1
|
Zaaijer S, Groen SC. Implementing differentially pigmented skin models for predicting drug response variability across human ancestries. Hum Genomics 2024; 18:113. [PMID: 39385300 PMCID: PMC11465898 DOI: 10.1186/s40246-024-00677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/21/2024] [Indexed: 10/12/2024] Open
Abstract
Persistent racial disparities in health outcomes have catalyzed legislative reforms and heightened scientific focus recently. However, despite the well-documented properties of skin pigments in binding drug compounds, their impact on therapeutic efficacy and adverse drug responses remains insufficiently explored. This perspective examines the intricate relationships between variation in melanin-based skin pigmentation and pharmacokinetics and -dynamics, highlighting the need for considering diversity in skin pigmentation as a variable to advance the equitability of pharmacological interventions. The article provides guidelines on the selection of New Approach Methods (NAMs) to foster inclusive study designs in preclinical drug development pipelines, leading to an improved level of translatability to the clinic.
Collapse
Affiliation(s)
- Sophie Zaaijer
- Cornell Tech, New York, NY, USA.
- University of California Riverside, Riverside, CA, USA.
| | - Simon C Groen
- University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
2
|
Rani MHS, Nandana RK, Khatun A, Brindha V, Midhun D, Gowtham P, Mani SSD, Kumar SR, Aswini A, Muthukumar S. Three strategy rules of filamentous fungi in hydrocarbon remediation: an overview. Biodegradation 2024; 35:833-861. [PMID: 38733427 DOI: 10.1007/s10532-024-10086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024]
Abstract
Remediation of hydrocarbon contaminations requires much attention nowadays since it causes detrimental effects on land and even worse impacts on aquatic environments. Tools of bioremediation especially filamentous fungi permissible for cleaning up as much as conceivable, at least they turn into non-toxic residues with less consumed periods. Inorganic chemicals, CO2, H2O, and cell biomass are produced as a result of the breakdown and mineralization of petroleum hydrocarbon pollutants. This paper presents a detailed overview of three strategic rules of filamentous fungi in remediating the various aliphatic, and aromatic hydrocarbon compounds: utilizing carbons from hydrocarbons as sole energy, Co-metabolism manners (Enzymatic and Non-enzymatic theories), and Biosorption approaches. Upliftment in the degradation rate of complex hydrocarbon by the Filamentous Fungi in consortia scenario we can say, "Fungal Talk", which includes a variety of cellular mechanisms, including biosurfactant production, biomineralization, and precipitation, etc., This review not only displays its efficiency but showcases the field applications - cost-effective, reliable, eco-friendly, easy to culture as biomass, applicable in both land and any water bodies in operational environment cleanups. Nevertheless, the potentiality of fungi-human interaction has not been fully understood, henceforth further studies are highly endorsed with spore pathogenicity of the fungal species capable of high remediation rate, and the gene knockout study, if the specific peptides cause toxicity to any living matters via Genomics and Proteomics approaches, before application of any in situ or ex situ environments.
Collapse
Affiliation(s)
| | - Ramesh Kumar Nandana
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Alisha Khatun
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Velumani Brindha
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Durairaj Midhun
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Ponnusamy Gowtham
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | | | | | - Anguraj Aswini
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| | - Sugumar Muthukumar
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Coimbatore, India
| |
Collapse
|
3
|
Medina-Armijo C, Yousef I, Berná A, Puerta A, Esteve-Núñez A, Viñas M, Prenafeta-Boldú FX. Characterization of melanin from Exophiala mesophila with the prospect of potential biotechnological applications. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1390724. [PMID: 38812984 PMCID: PMC11134573 DOI: 10.3389/ffunb.2024.1390724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024]
Abstract
Introducion Fungal melanin is an underexplored natural biomaterial of great biotechnological interest in different areas. This study investigated the physical, chemical, electrochemical, and metal-binding properties of melanin extracted from the metallotolerant black fungus Exophiala mesophila strain IRTA-M2-F10. Materials and methods Specific inhibitory studies with tricyclazole and biochemical profiling of whole cells by synchrotron radiation-based Fourier-transform infrared spectral microscopy (SR-FTIRM) were performed. An optimized extraction protocol was implemented, and purified fungal melanin was characterized using an array of spectrophotometric techniques (UV-Vis, FTIR, and EPR) and by cyclic voltammetry (CV) experiments. The metal-binding capacity of melanin extracts was also assessed by using Cr(VI) as a model heavy metal. Results Inhibitory studies indicated that 1,8-dihydroxynaphthalene may be the main precursor molecule of E. mesophila melanin (DHN-melanin). The biochemical characterization of fungal melanin extracts were benchmarked against those from two melanins comprising the precursor molecule L-3,4-dihydroxiphenylalanine (DOPA-melanin): extracts from the ink of the cephalopod Sepia officinalis and DOPA-melanin synthesized in the laboratory. The CV results of melanin extracts incubated with and without cell suspensions of the electroconductive bacterium Geobacter sulfurreducens were indicative of novel semiquinone/hydroquinone redox transformations specific for each melanin type. These interactions may play an important role in cation exchange for the adsorption of metals and in microbial interspecies electron transfer processes. Discussion The obtained results provided further evidence for the DHN-nature of E. mesophila melanin. The FTIR profiling of melanin extracts exposed to Cr(VI), compared to unexposed melanin, resulted in useful information on the distinct surface-binding properties of fungal melanin. The parameters of the Langmuir and Freundlicht isotherms for the adsorption of Cr(VI) were determined and compared to bibliographic data. Altogether, the inherent properties of fungal melanin suggest its promising potential as a biomaterial for environmental applications.
Collapse
Affiliation(s)
- Cristy Medina-Armijo
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
- Faculty of Pharmacy and Food Sciences, University of Barcelona, Catalonia, Spain
| | - Ibraheem Yousef
- MIRAS Beamline, ALBA Synchrotron Light Source, Cerdanyola del Vallés, Catalonia, Spain
| | | | - Anna Puerta
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
| | - Abraham Esteve-Núñez
- Department of Chemical Engineering, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Marc Viñas
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
| | - Francesc X. Prenafeta-Boldú
- Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Catalonia, Spain
| |
Collapse
|
4
|
Bovee S, Klump GM, Köppl C, Pyott SJ. The Stria Vascularis: Renewed Attention on a Key Player in Age-Related Hearing Loss. Int J Mol Sci 2024; 25:5391. [PMID: 38791427 PMCID: PMC11121695 DOI: 10.3390/ijms25105391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Age-related hearing loss (HL), or presbycusis, is a complex and heterogeneous condition, affecting a significant portion of older adults and involving various interacting mechanisms. Metabolic presbycusis, a type of age-related HL, is characterized by the dysfunction of the stria vascularis, which is crucial for maintaining the endocochlear potential necessary for hearing. Although attention on metabolic presbycusis has waned in recent years, research continues to identify strial pathology as a key factor in age-related HL. This narrative review integrates past and recent research, bridging findings from animal models and human studies, to examine the contributions of the stria vascularis to age-related HL. It provides a brief overview of the structure and function of the stria vascularis and then examines mechanisms contributing to age-related strial dysfunction, including altered ion transport, changes in pigmentation, inflammatory responses, and vascular atrophy. Importantly, this review outlines the contribution of metabolic mechanisms to age-related HL, highlighting areas for future research. It emphasizes the complex interdependence of metabolic and sensorineural mechanisms in the pathology of age-related HL and highlights the importance of animal models in understanding the underlying mechanisms. The comprehensive and mechanistic investigation of all factors contributing to age-related HL, including cochlear metabolic dysfunction, remains crucial to identifying the underlying mechanisms and developing personalized, protective, and restorative treatments.
Collapse
Affiliation(s)
- Sonny Bovee
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany; (S.B.); (G.M.K.); (C.K.)
| | - Georg M. Klump
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany; (S.B.); (G.M.K.); (C.K.)
- Cluster of Excellence “Hearing4all”, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Christine Köppl
- Department of Neuroscience, School of Medicine and Health Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany; (S.B.); (G.M.K.); (C.K.)
- Cluster of Excellence “Hearing4all”, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
- Research Centre Neurosensory Science, Carl von Ossietzky Universität Oldenburg, 26129 Oldenburg, Germany
| | - Sonja J. Pyott
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
- The Research School of Behavioural and Cognitive Neurosciences, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
5
|
Karkoszka M, Rok J, Wrześniok D. Melanin Biopolymers in Pharmacology and Medicine-Skin Pigmentation Disorders, Implications for Drug Action, Adverse Effects and Therapy. Pharmaceuticals (Basel) 2024; 17:521. [PMID: 38675481 PMCID: PMC11054731 DOI: 10.3390/ph17040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Melanins are biopolymeric pigments formed by a multi-step oxidation process of tyrosine in highly specialized cells called melanocytes. Melanin pigments are mainly found in the skin, iris, hair follicles, and inner ear. The photoprotective properties of melanin biopolymers have been linked to their perinuclear localization to protect DNA, but their ability to scavenge metal ions and antioxidant properties has also been noted. Interactions between drugs and melanins are of clinical relevance. The formation of drug-melanin complexes can affect both the efficacy of pharmacotherapy and the occurrence of adverse effects such as phototoxic reactions and discoloration. Because the amount and type of melanin synthesized in the body is subject to multifactorial regulation-determined by both internal factors such as genetic predisposition, inflammation, and hormonal balance and external factors such as contact with allergens or exposure to UV radiation-different effects on the melanogenesis process can be observed. These factors can directly influence skin pigmentation disorders, resulting in hypopigmentation or hyperpigmentation of a genetic or acquired nature. In this review, we will present information on melanocyte biology, melanogenesis, and the multifactorial influence of melanin on pharmacological parameters during pharmacotherapy. In addition, the types of skin color disorders, with special emphasis on the process of their development, symptoms, and methods of treatment, are presented in this article.
