleven genes were overexpressed more than three-fold, and 23 genes were underexpressed to below 0.4 of the control level. The oncogene FOS was the most overexpressed gene (from eight- to 14-fold), followed by tumor-necrosis-factor-receptor 1 (TNFRSF1A). Genes for sonic hedgehog (SHH), TNF-receptor-associated-factor 3 (TRAF3), rhoGTP-ase-activating protein 4 (ARHGAP4), deleted in colorectal carcinoma (DCC), cadherins 12 and 13 (CDH12 and 13), teratocarcinoma-derived growth-factor-1 (TDGF1), and transforming growth-factor-beta1 (TGFB1) were underexpressed in all tumors. In selected genes, a comparison between cDNA microarray and real-time RT-PCR confirmed similar relative gene expression changes. The gene expression profile identifies candidate genes that may be involved in the origination of ameloblastoma and several genes previously unidentified in relation to human tooth development.
Collapse
Affiliation(s)
- K Heikinheimo
- Department of Oral and Maxillofacial Surgery, Institute of Dentistry, University of Turku, Lemminkäisenkatu 2, FIN-20520 Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Green PD, Hjalt TA, Kirk DE, Sutherland LB, Thomas BL, Sharpe PT, Snead ML, Murray JC, Russo AF, Amendt BA. Antagonistic regulation of Dlx2 expression by PITX2 and Msx2: implications for tooth development. Gene Expr 2001; 9:265-81. [PMID: 11763998 PMCID: PMC5964948 DOI: 10.3727/000000001783992515] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2001] [Indexed: 11/24/2022]
Abstract
The transcriptional mechanisms underlying tooth development are only beginning to be understood. Pitx2, a bicoid-like homeodomain transcription factor, is the first transcriptional marker observed during tooth development. Because Pitx2, Msx2, and Dlx2 are expressed in the dental epithelium, we examined the transcriptional activity of PITX2 in concert with Msx2 and the Dlx2 promoter. PITX2 activated while Msx2 unexpectedly repressed transcription of a TK-Bicoid luciferase reporter in a tooth epithelial cell line (LS-8) and CHO cell line. Surprisingly, Msx2 binds to the bicoid element (5'-TAATCC-3') with a high specificity and competes with PITX2 for binding to this element. PITX2 binds to bicoid and bicoid-like elements in the Dlx2 promoter and activates this promoter 45-fold in CHO cells. However, it is only modestly activated in the LS-8 tooth epithelial cell line that endogenously expresses Msx2 and Pitx2. RT-PCR and Western blot assays reveal that two Pitx2 isoforms are expressed in the LS-8 cells. We further demonstrate that PITX2 dimerization can occur through the C-terminus of PITX2. Msx2 represses the Dlx2 promoter in CHO cells and coexpression of both PITX2 and Msx2 resulted in transcriptional antagonism of the Dlx2 promoter. Electrophoretic mobility shift assays demonstrate that factors in the LS-8 cell line specifically interact with PITX2. Thus, Dlx2 gene transcription is regulated by antagonistic effects between PITX2, Msx2, and factors expressed in the tooth epithelia.
Collapse
Affiliation(s)
- Patrick D. Green
- *Department of Biological Science, The University of Tulsa, Tulsa, OK 74104-3189
| | | | - Dianne E. Kirk
- *Department of Biological Science, The University of Tulsa, Tulsa, OK 74104-3189
| | | | - Bethan L. Thomas
- §Department of Craniofacial Development, GKT Dental Institute, King’s College, University of London
| | - Paul T. Sharpe
- §Department of Craniofacial Development, GKT Dental Institute, King’s College, University of London
| | - Malcolm L. Snead
- ¶The Center for Craniofacial Molecular Biology, The University of Southern California, School of Dentistry
| | | | - Andrew F. Russo
- ‡Department of Physiology and Biophysics, The University of Iowa
| | - Brad A. Amendt
- *Department of Biological Science, The University of Tulsa, Tulsa, OK 74104-3189
| |
Collapse
|
30
|
Van der Heyden C, Huysseune A. Dynamics of tooth formation and replacement in the zebrafish (Danio rerio) (Teleostei, Cyprinidae). Dev Dyn 2000; 219:486-96. [PMID: 11084648 DOI: 10.1002/1097-0177(2000)9999:9999<::aid-dvdy1069>3.0.co;2-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We have used three-dimensional reconstructions from serial sections as well as cleared and stained specimens to infer patterning of the pharyngeal dentition throughout ontogeny in the zebrafish. Each pharyngeal tooth has been monitored from its initiation to its complete disappearance (resorption and shedding). We have identified tooth families and have studied the persistence of the pattern through successive replacements. Teeth arise in two seemingly independent clusters, a ventral and a dorsal cluster, with differing patterning features. The ventral cluster consists of one row of five teeth in which a tooth is first initiated in position four, and subsequent teeth in adjacent positions, posterior and anterior to it. Replacement teeth in odd and even positions are initiated simultaneously during successive odontogenic waves but differ in generation number according to the timing of appearance of the first-generation tooth, i.e., the founder of the tooth family. Up to four teeth of a single tooth family are simultaneously present in early juveniles of which two are usually "co-functional." The number of teeth per tooth family is reduced in older juveniles and adults, reflecting a slowing down of the replacement rate. The consistent way in which the pattern is established and maintained during ontogeny calls for research of the presence of specific molecular controls.
Collapse
|
31
|
Abstract
Mammalian dentition consists of teeth that develop as discrete organs. From anterior to posterior, the dentition is divided into regions of incisor, canine, premolar and molar tooth types. Particularly teeth in the molar region are very diverse in shape. The development of individual teeth involves epithelial-mesenchymal interactions that are mediated by signals shared with other organs. Parts of the molecular details of signaling networks have been established, particularly in the signal families BMP, FGF, Hh and Wnt, mostly by the analysis of gene expression and signaling responses in knockout mice with arrested tooth development. Recent evidence suggests that largely the same signaling cascade is used reiteratively throughout tooth development. The successional determination of tooth region, tooth type, tooth crown base and individual cusps involves signals that regulate tissue growth and differentiation. Tooth type appears to be determined by epithelial signals and to involve differential activation of homeobox genes in the mesenchyme. This differential signaling could have allowed the evolutionary divergence of tooth shapes among the four tooth types. The advancing tooth morphogenesis is punctuated by transient signaling centers in the epithelium corresponding to the initiation of tooth buds, tooth crowns and individual cusps. The latter two signaling centers, the primary enamel knot and the secondary enamel knot, have been well characterized and are thought to direct the differential growth and subsequent folding of the dental epithelium. Several members of the FGF signal family have been implicated in the control of cell proliferation around the non-dividing enamel knots. Spatiotemporal induction of the secondary enamel knots determines the cusp patterns of individual teeth and is likely to involve repeated activation and inhibition of signaling as suggested for patterning of other epithelial organs.
Collapse
Affiliation(s)
- J Jernvall
- Developmental Biology Program, Institute of Biotechnology, Viikki Biocenter, P.O. Box 56, 00014, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
32
|
Affiliation(s)
- I Thesleff
- Developmental Biology Program, Institute of Biotechnology, Vikki Biocenter, University of Helsinki, Finland.
| | | |
Collapse
|