1
|
Eldeeb D, Ikeda Y, Hojo H, Ohba S. Unraveling the hidden complexity: Exploring dental tissues through single-cell transcriptional profiling. Regen Ther 2024; 27:218-229. [PMID: 38596822 PMCID: PMC11002530 DOI: 10.1016/j.reth.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
Understanding the composition and function of cells constituting tissues and organs is vital for unraveling biological processes. Single-cell analysis has allowed us to move beyond traditional methods of categorizing cell types. This innovative technology allows the transcriptional and epigenetic profiling of numerous individual cells, leading to significant insights into the development, homeostasis, and pathology of various organs and tissues in both animal models and human samples. In this review, we delve into the outcomes of major investigations using single-cell transcriptomics to decipher the cellular composition of mammalian teeth and periodontal tissues. The recent single-cell transcriptome-based studies have traced in detail the dental epithelium-ameloblast lineage and dental mesenchyme lineages in the mouse incisors and the tooth germ of both mice and humans; unraveled the microenvironment, the identity of niche cells, and cellular intricacies in the dental pulp; shed light on the molecular mechanisms orchestrating root formation; and characterized cellular dynamics of the periodontal ligament. Additionally, cellular components in dental pulps were compared between healthy and carious teeth at a single-cell level. Each section of this review contributes to a comprehensive understanding of tooth biology, offering valuable insights into developmental processes, niche cell identification, and the molecular secrets of the dental environment.
Collapse
Affiliation(s)
- Dahlia Eldeeb
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Physiology, Division of Biomedical Sciences, Nihon University School of Medicine, Japan
- Department of Oral Biology, Faculty of Dentistry, Cairo University, Egypt
| | - Yuki Ikeda
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Japan
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Japan
| | - Shinsuke Ohba
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Japan
| |
Collapse
|
2
|
Reis CLB, Guerra KCCC, Barbosa MCF, Ferreira FF, de Lima DC, Segato RAB, Almeida ACPD, Matsumoto MAN, Baratto Filho F, Menezes MAHD, Küchler EC, de Oliveira DSB. Impact of FokI (rs2228570) and BglI (rs739837) polymorphisms in VDR gene on permanent tooth eruption: A cross-sectional study. J Oral Biol Craniofac Res 2024; 14:700-705. [PMID: 39399142 PMCID: PMC11470262 DOI: 10.1016/j.jobcr.2024.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/12/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024] Open
Abstract
Introduction Genetic polymorphisms who disturb the mineral homeostasis during tooth development and eruption are candidate to clarify the molecular mechanisms involved in changes in the tooth eruption chronology. In this study, we evaluate whether the FokI (rs2228570) and BglI (rs739837) polymorphisms in the Vitamin D receptor (VDR) gene are associated with changes in the chronology of eruption of permanent teeth. Material & method This cross-sectional study randomly included 353 biologically unrelated children, both sexes, without systemic impairment or syndromes and history of trauma during the primary dentition. One operator perform the oral clinical examination. The tooth was considered erupted if there was a visible minimum of any tooth surface emerging from the mucosa. Genomic DNA was extracted from buccal epithelial cells from saliva samples. Genotyping was performed by Real-Time Polymerase Chain Reactions using TaqMan® technology. The average of the total number of erupted permanent teeth between the genotypes was compared by the Mann-Whitney test and multivariate Generalized Linear Models (GLM) (α = 5 %). β values with Confidence Interval (CI) 95 % were calculated. Results The heterozygous adenine-guanine genotype of the FokI significantly decreases the number of erupted permanent teeth (β = -1.15; CI 95 % = -2.22 to -0.07; p = 0.036). In the stratified analysis for maxillary and mandibular teeth, this genotype was associated with a decrease in the number of erupted maxillary permanent teeth (β = -0.65; CI 95 % = -1.22 to -0.09; p = 0.023). BglI was not associated with permanent teeth eruption. Conclusion The FokI, but not BglI, in the VDR may delay the eruption of permanent teeth.
Collapse
Affiliation(s)
- Caio Luiz Bitencourt Reis
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Brazil
| | | | | | | | - Daniela Coelho de Lima
- Department of Clinic and Surgery, School of Dentistry, Federal University of Alfenas, Brazil
| | | | | | | | - Flares Baratto Filho
- School of Dentistry, Tuiuti University of Paraná, Brazil
- School of Dentistry, Univille University, Brazil
| | | | - Erika Calvano Küchler
- School of Dentistry, Tuiuti University of Paraná, Brazil
- School of Dentistry, Univille University, Brazil
| | | |
Collapse
|
3
|
Gao Y, Lin Y, Li Y, Zeng W, Chen Z. Interplay of RUNX2 and KLF4 in initial commitment of odontoblast differentiation. J Cell Biochem 2024; 125:e30577. [PMID: 38720665 DOI: 10.1002/jcb.30577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 07/12/2024]
Abstract
Odontoblast differentiation is a key process in dentin formation. Mouse dental papilla cells (mDPCs) are pivotal in dentinogenesis through their differentiation into odontoblasts. Odontoblast differentiation is intricately controlled by transcription factors (TFs) in a spatiotemporal manner. Previous research explored the role of RUNX2 and KLF4 in odontoblast lineage commitment, respectively. Building on bioinformatics analysis of our previous ATAC-seq profiling, we hypothesized that KLF4 potentially collaborates with RUNX2 to exert its biological role. To investigate the synergistic effect of multiple TFs in odontoblastic differentiation, we first examined the spatiotemporal expression patterns of RUNX2 and KLF4 in dental papilla at the bell stage using immunostaining techniques. Notably, RUNX2 and KLF4 demonstrated colocalization in preodontoblast. Further, immunoprecipitation and proximity ligation assays verified the interaction between RUNX2 and KLF4 in vitro. Specifically, the C-terminus of RUNX2 was identified as the interacting domain with KLF4. Functional implications of this interaction were investigated using small hairpin RNA-mediated knockdown of Runx2, Klf4, or both. Western blot analysis revealed a marked decrease in DSPP expression, an odontoblast differentiation marker, particularly in the double knockdown condition. Additionally, alizarin red S staining indicated significantly reduced mineralized nodule formation in this group. Collectively, our findings highlight the synergistic interaction between RUNX2 and KLF4 in promoting odontoblast differentiation from mDPCs. This study contributes to a more comprehensive understanding of the regulatory network of TFs governing odontoblast differentiation.
Collapse
Affiliation(s)
- Yongyan Gao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuxiu Lin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China
| | - Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Wenrui Zeng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Cariology and Endodontics, School of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Faria-Teixeira MC, Tordera C, Salvado E Silva F, Vaz-Carneiro A, Iglesias-Linares A. Craniofacial syndromes and class III phenotype: common genotype fingerprints? A scoping review and meta-analysis. Pediatr Res 2024; 95:1455-1475. [PMID: 38347173 PMCID: PMC11126392 DOI: 10.1038/s41390-023-02907-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 02/18/2024]
Abstract
Skeletal Class III (SCIII) is among the most challenging craniofacial dysmorphologies to treat. There is, however, a knowledge gap regarding which syndromes share this clinical phenotype. The aims of this study were to: (i) identify the syndromes affected by the SCIII phenotype; (ii) clarify the involvement of maxillary and/or mandibular structures; (iii) explore shared genetic/molecular mechanisms. A two-step strategy was designed: [Step#1] OMIM, MHDD, HPO, GeneReviews and MedGen databases were explored; [Step#2]: Syndromic conditions indexed in [Step#1] were explored in Medline, Pubmed, Scopus, Cochrane Library, WOS and OpenGrey. Eligibility criteria were defined. Individual studies were assessed for risk of bias using the New Ottawa Scale. For quantitative analysis, a meta-analysis was conducted. This scoping review is a hypothesis-generating research. Twenty-two studies met the eligibility criteria. Eight syndromes affected by the SCIII were targeted: Apert syndrome, Crouzon syndrome, achondroplasia, X-linked hypohidrotic ectodermal dysplasia (XLED), tricho-dento-osseous syndrome, cleidocranial dysplasia, Klinefelter and Down syndromes. Despite heterogeneity between studies [p < 0.05], overall effects showed that midface components were affected in Apert and Down Syndromes, lower face in Klinefelter Syndrome and midface and lower face components in XLED. Our review provides new evidence on the craniofacial characteristics of genetically confirmed syndromes exhibiting the SCIII phenotype. Four major regulatory pathways might have a modulatory effect on this phenotype. IMPACT: What does this review add to the existing literature? To date, there is no literature exploring which particular syndromes exhibit mandibular prognathism as a common trait. Through this research, it was possibly to identify the particular syndromes that share the skeletal Class III phenotype (mandibular prognathism) as a common trait highlighting the common genetic and molecular pathways between different syndromes acknowledging their impact in craniofacial development.
Collapse
Affiliation(s)
- Maria Cristina Faria-Teixeira
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain
- University of Lisbon, School of Medicine, University Clinic of Stomatology, 1200, Lisbon, Portugal
| | - Cristina Tordera
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain
| | | | | | - Alejandro Iglesias-Linares
- Complutense University of Madrid, School of Dentistry, 28040, Madrid, Spain.
- BIOCRAN (Craniofacial Biology) Research Group, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
5
|
Bi R, Sun Y, Xiang L, Xu Z, Ye X, Tian Y, Lin Y, Yang C, Gao Y. TGF-β1/Smad3 Signaling Is Required to Alleviate Fluoride-Induced Enamel Hypomineralization. Biol Trace Elem Res 2024; 202:569-579. [PMID: 37140770 DOI: 10.1007/s12011-023-03688-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
Excessive fluoride intake during enamel development can affect enamel mineralization, leading to dental fluorosis. However, its potential mechanisms remain largely unexplored. In the present study, we aimed to investigate the impact of fluoride on the expressions of RUNX2 and ALPL during mineralization and the effect of TGF-β1 administration on fluoride treatment. A dental fluorosis model of newborn mice and an ameloblast cell line ALC were both used in the present study. The mice of the NaF group, including the mothers and newborns, were fed with water containing 150 ppm NaF after delivery to induce dental fluorosis. The mandibular incisors and molars showed significant abrasion in the NaF group. Immunostaining, qRT-PCR, and Western blotting analysis indicated that exposure to fluoride markedly down-regulated RUNX2 and ALPL in mouse ameloblasts and ALCs. Besides, fluoride treatment significantly decreased the mineralization level detected by ALP staining. Furthermore, exogenous TGF-β1 up-regulated RUNX2 and ALPL and promoted mineralization, while the addition of SIS3 could block such TGF-β1-induced up-regulation. In TGF-β1 conditional knockout mice, the immunostaining of RUNX2 and ALPL was weaker compared with wild-type mice. Exposure to fluoride inhibited the expressions of TGF-β1 and Smad3. Co-treatment of TGF-β1 and fluoride up-regulated RUNX2 and ALPL compared with the fluoride alone treatment, promoting mineralization. Collectively, our data indicated that TGF-β1/Smad3 signaling pathway was necessary for the regulatory effects of fluoride on RUNX2 and ALPL, and the fluoride-induced suppression of ameloblast mineralization was mitigated by activating TGF-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Ruonan Bi
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Yiqun Sun
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Lili Xiang
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Zhenzhen Xu
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Xiaoyuan Ye
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Yanying Tian
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Yao Lin
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China
| | - Chunyan Yang
- Institute of Stomatology, Binzhou Medical University, Shandong, 264003, Yantai, China.
| | - Yuguang Gao
- Department of Pediatrics and Preventive Dentistry, Binzhou Medical University Hospital, Shandong, 256600, Binzhou, China.
| |
Collapse
|
6
|
Xiong N, An JS, Yoon H, Ryoo HM, Lim WH. Runx2 heterozygosity alters homeostasis of the periodontal complex. J Periodontal Res 2024; 59:151-161. [PMID: 37882070 DOI: 10.1111/jre.13198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND AND OBJECTIVE Haploinsufficiency of Runx2 (Runx2+/- ) causes dental anomalies. However, little is known about the involvement of Runx2 in the maintenance of dentin, cementum, and the periodontal ligament (PDL) during adulthood. This study aimed to observe the effects of Runx2+/- on homeostasis of the periodontal complex. MATERIALS AND METHODS A total of 14 three-month-old Runx2+/- mice and their wild-type littermates were examined using micro-computed tomography, histology, and immunohistochemistry. Phenotypic alterations in the dentin, cementum, and PDL were characterized and quantified. RESULTS Haploinsufficiency of Runx2 caused cellular changes in the PDL space including reduction of cell proliferation and apoptosis, and irregular attachment of the collagen fibers in the PDL space into the cementum. Absence of continuous thickness of cementum was also observed in Runx2+/- mice. CONCLUSION Runx2 is critical for cementum integrity and attachment of periodontal fibers. Because of its importance to cementum homeostasis, Runx2 is essential for homeostasis of periodontal complex.