Collapse
Affiliation(s)
- Marta Karkoszka
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | - Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| | | |
Collapse
|
6
|
Attia MF, Ogunnaike EA, Pitz M, Elbaz NM, Panda DK, Alexander-Bryant A, Saha S, Whitehead DC, Kabanov A. Enhancing drug delivery with supramolecular amphiphilic macrocycle nanoparticles: selective targeting of CDK4/6 inhibitor palbociclib to melanoma. Biomater Sci 2024; 12:725-737. [PMID: 38099834 PMCID: PMC10872447 DOI: 10.1039/d3bm01888a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Drug delivery systems based on amphiphilic supramolecular macrocycles have garnered increased attention over the past two decades due to their ability to successfully formulate nanoparticles. Macrocyclic (MC) materials can self-assemble at lower concentrations without the need for surfactants and polymers, but surfactants are required to form and stabilize nanoparticles at higher concentrations. Using MCs to deliver both hydrophilic and hydrophobic guest molecules is advantageous. We developed two novel types of amphiphilic macrocycle nanoparticles (MC NPs) capable of delivering either Nile Red (NR) (a hydrophobic model) or Rhodamine B (RhB) (a hydrophilic model) fluorescent dyes. We extensively characterized the materials using various techniques to determine size, morphology, stability, hemolysis, fluorescence, loading efficiency (LE), and loading capacity (LC). We then loaded the CDK4/6 inhibitor Palbociclib (Palb) into both MC NPs using a solvent diffusion method. This yielded Palb-MC NPs in the size range of 65-90 nm. They exhibited high stability over time and in fetal bovine serum with negligible toxicity against erythrocytes. Cytotoxicity was minimal when tested against RAW macrophages, human fibroblast HDFn, and adipose stromal cells (ASCs) at higher concentrations of MC NPs. Cell viability studies were conducted with different concentrations of MC NPs, Palb-MC NPs, and free Palb against RAW macrophages, human U-87 GBM, and human M14 melanoma cell lines in vitro. Flow cytometry experiments revealed that blank MC NPs and Palb-MC NPs were selectively targeted to melanoma cells, resulting in cell death compared to the other two cell lines. Future work will focus on studying the biological effect of MC NPs including their binding affinity with molecules/receptors expressed on the M14 and other melanoma cell surfaces by molecular docking simulations. Subsequently, we will evaluate the MCs as a component of combination therapy in a murine melanoma model.
Collapse
Affiliation(s)
- Mohamed F Attia
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Edikan A Ogunnaike
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Megan Pitz
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA
| | - Nancy M Elbaz
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA.
| | - Dillip K Panda
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA.
| | | | - Sourav Saha
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA.
| | | | - Alexander Kabanov
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, NC 27599, USA.
- Laboratory of Chemical Design of Bionanomaterials, Faculty of Chemistry, M.V. Lomonosov Moscow State University, Moscow, 119992, Russia
| |
Collapse
|
7
|
Attia MF, Ogunnaike EA, Pitz M, Elbaz NM, Panda DK, Alexander-Bryant A, Saha S, Whitehead DC, Kabanov A. Enhancing Drug Delivery with Supramolecular Amphiphilic Macrocycle Nanoparticles: Selective Targeting of CDK4/6 Inhibitor Palbociclib to Melanoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.567974. [PMID: 38045274 PMCID: PMC10690174 DOI: 10.1101/2023.11.21.567974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Drug delivery systems based on amphiphilic supramolecular macrocycles have garnered increased attention over the past two decades due to their ability to successfully formulate nanoparticles. Macrocyclic (MC) materials can self-assemble at lower concentrations without the need for surfactants and polymers, but surfactants are required to form and stabilize nanoparticles at higher concentrations. Using MCs to deliver both hydrophilic and hydrophobic guest molecules is advantageous. We developed two novel types of amphiphilic macrocycle nanoparticles (MC NPs) capable of delivering either Nile Red (NR) (a hydrophobic model) or Rhodamine B (RhB) (a hydrophilic model) fluorescent dyes. We extensively characterized the materials using various techniques to determine size, morphology, stability, hemolysis, fluorescence, loading efficiency (LE), and loading capacity (LC). We then loaded the CDK4/6 inhibitor Palbociclib (Palb) into both MC NPs using a solvent diffusion method. This yielded Palb-MC NPs in the size range of 65-90 nm. They exhibited high stability over time and in fetal bovine serum with negligible toxicity against erythrocytes. Cytotoxicity was minimal when tested against RAW macrophages, human fibroblast HDFn , and adipose stromal cells (ASCs) at higher concentrations of MC NPs. Cell viability studies were conducted with different concentrations of MC NPs, Palb-MC NPs, and free Palb against RAW macrophages, human U-87 GBM, and human M14 melanoma cell lines in vitro. Flow cytometry experiments revealed that blank MC NPs and Palb-MC NPs were selectively targeted to melanoma cells, resulting in cell death compared to the other two cell lines. Future work will focus on studying the biological effect of MC NPs including their binding affinity with molecules/receptors expressed on the M14 and other melanoma cell surface by molecular docking simulations. Subsequently, we will evaluate the MCs as a component of combination therapy in a murine melanoma model. Graphical abstract
Collapse
|
8
|
Liu H, Ghosh S, Vaidya T, Bammidi S, Huang C, Shang P, Nair AP, Chowdhury O, Stepicheva NA, Strizhakova A, Hose S, Mitrousis N, Gadde SG, MB T, Strassburger P, Widmer G, Lad EM, Fort PE, Sahel JA, Zigler JS, Sethu S, Westenskow PD, Proia AD, Sodhi A, Ghosh A, Feenstra D, Sinha D. Activated cGAS/STING signaling elicits endothelial cell senescence in early diabetic retinopathy. JCI Insight 2023; 8:e168945. [PMID: 37345657 PMCID: PMC10371250 DOI: 10.1172/jci.insight.168945] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working-age adults and remains an important public health issue worldwide. Here we demonstrate that the expression of stimulator of interferon genes (STING) is increased in patients with DR and animal models of diabetic eye disease. STING has been previously shown to regulate cell senescence and inflammation, key contributors to the development and progression of DR. To investigate the mechanism whereby STING contributes to the pathogenesis of DR, diabetes was induced in STING-KO mice and STINGGT (loss-of-function mutation) mice, and molecular alterations and pathological changes in the retina were characterized. We report that retinal endothelial cell senescence, inflammation, and capillary degeneration were all inhibited in STING-KO diabetic mice; these observations were independently corroborated in STINGGT mice. These protective effects resulted from the reduction in TBK1, IRF3, and NF-κB phosphorylation in the absence of STING. Collectively, our results suggest that targeting STING may be an effective therapy for the early prevention and treatment of DR.
Collapse
Affiliation(s)
- Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tanuja Vaidya
- GROW Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Sridhar Bammidi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Chao Huang
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Peng Shang
- Doheny Eye Institute, Los Angeles, California, USA
| | | | - Olivia Chowdhury
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nadezda A. Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Anastasia Strizhakova
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Nikolaos Mitrousis
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | | | - Thirumalesh MB
- GROW Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Pamela Strassburger
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Gabriella Widmer
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Eleonora M. Lad
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA
| | - Patrice E. Fort
- Kellogg Eye Center, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - José-Alain Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Institut De La Vision, INSERM, CNRS, Sorbonne Université, Paris, France
| | - J. Samuel Zigler
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Peter D. Westenskow
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Alan D. Proia
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Pathology, Campbell University Jerry M. Wallace School of Osteopathic Medicine, Lillington, North Carolina, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Arkasubhra Ghosh
- GROW Laboratory, Narayana Nethralaya Foundation, Bengaluru, India
| | - Derrick Feenstra
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Brash DE, Goncalves LCP. Chemiexcitation: Mammalian Photochemistry in the Dark †. Photochem Photobiol 2023; 99:251-276. [PMID: 36681894 PMCID: PMC10065968 DOI: 10.1111/php.13781] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 01/18/2023] [Indexed: 01/23/2023]
Abstract
Light is one way to excite an electron in biology. Another is chemiexcitation, birthing a reaction product in an electronically excited state rather than exciting from the ground state. Chemiexcited molecules, as in bioluminescence, can release more energy than ATP. Excited states also allow bond rearrangements forbidden in ground states. Molecules with low-lying unoccupied orbitals, abundant in biology, are particularly susceptible. In mammals, chemiexcitation was discovered to transfer energy from excited melanin, neurotransmitters, or hormones to DNA, creating the lethal and carcinogenic cyclobutane pyrimidine dimer. That process was initiated by nitric oxide and superoxide, radicals triggered by ultraviolet light or inflammation. Several poorly understood chronic diseases share two properties: inflammation generates those radicals across the tissue, and cells that die are those containing melanin or neuromelanin. Chemiexcitation may therefore be a pathogenic event in noise- and drug-induced deafness, Parkinson's disease, and Alzheimer's; it may prevent macular degeneration early in life but turn pathogenic later. Beneficial evolutionary selection for excitable biomolecules may thus have conferred an Achilles heel. This review of recent findings on chemiexcitation in mammalian cells also describes the underlying physics, biochemistry, and potential pathogenesis, with the goal of making this interdisciplinary phenomenon accessible to researchers within each field.