Collapse
Affiliation(s)
- Ni Xiong
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Jung-Sub An
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Heein Yoon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Hyun-Mo Ryoo
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Won Hee Lim
- Department of Orthodontics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
7
|
Ha YJ, Lee D, Kim SY. The Combined Effects on Human Dental Pulp Stem Cells of Fast-Set or Premixed Hydraulic Calcium Silicate Cements and Secretome Regarding Biocompatibility and Osteogenic Differentiation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:305. [PMID: 38255473 PMCID: PMC10820558 DOI: 10.3390/ma17020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
An important part of regenerative endodontic procedures involving immature permanent teeth is the regeneration of the pulp-dentin complex with continuous root development. Hydraulic calcium silicate cements (HCSCs) are introduced for the pulpal treatment of immature permanent teeth. The stem-cell-derived secretome recently has been applied for the treatment of various damaged tissues. Here, we evaluated the biocompatibility and osteogenic differentiation of HCSCs combined with secretome on human dental pulp stem cells. In the Cell Counting Kit-8 test and wound healing assays, significantly higher cell viability was observed with secretome application. In alkaline phosphatase analysis, the activity was significantly higher with secretome application in all groups, except for RetroMTA on day 2 and Endocem MTA Premixed on day 4. In an Alizarin Red S staining analysis, all groups with secretome application had significantly higher staining values. Quantitative real-time polymerase chain reaction results showed that the day 7 expression of OSX significantly increased with secretome application in all groups. SMAD1 and DSPP expression also increased significantly with secretome addition in all groups except for Biodentine. In conclusion, HCSCs showed favorable biocompatibility and osteogenic ability and are predicted to demonstrate greater synergy with the addition of secretome during regenerative endodontic procedures involving immature permanent teeth.
Collapse
Affiliation(s)
- Yun-Jae Ha
- Department of Conservative Dentistry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Donghee Lee
- Department of Dentistry, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Sin-Young Kim
- Department of Conservative Dentistry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
8
|
Ren C, Chen W, Chen J, Mao C, Liao C, Liu J. The fusion of keratinized epithelium, an indication of early implant placement in the aesthetic area: an animal study. BMC Oral Health 2023; 23:1016. [PMID: 38115040 PMCID: PMC10729501 DOI: 10.1186/s12903-023-03755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/10/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND In the period of the early implant placement, the socket is mainly occupied by provisional matrix (PM). Keratinized epithelium (KE) is critical for primary wound closure. Although both KE and PM are important, the detailed relationship among migrating KE, PM formation and indication of the early implant placement is still unclear. OBJECTIVE This research aimed to locate a healing stage of KE with highest osteogenic PM formation after tooth extraction, which could be treated as the optimal time point for early implant placement. MATERIAL AND METHODS Mice were sacrificed on days 1, 2, 3, 4 and 6 after incisor extraction. Clinical, histological, and immunohistochemical evaluations of the extraction sockets were performed, and statistical analyses were conducted. We then inserted implants into the PM with the greatest bioactivity and observed its osseointegration pattern for 3, 10, 17 and 30 days. RESULT When KE fusion was reached, sockets were dominated by PM with the greatest expression of osteocalcin (OC, P < 0.05) and high levels of CD34 and Runx2. OC and Runx2 expression were positively correlated with KE coverage (P < 0.05). When the implant was inserted at 4 days' healing, the PM maintained its osteogenic ability, and osseointegration proceeded perfectly. CONCLUSION The migration of KE was correlated with the formation of highly osteogenic and angiogenic PM. And the fusion of KE could be treated as an indication for early implant placement.
Collapse
Affiliation(s)
- Chengyan Ren
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Weihui Chen
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Jiangping Chen
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanqing Mao
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Caiyu Liao
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Jianan Liu
- Department of Oral and Maxillofacial Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Key Laboratory of Oral Diseases & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
9
|
Lips A, Calvano Küchler E, Ribeiro Madalena I, Nivoloni Tannure P, Santos Antunes L, Azeredo Alves Antunes L, Castro Costa M, Proff P, Kirschneck C, Baratto-Filho F. Non-syndromic supernumerary teeth and association with a self-reported family history of cancer. J Orofac Orthop 2023:10.1007/s00056-023-00504-z. [PMID: 38051344 DOI: 10.1007/s00056-023-00504-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/09/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Supernumerary teeth are an alteration of dental developmental and result in the formation of teeth above the usual number. Epidemiologic studies suggested that patients with dentofacial anomalies and their family members may present an increased risk of developing cancer, including female breast cancer and gynecologic cancers. These observations indicate that genetic alterations that result in dental anomalies may be related to cancer development. Thus, the aim of the present study was to evaluate the association between supernumerary teeth and a family history of female breast cancer and gynecologic cancers. METHODS The diagnosis of supernumerary teeth was based on clinical and radiographic examinations. For data collection, a questionnaire asking for information regarding ethnicity, age, gender, and self-reported family history of cancer up to the second generation was used. Statistical analysis was performed using the Χ2 test and Fisher's exact test with an established α of 5%. RESULTS A total of 344 patients were included; 47 of them had one or more non-syndromic supernumerary teeth (not associated with any syndrome or cleft lip and palate) and 297 were control patients. Age, ethnicity, and gender distribution were not statistically different between the group with supernumerary teeth and the control group (p > 0.05). The supernumerary teeth were most commonly observed in the incisors area. Breast cancer (n = 17) was the most commonly self-reported type of cancer, followed by uterine cervical (n = 10), endometrial (n = 2), and ovarian (n = 1) cancers. Endometrial cancer was significantly associated with the diagnosis of supernumerary teeth (p = 0.017). CONCLUSION This study suggests that patients with supernumerary teeth possess a higher risk of having family members with endometrial cancer.
Collapse
Affiliation(s)
- Andrea Lips
- Department of Dentistry, University of Joinville Region, Joinville, SC, Brazil
| | - Erika Calvano Küchler
- Department of Orthodontics, Medical Faculty, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany.
| | - Isabela Ribeiro Madalena
- Department of Dentistry, University of Joinville Region, Joinville, SC, Brazil
- School of Dentistry, Presidente Tancredo de Almeida Neves University Center, São João del Rei, MG, Brazil
| | | | - Leonardo Santos Antunes
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | - Livia Azeredo Alves Antunes
- Postgraduate Program in Dentistry, Health Institute of Nova Friburgo, Fluminense Federal University, Nova Friburgo, RJ, Brazil
| | | | - Peter Proff
- Department of Pediatric Dentistry and Orthodontics, Rio de Janeiro Federal University, Rio de Janeiro, RJ, Brazil
| | - Christian Kirschneck
- Department of Orthodontics, Medical Faculty, University Hospital Bonn, Welschnonnenstr. 17, 53111, Bonn, Germany
| | - Flares Baratto-Filho
- Department of Dentistry, University of Joinville Region, Joinville, SC, Brazil
- School of Dentistry, Tuiuti University from Parana, Curitiba, PR, Brazil
| |
Collapse
|
10
|
Tantibhaedhyangkul W, Tantrapornpong J, Yutchawit N, Theerapanon T, Intarak N, Thaweesapphithak S, Porntaveetus T, Shotelersuk V. Dental characteristics of patients with four different types of skeletal dysplasias. Clin Oral Investig 2023; 27:5827-5839. [PMID: 37548766 PMCID: PMC10560164 DOI: 10.1007/s00784-023-05194-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
OBJECTIVE Skeletal dysplasia (SD) comprises more than 450 separate disorders. We hypothesized that their dental features would be distinctive and investigated the tooth characteristics of four patients with different SDs. MATERIAL AND METHODS Four SD patients with molecularly confirmed diagnoses, Pt-1 acromicric dysplasia, Pt-2 hypophosphatasia and hypochondroplasia, Pt-3 cleidocranial dysplasia, and Pt-4 achondroplasia, were recruited. A tooth from each patient was evaluated for mineral density (micro-computerized tomography), surface roughness (surface profilometer), microhardness, mineral contents (energy-dispersive X-ray), and ultrastructure (scanning electron microscopy and histology), and compared with three tooth-type matched controls. RESULTS Pt-1 and Pt-3 had several unerupted teeth. Pt-2 had an intact-root-exfoliated tooth at 2 years old. The lingual surfaces of the patients' teeth were significantly smoother, while their buccal surfaces were rougher, than controls, except for Pt-1's buccal surface. The patients' teeth exhibited deep grooves around the enamel prisms and rough intertubular dentin. Pt-3 demonstrated a flat dentinoenamel junction and Pt-2 had an enlarged pulp, barely detectable cementum layer, and ill-defined cemento-dentinal junction. Reduced microhardnesses in enamel, dentin, and both layers were observed in Pt-3, Pt-4, and Pt-1, respectively. Pt-1 showed reduced Ca/P ratio in dentin, while both enamel and dentin of Pt-2 and Pt-3 showed reduced Ca/P ratio. CONCLUSION Each SD has distinctive dental characteristics with changes in surface roughness, ultrastructure, and mineral composition of dental hard tissues. CLINICAL RELEVANCE In this era of precision dentistry, identifying the specific potential dental problems for each patient with SD would help personalize dental management guidelines.
Collapse
Affiliation(s)
- Worasap Tantibhaedhyangkul
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jenjira Tantrapornpong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuttanun Yutchawit
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thanakorn Theerapanon
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Narin Intarak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sermporn Thaweesapphithak
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
11
|
Pan H, Yang Y, Xu H, Jin A, Huang X, Gao X, Sun S, Liu Y, Liu J, Lu T, Wang X, Zhu Y, Jiang L. The odontoblastic differentiation of dental mesenchymal stem cells: molecular regulation mechanism and related genetic syndromes. Front Cell Dev Biol 2023; 11:1174579. [PMID: 37818127 PMCID: PMC10561098 DOI: 10.3389/fcell.2023.1174579] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023] Open
Abstract
Dental mesenchymal stem cells (DMSCs) are multipotent progenitor cells that can differentiate into multiple lineages including odontoblasts, osteoblasts, chondrocytes, neural cells, myocytes, cardiomyocytes, adipocytes, endothelial cells, melanocytes, and hepatocytes. Odontoblastic differentiation of DMSCs is pivotal in dentinogenesis, a delicate and dynamic process regulated at the molecular level by signaling pathways, transcription factors, and posttranscriptional and epigenetic regulation. Mutations or dysregulation of related genes may contribute to genetic diseases with dentin defects caused by impaired odontoblastic differentiation, including tricho-dento-osseous (TDO) syndrome, X-linked hypophosphatemic rickets (XLH), Raine syndrome (RS), hypophosphatasia (HPP), Schimke immuno-osseous dysplasia (SIOD), and Elsahy-Waters syndrome (EWS). Herein, recent progress in the molecular regulation of the odontoblastic differentiation of DMSCs is summarized. In addition, genetic syndromes associated with disorders of odontoblastic differentiation of DMSCs are discussed. An improved understanding of the molecular regulation and related genetic syndromes may help clinicians better understand the etiology and pathogenesis of dentin lesions in systematic diseases and identify novel treatment targets.