Collapse
Affiliation(s)
- Douglas E. Brash
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Yale Cancer Center, Yale School of Medicine, New Haven, CT 06520-8028, USA
| | - Leticia C. P. Goncalves
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06520-8040, USA
- Institut de Chimie de Nice CNRS UMR7272, Université Côte d’Azur, 28 Avenue Valrose 06108 Nice, France
| |
Collapse
|
10
|
Onugwu AL, Nwagwu CS, Onugwu OS, Echezona AC, Agbo CP, Ihim SA, Emeh P, Nnamani PO, Attama AA, Khutoryanskiy VV. Nanotechnology based drug delivery systems for the treatment of anterior segment eye diseases. J Control Release 2023; 354:465-488. [PMID: 36642250 DOI: 10.1016/j.jconrel.2023.01.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/07/2023] [Accepted: 01/07/2023] [Indexed: 01/17/2023]
Abstract
Diseases affecting the anterior segment of the eye are the primary causes of vision impairment and blindness globally. Drug administration through the topical ocular route is widely accepted because of its user/patient friendliness - ease of administration and convenience. However, it remains a significant challenge to efficiently deliver drugs to the eye through this route because of various structural and physiological constraints that restrict the distribution of therapeutic molecules into the ocular tissues. The bioavailability of topically applied ocular medications such as eye drops is typically less than 5%. Developing novel delivery systems to increase the retention time on the ocular surfaces and permeation through the cornea is one of the approaches adopted to boost the bioavailability of topically administered medications. Drug delivery systems based on nanotechnology such as micelles, nanosuspensions, nanoparticles, nanoemulsions, liposomes, dendrimers, niosomes, cubosomes and nanowafers have been investigated as effective alternatives to conventional ocular delivery systems in treating diseases of the anterior segment of the eye. This review discussed different nanotechnology-based delivery systems that are currently investigated for treating and managing diseases affecting the anterior ocular tissues. We also looked at the challenges in translating these systems into clinical use and the prospects of nanocarriers as a vehicle for the delivery of phytoactive compounds to the anterior segment of the eye.
Collapse
Affiliation(s)
- Adaeze Linda Onugwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinekwu Sherridan Nwagwu
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Obinna Sabastine Onugwu
- Department of Pharmacognosy, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria
| | - Adaeze Chidiebere Echezona
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Chinazom Precious Agbo
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Stella Amarachi Ihim
- Department of Pharmacology and Toxicology, University of Nigeria, Nsukka, Enugu State, Nigeria; Pharmacology and Physiology Unit, Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Prosper Emeh
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Petra Obioma Nnamani
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Anthony Amaechi Attama
- Drug Delivery & Nanomedicines Research Laboratory, Department of Pharmaceutics, University of Nigeria, Nsukka, Enugu State, Nigeria; Department of Pharmaceutics and Pharmaceutical Technology, Enugu State University of Science and Technology, Agbani, Enugu State, Nigeria.
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, Reading, RG6 6AD, United Kingdom.
| |
Collapse
|
11
|
Shi H, Cheng Z. MC1R and melanin-based molecular probes for theranostic of melanoma and beyond. Acta Pharmacol Sin 2022; 43:3034-3044. [PMID: 36008707 PMCID: PMC9712491 DOI: 10.1038/s41401-022-00970-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/27/2022] [Indexed: 12/12/2022] Open
Abstract
Malignant melanoma is accounting for most of skin cancer-associated mortality. The incidence of melanoma increased every year worldwide especially in western countries. Treatment efficiency is highly related to the stage of melanoma. Therefore, accurate staging and restaging play a pivotal role in the management of melanoma patients. Though 18F-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) has been widely used in imaging of tumor metastases, novel radioactive probes for specific targeted imaging of both primary and metastasized melanoma are still desired. Melanocortin receptor 1 (MC1R) and melanin are two promising biomarkers specifically for melanoma, and numerous research groups including us have been actively developing a plethora of radioactive probes based on targeting of MC1R or melanin for over two decades. In this review, some of the MC1R-targeted tracers and melanin-associated molecular imaging probes developed in our research and others have been briefly summarized, and it provides a quick glance of melanoma-targeted probe design and may contribute to further developing novel molecular probes for cancer theranostics.
Collapse
Affiliation(s)
- Hui Shi
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhen Cheng
- State Key Laboratory of Drug Research, Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, 264117, China.
| |
Collapse
|
12
|
Kowalska J, Banach K, Rzepka Z, Rok J, Karkoszka M, Wrześniok D. Changes in the Oxidation-Reduction State of Human Dermal Fibroblasts as an Effect of Lomefloxacin Phototoxic Action. Cells 2022; 11:cells11121971. [PMID: 35741100 PMCID: PMC9222184 DOI: 10.3390/cells11121971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/28/2022] [Accepted: 06/17/2022] [Indexed: 11/30/2022] Open
Abstract
Phototoxicity induced by antibiotics is a real problem in health care. The discontinuation of antibiotic therapy due to a phototoxic reaction can lead to the development of resistant strains. Fluoroquinolones are widely used antibiotics that exhibit phototoxic activity under UVA radiation. The purpose of the study was to examine the redox status of human dermal fibroblasts exposed to UVA radiation and treated with lomefloxacin, the most phototoxic fluoroquinolone. Lomefloxacin alone was found to have an antiproliferative activity on fibroblasts by affecting the cell cycle. In addition, the drug caused a redox imbalance associated with the decreased expression of catalase and glutathione peroxidase. UVA radiation increased the drug cytotoxicity and oxidative stress induced by lomefloxacin. The decrease in cell viability was accompanied by a high level of reactive oxygen species and extensive changes in the antioxidant levels. The revealed data indicate that the phototoxic action of lomefloxacin results from both increased reactive oxygen species production and an impaired antioxidant defense system. Considering all of the findings, it can be concluded that lomefloxacin-induced phototoxic reactions are caused by an oxidoreductive imbalance in skin cells.
Collapse
|
13
|
Markiewicz A, Donizy P, Nowak M, Krzyziński M, Elas M, Płonka PM, Orłowska-Heitzmann J, Biecek P, Hoang MP, Romanowska-Dixon B. Amelanotic Uveal Melanomas Evaluated by Indirect Ophthalmoscopy Reveal Better Long-Term Prognosis Than Pigmented Primary Tumours-A Single Centre Experience. Cancers (Basel) 2022; 14:cancers14112753. [PMID: 35681733 PMCID: PMC9179456 DOI: 10.3390/cancers14112753] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: There is a constant search for new prognostic factors that would allow us to accurately determine the prognosis, select the type of treatment, and monitor the patient diagnosed with uveal melanoma in a minimally invasive and easily accessible way. Therefore, we decided to evaluate the prognostic role of its pigmentation in a clinical assessment. (2) Methods: The pigmentation of 154 uveal melanomas was assessed by indirect ophthalmoscopy. Two groups of tumours were identified: amelanotic and pigmented. The statistical relationships between these two groups and clinical, pathological parameters and the long-term survival rate were analyzed. (3) Results: There were 16.9% amelanotic tumours among all and they occurred in younger patients (p = 0.022). In pigmented melanomas, unfavourable prognostic features such as: epithelioid cells (p = 0.0013), extrascleral extension (p = 0.027), macronucleoli (p = 0.0065), and the absence of BAP1 expression (p = 0.029) were statistically more frequently observed. Kaplan−Meier analysis demonstrated significantly better overall (p = 0.017) and disease-free (p < 0.001) survival rates for patients with amelanotic tumours. However, this relationship was statistically significant for lower stage tumours (AJCC stage II), and was not present in larger and more advanced stages (AJCC stage III). (4) Conclusions: The results obtained suggested that the presence of pigmentation in uveal melanoma by indirect ophthalmoscopy was associated with a worse prognosis, compared to amelanotic lesions. These findings could be useful in the choice of therapeutic and follow-up options in the future.
Collapse
Affiliation(s)
- Anna Markiewicz
- Department of Ophthalmology and Ocular Oncology, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland;
- Department of Ophthalmology and Ocular Oncology, University Hospital, 31-501 Krakow, Poland;
- Correspondence: or ; Tel.: +48-124247540; Fax: +48-124247563
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Division of Clinical Pathology, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Monika Nowak
- Department of Ophthalmology and Ocular Oncology, University Hospital, 31-501 Krakow, Poland;
| | - Mateusz Krzyziński
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-628 Warsaw, Poland; (M.K.); (P.B.)
| | - Martyna Elas
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.E.); (P.M.P.)
| | - Przemysław M. Płonka
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; (M.E.); (P.M.P.)
| | | | - Przemysław Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-628 Warsaw, Poland; (M.K.); (P.B.)
| | - Mai P. Hoang
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Bożena Romanowska-Dixon
- Department of Ophthalmology and Ocular Oncology, Faculty of Medicine, Jagiellonian University Medical College, 31-501 Krakow, Poland;
- Department of Ophthalmology and Ocular Oncology, University Hospital, 31-501 Krakow, Poland;
| |
Collapse
|
14
|
Fluoroquinolones as Tyrosinase Inhibitors; Enzyme Kinetics and Molecular Docking Studies to Explore Their Mechanism of Action. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The binding of fluoroquinolones, the most commonly prescribed antibiotics, with melanin is well explored. However, their binding patterns and exact mechanism of interaction with tyrosinase, a key enzyme in melanogenesis, are not explored yet. Thus, in the present study, seven fluoroquinolone drugs were selected to characterize their interactions with the tyrosinase enzyme: ciprofloxacin, enoxacin sesquihydrate, ofloxacin, levofloxacin, sparfloxacin, moxifloxacin and gemifloxacin. The results confirmed that all the drugs execute excellent enzyme activity, with an inhibition range from IC50 = 28 ± 4 to 50 ± 1.9 μM, outperforming the standard hydroquinone (IC50 = 170 μM). Later, kinetic studies revealed that all the drugs showed irreversible, but mixed-type, tyrosinase inhibition, with a preferentially competitive mode of action. Further, 2D and 3D docked complexes and binding analyses confirmed their significant interactions in the active region of the target enzyme, sufficient for the downstream signaling responsible for the observed tyrosinase inhibition. Thus, this is the first report demonstrating their mechanism of tyrosinase inhibition, critical for melanin-dependent responses, including toxicity.
Collapse
|
15
|
Assis BM, Queiroz PJB, de Oliveira Lima CR, Vulcani VAS, Rabelo RE, da Silva LAF. Microstructure of the hoof capsule of pigmented and partial albino buffaloes. Anat Histol Embryol 2022; 51:435-442. [PMID: 35485276 DOI: 10.1111/ahe.12805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/17/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
In this study, atomic force microscopy (AFM), microtomography (MCT-2D and MCT-3D) and energy-dispersive X-ray fluorescence spectrometry (EDXRF) were used to generate parameters of the microstructure of the hoof capsule of pigmented and partial albino buffaloes. Seventy-two digits of adult pigmented buffaloes and 16 of partial albino buffaloes were used and equally divided into thoracic and pelvic limbs and medial and lateral claws. Fragments of 10 mm × 10 mm of the dorsal wall, abaxial wall and pre-bulbar sole were collected. The parametric assumptions were tested using a Shapiro-Wilk test (normality). The independent t-test was used to compare the means at a 5% significance level. AFM demonstrated that the hoof surface of pigmented buffaloes presented with higher average surface roughness (Ra) and root mean square roughness (Rms) (p < 0.05) than the hoof surface of partial albino buffaloes. MCT-2D revealed that pigmented buffaloes had extra tubular keratin with a higher density than intratubular keratin. No pores were observed in the hoof capsule of the buffalo digits. MCT-3D demonstrated that pigmented buffaloes have a higher percentage of large and intermediate horn tubules than partial albino buffaloes. However, this difference was not statistically significant. Partial albino buffaloes showed a statistically higher number of horn tubules/mm2 than pigmented buffaloes (p < 0.05). EDXRF revealed a higher amount of sulphur (S) in the hoof capsule of pigmented buffaloes, and the partial albino buffaloes presented a higher number of minerals such as calcium (Ca), potassium (K), zinc (Zn) and copper (Cu).
Collapse
|
16
|
Natural Melanin: Current Trends, and Future Approaches, with Especial Reference to Microbial Source. Polymers (Basel) 2022; 14:polym14071339. [PMID: 35406213 PMCID: PMC9002885 DOI: 10.3390/polym14071339] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Melanin is a universal natural dark polymeric pigment, arising in microorganisms, animals, and plants. There is a couple of pieces of literature on melanin, each focusing on a different issue, the goal of the present review is to focus on microbial melanin. It has numerous benefits with very few drawbacks. The current situation and expected trends are discussed. Intriguing, numerous studies have provoked a serious necessity for a comprehensive assessment of microbial melanin pigments. So that, such review would help scholars from diverse backgrounds to realize the importance of melanin pigments isolated from microorganisms, with this aim in mind, information, and hypothesis from this review could be the paradigm for studies on melanin in the next era.
Collapse
|
17
|
Kowalska J, Banach K, Beberok A, Rok J, Rzepka Z, Wrześniok D. The Biochemical and Molecular Analysis of Changes in Melanogenesis Induced by UVA-Activated Fluoroquinolones-In Vitro Study on Human Normal Melanocytes. Cells 2021; 10:cells10112900. [PMID: 34831123 PMCID: PMC8616096 DOI: 10.3390/cells10112900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
Fluoroquinolones cause phototoxic reactions, manifested as different types of skin lesions, including hyperpigmentation. The disturbances of melanogenesis indicate that fluoroquinolones may affect cellular processes in melanocytes. It has been reported that these antibiotics may bind with melanin and accumulate in pigmented cells. The study aimed to examine the changes in melanogenesis in human normal melanocytes exposed to UVA radiation and treated with lomefloxacin and moxifloxacin, the most and the least fluoroquinolone, respectively. The obtained results demonstrated that both tested fluoroquinolones inhibited melanogenesis through a decrease in tyrosinase activity and down-regulation of tyrosinase and microphthalmia-associated transcription factor production. Only lomefloxacin potentiated UVA-induced melanogenesis. Under UVA irradiation lomefloxacin significantly enhanced melanin content and tyrosinase activity in melanocytes, although the drug did not cause an increased expression of tyrosinase or microphthalmia-associated transcription factor. The current studies revealed that phototoxic activity of fluoroquinolones is associated with alterations in the melanogenesis process. The difference in phototoxic potential of fluoroquinolones derivatives may be connected with various effects on UVA-induced events at a cellular level.
Collapse
|
18
|
Fanali LZ, Sturve J, de Oliveira C. Exposure of Physalaemus cuvieri (Anura) to benzo[a]pyrene and α-naphthoflavone: Morphofunctional effects on hepatic melanomacrophages and erythrocytes abnormalities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117526. [PMID: 34380224 DOI: 10.1016/j.envpol.2021.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/06/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Benzo[a]pyrene (BaP) is a high-risk contaminant of elevated toxicity. Its biotransformation process occurs as the expression of CYP1A1 increases and produces toxic metabolites. In turn, α-naphthoflavone (aNF) represents an inhibitor of CYP1A1, preventing BaP metabolism. Toxicological studies in anurans show alterations in the melanomacrophage (MM) detoxification cell after exposure to xenobiotics. In this study, the production of melanin by MMs was evaluated, as were morphological alterations in the cytoskeleton, phagocytosis and the genotoxicity effects after exposure of an anuran species to BaP and aNF. Physalaemus cuvieri received subcutaneous injections of 2 mg/kg and/or 20 mg/kg aNF. For phagocytosis analyses, animals received an intraperitoneal injection with 0.4% trypan blue. The results revealed that melanin synthesis increased by 503.2% in animals exposed to BaP after 48 h, which was related to the antioxidant action of melanin, whereas the decreased in synthesis of 25.6% with the BaP + aNF interaction resulted in high toxicity to MMs and cell degeneration. The phagocytic activity reduced to 37.6% in animals exposed to BaP, characterizing a functional impairment; however, the BaP + aNF interaction led to the restoration of phagocytosis, reaching 419.23%. The decreased rate or absence of abnormalities may be explained by the fact that only the less damaged erythrocytes remained in the bloodstream, whereas the most damaged cells died. In conclusion, BaP and aNF are toxic to P. cuvieri, bringing risks to herpetofauna.
Collapse
Affiliation(s)
- Lara Zácari Fanali
- Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil.
| | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg 405 30, Box 463, Sweden
| | - Classius de Oliveira
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil
| |
Collapse
|
19
|
Wang X, Lu D, Tian C. Analysis of melanin biosynthesis in the plant pathogenic fungus Colletotrichum gloeosporioides. Fungal Biol 2021; 125:679-692. [PMID: 34420695 DOI: 10.1016/j.funbio.2021.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/04/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
Melanin is recognized as a dark pigment that can protect fungi from the harm of environmental stresses. To investigate what roles of melanin played in the pathogenicity and development of Colletotrichum gloeosporioides, a causal agent of poplar anthracnose, genes encoding a transcription factor CgCmr1 and a polyketide synthase CgPks1 were isolated as the ortholog of Magnaporthe oryzae Pig1 and Pks1 respectively. Deletion of CgCmr1 or CgPks1 resulted in melanin-deficient fungal colony. The ΔCgPks1 mutant showed no melanin accumulation in appressoria, and lack of CgCmr1 also resulted in the delayed and decreased melanization of appressoria. In addition, the turgor pressure of the appressorium was lower in ΔCgPks1 and ΔCgCmr1 than in the wild-type (WT). However, DHN melanin was not a vital factor for virulence in C. gloeosporioides. Moreover, deletion of CgCmr1 and CgPks1 resulted in the hypersensitivity to hydrogen peroxide (H2O2) oxidative stress but not to other abiotic stresses. Collectively, these results suggest that CgCmr1 and CgPks1 play an important role in DHN melanin biosynthesis, and melanin was not an essential factor in penetration and pathogenicity in C. gloeosporioides. The data presented in this study will facilitate future evaluations of the melanin biosynthetic pathway and development in filamentous fungi.