Collapse
Affiliation(s)
- Houwen Pan
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yiling Yang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Hongyuan Xu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Anting Jin
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiangru Huang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xin Gao
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Siyuan Sun
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuanqi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jingyi Liu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Tingwei Lu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xinyu Wang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yanfei Zhu
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| | - Lingyong Jiang
- Center of Craniofacial Orthodontics, Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, Shanghai, China
- National Clinical Research Center for Oral Disease, Shanghai, China
- Shanghai Key Laboratory of Stomatology, Shanghai, China
- Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
12
|
Hoshino T, Onodera S, Kimura M, Suematsu M, Ichinohe T, Azuma T. FGF4 and FGF9 have synergistic effects on odontoblast differentiation. Med Mol Morphol 2023; 56:159-176. [PMID: 37012505 DOI: 10.1007/s00795-023-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023]
Abstract
The purpose of this study was to investigate whether fibroblast growth factor 4 (FGF4) and FGF9 are active in dentin differentiation. Dentin matrix protein 1 (Dmp1) -2A-Cre transgenic mice, which express the Cre-recombinase in Dmp1-expressing cells, were crossed with CAG-tdTomato mice as reporter mouse. The cell proliferation and tdTomato expressions were observed. The mesenchymal cell separated from neonatal molar tooth germ were cultured with or without FGF4, FGF9, and with or without their inhibitors ferulic acid and infigratinib (BGJ398) for 21 days. Their phenotypes were evaluated by cell count, flow cytometry, and real-time PCR. Immunohistochemistry for FGFR1, 2, and 3 expression and the expression of DMP1 were performed. FGF4 treatment of mesenchymal cells obtained promoted the expression of all odontoblast markers. FGF9 failed to enhance dentin sialophosphoprotein (Dspp) expression levels. Runt-related transcription factor 2 (Runx2) was upregulated until day 14 but was downregulated on day 21. Compared to Dmp1-negative cells, Dmp1-positive cells expressed higher levels of all odontoblast markers, except for Runx2. Simultaneous treatment with FGF4 and FGF9 had a synergistic effect on odontoblast differentiation, suggesting that they may play a role in odontoblast maturation.
Collapse
Affiliation(s)
- Tatsuki Hoshino
- Department of Dental Anesthesiology, Tokyo Dental College, Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Shoko Onodera
- Department of Biochemistry, Tokyo Dental College, 2-9-18, Kanda-Misakichou, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Motoyoshi Kimura
- Department of Pediatric Dentistry, Tokyo Dental College, Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Makoto Suematsu
- Department of Dental Biochemistry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Misaki-cho, Chiyoda-ku, Tokyo, Japan
| | - Toshifumi Azuma
- Department of Biochemistry, Tokyo Dental College, 2-9-18, Kanda-Misakichou, Chiyoda-ku, Tokyo, 101-0061, Japan.
| |
Collapse
|
13
|
Bitencourt Reis CL, Nakane Matsumoto MA, Baratto-Filho F, Scariot R, Sasso Stuani MB, Lourenço Romano F, Della Coletta R, Silva Barroso de Oliveira D, Proff P, Kirschneck C, Calvano Küchler E. Impact of genetic variations in the WNT family members and RUNX2 on dental and skeletal maturation: a cross-sectional study. Head Face Med 2023; 19:26. [PMID: 37400934 PMCID: PMC10316614 DOI: 10.1186/s13005-023-00372-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND This study evaluated if genetic variations in the WNT family members and RUNX2 are associated with craniofacial maturation, investigating dental and skeletal maturity in children and teenagers. METHODS Radiographs from pre-orthodontic treatment of Brazilian patients (7 to 17 years-old) were used to assess dental (panoramic radiographs) and skeletal maturity (cephalometric radiographs). The chronological age (CA) was calculated based on the date of birth and the time the radiographs were performed. For the dental maturity analysis, the Demirjian (1973) method was used and a delta [dental age - chronological age (DA-CA)] was calculated. For the skeletal maturity analysis, the Baccetti et al. (2005) method was used and the patients were classified as "delayed skeletal maturation", "advanced skeletal maturation" or "normal skeletal maturation". DNA isolated from buccal cells was used for genotyping of two genetic variations in WNT family genes: rs708111 (G > A) in WNT3A and rs1533767 (G > A) in WNT11; and two genetic variations in RUNX2: rs1200425 (G > A) and rs59983488 (G > T). A statistical analysis was performed and values of p < 0.05 indicated a significant difference. RESULTS There were no associations between dental maturity and genotypes (p > 0.05). In the skeletal maturity analysis, the allele A in the rs708111 (WNT3A) was statistically more frequent in patients with delayed skeletal maturation (Prevalence Ratio = 1.6; 95% Confidence Interval = 1.00 to 2.54; p-value = 0.042). CONCLUSIONS The rs708111 in the WNT3A gene impacts on skeletal maturation.
Collapse
Affiliation(s)
- Caio Luiz Bitencourt Reis
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Mirian Aiko Nakane Matsumoto
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Flares Baratto-Filho
- School of Dentistry, Tuiuti University of Paraná, Paraná, Brazil
- School of Dentistry, Univille University, Joinville, Brazil
| | - Rafaela Scariot
- Department of Stomatology, Federal University of Paraná, Paraná, Brazil
| | - Maria Bernadete Sasso Stuani
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Fábio Lourenço Romano
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ricardo Della Coletta
- Department of Oral Diagnosis, School of Dentistry of Piracicaba, University of Campinas (UNICAMP), Campinas, SP Brazil
| | | | - Peter Proff
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Erika Calvano Küchler
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Ezawa N, Akashi Y, Nakajima K, Kokubun K, Furusawa M, Matsuzaka K. The Effects of Tricalcium-Silicate-Nanoparticle-Containing Cement: In Vitro and In Vivo Studies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4451. [PMID: 37374634 DOI: 10.3390/ma16124451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023]
Abstract
A tricalcium-silicate-nanoparticle-containing cement (Biodentine) was developed to overcome the disadvantages of existing mineral trioxide aggregate (MTA) dental materials. This study aimed at evaluating the effects of Biodentine on the osteogenic differentiation of human periodontal ligament fibroblasts (HPLFs) in vitro and the healing of furcal perforations created experimentally in rat molars in vivo, in comparison to MTA. The in vitro studies performed the following assays: pH measurement using a pH meter, the release of calcium ions using a calcium assay kit, cell attachment and morphology using SEM, cell proliferation using a coulter counter, marker expression using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and cell mineralized deposit formation using Alizarin Red S (ARS) staining. In the in vivo studies, MTA and Biodentine were used to fill the rat molar perforations. Rat molars were processed at 7, 14 and 28 days for analysis of inflammatory processes using hematoxylin and eosin (HE) staining, immunohistochemical staining of Runx2 and tartrate-resistant acid phosphate (TRAP) staining. The results demonstrate that the nanoparticle size distribution of Biodentine is critical for osteogenic potential at an earlier stage compared to MTA. Further studies are required to elucidate the mechanism of action of Biodentine in osteogenic differentiation.
Collapse
Affiliation(s)
- Naho Ezawa
- Department of Endodontics, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Yoshihiko Akashi
- Department of Pathology, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Kei Nakajima
- Department of Pathology, Tokyo Dental College, Tokyo 101-0061, Japan
| | | | - Masahiro Furusawa
- Department of Endodontics, Tokyo Dental College, Tokyo 101-0061, Japan
| | - Kenichi Matsuzaka
- Department of Pathology, Tokyo Dental College, Tokyo 101-0061, Japan
| |
Collapse
|
15
|
Loukelis K, Machla F, Bakopoulou A, Chatzinikolaidou M. Kappa-Carrageenan/Chitosan/Gelatin Scaffolds Provide a Biomimetic Microenvironment for Dentin-Pulp Regeneration. Int J Mol Sci 2023; 24:ijms24076465. [PMID: 37047438 PMCID: PMC10094618 DOI: 10.3390/ijms24076465] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
This study aims to investigate the impact of kappa-carrageenan on dental pulp stem cells (DPSCs) behavior in terms of biocompatibility and odontogenic differentiation potential when it is utilized as a component for the production of 3D sponge-like scaffolds. For this purpose, we prepared three types of scaffolds by freeze-drying (i) kappa-carrageenan/chitosan/gelatin enriched with KCl (KCG-KCl) as a physical crosslinker for the sulfate groups of kappa-carrageenan, (ii) kappa-carrageenan/chitosan/gelatin (KCG) and (iii) chitosan/gelatin (CG) scaffolds as a control. The mechanical analysis illustrated a significantly higher elastic modulus of the cell-laden scaffolds compared to the cell-free ones after 14 and 28 days with values ranging from 25 to 40 kPa, showing an increase of 27-36%, with the KCG-KCl scaffolds indicating the highest and CG the lowest values. Cell viability data showed a significant increase from days 3 to 7 and up to day 14 for all scaffold compositions. Significantly increasing alkaline phosphatase (ALP) activity has been observed over time in all three scaffold compositions, while the KCG-KCl scaffolds indicated significantly higher calcium production after 21 and 28 days compared to the CG control. The gene expression analysis of the odontogenic markers DSPP, ALP and RunX2 revealed a two-fold higher upregulation of DSPP in KCG-KCl scaffolds at day 14 compared to the other two compositions. A significant increase of the RunX2 expression between days 7 and 14 was observed for all scaffolds, with a significantly higher increase of at least twelve-fold for the kappa-carrageenan containing scaffolds, which exhibited an earlier ALP gene expression compared to the CG. Our results demonstrate that the integration of kappa-carrageenan in scaffolds significantly enhanced the odontogenic potential of DPSCs and supports dentin-pulp regeneration.
Collapse
Affiliation(s)
- Konstantinos Loukelis
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
| | - Foteini Machla
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Department of Prosthodontics, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Chatzinikolaidou
- Department of Materials Science and Technology, University of Crete, 70013 Heraklion, Greece
- Foundation for Research and Technology Hellas-Institute of Electronic Structure and Laser (FORTH-IESL), 70013 Heraklion, Greece
| |
Collapse
|
16
|
Parsegian K. The BMP and FGF pathways reciprocally regulate odontoblast differentiation. Connect Tissue Res 2023; 64:53-63. [PMID: 35816114 PMCID: PMC9832171 DOI: 10.1080/03008207.2022.2094789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Previous studies demonstrated that the exposure of primary dental pulp (DP) cultures to fibroblast growth factor 2 (FGF2) between days 3-7 exerted significant and long-lasting stimulatory effects on odontoblast differentiation and Dspp expression. These effects involved the increased expression of components of bone morphogenetic protein (BMP) signaling and were reverted by a BMP inhibitor noggin. FGF2 also transiently stimulated osteoblast differentiation and the expression of Ibsp and Dmp1. The present study aimed to further explore interactions between BMP and FGF signaling during odontoblast and osteoblast differentiation in DP cultures. MATERIALS AND METHODS Cultures were established using DP tissue isolated from non-transgenic and fluorescent reporter (DSPP-Cerulean, BSP-GFP, and DMP1-mCherry) transgenic mice and exposed to BMP2, FGF2, SU5402 (an FGF receptor inhibitor), and noggin between days 3-7. Mineralization, gene expression, fluorescent protein expression, and odontoblast formation were examined using xylenol orange, quantitative PCR, fluorometric analysis, and immunocytochemistry, respectively. RESULTS BMP2 activated SMAD1/5/8 but not ERK1/2 signaling, whereas FGF2 exerted opposite effects. BMP2 did not affect mineralization, the expression of Ibsp and Dmp1, and the percentage of DSPP-Cerulean+ odontoblasts but significantly increased Dspp and DSPP-Cerulean. In cultures exposed to BMP2 and FGF2, respectively, both SU5402 and noggin led to long-lasting decreases in Dspp and DSPP-Cerulean and transient decreases in Dmp1 and DMP1-mCherry without affecting Ibsp and BSP-GFP. CONCLUSION BMP2 and FGF2 exerted reciprocal stimulatory effects on odontoblast differentiation, whereas their effects on osteoblast differentiation were mediated independently. These data will further elucidate the perspectives of using BMP2 and FGF2 for dentin regeneration/repair.
Collapse
Affiliation(s)
- Karo Parsegian
- Division of Periodontics, Department of Surgical Dentistry, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
17
|
Cooper RL, Nicklin EF, Rasch LJ, Fraser GJ. Teeth outside the mouth: The evolution and development of shark denticles. Evol Dev 2023; 25:54-72. [PMID: 36594351 DOI: 10.1111/ede.12427] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023]
Abstract
Vertebrate skin appendages are incredibly diverse. This diversity, which includes structures such as scales, feathers, and hair, likely evolved from a shared anatomical placode, suggesting broad conservation of the early development of these organs. Some of the earliest known skin appendages are dentine and enamel-rich tooth-like structures, collectively known as odontodes. These appendages evolved over 450 million years ago. Elasmobranchs (sharks, skates, and rays) have retained these ancient skin appendages in the form of both dermal denticles (scales) and oral teeth. Despite our knowledge of denticle function in adult sharks, our understanding of their development and morphogenesis is less advanced. Even though denticles in sharks appear structurally similar to oral teeth, there has been limited data directly comparing the molecular development of these distinct elements. Here, we chart the development of denticles in the embryonic small-spotted catshark (Scyliorhinus canicula) and characterize the expression of conserved genes known to mediate dental development. We find that shark denticle development shares a vast gene expression signature with developing teeth. However, denticles have restricted regenerative potential, as they lack a sox2+ stem cell niche associated with the maintenance of a dental lamina, an essential requirement for continuous tooth replacement. We compare developing denticles to other skin appendages, including both sensory skin appendages and avian feathers. This reveals that denticles are not only tooth-like in structure, but that they also share an ancient developmental gene set that is likely common to all epidermal appendages.