Collapse
Affiliation(s)
- Xiaolian Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dongxiao Lu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.
| |
Collapse
|
20
|
Ma S, Zeng Z, Lin M, Tang J, Yang Y, Yu Y, Li G, An T. PAHs and their hydroxylated metabolites in the human fingernails from e-waste dismantlers: Implications for human non-invasive biomonitoring and exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117059. [PMID: 33845288 DOI: 10.1016/j.envpol.2021.117059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/27/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Non-invasive human biomonitoring methods using hair and fingernails as matrices are widely used to assess the exposure of organic contaminants. In this work, a total of 72 human fingernails were collected from workers and near-by residents from a typical electronic waste (e-waste) dismantling site, and were analyzed for human exposure to polycyclic aromatic hydrocarbons (PAHs) and their mono-hydroxyl metabolites (OH-PAHs). The concentrations of PAHs and OH-PAHs were obtained as 7.97-551 and 39.5-3280 ng/g for e-waste workers (EW workers), 7.05-431 and 27.3-3320 ng/g for non-EW workers, 7.93-289 and 124-779 ng/g for adult residents, and 8.88-1280 and 181-293 ng/g for child residents, respectively. The composition profiles of PAHs in the human fingernails of the four groups were similar, with isomers of Phe, Pyr and Fluo being the predominated congeners, while 2-OH-Nap accounted for more than 70% of the total OH-PAHs. These contaminants were found most in the fingernails of EW workers, followed by non-EW workers, adult residents, and child residents, indicating e-waste dismantling activities are the major sources of PAH exposure. However, significantly higher levels of PAHs with 4-6 rings were observed only in workers as opposed to the residents, and a significant correlation between 3-OH-Flu (p < 0.05) and 2-OH-Phe (p < 0.01) in the fingernails and urine was observed, but no significant correlation was found between the concentration of OH-PAHs in matched hair and fingernail samples. In addition, the levels of PAHs in fingernails increased with the age of EW workers. This is the first study to explore the accumulation and distribution of PAHs and OH-PAHs in human fingernails, which would provide valuable insight into non-invasive biomonitoring and health risk assessment of PAHs.
Collapse
Affiliation(s)
- Shengtao Ma
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, PR China
| | - Zihuan Zeng
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Meiqing Lin
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jian Tang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan Yang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China; Synergy Innovation Institute of GDUT, Shantou, 515041, PR China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
21
|
Nguyen VP, Li Y, Henry J, Qian T, Zhang W, Wang X, Paulus YM. In Vivo Subretinal ARPE-19 Cell Tracking Using Indocyanine Green Contrast-Enhanced Multimodality Photoacoustic Microscopy, Optical Coherence Tomography, and Fluorescence Imaging for Regenerative Medicine. Transl Vis Sci Technol 2021; 10:10. [PMID: 34473239 PMCID: PMC8419880 DOI: 10.1167/tvst.10.10.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose Cell-based regenerative therapies are being investigated as a novel treatment method to treat currently incurable eye diseases, such as geographic atrophy in macular degeneration. Photoacoustic imaging is a promising technology which can visualize transplanted stem cells in vivo longitudinally over time in the retina. In this study, a US Food and Drug Administration (FDA)-approved indocyanine green (ICG) contrast agent is used for labeling and tracking cell distribution and viability using multimodal photoacoustic microscopy (PAM), optical coherence tomography (OCT), and fluorescence imaging. Methods Twelve rabbits (2.4–3.4 kg weight, 2–4 months old) were used in the study. Human retinal pigment epithelial cells (ARPE-19) were labeled with ICG dye and transplanted in the subretinal space in the rabbits. Longitudinal PAM, OCT, and fluorescence imaging was performed for up to 28 days following subretinal administration of ARPE-19 cells. Results Cell migration location, viability, and cell layer thickness were clearly recognized and determined from the fluorescence, OCT, and PAM signal. The in vivo results demonstrated that fluorescence signal increased 37-fold and PAM signal enhanced 20-fold post transplantation. Conclusions This study demonstrates that ICG-assisted PAM, OCT, and fluorescence imaging can provide a unique platform for tracking ARPE-19 cells longitudinally with high resolution and high image contrast. Translational Relevance Multimodal PAM, OCT, and fluorescence in vivo imaging with ICG can improve our understanding of the fate, distribution, and function of regenerative cell therapies over time nondestructively.
Collapse
Affiliation(s)
- Van Phuc Nguyen
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Yanxiu Li
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Jessica Henry
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Thomas Qian
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Yannis M Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
22
|
Understanding the way eumelanin works: A unique example of properties and skills driven by molecular heterogeneity. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Fungal Melanins and Applications in Healthcare, Bioremediation and Industry. J Fungi (Basel) 2021; 7:jof7060488. [PMID: 34207260 PMCID: PMC8235761 DOI: 10.3390/jof7060488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 01/01/2023] Open
Abstract
Melanin is a complex multifunctional pigment found in all kingdoms of life, including fungi. The complex chemical structure of fungal melanins, yet to be fully elucidated, lends them multiple unique functions ranging from radioprotection and antioxidant activity to heavy metal chelation and organic compound absorption. Given their many biological functions, fungal melanins present many possibilities as natural compounds that could be exploited for human use. This review summarizes the current discourse and attempts to apply fungal melanin to enhance human health, remove pollutants from ecosystems, and streamline industrial processes. While the potential applications of fungal melanins are often discussed in the scientific community, they are successfully executed less often. Some of the challenges in the applications of fungal melanin to technology include the knowledge gap about their detailed structure, difficulties in isolating melanotic fungi, challenges in extracting melanin from isolated species, and the pathogenicity concerns that accompany working with live melanotic fungi. With proper acknowledgment of these challenges, fungal melanin holds great potential for societal benefit in the coming years.
Collapse
|
24
|
Kowalska J, Banach K, Rok J, Beberok A, Rzepka Z, Wrześniok D. Molecular and Biochemical Basis of Fluoroquinolones-Induced Phototoxicity-The Study of Antioxidant System in Human Melanocytes Exposed to UV-A Radiation. Int J Mol Sci 2020; 21:ijms21249714. [PMID: 33352719 PMCID: PMC7765951 DOI: 10.3390/ijms21249714] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Phototoxicity of fluoroquinolones is connected with oxidative stress induction. Lomefloxacin (8-halogenated derivative) is considered the most phototoxic fluoroquinolone and moxifloxacin (8-methoxy derivative) the least. Melanin pigment may protect cells from oxidative damage. On the other hand, fluoroquinolone–melanin binding may lead to accumulation of drugs and increase their toxicity to skin. The study aimed to examine the antioxidant defense system status in normal melanocytes treated with lomefloxacin and moxifloxacin and exposed to UV-A radiation. The obtained results demonstrated that UV-A radiation enhanced only the lomefloxacin-induced cytotoxic effect in tested cells. It was found that fluoroquinolones alone and with UV-A radiation decreased superoxide dismutase (SOD) activity and SOD1 expression. UV-A radiation enhanced the impact of moxifloxacin on hydrogen peroxide-scavenging enzymes. In turn, lomefloxacin alone increased the activity and the expression of catalase (CAT) and glutathione peroxidase (GPx), whereas UV-A radiation significantly modified the effects of drugs on these enzymes. Taken together, both analyzed fluoroquinolones induced oxidative stress in melanocytes, however, the molecular and biochemical studies indicated the miscellaneous mechanisms for the tested drugs. The variability in phototoxic potential between lomefloxacin and moxifloxacin may result from different effects on the antioxidant enzymes.
Collapse
|
25
|
Rimpelä AK, Garneau M, Baum-Kroker KS, Schönberger T, Runge F, Sauer A. Quantification of Drugs in Distinctly Separated Ocular Substructures of Albino and Pigmented Rats. Pharmaceutics 2020; 12:pharmaceutics12121174. [PMID: 33276439 PMCID: PMC7760391 DOI: 10.3390/pharmaceutics12121174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 11/27/2020] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
The rat is a commonly used species in ocular drug research. Detailed methods of separating rat ocular tissues have not been described in literature. To understand the intraocular drug distribution, we developed a robust method for the separation of individual anterior and posterior substructures of pigmented Brown Norway (BN) and albino Wistar Han (WH) rat eyes, followed by quantification of drug concentration in these substructures. A short formalin incubation, which did not interfere with drug quantification, enabled the preservation of individual tissue sections while minimizing cross-tissue contamination, as demonstrated by histological analysis. Following oral administration, we applied the tissue separation method, in order to determine the ocular concentrations of dexamethasone and levofloxacin, as well as two in-house molecules BI 113823 and BI 1026706, compounds differing in their melanin binding. The inter-individual variability in tissue partitioning coefficients (Kp) was low, demonstrating the reproducibility of the separation method. Kp values of individual tissues varied up to 100-fold in WH and up to 46,000-fold in BN rats highlighting the importance of measuring concentration directly from the ocular tissue of interest. Additionally, clear differences were observed in the BN rat tissue partitioning compared to the WH rat. Overall, the developed method enables a reliable determination of small molecule drug concentrations in ocular tissues to support ocular drug research and development.
Collapse
|
26
|
Cichorek M, Ronowska A, Dzierzbicka K, Gensicka-Kowalewska M, Deptula M, Pelikant-Malecka I. Chloroacridine derivatives as potential anticancer agents which may act as tricarboxylic acid cycle enzyme inhibitors. Biomed Pharmacother 2020; 130:110515. [PMID: 34321163 DOI: 10.1016/j.biopha.2020.110515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022] Open
Abstract
PURPOSE This paper concerns the cytotoxicity of 9-chloro-1-nitroacridine (1a) and 9-chloro-4-methyl-1-nitroacridine (1b) against two biologically different melanoma forms: melanotic and amelanotic. Melanomas are tumors characterized by high heterogeneity and poor susceptibility to chemotherapies. Among new analogs synthesized by us, compound 1b exhibited the highest anticancer potency. Because of that, in this study, we analyzed the mechanism of action for 1a and its 4-methylated derivative, 1b, against a pair of biological melanoma forms, with regard to proliferation, cell death mechanism and energetic state. METHODS Cytotoxicity was evaluated by XTT assay. Cell death was estimated by plasma membrane structure changes (phosphatidylserine externalization), caspase activation, and ROS presence. The energetic state of cells was estimated based on NAD and ATP levels, and the activity of tricarboxylic acid cycle enzymes (pyruvate dehydrogenase complex, aconitase, isocitrate dehydrogenase). RESULTS The chloroacridines affect biological forms of melanoma in different ways. Amelanotic (Ab) melanoma (with inhibited melanogenesis and higher malignancy) was particularly sensitive to the action of the chloroacridines. The Ab melanoma cells died through apoptosis and through death without caspase activation. Diminished activity of TAC enzymes was noticed among Ab melanoma cells together with ATP/NAD depletion, especially in the case of 1b. CONCLUSION Our data show that the biological forms of the tumors responded to 1a and its 4-methylated analog in different ways. 1a and 1b could be inducers of regulated melanoma cell death, especially the amelanotic form. Although the mechanism of the cell death is not fully understood, 1b may act by interfering with the TAC enzymes and blocking specific pathways leading to tumor growth. This could encourage further investigation of its anticancer activity, especially against the amelanotic form of melanoma.
Collapse
Affiliation(s)
- Miroslawa Cichorek
- Department of Embryology, Medical University of Gdansk, Debinki 1 St. PL, 80-210, Gdansk, Poland.
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdansk, Debinki 7 St. PL, 80-211, Gdansk, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Gdansk University of Technology, Narutowicza St. 11/12. PL, 80-233, Gdansk, Poland
| | - Monika Gensicka-Kowalewska
- Department of Organic Chemistry, Gdansk University of Technology, Narutowicza St. 11/12. PL, 80-233, Gdansk, Poland
| | - Milena Deptula
- Department of Embryology, Medical University of Gdansk, Debinki 1 St. PL, 80-210, Gdansk, Poland
| | - Iwona Pelikant-Malecka
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St. PL, 80-210, Gdansk, Poland; Department of Medical Laboratory Diagnostics, Central Bank of Frozen Tissues and Genetic Specimens, Medical University of Gdansk, Biobanking and Biomolecular Resources Research Infrastructure Poland, Debinki 7 St. PL, 80-211, Gdansk, Poland
| |
Collapse
|
27
|
Ramírez Fernández MDM, Baumgartner WA, Wille SM, Farabee D, Samyn N, Baumgartner AM. A different insight in hair analysis: Simultaneous measurement of antipsychotic drugs and metabolites in the protein and melanin fraction of hair from criminal justice patients. Forensic Sci Int 2020; 312:110337. [DOI: 10.1016/j.forsciint.2020.110337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/08/2020] [Accepted: 05/10/2020] [Indexed: 12/14/2022]
|
28
|
Sun CK, Wu PJ, Chen ST, Su YH, Wei ML, Wang CY, Gao HC, Sung KB, Liao YH. Slide-free clinical imaging of melanin with absolute quantities using label-free third-harmonic-generation enhancement-ratio microscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:3009-3024. [PMID: 32637238 PMCID: PMC7316008 DOI: 10.1364/boe.391451] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 05/21/2023]
Abstract
The capability to image the 3D distribution of melanin in human skin in vivo with absolute quantities and microscopic details will not only enable noninvasive histopathological diagnosis of melanin-related cutaneous disorders, but also make long term treatment assessment possible. In this paper, we demonstrate clinical in vivo imaging of the melanin distribution in human skin with absolute quantities on mass density and with microscopic details by using label-free third-harmonic-generation (THG) enhancement-ratio microscopy. As the dominant absorber in skin, melanin provides the strongest THG nonlinearity in human skin due to resonance enhancement. We show that the THG-enhancement-ratio (erTHG) parameter can be calibrated in vivo and can indicate the melanin mass density. With an unprecedented clinical imaging resolution, our study revealed erTHG-microscopy's unique capability for long-term treatment assessment and direct clinical observation of melanin's micro-distribution to shed light into the unknown pathway and regulation mechanism of melanosome transfer and translocation.
Collapse
Affiliation(s)
- Chi-Kuang Sun
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Pei-Jhe Wu
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Sheng-Tse Chen
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Hsiang Su
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Liang Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Chiao-Yi Wang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Cheng Gao
- Department of Electrical Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Kung-Bing Sung
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Hua Liao
- Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei 10002, Taiwan
| |
Collapse
|
29
|
Coronel Vargas G, Au WW, Izzotti A. Public health issues from crude-oil production in the Ecuadorian Amazon territories. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:134647. [PMID: 31837875 DOI: 10.1016/j.scitotenv.2019.134647] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/23/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Crude oil production (COP) is a high-pollution industry but the vast Amazon rainforest has been an active COP zone for South America. Although COP has been associated with a variety of health effects among workers around the world, such effects have not been adequately investigated in the Amazon region, especially at the community level. Therefore, this review was conducted to provide a report about COP in the Amazon of Ecuador and about its association with health status of indigenous human populations. Some epidemiological surveys in the Amazonian Territories indicate that COP has been associated with health problems in the surrounding populations, e.g. cancers in the stomach, rectum, skin, soft tissue, kidney and cervix in adults, and leukemia in children. In addition, some biomarkers and mechanistic studies show exposure effects. However, due to limitations from these studies, contradictory associations have been reported. Our review indicates that COP in the Amazonian territories of northern Ecuador was characterised by contamination which could have affected the indigenous and non-indigenous populations. However, there have not been dedicated investigations to provide relationships between the contamination and the subsequent exposure-health effects. Since indigenous populations have different lifestyle and cultures from regular city dwellers, systematic studies on their potential health hazards need to be conducted. Due to the remote locations and sparse populations, these new studies may involve the use of novel and genomic-based biomarkers as well as using high technology in the remote regions.
Collapse
Affiliation(s)
| | - William W Au
- University of Medicine, Pharmacy, Sciences and Technology, Targu Mures, Romania; University of Texas Medical Branch, Galveston, TX, USA
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, Via L.B. Albertis 2, Genoa, Italy; Policlinic Hospital San Martino, Genoa, Italy.
| |
Collapse
|
30
|
Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-Álvarez A, Fernández-Ferreiro A, Otero-Espinar FJ. Drug Delivery to the Posterior Segment of the Eye: Biopharmaceutic and Pharmacokinetic Considerations. Pharmaceutics 2020; 12:E269. [PMID: 32188045 PMCID: PMC7151081 DOI: 10.3390/pharmaceutics12030269] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 01/22/2023] Open
Abstract
The treatment of the posterior-segment ocular diseases, such as age-related eye diseases (AMD) or diabetic retinopathy (DR), present a challenge for ophthalmologists due to the complex anatomy and physiology of the eye. This specialized organ is composed of various static and dynamic barriers that restrict drug delivery into the target site of action. Despite numerous efforts, effective intraocular drug delivery remains unresolved and, therefore, it is highly desirable to improve the current treatments of diseases affecting the posterior cavity. This review article gives an overview of pharmacokinetic and biopharmaceutics aspects for the most commonly-used ocular administration routes (intravitreal, topical, systemic, and periocular), including information of the absorption, distribution, and elimination, as well as the benefits and limitations of each one. This article also encompasses different conventional and novel drug delivery systems designed and developed to improve drug pharmacokinetics intended for the posterior ocular segment treatment.
Collapse
Affiliation(s)
- Rubén Varela-Fernández
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Neurosciences Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Victoria Díaz-Tomé
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Andrea Luaces-Rodríguez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Andrea Conde-Penedo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Xurxo García-Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Molecular Imaging Group. University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Asteria Luzardo-Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Clinical Pharmacology Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, University of Santiago de Compostela (USC), Campus vida, 15782 Santiago de Compostela, Spain; (R.V.-F.); (V.D.-T.); (A.L.-R.); (A.C.-P.); (X.G.-O.); (A.L.-Á.)
- Paraquasil Group, Health Research Institute of Santiago de Compostela (IDIS), Travesía da Choupana s/n, 15706 Santiago de Compostela, Spain
| |
Collapse
|
31
|
Melanin Produced by the Fast-Growing Marine Bacterium Vibrio natriegens through Heterologous Biosynthesis: Characterization and Application. Appl Environ Microbiol 2020; 86:AEM.02749-19. [PMID: 31836580 DOI: 10.1128/aem.02749-19] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 11/20/2022] Open
Abstract
Melanin is a pigment produced by organisms throughout all domains of life. Due to its unique physicochemical properties, biocompatibility, and biostability, there has been an increasing interest in the use of melanin for broad applications. In the vast majority of studies, melanin has been either chemically synthesized or isolated from animals, which has restricted its use to small-scale applications. Using bacteria as biocatalysts is a promising and economical alternative for the large-scale production of biomaterials. In this study, we engineered the marine bacterium Vibrio natriegens, one of the fastest-growing organisms, to synthesize melanin by expressing a heterologous tyrosinase gene and demonstrated that melanin production was much faster than in previously reported heterologous systems. The melanin of V. natriegens was characterized as a polymer derived from dihydroxyindole-2-carboxylic acid (DHICA) and, similarly to synthetic melanin, exhibited several characteristic and useful features. Electron microscopy analysis demonstrated that melanin produced from V. natriegens formed nanoparticles that were assembled as "melanin ghost" structures, and the photoprotective properties of these particles were validated by their protection of cells from UV irradiation. Using a novel electrochemical reverse engineering method, we observed that melanization conferred redox activity to V. natriegens Moreover, melanized bacteria were able to quickly adsorb the organic compound trinitrotoluene (TNT). Overall, the genetic tractability, rapid division time, and ease of culture provide a set of attractive properties that compare favorably to current E. coli production strains and warrant the further development of this chassis as a microbial factory for natural product biosynthesis.IMPORTANCE Melanins are macromolecules that are ubiquitous in nature and impart a large variety of biological functions, including structure, coloration, radiation resistance, free radical scavenging, and thermoregulation. Currently, in the majority of investigations, melanins are either chemically synthesized or extracted from animals, which presents significant challenges for large-scale production. Bacteria have been used as biocatalysts to synthesize a variety of biomaterials due to their fast growth and amenability to genetic engineering using synthetic biology tools. In this study, we engineered the extremely fast-growing bacterium V. natriegens to synthesize melanin nanoparticles by expressing a heterologous tyrosinase gene with inducible promoters. Characterization of the melanin produced from V. natriegens-produced tyrosinase revealed that it exhibited physical and chemical properties similar to those of natural and chemically synthesized melanins, including nanoparticle structure, protection against UV damage, and adsorption of toxic compounds. We anticipate that producing and controlling melanin structures at the nanoscale in this bacterial system with synthetic biology tools will enable the design and rapid production of novel biomaterials for multiple applications.