Collapse
Affiliation(s)
- Rory L Cooper
- Department of Genetics and Evolution, The University of Geneva, Geneva, Switzerland
| | - Ella F Nicklin
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Liam J Rasch
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Gareth J Fraser
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
18
|
Single nucleotide polymorphisms in odontogenesis-related genes associated with tooth-size discrepancy. AUSTRALASIAN ORTHODONTIC JOURNAL 2023. [DOI: 10.2478/aoj-2023-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Abstract
Introduction: The present study aimed to determine the association between single nucleotide polymorphisms (SNPs) in RUNX2, SMAD6, BMP2, and BMP4 genes in relation to tooth-size discrepancy (TSD).
Methods: A cross-sectional study of patients undergoing orthodontic treatment measured the mesiodistal width of permanent teeth from pretreatment dental casts. Sixty-two patients were included in the study and TSD was assessed according to the Bolton analysis. The patients were allocated into a control group (without a TSD), an anterior excess group and an overall excess group. Genomic DNA was extracted from saliva samples, and SNPs previously associated with tooth size were evaluated using a real-time polymerase chain reaction (PCR) system. The Fisher exact test was performed to compare genotype and allele frequencies at an α = 0.05. An Odds Ratio (OR) and 95% Confidence Interval (95% CI) were calculated.
Results: The rs59983488 SNP in the RUNX2 gene was significantly related to the presence of anterior mandibular tooth-size excess in allele (T allele: p<0.001; OR = 11.74; 95% CI =2.61–55.80), and genotype models (GT genotype: p = 0.002; OR = 12.69; 95% CI = 2.47–64.83). The rs3934908 SNP in the SMAD6 gene was significantly associated with the presence of an overall maxillary tooth-size excess in allele (T allele: p < 0.001) and genotype models (TT genotype: p = 0.010).
Conclusion: The present results suggest that SNPs in RUNX2 (rs59983488) and SMAD6 (rs3934908) genes may be associated with the presence of tooth-size excess.
Collapse
|
19
|
Sun Q, Zhao T, Li B, Li M, Luo P, Zhang C, Chen G, Cao Z, Li Y, Du M, He H. FTO/RUNX2 signaling axis promotes cementoblast differentiation under normal and inflammatory condition. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119358. [PMID: 36084732 DOI: 10.1016/j.bbamcr.2022.119358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent mRNA modification which plays crucial roles in various biological processes, but its role in cementogenesis remains largely unknown. Here, using time-series transcriptomic analysis, we reveal that mRNA m6A demethylase Fat mass and obesity-associated protein (FTO) is involved in cementogenesis. Knocking down FTO decreases cementoblast differentiation and mineralization in both OCCM-30 cellular model and murine ectopic bone formation model. Mechanistically, we find that FTO directly binds Runt-related transcription factor 2 (Runx2) mRNA, an important cementogenesis factor, thus protecting it from YTH domain-containing family protein 2 (YTHDF2) mediated degradation, when cementoblasts are differentiating. Knocking down YTHDF2 restores the expression of Runx2 in FTO-knockdown cells. Moreover, under inflammatory conditions, TNF-α inhibits cementoblast differentiation and mineralization partly through FTO/RUNX2 axis. Collectively, our study reveals an important regulatory role of FTO/RUNX2 axis in normal and pathological cementogenesis.
Collapse
Affiliation(s)
- Qiao Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Tingting Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Biao Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mengying Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ping Luo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chen Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yicun Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Guangdong province, China
| | - Mingyuan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Hong He
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Orthodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
20
|
Živković M, Stefanović N, Glišić B, Brajović G, Miličić B, Kostić M, Popović B. WNT10A and RUNX2 mutations associated with non-syndromic tooth agenesis. Eur J Oral Sci 2022; 130:e12896. [PMID: 36250548 DOI: 10.1111/eos.12896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2022]
Abstract
The goal of this study was to examine the prevalence of WNT10A and RUNX2 mutations and assess their potential impact on the phenotype of non-syndromic tooth agenesis. The study included 30 participants with non-syndromic tooth agenesis, divided into hypodontia (n = 24) and oligodontia forms (n = 6), and 42 unaffected family members. Genomic DNA from buccal epithelial cells was used for polymerase chain reaction amplification of functionally important exons of the WNT10A and RUNX2 genes. Direct sequencing reactions were performed to confirm the presence of mutations. The trend of increasing prevalence of WNT10A mutations and a slight increase in the prevalence of RUNX2 mutations were revealed in tooth agenesis cases compared to unaffected family members. There was a higher prevalence of hypodontia than oligodontia, increased frequency of females over males with missing teeth, and a wide phenotypic variability was observed in individuals and families analyzed. The common missense mutations (p.Phe228Ile, p.Arg113Cys, p.Asp217Asn, and p.Gly165Arg) and c.114-56T>C in the WNT10A gene and in-frame-deletion/insertions (11A, 24Q, 30Q), synonymous variant c.240G>A, and 424-33dupC in the RUNX2 gene were identified. These findings highlight an important role of WNT10A and RUNX2 mutations in the genetic etiology of non-syndromic tooth agenesis.
Collapse
Affiliation(s)
- Marija Živković
- Department of Orthodontics, University of Belgrade, School of Dental Medicine, Belgrade, Serbia
| | - Neda Stefanović
- Department of Orthodontics, University of Belgrade, School of Dental Medicine, Belgrade, Serbia
| | - Branislav Glišić
- Department of Orthodontics, University of Belgrade, School of Dental Medicine, Belgrade, Serbia
| | - Gavrilo Brajović
- Department of Physiology, University of Belgrade, School of Dental Medicine, Belgrade, Serbia
| | - Biljana Miličić
- Department for Medical Statistics and Informatics, University of Belgrade, School of Dental Medicine, Belgrade, Serbia
| | - Marija Kostić
- Faculty of Hotel Management and Tourism, University of Kragujevac, Vrnjacka Banja, Serbia
| | - Branka Popović
- Department of Human Genetics, University of Belgrade, School of Dental Medicine, Belgrade, Serbia
| |
Collapse
|
21
|
Razghonova Y, Zymovets V, Wadelius P, Rakhimova O, Manoharan L, Brundin M, Kelk P, Romani Vestman N. Transcriptome Analysis Reveals Modulation of Human Stem Cells from the Apical Papilla by Species Associated with Dental Root Canal Infection. Int J Mol Sci 2022; 23:ijms232214420. [PMID: 36430898 PMCID: PMC9695896 DOI: 10.3390/ijms232214420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Interaction of oral bacteria with stem cells from the apical papilla (SCAP) can negatively affect the success of regenerative endodontic treatment (RET). Through RNA-seq transcriptomic analysis, we studied the effect of the oral bacteria Fusobacterium nucleatum and Enterococcus faecalis, as well as their supernatants enriched by bacterial metabolites, on the osteo- and dentinogenic potential of SCAPs in vitro. We performed bulk RNA-seq, on the basis of which differential expression analysis (DEG) and gene ontology enrichment analysis (GO) were performed. DEG analysis showed that E. faecalis supernatant had the greatest effect on SCAPs, whereas F. nucleatum supernatant had the least effect (Tanimoto coefficient = 0.05). GO term enrichment analysis indicated that F. nucleatum upregulates the immune and inflammatory response of SCAPs, and E. faecalis suppresses cell proliferation and cell division processes. SCAP transcriptome profiles showed that under the influence of E. faecalis the upregulation of VEGFA, Runx2, and TBX3 genes occurred, which may negatively affect the SCAP's osteo- and odontogenic differentiation. F. nucleatum downregulates the expression of WDR5 and TBX2 and upregulates the expression of TBX3 and NFIL3 in SCAPs, the upregulation of which may be detrimental for SCAPs' differentiation potential. In conclusion, the present study shows that in vitro, F. nucleatum, E. faecalis, and their metabolites are capable of up- or downregulating the expression of genes that are necessary for dentinogenic and osteogenic processes to varying degrees, which eventually may result in unsuccessful RET outcomes. Transposition to the clinical context merits some reservations, which should be approached with caution.
Collapse
Affiliation(s)
- Yelyzaveta Razghonova
- Department of Microbiology, Virology and Biotechnology, Mechnikov National University, 65000 Odesa, Ukraine
| | - Valeriia Zymovets
- Department of Odontology, Umeå University, 90187 Umeå, Sweden
- Correspondence:
| | - Philip Wadelius
- Department of Endodontics, Region of Västerbotten, 90189 Umeå, Sweden
| | - Olena Rakhimova
- Department of Odontology, Umeå University, 90187 Umeå, Sweden
| | - Lokeshwaran Manoharan
- National Bioinformatics Infrastructure Sweden (NBIS), Lund University, 22362 Lund, Sweden
| | - Malin Brundin
- Department of Odontology, Umeå University, 90187 Umeå, Sweden
| | - Peyman Kelk
- Section for Anatomy, Department of Integrative Medical Biology (IMB), Umeå University, 90187 Umeå, Sweden
| | - Nelly Romani Vestman
- Department of Odontology, Umeå University, 90187 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
22
|
Autophagy Regulates Osteogenic Differentiation of Human Periodontal Ligament Stem Cells Induced by Orthodontic Tension. Stem Cells Int 2022; 2022:2983862. [PMID: 36248255 PMCID: PMC9553533 DOI: 10.1155/2022/2983862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/24/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
Abstract
Tooth movement is the core of orthodontics. Osteogenesis of the tension side under orthodontic force has great significance on tooth movement and stability, which involves complex mechanical and biological signal transduction. However, the mechanism remains unclear. Through in vitro cell studies, we observed the increased expression levels of osteogenesis-related factors and autophagy-related factors during the osteogenic differentiation of mesenchymal stem cells induced by orthodontic force. The change trend of autophagy-related factors and osteogenesis-related factors is similar, which indicates the involvement of autophagy in osteogenesis. In the study of autophagy-related gene ATG7 silenced cells, the expression level of autophagy was significantly inhibited, and the expression level of osteogenesis-related factors also decreased accordingly. Through drug regulation, we observed that the increase of autophagy level could effectively promote osteogenic differentiation, while the decrease of the autophagy level inhibited this process to some extent. Therefore, autophagy plays an important role in the osteogenic differentiation of mesenchymal stem cells induced by orthodontic force, which provides a novel idea useful for orthodontic treatment in promoting periodontal tissue remodeling and accelerating tooth movement.
Collapse
|
23
|
Lorencetti-Silva F, Sales LS, Lamarque GDCC, Caixeta GA, Arnez MFM, Faccioli LH, Paula-Silva FWG. Effects of inflammation in dental pulp cell differentiation and reparative response. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.942714] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The responsiveness of the dentin-pulp complex is possible due to the stimulation of dental pulp cells, which begin to synthesize and secrete dentin matrix. The inflammatory process generated by harmful stimuli should be understood as a natural event of the immune response, resulting in the recruitment of hematopoietic cells, which cross the endothelial barrier and reach the site affected by the injury in order to eliminate the damage and provide an appropriate environment for the restoration of homeostasis. The repair process occurs in the presence of adequate blood supply, absence of infection, and with the participation of pro-inflammatory cytokines, growth factors, extracellular matrix components, and other biologically active molecules. Prostaglandins and leukotrienes are bioactive molecules derived from the metabolism of arachidonic acid, as a result of a variable range of cellular stimuli. The aim of this review is to describe the process of formation and biomineralization of the dentin-pulp complex and how pro-inflammatory events can modify this response, with emphasis on the lipid mediators prostaglandins and leukotrienes derived from arachidonic acid metabolism.
Collapse
|
24
|
Okada Y, Kawashima N, Noda S, Murano H, Han P, Hashimoto K, Kaneko T, Okiji T. VEGFA promotes odonto/osteoblastic differentiation in dental pulp stem cells via ERK/p38 signaling. J Dent Sci 2022. [DOI: 10.1016/j.jds.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
25
|
Sanz JL, López‐García S, Rodríguez‐Lozano FJ, Melo M, Lozano A, Llena C, Forner L. Cytocompatibility and bioactive potential of AH Plus Bioceramic Sealer: an
in vitro
study. Int Endod J 2022; 55:1066-1080. [PMID: 35950780 PMCID: PMC9541143 DOI: 10.1111/iej.13805] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
Aim To assess the cytocompatibility and bioactive potential of the new calcium silicate cement‐based sealer AH Plus Bioceramic Sealer (AHPbcs) on human periodontal ligament stem cells (hPDLSCs) compared with the epoxy resin‐based sealer AH Plus (AHP) and the calcium silicate cement‐based sealer Endosequence BC Sealer (ESbcs). Methodology Standardized sample discs and 1:1, 1:2 and 1:4 eluates of the tested materials were prepared. The following assays were performed: surface element distribution via SEM–EDX, cell attachment and morphology via SEM, cell viability via a MTT assay, cell migration/proliferation via a wound‐healing assay, osteo/cemento/odontogenic marker expression via RT‐qPCR and cell mineralized nodule formation via Alizarin Red S staining. HPDLSCs were isolated from extracted third molars. Comparisons were made with hPDLSCs cultured in unconditioned (negative control) or osteogenic (positive control) culture media. Statistical significance was established at p < .05. Results A higher peak of Ca2+ was detected from ESbcs compared with AHPbcs and AHP in SEM–EDX. Both AHPbcs and ESbcs showed significantly positive results in the cytocompatibility assays (cell viability, migration/proliferation, attachment and morphology) compared with a negative control group, whilst AHP showed significant negative results. Both AHPbcs and ESbcs exhibited an upregulation of at least one osteo/odonto/cementogenic marker compared with the negative and positive control groups. Both ESbcs and AHPbcs showed a significantly higher calcified nodule formation than the negative and positive control groups, indicative of their biomineralization potential and were also significantly higher than AHP group. Conclusion AH Plus Bioceramic Sealer exhibited a significantly higher cytocompatibility and bioactive potential than AH Plus and a similar cytocompatibility to that of Endosequence BC Sealer. Endosequence BC Sealer exhibited a significantly higher mineralization potential than the other tested sealers. The results from this in vitro study act as supporting evidence for the use of AH Plus Bioceramic Sealer in root canal treatment.
Collapse
Affiliation(s)
- José Luis Sanz
- Departament d’Estomatologia, Facultat de Medicina I Odontologia Universitat de València Valencia Spain
| | - Sergio López‐García
- Departament d’Estomatologia, Facultat de Medicina I Odontologia Universitat de València Valencia Spain
| | - Francisco Javier Rodríguez‐Lozano
- Department of Dermatology, Stomatology, Radiology and Physical Medicine, Morales Meseguer Hospital, Faculty of Medicine University of Murcia Murcia Spain
| | - María Melo
- Departament d’Estomatologia, Facultat de Medicina I Odontologia Universitat de València Valencia Spain
| | - Adrián Lozano
- Departament d’Estomatologia, Facultat de Medicina I Odontologia Universitat de València Valencia Spain
| | - Carmen Llena
- Departament d’Estomatologia, Facultat de Medicina I Odontologia Universitat de València Valencia Spain
| | - Leopoldo Forner
- Departament d’Estomatologia, Facultat de Medicina I Odontologia Universitat de València Valencia Spain
| |
Collapse
|
26
|
Kang W, Wang Y, Li J, Xie W, Zhao D, Wu L, Wang H, Xie S. TAS2R supports odontoblastic differentiation of human dental pulp stem cells in the inflammatory microenvironment. Stem Cell Res Ther 2022; 13:374. [PMID: 35902880 PMCID: PMC9331142 DOI: 10.1186/s13287-022-03057-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Background Inflammatory microenvironment promotes odontoblastic differentiation in human dental pulp stem cells (hDPSCs), but the regulatory mechanisms remain unclear. In this study, we aimed to explore the role of TAS2R in odontoblastic differentiation of hDPSCs in the inflammatory microenvironment. Methods Microarray analysis was performed to explore the differential mRNA profiles in inflammatory and healthy pulp tissues from the patients. hDPSCs isolated from the healthy pulp tissues were stimulated by LPS, TNFα and IL-6, respectively, to verify the effect of TAS2R. The expression markers related to odontoblastic differentiation of hDPSCs were observed by qPCR and chemical staining methods. TAS2R10 was overexpressed or silenced to observe the effect on odontoblastic differentiation of hDPSCs under LPS stimulation. The G protein and intracellular Ca2+ were detected, respectively, by qPCR and Fluo-4AM Ca2+ fluorescent probe. Results The expression of TAS2R was significantly upregulated in the inflammatory pulp tissues. In vitro, 5 subtypes of TAS2R mRNA expressions including TAS2R10, TAS2R14, TAS2R19, TAS2R30 and TAS2R31 in hDPSCs increased under the stimulation of LPS, TNFα or IL-6. In odontoblastic differentiation medium, we found LPS, TNFα or IL-6 stimulation promoted odontoblastic differentiation of hDPSCs. TAS2R10 overexpression in hDPSCs significantly increased the expression markers related to odontoblastic differentiation, whereas TAS2R10 silencing revealed the opposite effect. Furthermore, G protein was activated, and at the same time, intracellular Ca2+ enhanced when TAS2R10 was overexpressed, but decreased when TAS2R10 was silenced. Conclusions This study demonstrated that TAS2R was found to be expressed in hDPSCs, and TAS2R promoted odontoblastic differentiation of hDPSCs by mediating the increase in intracellular Ca2+ via the G protein-coupled receptors (GPCR) conventional signaling pathway in inflammatory microenvironment, which may be a potential target for the development of effective conservative treatments for dental pulp repair.
Collapse
Affiliation(s)
- Wen Kang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Yiwen Wang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Jiaying Li
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Weige Xie
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Dan Zhao
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Li Wu
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Sijing Xie
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, 210008, China.
| |
Collapse
|
27
|
BMP Signaling Pathway in Dentin Development and Diseases. Cells 2022; 11:cells11142216. [PMID: 35883659 PMCID: PMC9317121 DOI: 10.3390/cells11142216] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/27/2022] Open
Abstract
BMP signaling plays an important role in dentin development. BMPs and antagonists regulate odontoblast differentiation and downstream gene expression via canonical Smad and non-canonical Smad signaling pathways. The interaction of BMPs with their receptors leads to the formation of complexes and the transduction of signals to the canonical Smad signaling pathway (for example, BMP ligands, receptors, and Smads) and the non-canonical Smad signaling pathway (for example, MAPKs, p38, Erk, JNK, and PI3K/Akt) to regulate dental mesenchymal stem cell/progenitor proliferation and differentiation during dentin development and homeostasis. Both the canonical Smad and non-canonical Smad signaling pathways converge at transcription factors, such as Dlx3, Osx, Runx2, and others, to promote the differentiation of dental pulp mesenchymal cells into odontoblasts and downregulated gene expressions, such as those of DSPP and DMP1. Dysregulated BMP signaling causes a number of tooth disorders in humans. Mutation or knockout of BMP signaling-associated genes in mice results in dentin defects which enable a better understanding of the BMP signaling networks underlying odontoblast differentiation and dentin formation. This review summarizes the recent advances in our understanding of BMP signaling in odontoblast differentiation and dentin formation. It includes discussion of the expression of BMPs, their receptors, and the implicated downstream genes during dentinogenesis. In addition, the structures of BMPs, BMP receptors, antagonists, and dysregulation of BMP signaling pathways associated with dentin defects are described.
Collapse
|
28
|
Khalid M, Hodjat M, Baeeri M, Rahimifard M, Bayrami Z, Abdollahi M. Lead inhibits the odontogenic differentiation potential of dental pulp stem cells by affecting WNT1/β-catenin signaling and related miRNAs expression. Toxicol In Vitro 2022; 83:105422. [PMID: 35738543 DOI: 10.1016/j.tiv.2022.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/04/2022] [Accepted: 06/16/2022] [Indexed: 11/19/2022]
Abstract
Lead (Pb) is ubiquitous in environment that accumulates in teeth and calcified tissues from where it releases gradually with aging and adversely affects dental health. This study aimed to determine the effect of Pb exposure on odontogenic differentiation potential of isolated human dental pulp stem cells and investigate the possible underlying epigenetic factors. In the absence of Pb exposure, stem cells displayed significant odontogenic markers including elevated Alkaline Phosphatase (ALP) activity, Alizarin red staining intensity, and increased expression of odontogenic DMP1 and DSPP genes. Exposure to 60 μM Pb resulted in reduced ALP activity and calcium deposition. Also, diminished expression of RUNX2, DMP1, and DSPP, as well as Wnt signaling mediators including WNT1, and β-catenin were detected. The expression of Wnt signaling related microRNAs, miRNA-139-5p and miRNA-142-3p, on the other hand, were shown to have a significant increase. We concluded that Pb could adversely affect the odontogenic differentiation potential of dental pulp stem cell. The underlying mechanism might related to Pb-induced epigenetic dysregulation of WNT1/β-catenin pathway-related miRNAs leading to down-regulation of Wnt/β-catenin related odontogenic genes and eventually impaired odontogenic differentiation process.
Collapse
Affiliation(s)
- Madiha Khalid
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahshid Hodjat
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Maryam Baeeri
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mahban Rahimifard
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zahra Bayrami
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group (TDG), Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), and Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
29
|
Multiple roles of Runt-related transcription factor-2 in tooth eruption: bone formation and resorption. Arch Oral Biol 2022; 141:105484. [PMID: 35749976 DOI: 10.1016/j.archoralbio.2022.105484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022]
Abstract
OBJECTIVE The aim was to provide a comprehensive review of the current knowledge of the multiple roles of Runt-related transcription factor-2 (RUNX2) in regulating tooth eruption, focusing on the molecular mechanisms regarding tooth eruption mediated by RUNX2. DESIGN Relevant literatures in PubMed, Medline, and Scopus database were searched, and a narrative review was performed. The multiple roles of RUNX2 in regulating tooth eruption was reviewed and discussed. RESULTS Aberrant RUNX2 expression leads to disturbed or failed tooth eruption. Tooth eruption involves both the process of bone formation and bone resorption. RUNX2 promotes osteogenesis around the radicular portion of the dental follicle that provides the biological force for tooth eruption through inducing the expression of osteogenesis-related genes in dental follicle cells/osteoblasts. On the other hand, through indirect and direct pathways, RUNX2 regulates osteoclastogenesis and the formation of the eruption pathway. CONCLUSION RUNX2 exerts a pivotal and complex influence in regulating tooth eruption. This review provides a better understanding of the function of RUNX2 in tooth eruption, which is beneficial to illuminate the precise molecular mechanism of osteogenesis and bone resorption, aiding the development of effective therapy for the failure of tooth eruption.
Collapse
|
30
|
Diomede F, Fonticoli L, Marconi GD, Della Rocca Y, Rajan TS, Trubiani O, Murmura G, Pizzicannella J. Decellularized Dental Pulp, Extracellular Vesicles, and 5-Azacytidine: A New Tool for Endodontic Regeneration. Biomedicines 2022; 10:biomedicines10020403. [PMID: 35203612 PMCID: PMC8962372 DOI: 10.3390/biomedicines10020403] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 12/29/2022] Open
Abstract
Dental pulp is a major component of the dental body that serves to maintain the tooth life and function. The aim of the present work was to develop a system that functions as a growth-permissive microenvironment for dental pulp regeneration using a decellularized dental pulp (DDP) matrix, 5-Aza-2′-deoxycytidine (5-Aza), and Extracellular Vesicles (EVs) derived from human Dental Pulp Stem Cells (hDPSCs). Human dental pulps extracted from healthy teeth, scheduled to be removed for orthodontic purpose, were decellularized and then recellularized with hDPSCs. The hDPSCs were seeded on DDP and maintained under different culture conditions: basal medium (CTRL), EVs, 5-Aza, and EVs+-5-Aza. Immunofluorescence staining and Western blot analyses were performed to evaluate the proteins’ expression related to dentinogenesis, such as ALP, RUNX2, COL1A1, Vinculin, DMP1, and DSPP. Protein contents found in the DDP recellularized with hDPSCs were highly expressed in samples co-treated with EVs and 5-Aza compared to other culture conditions. This study developed a DDP matrix loaded by hDPSCs in co-treatment with EVs, which might enhance the dentinogenic differentiation with a high potentiality for endodontic regeneration.