Collapse
|
32
|
Suri R, Beg S, Kohli K. Target strategies for drug delivery bypassing ocular barriers. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101389] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Abstract
Background: Areca nut (AN) chewing causes oral cancer. AN cessation programs are the most effective approach to reduce AN chewing induced cancers but require biomarkers to determine program compliance and success. Objectives: To explore chemical markers for short- and long-term AN exposure using non-invasively collected saliva, buccal cells (BCs), and scalp hair of chewers. Methods: Saliva was collected from a male chewer before and up to 2 days after AN chewing. Saliva was separated into supernatant and pellet (BCs) then analyzed by spectrophotometry and liquid chromatography (LC) with UV/VIS detection. Scalp hair was collected from four chewers and analyzed for areca alkaloids using direct analysis in real time-tandem mass spectrometry (DART-MSMS). Results: The red pigmented saliva after chewing showed no valuable signals when either the saliva supernatant or pellet (BCs) were analyzed by spectrophotometry. Saliva analysis by LC-UV/VIS showed diagnostically valuable signals at 488 nm up to 5 and 24 h post chewing in the supernatant and pellet, respectively. DART-MSMS analysis detected two of the four AN specific alkaloids (arecoline and arecaidine) in male but none in female hair. Conclusions/Importance: LC-UV/VIS analysis of the red pigments extracted from saliva and BCs after AN chewing showed distinct signals up to 24 h post chewing while DART-MSMS analysis in BCs and scalp hair showed selective signals of AN alkaloids for several weeks or months after AN exposure. Chemical hair treatment might prevent detection of areca alkaloids in hair. AN cessation trials and other programs now have essential tools for bioverification.
Collapse
Affiliation(s)
- Adrian A Franke
- Analytical Biochemistry Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Xingnan Li
- Analytical Biochemistry Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Laurie J Custer
- Analytical Biochemistry Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Jennifer F Lai
- Analytical Biochemistry Shared Resource, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| |
Collapse
|
34
|
Hellinen L, Hagström M, Knuutila H, Ruponen M, Urtti A, Reinisalo M. Characterization of artificially re-pigmented ARPE-19 retinal pigment epithelial cell model. Sci Rep 2019; 9:13761. [PMID: 31551473 PMCID: PMC6760193 DOI: 10.1038/s41598-019-50324-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 09/10/2019] [Indexed: 12/17/2022] Open
Abstract
Melanin pigment has a significant role in ocular pharmacokinetics, because many drugs bind at high extent to melanin in the retinal pigment epithelial cells. Most retinal pigment epithelial cell lines lack pigmentation and, therefore, we re-pigmented human ARPE-19 cells to generate a pigmented cell model. Melanosomes from porcine retinal pigment epithelium were isolated and co-incubated with ARPE-19 cells that spontaneously phagocytosed the melanosomes. Internalized melanosomes were functionally integrated to the cellular system as evidenced by correct translocation of cellular Rab27a protein to the melanosomal membranes. The pigmentation was retained during cell cultivation and the level of pigmentation can be controlled by altering the amount of administered melanosomes. We used these cells to study melanosomal uptake of six drugs. The uptake was negligible with low melanin-binders (methotrexate, diclofenac) whereas most of the high melanin-binders (propranolol, chloroquine) were extensively taken up by the melanosomes. This cell line can be used to model pigmentation of the retinal pigment epithelium, while maintaining the beneficial cell line characteristics, such as fast generation of cultures, low cost, long-term maintenance and good reproducibility. The model enables studies at normal and decreased levels of pigmentation to model different retinal conditions.
Collapse
Affiliation(s)
- Laura Hellinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Marja Hagström
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| | - Heidi Knuutila
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Marika Ruponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210, Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210, Kuopio, Finland.,Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.,Laboratory of Biohybrid Technologies, Institute of Chemistry, St. Petersburg State University, Peterhoff, 198504 St, Petersburg, Russian Federation, Russia
| | - Mika Reinisalo
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70210, Kuopio, Finland. .,Institute of Clinical Medicine, Department of Ophthalmology, Faculty of Health Sciences, University of Eastern Finland, 70210, Kuopio, Finland.
| |
Collapse
|
35
|
Depot formulations to sustain periocular drug delivery to the posterior eye segment. Drug Discov Today 2019; 24:1458-1469. [DOI: 10.1016/j.drudis.2019.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/25/2019] [Accepted: 03/22/2019] [Indexed: 12/27/2022]
|
36
|
Ni S, Li B, Xu Y, Mao F, Li X, Lan L, Zhu J, Li J. Targeting virulence factors as an antimicrobial approach: Pigment inhibitors. Med Res Rev 2019; 40:293-338. [PMID: 31267561 DOI: 10.1002/med.21621] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/30/2019] [Accepted: 06/13/2019] [Indexed: 12/19/2022]
Abstract
The fascinating and dangerous colored pathogens contain unique chemically pigmented molecules, which give varied and efficient assistance as virulence factors to the crucial reproduction and growth of microbes. Therefore, multiple novel strategies and inhibitors have been developed in recent years that target virulence factor pigments. However, despite the importance and significance of this topic, it has not yet been comprehensively reviewed. Moreover, research groups around the world have made successful progress against antibacterial infections by targeting pigment production, including our serial works on the discovery of CrtN inhibitors against staphyloxanthin production in Staphylococcus aureus. On the basis of the previous achievements and recent progress of our group in this field, this article will be the first comprehensive review of pigment inhibitors against colored pathogens, especially S. aureus infections, and this article includes design strategies, representative case studies, advantages, limitations, and perspectives to guide future research.
Collapse
Affiliation(s)
- Shuaishuai Ni
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baoli Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yixiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Fei Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaokang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Lefu Lan
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medical, Chinese Academy of Sciences, Shanghai, China
| | - Jin Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jian Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
37
|
Development of a Competition-Binding Assay to Determine Binding Affinity of Molecules to Neuromelanin via Fluorescence Spectroscopy. Biomolecules 2019; 9:biom9050175. [PMID: 31072013 PMCID: PMC6572089 DOI: 10.3390/biom9050175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 11/16/2022] Open
Abstract
Neuromelanin, the polymeric form of dopamine which accumulates in aging neuronal tissue, is increasingly recognized as a functional and critical component of a healthy and active adult human brain. Notorious in plant and insect literature for their ability to bind and retain amines for long periods of time, catecholamine polymers known colloquially as 'melanins' are nevertheless curiously absent from most textbooks regarding biochemistry, neuroscience, and evolution. Recent research has brought attention to the brain pigment due to its possible role in neurodegeneration. This linkage is best illustrated by Parkinson's disease, which is characterized by the loss of pigmented dopaminergic neurons and the 'white brain' pathological state. As such, the ability to determine the binding affinity of neurotoxic agents, as well as any potential specific endogenous ligands to neuromelanin are of interest and potential value. Neuromelanin has been shown to have saturable binding interactions with nicotine as monitored by a fluorimeter. This interaction provides a signal to allow for a competition-binding assay with target molecules which do not themselves produce signal. The current report establishes the viability of this competition assay toward three compounds with central relevance to Parkinson's disease. The Kd of binding toward neuromelanin by methyl-phenyl-pyridinium ion (MPP+), dopamine, and 6-hydroxydopamine were found to be 1 mM, 0.05 mM, and 0.1 mM, respectively in the current study. In addition, we demonstrate that 6-hydroxydopamine polymerizes to form neuromelanin granules in cultured dopaminergic neurons that treated with 2,4,5-trihydroxy-l-phenylalanine. Immunohistochemical analysis using fluor-tagged anti-dopamine antibodies suggests that the incorporation of 6-hydroxydopamine (following internalization and decarboxylation analogous to levodopa and dopamine) alters the localized distribution of bound dopamine in these cells.