Collapse
Affiliation(s)
- Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
| | - Luigia Fonticoli
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy;
| | - Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
| | | | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
- Correspondence: (O.T.); (G.M.)
| | - Giovanna Murmura
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (F.D.); (L.F.); (Y.D.R.)
- Correspondence: (O.T.); (G.M.)
| | | |
Collapse
|
31
|
THAWEESAPPHITHAK S, SAENGSIN J, KAMOLVISIT W, THEERAPANON T, PORNTAVEETUS T, SHOTELERSUK V. Cleidocranial dysplasia and novel RUNX2 variants: dental, craniofacial, and osseous manifestations. J Appl Oral Sci 2022; 30:e20220028. [PMID: 35674542 PMCID: PMC9239300 DOI: 10.1590/1678-7757-2022-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/08/2022] [Indexed: 11/30/2022] Open
Abstract
Cleidocranial dysplasia (CCD) is a skeletal disorder affecting cranial sutures, teeth, and clavicles, and is associated with the
RUNX2
mutations. Although numerous patients have been described, a direct genotype–phenotype correlation for
RUNX2
has been difficult to establish. Further cases must be studied to understand the clinical and genetic spectra of CCD.
Collapse
Affiliation(s)
| | | | | | | | | | - Vorasuk SHOTELERSUK
- Chulalongkorn University, Thailand; King Chulalongkorn Memorial Hospital, Thailand
| |
Collapse
|
32
|
Kang KR, Kim JS, Seo JY, Lim H, Kim TH, Yu SK, Kim HJ, Kim CS, Chun HS, Park JC, Kim DK. Nicotinamide phosphoribosyltransferase regulates the cell differentiation and mineralization in cultured odontoblasts. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:37-45. [PMID: 34965994 PMCID: PMC8723980 DOI: 10.4196/kjpp.2022.26.1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Kyeong-Rok Kang
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Jae-Sung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Jeong-Yeon Seo
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Ageassociated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
| | - HyangI Lim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Tae-Hyeon Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Sun-Kyoung Yu
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Heung-Joong Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Chun Sung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Hong Sung Chun
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Ageassociated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Korea
| | - Do Kyung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
33
|
Shen J, She W, Zhang F, Guo J, Jia R. YBX1 Promotes the Inclusion of RUNX2 Alternative Exon 5 in Dental Pulp Stem Cells. Int J Stem Cells 2021; 15:301-310. [PMID: 34965997 PMCID: PMC9396021 DOI: 10.15283/ijsc21035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022] Open
Abstract
Background and Objectives RUNX2 plays an essential role during the odontoblast differentiation of dental pulp stem cells (DPSCs). RUNX2 Exon 5 is an alternative exon and essential for RUNX2 transcriptional activity. This study aimed to investigate the regulatory mechanisms of RUNX2 exon 5 alternative splicing in human DPSCs. Methods and Results The regulatory motifs of RUNX2 exon 5 were analyzed using the online SpliceAid program. The alternative splicing of RUNX2 exon 5 in DPSCs during mineralization-induced differentiation was analyzed by RT-PCR. To explore the effect of splicing factor YBX1 on exon 5 alternative splicing, gaining or losing function of YBX1 was performed by transfection of YBX1 overexpression plasmid or anti-YBX1 siRNA in DPSCs. Human RUNX2 exon 5 is evolutionarily conserved and alternatively spliced in DPSCs. There are three potential YBX1 binding motifs in RUNX2 exon 5. The inclusion of RUNX2 exon 5 and YBX1 expression level increased significantly during mineralization- induced differentiation in DPSCs. Overexpression of YBX1 significantly increased the inclusion of RUNX2 exon 5 in DPSCs. In contrast, silence of YBX1 significantly reduced the inclusion of exon 5 and the corresponding RUNX2 protein expression level. Knockdown of YBX1 reduced the expression of alkaline phosphatase (ALP) and osteocalcin (OC) and the mineralization ability of DPSCs, while overexpression of YBX1 increased the expression of ALP and OC and the mineralization ability of DPSCs. Conclusions Human RUNX2 exon 5 is conserved evolutionarily and alternatively spliced in DPSCs. Splicing factor YBX1 promotes the inclusion of RUNX2 exon 5 and improves the mineralization ability of DPSCs.
Collapse
Affiliation(s)
- Jiaoxiang Shen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Orthodontics, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Wenting She
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Fengxia Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jihua Guo
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Rong Jia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Wei X, Li J, Liu H, Niu C, Chen D. Salidroside promotes the osteogenic and odontogenic differentiation of human dental pulp stem cells through the BMP signaling pathway. Exp Ther Med 2021; 23:55. [PMID: 34917181 PMCID: PMC8630442 DOI: 10.3892/etm.2021.10977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
Regenerative endodontics, as an alternative approach, aims to regenerate dental pulp-like tissues and is garnering the attention of clinical dentists. This is due to its reported biological benefits for dental therapeutics. Stem cells and their microenvironment serve an important role in the process of pulp regeneration. Regulation of the stem cell microenvironment and the directed differentiation of stem cells is becoming a topic of intensive research. Salidroside (SAL) is extracted from the root of Rhodiola rosea and it has been reported that SAL exerts antiaging, neuroprotective, hepatoprotective, cardioprotective and anticancer effects. However, the ability of SAL to regulate the osteo/odontogenic differentiation of hDPSCs remains to be elucidated. In the present study, the effect of SAL on the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells (hDPSCs) was investigated. This was achieved by performing CCK-8 ARS staining assay, reverse transcription-quantitative PCR to detect mRNA of ALP, OSX, RUNX2, OCN, DSPP and BSP, western blotting to detect the protein of MAPK, Smad1/5/8, OSX, RUNX2, BSP and GAPDH and immunofluorescence assays to detect DSPP. The results indicated that SAL promoted the cell viability and the osteogenic/odontogenic differentiation of hDPSCs whilst increasing the expression of genes associated with osteogenic/odontogenic differentiation by ARS staining assay. In addition, SAL promoted osteogenic and odontogenic differentiation by activating the phosphorylation of Smad1/5/8. Collectively, these findings suggest that SAL promoted the osteogenic and odontogenic differentiation of hDPSCs activating the BMP signaling pathway.
Collapse
Affiliation(s)
- Xiaoling Wei
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Jiayang Li
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Hui Liu
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| | - Chenguang Niu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Department of Endodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China.,College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, P.R. China
| | - Dong Chen
- Department of Endodontics, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai 200001, P.R. China
| |
Collapse
|
35
|
NaF reduces KLK4 expression by decreasing Foxo1/Runx2 expression in LS8 cells. Arch Oral Biol 2021; 133:105311. [PMID: 34781073 DOI: 10.1016/j.archoralbio.2021.105311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/19/2021] [Accepted: 11/02/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed to investigate the effect of high fluoride on runt-related transcription factor 2 (Runx2) expression and to explore the possible relationship among Runx2, forkhead box o1 (Foxo1) and kallikrein 4 (KLK4) in high fluoride-treated ameloblasts. DESIGN Ameloblast-like cells (LS8 cells) were exposed to various concentrations of sodium fluoride (NaF) for up to 48 h. Runx2 expression was downregulated by gene silencing, and Foxo1 expression was up- and downregulated by gene overexpression and silencing, respectively. The mRNA and protein levels of Runx2, Foxo1, KLK4 and matrix metalloproteinase 20 (MMP20) were detected by qRT-PCR and western blotting. RESULTS Runx2 expression was decreased in a dose- and time-dependent manner in NaF-treated LS8 cells. The knockdown of Runx2 markedly decreased KLK4 expression in LS8 cells under NaF conditions. However, the variation trend of MMP20 was unclear. In addition, forced Foxo1 expression led to significant upregulation of Runx2 in LS8 cells under NaF conditions. In contrast, the knockdown of Foxo1 markedly decreased the Runx2 protein levels under NaF conditions. Moreover, Foxo1 downregulation markedly decreased runx2 mRNA levels, and this inhibition in LS8 cells was intensified when combined with NaF treatment. CONCLUSION The results indicated that NaF reduces Runx2 expression in LS8 cells and that decreased Foxo1/Runx2 expression induced by high fluoride is a cause of low KLK4 expression.
Collapse
|
36
|
Yamada A, Yoshizaki K, Ishikawa M, Saito K, Chiba Y, Fukumoto E, Hino R, Hoshikawa S, Chiba M, Nakamura T, Iwamoto T, Fukumoto S. Connexin 43-Mediated Gap Junction Communication Regulates Ameloblast Differentiation via ERK1/2 Phosphorylation. Front Physiol 2021; 12:748574. [PMID: 34630166 PMCID: PMC8500398 DOI: 10.3389/fphys.2021.748574] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
Connexin 43 (Cx43) is an integral membrane protein that forms gap junction channels. These channels mediate intercellular transport and intracellular signaling to regulate organogenesis. The human disease oculodentodigital dysplasia (ODDD) is caused by mutations in Cx43 and is characterized by skeletal, ocular, and dental abnormalities including amelogenesis imperfecta. To clarify the role of Cx43 in amelogenesis, we examined the expression and function of Cx43 in tooth development. Single-cell RNA-seq analysis and immunostaining showed that Cx43 is highly expressed in pre-secretory ameloblasts, differentiated ameloblasts, and odontoblasts. Further, we investigated the pathogenic mechanisms of ODDD by analyzing Cx43-null mice. These mice developed abnormal teeth with multiple dental epithelium layers. The expression of enamel matrix proteins such as ameloblastin (Ambn), which is critical for enamel formation, was significantly reduced in Cx43-null mice. TGF-β1 induces Ambn transcription in dental epithelial cells. The induction of Ambn expression by TGF-β1 depends on the density of the cultured cells. Cell culture at low densities reduces cell–cell contact and reduces the effect of TGF-β1 on Ambn induction. When cell density was high, Ambn expression by TGF-β1 was enhanced. This induction was inhibited by the gap junction inhibitors, oleamide, and 18α-grycyrrhizic acid and was also inhibited in cells expressing Cx43 mutations (R76S and R202H). TGF-β1-mediated phosphorylation and nuclear translocation of ERK1/2, but not Smad2/3, were suppressed by gap junction inhibitors. Cx43 gap junction activity is required for TGF-β1-mediated Runx2 phosphorylation through ERK1/2, which forms complexes with Smad2/3. In addition to its gap junction activity, Cx43 may also function as a Ca2+ channel that regulates slow Ca2+ influx and ERK1/2 phosphorylation. TGF-β1 transiently increases intracellular calcium levels, and the increase in intracellular calcium over a short period was not related to the expression level of Cx43. However, long-term intracellular calcium elevation was enhanced in cells overexpressing Cx43. Our results suggest that Cx43 regulates intercellular communication through gap junction activity by modulating TGF-β1-mediated ERK signaling and enamel formation.
Collapse
Affiliation(s)
- Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Keigo Yoshizaki
- Section of Orthodontics and Dentofacial Orthopedics, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Masaki Ishikawa
- The Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Kan Saito
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuta Chiba
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Emiko Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Ryoko Hino
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Seira Hoshikawa
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Mitsuki Chiba
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Takashi Nakamura
- Division of Molecular Pharmacology and Cell Biophysics, Department of Oral Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Tsutomu Iwamoto
- Division of Oral Health Science, Department of Pediatric Dentistry/Special Needs Dentistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Fukumoto
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Tohoku University Graduate School of Dentistry, Sendai, Japan.,Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Küchler EC, Reis CLB, Silva-Sousa AC, Marañón-Vásquez GA, Matsumoto MAN, Sebastiani A, Scariot R, Paddenberg E, Proff P, Kirschneck C. Exploring the Association Between Genetic Polymorphisms in Genes Involved in Craniofacial Development and Isolated Tooth Agenesis. Front Physiol 2021; 12:723105. [PMID: 34539446 PMCID: PMC8440976 DOI: 10.3389/fphys.2021.723105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/13/2021] [Indexed: 11/13/2022] Open
Abstract
Tooth agenesis is a common congenital anomaly in humans and is more common in oral cleft patients than in the general population. Many previous studies suggested that oral cleft and tooth agenesis share a similar genetic background. Therefore, this study explored the association between isolated tooth agenesis and genetic polymorphisms in genes that are crucial for craniofacial and tooth development. Panoramic radiographs, anamnesis, and genomic DNA from 273 patients were included. Patients were classified as tooth agenesis present, when at least one permanent tooth was congenitally missing. Patients with syndromes and oral cleft were excluded. Only unrelated patients were included. The genetic polymorphisms in BMP2 (rs235768 and rs1005464), BMP4 (rs17563), RUNX2 (rs59983488 and rs1200425), and SMAD6 (rs3934908 and rs2119261) were genotyped by real-time polymerase chain reaction. Genotype and allele distributions were compared between the tooth agenesis phenotypes and controls by Chi-square test. Haplotype and diplotype analysis were also performed, in addition to multivariate analysis (alpha of 0.05). A total of 86 tooth agenesis cases and 187 controls were evaluated. For the rs235768 in BMP2, patients carrying TT genotype have higher chance to present tooth agenesis [p < 0.001; prevalence ratio (PR) = 8.29; 95% confidence interval (CI) = 4.26–16.10]. The TT genotype in rs3934908 (SMAD6) was associated with higher chance to present third molar agenesis (p = 0.023; PR = 3.25; 95% CI = 1.17–8.99). BMP2 was also associated in haplotype and diplotype analysis with tooth agenesis. In conclusion, genetic polymorphisms in BMP2 and SMAD6 were associated with isolated tooth agenesis.
Collapse
Affiliation(s)
- Erika Calvano Küchler
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany.,Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Caio Luiz Bitencourt Reis
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Alice Corrêa Silva-Sousa
- Department of Restorative Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Guido Artemio Marañón-Vásquez
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mirian Aiko Nakane Matsumoto
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Aline Sebastiani
- Department of Stomatology, Federal University of Paraná, Curitiba, Brazil
| | - Rafaela Scariot
- Department of Stomatology, Federal University of Paraná, Curitiba, Brazil
| | - Eva Paddenberg
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| | - Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, Germany
| |
Collapse
|
38
|
Effects of rice fermented extracts, "Sake Lees", on the functional activity of odontoblast-like cells (KN-3 cells). Odontology 2021; 110:254-261. [PMID: 34498157 DOI: 10.1007/s10266-021-00654-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 08/23/2021] [Indexed: 10/20/2022]
Abstract
This study was designed to investigate the effects of Sake Lees extracts (SLE, Sake Kasu) on the functional activity of odontoblastic cells and tooth pulp of the rats. For in vitro studies, a rat clonal odontoblast-like cell line, KN-3 cells were cultured. SLE significantly decreased KN-3 cell proliferation, but showed no significant cytotoxicity. SLE effects on several protein productions of KN-3 cells were compared with PBS. SLE and PBS increased alkaline phosphatase (ALP), dentin sialoprotein (DSP), and osterix in a day-course dependent manner, while SLE increased the induction of ALP on day 9-21 and DSP on day 15-21. SLE also increased Runx2 expression on day 3 and 9 compared to PBS. Alizarin Red stainings revealed that SLE showed a subtle increase in mineralization of KN-3 cells on day 15 and 21. A histological investigation was conducted to assess if SLE induced reparative dentin formation after direct capping at the exposed tooth pulp in rats, suggesting that SLE could increase the reparative dentin formation more than PBS. These findings suggest that Sake Lees could have functional roles in the alterations of odontoblastic activity, which might influence the physiology of the tooth pulp.
Collapse
|
39
|
Saharudin S, Sanusi SY, Ponnuraj KT. Sequencing analysis of exons 5 and 6 in RUNX2 in non-syndromic patients with supernumerary tooth in Kelantan, Malaysia. Clin Oral Investig 2021; 26:1261-1268. [PMID: 34453594 DOI: 10.1007/s00784-021-04098-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 07/21/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The aim of this study is to do a sequencing analysis of RUNX2 in non-syndromic patients with supernumerary tooth. MATERIALS AND METHODS Fifty-three patients with supernumerary tooth were identified retrospectively from 1,275 radiographic reviews who attended the Hospital Universiti Sains Malaysia (USM) Dental Clinic. Informed consent was obtained from the patients prior to the study. Blood samples were collected from 41 patients and DNA extractions were performed out of which 10 samples were chosen randomly for PCR amplification using designated primers for RUNX2 followed by DNA sequencing analysis. RESULTS This study involved 28 male patients (68.3%) and 13 female patients (31.7%) with a gender ratio of 2.2:1 and mean age of 15.9 ± 6.2 years. DNA extraction yielded ~ 40 ng/μl of concentrated DNA, and each DNA sample had more than 1500 bp of DNA length. The purity ranged between 1.8 and 2.0. DNA sequencing analysis did not reveal any mutations in exons 5 and 6 of RUNX2. CONCLUSION This study did not reveal any mutations in exons 5 and 6 of RUNX2 in non-syndromic patients with supernumerary tooth. CLINICAL RELEVANCE Analysis of mutations in RUNX2 is important to enhance the understanding of tooth development in humans.
Collapse
Affiliation(s)
- Suhailiza Saharudin
- Department of Pediatric Dentistry, Hospital Raja Permaisuri Bainun, 30450, Ipoh, Perak, Malaysia
| | - Sarliza Yasmin Sanusi
- School of Dental Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Kannan Thirumulu Ponnuraj
- School of Dental Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia. .,Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
40
|
A Prosthodontic Approach as a Complementary Solution for a Complicated Orthodontic Treatment of a Patient with Cleidocranial Dysplasia. Case Rep Dent 2021; 2021:6618813. [PMID: 34336308 PMCID: PMC8295508 DOI: 10.1155/2021/6618813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/23/2021] [Indexed: 11/21/2022] Open
Abstract
This clinical report describes a prosthodontic rehabilitation of a 29-year-old patient with cleidocranial dysplasia (CCD), who, after completing an orthodontic treatment, was not satisfied with the aesthetic outcome. Besides aesthetics, the patient complained about mastication muscles pain, and clicking while eating but was not aware about her unilateral open bite on the right side. The aim of this treatment was to improve smile appearance and patient's well-being, as well as to restore the proper occlusal vertical dimension (OVD) along with complete intercuspation and to establish masticatory function. The first phase of the treatment concentrated on eliminating the muscle pain and temporomandibular joint (TMJ) clicking with a repositioning splint. During the second phase, the functional and aesthetic rehabilitation was obtained using adhesive prosthesis overlays and veneers.
Collapse
|
41
|
Ni L, Yuan C. The Pathogenic Potential of RUNX2. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 000:000-000. [DOI: 10.14218/erhm.2021.00028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Song W, Li S, Tang Q, Chen L, Yuan Z. In vitro biocompatibility and bioactivity of calcium silicate‑based bioceramics in endodontics (Review). Int J Mol Med 2021; 48:128. [PMID: 34013376 PMCID: PMC8136140 DOI: 10.3892/ijmm.2021.4961] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
Calcium silicate-based bioceramics have been applied in endodontics as advantageous materials for years. In addition to excellent physical and chemical properties, the biocompatibility and bioactivity of calcium silicate-based bioceramics also serve an important role in endodontics according to previous research reports. Firstly, bioceramics affect cellular behavior of cells such as stem cells, osteoblasts, osteoclasts, fibroblasts and immune cells. On the other hand, cell reaction to bioceramics determines the effect of wound healing and tissue repair following bioceramics implantation. The aim of the present review was to provide an overview of calcium silicate-based bioceramics currently applied in endodontics, including mineral trioxide aggregate, Bioaggregate, Biodentine and iRoot, focusing on their in vitro biocompatibility and bioactivity. Understanding their underlying mechanism may help to ensure these materials are applied appropriately in endodontics.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
43
|
Liu M, He L, Wang H, Su W, Li H. Comparison of in vitro biocompatibility and antibacterial activity of two calcium silicate-based materials. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:52. [PMID: 33900464 PMCID: PMC8076131 DOI: 10.1007/s10856-021-06523-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
This study is aimed at comparing and evaluating the biocompatibility and antibacterial activities of mineral trioxide aggregate (MTA) and iRoot BP Plus as novel retro-filling materials. Discs of both materials were prepared and incubated for 72 h to obtain material extracts in medium. Flow cytometry and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay were used to assess the rate of apoptosis and proliferation of human periodontal ligament stem cells (hPDLSCs) when exposed to eluates of both materials. The expression levels of alkaline phosphatase, collagen type I, osteocalcin, Runt-related transcription factor-2, and Osterix were tested for evaluating the osteogenic differentiation of hPDLSCs. The antibacterial activities of both materials were compared by the direct contact test. The hPDLSCs stimulated by MTA or iRoot BP Plus eluates showed significantly higher cell viability than that of the control group with no eluates. No significant differences were observed among the percentages of necrotic and apoptotic cells stimulated by MTA and iRoot BP Plus eluates and the control group. The expression of all osteogenic differentiation markers of hPDLSCs in both experimental groups were significantly higher than those of the control group, while the increment values in MTA group were significantly higher than those of the iRoot BP Plus group. The antibacterial activity against Enterococcus faecalis showed no significant difference between MTA and iRoot BP Plus. Therefore, both materials may be suitable for retro-filling applications.
Collapse
Affiliation(s)
- Mingxiang Liu
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Lu He
- Affiliated Stomatology Hospital of Guangzhou Medical University, School of Stomatology, Guangzhou Medical University, Guangdong, 510140, China
| | - Hongyuan Wang
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Wenpei Su
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Hong Li
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
44
|
Feng Z, Duren Z, Xiong Z, Wang S, Liu F, Wong WH, Wang Y. hReg-CNCC reconstructs a regulatory network in human cranial neural crest cells and annotates variants in a developmental context. Commun Biol 2021; 4:442. [PMID: 33824393 PMCID: PMC8024315 DOI: 10.1038/s42003-021-01970-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Cranial Neural Crest Cells (CNCC) originate at the cephalic region from forebrain, midbrain and hindbrain, migrate into the developing craniofacial region, and subsequently differentiate into multiple cell types. The entire specification, delamination, migration, and differentiation process is highly regulated and abnormalities during this craniofacial development cause birth defects. To better understand the molecular networks underlying CNCC, we integrate paired gene expression & chromatin accessibility data and reconstruct the genome-wide human Regulatory network of CNCC (hReg-CNCC). Consensus optimization predicts high-quality regulations and reveals the architecture of upstream, core, and downstream transcription factors that are associated with functions of neural plate border, specification, and migration. hReg-CNCC allows us to annotate genetic variants of human facial GWAS and disease traits with associated cis-regulatory modules, transcription factors, and target genes. For example, we reveal the distal and combinatorial regulation of multiple SNPs to core TF ALX1 and associations to facial distances and cranial rare disease. In addition, hReg-CNCC connects the DNA sequence differences in evolution, such as ultra-conserved elements and human accelerated regions, with gene expression and phenotype. hReg-CNCC provides a valuable resource to interpret genetic variants as early as gastrulation during embryonic development. The network resources are available at https://github.com/AMSSwanglab/hReg-CNCC .
Collapse
Affiliation(s)
- Zhanying Feng
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, China.,School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhana Duren
- Center for Human Genetics, Department of Genetics and Biochemistry, Clemson University, Greenwood, SC, USA.,Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA, USA
| | - Ziyi Xiong
- Department of Genetic Identification, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,Department of Epidemiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, Netherlands.,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Sijia Wang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Fan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China. .,China National Center for Bioinformation, Chinese Academy of Sciences, Beijing, China.
| | - Wing Hung Wong
- Department of Statistics, Department of Biomedical Data Science, Bio-X Program, Stanford University, Stanford, CA, USA.
| | - Yong Wang
- CEMS, NCMIS, MDIS, Academy of Mathematics and Systems Science, National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, China. .,School of Mathematics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China. .,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China. .,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China.
| |
Collapse
|
45
|
Küchler EC, de Lara RM, Omori MA, Schröder A, Teodoro VB, Baratto-Filho F, Léon JE, Proff P, Madalena IR, Kirschneck C. Estrogen deficiency affects tooth formation and gene expression in the odontogenic region of female rats. Ann Anat 2021; 236:151702. [PMID: 33607226 DOI: 10.1016/j.aanat.2021.151702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/13/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is some evidence that estrogen regulates the expression of several genes in different cells, including dental cells. Therefore, the aim of this study was to investigate the role of estrogen deficiency during tooth development regarding tooth structure morphology and its impact on the expression of odontogenesis-related genes. METHODS A total of 40 female Wistar rats was divided into OVX (estrogen deficiency) and Sham (control) groups. Bilateral ovariectomy was performed in the OVX group, while Sham surgery was performed in the control group at the age of 21 days. At an age of 56 days, 16 rats were euthanized for gene expression analyses of Bmp4, Smad6, Tgfb1 and Runx2. At the age of 63 days, the remaining rats were euthanized for histological and morphometric analyses of teeth. The mandibles of the rats were submitted to μCT analysis. Tooth structures (enamel, dentin and dental pulp) were analyzed. T test was used to compare the mean differences between groups (p<0.05). RESULTS In the μCT analysis, enamel and dentin thickness were significantly increased in the control group (p<0.0001). Pulp dimensions were significantly larger in the OVX group (p<0.0001). A reduction of tooth structures in the OVX group was confirmed in HE staining. Smad6 was differentially expressed in the OVX group (p=0.04). CONCLUSION Estrogen deficiency affects gene expression in the odontogenic region and tooth structure morphology.
Collapse
Affiliation(s)
- Erika Calvano Küchler
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café, Ribeirão Preto, SP 14040-904, Brazil
| | | | - Marjorie Ayumi Omori
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café, Ribeirão Preto, SP 14040-904, Brazil
| | - Agnes Schröder
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | | | - Flares Baratto-Filho
- School of Dentistry, Univille University, R. Paulo Malschitzki, Joinville, SC 89219-710, Brazil
| | - Jorge Esquiche Léon
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Peter Proff
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| | - Isabela Ribeiro Madalena
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Avenida do Café, Ribeirão Preto, SP 14040-904, Brazil
| | - Christian Kirschneck
- Department of Orthodontics, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| |
Collapse
|
46
|
Atkinson SP. A preview of selected articles. Stem Cells 2021. [DOI: 10.1002/stem.3333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Qi X, Liu C, Li G, Al-Alfe D, Paurazas S, Askar M, Yang D, Zhou Z. Evaluation of Cannabinoids on the Odonto/Osteogenesis in Human Dental Pulp Cells In Vitro. J Endod 2021; 47:444-450. [PMID: 33352148 DOI: 10.1016/j.joen.2020.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/28/2020] [Accepted: 12/12/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Cannabinoids possess anti-inflammatory, analgesic, and osteogenic effects in different cell types and tissues. The null hypothesis is delta-9-tetrahydrocannabinol (THC) might induce dental tissue repair and regeneration. The aim of this study was to investigate the effect of THC on human dental pulp cell (HDPC) viability and biomineralization as well as the molecular mechanism of THC-induced odonto/osteogenic differentiation of HDPCs. METHODS The toxicity of THC on HDPCs was determined by 3-(4,5-dimethylthiazolyl-2-yl)-2,5-diphenyltetrazolium bromide assay. The odonto/osteogenic differentiation marker genes of HDPCs were assessed by real-time polymerase chain reaction with or without THC treatment. HDPC biomineralization was examined by collagen synthesis and calcium nodule deposition. The molecular mechanism of THC on HDPCs was investigated by examining the mitogen-activated protein kinase (MAPK) signaling pathway via blocking cannabinoid receptor type 1 or 2 receptors. RESULTS We found that THC had no inhibition of HDPC vitality in the testing concentration (0-100 μmol/L). THC showed biphasic effects on HDPC proliferation. At a low dose (<5 μmol/L), THC considerably increased HDPC cell division. HDPC proliferation reduced with higher THC concentrations (>5 μmol/L). The expression of odonto/osteogenic marker genes were up-regulated in the presence of cannabinoids. These were confirmed by increased collagen synthesis and mineralized calcium nodule formation in the cannabinoid group. The effect of THC-induced odonto/osteogenesis occurred via MAPK signaling. CONCLUSIONS THC was biocompatible to HDPCs by promoting their mitogenic division in a biphasic pattern depending on the concentration. THC induced HDPC odonto/osteogenic differentiation through the activation of MAPK mediated by CB1 and CB2 receptors. Cannabinoids may play an important role in the HDPC regeneration process and potentially be used as a pulp-capping agent.
Collapse
Affiliation(s)
- Xia Qi
- Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan; Department of Periodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, Hebei, China
| | - Chunyan Liu
- Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan; Department of Orthodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, Hebei, China
| | - Guohua Li
- Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan
| | - Dalia Al-Alfe
- Graduate Endodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan
| | - Susan Paurazas
- Graduate Endodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan
| | - Mazin Askar
- Graduate Endodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan
| | - Dongru Yang
- Department of Periodontics, School and Hospital of Stomatology, Hebei Medical University and Hebei Key Laboratory of Stomatology, Shijiazhuang, Hebei, China; Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan.
| | - Zheng Zhou
- Graduate Periodontics, School of Dentistry, University of Detroit Mercy, Detroit, Michigan.
| |
Collapse
|
48
|
Li ZZ, Wang HT, Lee GY, Yang Y, Zou YP, Wang B, Gong CJ, Cai Y, Ren JG, Zhao JH. Bleomycin: A novel osteogenesis inhibitor of dental follicle cells via a TGF-β1/SMAD7/RUNX2 pathway. Br J Pharmacol 2020; 178:312-327. [PMID: 33068010 DOI: 10.1111/bph.15281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/16/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND AND PURPOSE Tooth eruption is a complicated process regulated by the dental follicles (DF). Our recent study discovered that tooth eruption was inhibited upon injection of bleomycin into DF. However, the mechanisms were unknown. EXPERIMENTAL APPROACH Human dental follicle cells (hDFCs) were treated by bleomycin or exogenous TGF-β1 or transfected by plasmids loading SMAD7 or shRNA targeting SMAD7, followed by osteogenesis induction assay and signalling analysis. Human fresh DF tissues and Wistar rats were used to further confirm bleomycin function. KEY RESULTS Bleomycin decreased expression of RUNX2 and osteogenic genes in hDFCs, reducing osteogenic capacity. TGF-β1 expression was up-regulated in bleomycin-treated hDFCs. The effects of exogenous TGF-β1 were similar to those of bleomycin in hDFCs. Additionally, compared to SMAD2/3, SMAD7 expression increased more in bleomycin- or TGF-β1-treated hDFCs. Overexpression of SMAD7 likewise significantly decreased RUNX2 expression and osteogenic capacity of hDFCs. Knockdown of SMAD7 markedly attenuated the inhibitory effects of bleomycin and TGF-β1 on osteogenic capacity and RUNX2 expression of hDFCs. Most importantly, changes in TGF-β1, SMAD7, and RUNX2 expressions were similar in the DF of rats and humans treated with bleomycin. CONCLUSION AND IMPLICATIONS SMAD7 was a negative regulator of osteogenic differentiation in DFCs through suppressing RUNX2 expression. Bleomycin or TGF-β1 inhibited osteogenic differentiation of DFCs via a TGF-β1/SMAD7/RUNX2 pathway. Our findings might be beneficial for enhancing the osteogenic activity of DFCs or inhibiting the eruption of undesirable teeth.
Collapse
Affiliation(s)
- Zhi-Zheng Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hai-Tao Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Grace Y Lee
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ying Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yan-Ping Zou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chu-Jie Gong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Yu Cai
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jian-Gang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ji-Hong Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Fernandez CCA, Pereira CVCA, Ferreira FFCF, Maciel JVB, Modesto A, Costa MC, Vieira AR. IRF6, MSX1, TGFA, dental anomalies, and skeletal malocclusion. Eur J Orthod 2020; 43:478-485. [PMID: 33200192 DOI: 10.1093/ejo/cjaa064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Verify the presence of association between four variables-transforming growth factor α (TGFA; C/T rs1523305), interferon regulatory factor 6 (IRF6; A/C rs2013162), muscle segment homeobox 1 (MSX1; A/G rs12532), and dental anomalies-with skeletal malocclusion by comparing these four variables with Angle Classes I, II, and III, and normal, hyperdivergent, and hypodivergent growth patterns. METHODS A total of 505 orthodontic records of patients older than 8 years were evaluated. The sample consisted of 285 (56.4 per cent) females, 220 (43.6 per cent) males, 304 (60.2 per cent) Whites (the rest were mixed Blacks with Whites), with a mean age of 20.28 (±10.35) years (ranging from 8 to 25 years). Eight cephalometric points, which served as the anatomical framework for obtaining angles and cephalometric measurements, were used for skeletal characterization using the Dolphin Software. Samples of saliva were collected and the DNA was extracted, diluted and quantified. Markers in TGFA, IRF6, and MSX1 were used and genotypes were obtained using TaqMan chemistry. Odds ratio (OR) and 95 per cent confidence interval (CI) calculations, chi-square, Fisher's Exact, Mann-Whitney, and correlation coefficient tests (significance level: 95 per cent) were performed. Bonferroni correction was applied and an alpha of 0.0006 was considered statistically significant. RESULTS There was no statistically significant associations between markers in TGFA or IRF6 with skeletal malocclusions. Tooth agenesis was associated with facial convexity (P < 0.001). MSX1 was associated with Class II skeletal malocclusion (P = 0.0001, OR = 0.6, CI = 0.46-0.78). CONCLUSION Individuals with tooth agenesis were more likely to have a convex face. MSX1 was associated with Class II skeletal malocclusion.
Collapse
Affiliation(s)
- Clarissa C A Fernandez
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Brazil
| | - Christiane V C A Pereira
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Brazil
| | - Fernanda F C F Ferreira
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Brazil
| | - José V B Maciel
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Brazil
| | - Adriana Modesto
- Department of Pediatric Dentistry, University of Pittsburgh, PA, USA
| | - Marcelo C Costa
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Brazil
| | - Alexandre R Vieira
- Oral Biology, School of Dental Medicine, University of Pittsburgh, PA, USA
| |
Collapse
|
50
|
Lin Y, Xiao Y, Lin C, Zhang Q, Zhang S, Pei F, Liu H, Chen Z. SALL1 regulates commitment of odontoblast lineages by interacting with RUNX2 to remodel open chromatin regions. STEM CELLS (DAYTON, OHIO) 2020; 39:196-209. [PMID: 33159702 DOI: 10.1002/stem.3298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 10/18/2020] [Indexed: 11/10/2022]
Abstract
Mouse dental papilla cells (mDPCs) derive from cranial neural crest cells and maintain mesenchymal stem cell characteristics. The differentiation of neural crest cells into odontoblasts is orchestrated by transcription factors regulating the expression of genes whose enhancers are initially inaccessible. However, the identity of the transcription factors driving the emergence of odontoblast lineages remains elusive. In this study, we identified SALL1, a transcription factor that was particularly expressed in preodontoblasts, polarizing odontoblasts, and secretory odontoblasts in vivo. Knockdown of Sall1 in mDPCs inhibited their odontoblastic differentiation. In order to identify the regulatory network of Sall1, RNA sequencing and an assay for transposase-accessible chromatin with high-throughput sequencing were performed to analyze the genome-wide direct regulatory targets of SALL1. We found that inhibition of Sall1 expression could decrease the accessibility of some chromatin regions associated with odontoblast lineages at embryonic day 16.5, whereas these regions remained unaffected at postnatal day 0.5, suggesting that SALL1 regulates the fate of mDPCs by remodeling open chromatin regions at the early bell stage. Specifically, we found that SALL1 could directly increase the accessibility of cis-regulatory elements near Tgf-β2 and within the Runx2 locus. Moreover, coimmunoprecipitation and proximal ligation assays showed that SALL1 could establish functional interactions with RUNX2. Taken together, our results demonstrated that SALL1 positively regulates the commitment of odontoblast lineages by interacting with RUNX2 and directly activating Tgf-β2 at an early stage.
Collapse
Affiliation(s)
- Yuxiu Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Yao Xiao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - ChuJiao Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Qian Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Shu Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Fei Pei
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China.,Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|