Collapse
|
38
|
Lindroos M, Hörnström D, Larsson G, Gustavsson M, van Maris AJA. Continuous removal of the model pharmaceutical chloroquine from water using melanin-covered Escherichia coli in a membrane bioreactor. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:74-80. [PMID: 30412809 DOI: 10.1016/j.jhazmat.2018.10.081] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/17/2018] [Accepted: 10/26/2018] [Indexed: 05/20/2023]
Abstract
Environmental release and accumulation of pharmaceuticals and personal care products is a global concern in view of increased awareness of ecotoxicological effects. Adsorbent properties make the biopolymer melanin an interesting alternative to remove micropollutants from water. Recently, tyrosinase-surface-displaying Escherichia coli was shown to be an interesting self-replicating production system for melanin-covered cells for batch-wise absorption of the model pharmaceutical chloroquine. This work explores the suitability of these melanin-covered E. coli for the continuous removal of pharmaceuticals from wastewater. A continuous-flow membrane bioreactor containing melanized E. coli cells was used for adsorption of chloroquine from the influent until saturation and subsequent regeneration. At a low loading of cells (10 g/L) and high influent concentration of chloroquine (0.1 mM), chloroquine adsorbed until saturation after 26 ± 2 treated reactor volumes (39 ± 3 L). The average effluent concentration during the first 20 h was 0.0018 mM, corresponding to 98.2% removal. Up to 140 ± 6 mg chloroquine bound per gram of cells following mixed homo- and heterogeneous adsorption kinetics. In situ low-pH regeneration released all chloroquine without apparent capacity loss over three consecutive cycles. This shows the potential of melanized cells for treatment of conventional wastewater or highly concentrated upstream sources such as hospitals or manufacturing sites.
Collapse
Affiliation(s)
- Magnus Lindroos
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, AlbaNova University Center, 114 21, Stockholm, Sweden.
| | - David Hörnström
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, AlbaNova University Center, 114 21, Stockholm, Sweden.
| | - Gen Larsson
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, AlbaNova University Center, 114 21, Stockholm, Sweden.
| | - Martin Gustavsson
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, AlbaNova University Center, 114 21, Stockholm, Sweden.
| | - Antonius J A van Maris
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Industrial Biotechnology, AlbaNova University Center, 114 21, Stockholm, Sweden.
| |
Collapse
|
39
|
Rok J, Rzepka Z, Respondek M, Beberok A, Wrześniok D. Chlortetracycline and melanin biopolymer - The risk of accumulation and implications for phototoxicity: An in vitro study on normal human melanocytes. Chem Biol Interact 2019; 303:27-34. [PMID: 30768968 DOI: 10.1016/j.cbi.2019.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/21/2022]
Abstract
Tetracyclines belong to antimicrobial classes with the highest consumption in veterinary medicine and agriculture, which leads to the contamination of the environment and food products, as well as to antibiotic resistance and adverse drug reactions. Chloro-derivatives of tetracyclines are thought to be relatively more phototoxic than others and belong to the most frequently cited drugs as photosensitizers. Melanins are heterogenous biopolymers determining skin, hair and eye colour. They are biosynthesized in a multistep process in melanocytes. Melanins, besides photoprotective and antioxidant properties, may also contribute to adverse skin drug reactions, which involve e.g. hyperpigmentation disorders and phototoxic reactions. Furthermore, they have the ability to form a drug-melanin complex, which leads to deposition of the drug or its metabolites in pigmented tissues. The aim of the study was to examine the ability of chlortetracycline to form a complex with melanin, as well as the effect of the drug on viability, antioxidant defence system and melanogenesis in normal human epidermal melanocytes exposed to the UVA radiation. The obtained results show for the first time that chlortetracycline forms a complex with melanin polymers, which creates a possibility of the drug accumulation in pigmented tissues. A simultaneous exposition of normal melanocytes to chlortetracycline and to the UVA radiation decreases cell viability, proportionally to the drug concentration and the irradiation time. The phototoxic effect appears to be related to the induction of oxidative stress in melanocytes, mainly through an increase of SOD and a decrease of the CAT activity. Chlortetracycline itself does not influence the melanin content or the activity of tyrosinase. The UVA radiation appeared to be a conditioning factor stimulating melanogenesis, whereas the presence of the drug augmented this effect.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland.
| | - Zuzanna Rzepka
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland
| | - Michalina Respondek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200, Sosnowiec, Poland
| |
Collapse
|
40
|
Jakubiak P, Reutlinger M, Mattei P, Schuler F, Urtti A, Alvarez-Sánchez R. Understanding Molecular Drivers of Melanin Binding To Support Rational Design of Small Molecule Ophthalmic Drugs. J Med Chem 2018; 61:10106-10115. [PMID: 30398862 DOI: 10.1021/acs.jmedchem.8b01281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Binding of drugs to ocular melanin is a prominent biological phenomenon that affects the local pharmacokinetics and pharmacodynamics in the eye. In this work, we report on the development of in vitro and in silico tools for an early assessment and prediction of melanin binding properties of small molecules. A robust high-throughput assay has been established to study the binding of large sets of compounds to melanin. The extremely randomized trees approach was used to develop an in silico model able to predict the extent of melanin binding from the molecular properties of the compounds. After the last iteration of the model, strong melanin binders could prospectively be identified with 91% accuracy. On the basis of in vitro data generated for approximately 3400 chemically diverse drug-like small molecules, pronounced correlations were observed between the extent of melanin binding and the basicity, lipophilicity, and aromaticity of the compounds.
Collapse
Affiliation(s)
- Paulina Jakubiak
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel , F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124 , 4070 Basel , Switzerland.,School of Pharmacy , University of Eastern Finland , 70211 Kuopio , Finland
| | - Michael Reutlinger
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel , F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Patrizio Mattei
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel , F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Franz Schuler
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel , F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| | - Arto Urtti
- School of Pharmacy , University of Eastern Finland , 70211 Kuopio , Finland.,Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy , University of Helsinki , 00014 Helsinki , Finland
| | - Rubén Alvarez-Sánchez
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel , F. Hoffmann-La Roche Ltd. , Grenzacherstrasse 124 , 4070 Basel , Switzerland
| |
Collapse
|
41
|
Cichorek M, Ronowska A, Gensicka-Kowalewska M, Deptula M, Pelikant-Malecka I, Dzierzbicka K. Novel therapeutic compound acridine-retrotuftsin action on biological forms of melanoma and neuroblastoma. J Cancer Res Clin Oncol 2018; 145:165-179. [PMID: 30367436 PMCID: PMC6326014 DOI: 10.1007/s00432-018-2776-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/19/2018] [Indexed: 12/29/2022]
Abstract
PURPOSE As a continuation of our search for anticancer agents, we have synthesized a new acridine-retrotuftsin analog HClx9-[Arg(NO2)-Pro-Lys-Thr-OCH3]-1-nitroacridine (named ART) and have evaluated its activity against melanoma and neuroblastoma lines. Both tumors develop from cells (melanocytes, neurons) of neuroectodermal origin, and both are tumors with high heterogeneity and unsatisfactory susceptibility to chemotherapies. Thus, we analyzed the action of ART on pairs of biological forms of melanoma (amelanotic and melanotic) and neuroblastoma (dopaminergic and cholinergic) with regard to proliferation, mechanism of cell death, and effect on the activity of tricarboxylic acid cycle (TAC) enzymes. METHODS The cytotoxicity of ART was evaluated by XTT and trypan blue tests. Cell death was estimated by plasma membrane structure changes (phosphatidylserine and calreticulin externalization), caspase activation, presence of ROS (reactive oxygen species), activity of tricarboxylic acid cycle enzymes (pyruvate dehydrogenase complex, aconitase, and isocitrate dehydrogenase), NAD level, and ATP level. RESULTS ART influences the biological forms of melanoma and neuroblastoma in different ways. Amelanotic (Ab) melanoma (with the inhibited melanogenesis, higher malignancy) and SHSY5Y neuroblastoma (with cholinergic DC cells) were especially sensitive to ART action. The Ab melanoma cells died through apoptosis, while, with SH-SY5Y-DC neuroblastoma, the number of cells decreased but not as a result of apoptosis. With Ab melanoma and SH-SY5Y-DC cells, a diminished activity of TAC enzymes was noticed, along with ATP/NAD depletion. CONCLUSION Our data show that the biological forms of certain tumors responded in different ways to the action of ART. As a combination of retrotuftsin and acridine, the compound can be an inducer of apoptotic cell death of melanoma, especially the amelanotic form. Although the mechanism of the interrelationships between energy metabolism and cell death is not fully understood, interference of ART with TAC enzymes could encourage the further investigation of its anticancer action.
Collapse
Affiliation(s)
- Miroslawa Cichorek
- Department of Embryology, Medical University of Gdansk, Debinki 1 St, 80-210, Gdansk, PL, Poland.
| | - Anna Ronowska
- Department of Laboratory Medicine, Medical University of Gdansk, Debinki 7 St, 80-211, Gdansk, PL, Poland
| | - Monika Gensicka-Kowalewska
- Department of Organic Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233, Gdansk, PL, Poland
| | - Milena Deptula
- Department of Embryology, Medical University of Gdansk, Debinki 1 St, 80-210, Gdansk, PL, Poland
| | - Iwona Pelikant-Malecka
- Department of Biochemistry, Medical University of Gdansk, Debinki 1 St, 80-210, Gdansk, PL, Poland
| | - Krystyna Dzierzbicka
- Department of Organic Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233, Gdansk, PL, Poland
| |
Collapse
|
42
|
Melanin targeting for intracellular drug delivery: Quantification of bound and free drug in retinal pigment epithelial cells. J Control Release 2018; 283:261-268. [DOI: 10.1016/j.jconrel.2018.05.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
|
43
|
Fanali LZ, Franco-Belussi L, Bonini-Domingos CR, de Oliveira C. Effects of benzo[a]pyrene on the blood and liver of Physalaemus cuvieri and Leptodactylus fuscus (Anura: Leptodactylidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:93-102. [PMID: 29477119 DOI: 10.1016/j.envpol.2018.02.030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/13/2018] [Accepted: 02/09/2018] [Indexed: 05/14/2023]
Abstract
Benzo[a]pyrene (BaP) is a bio-accumulative toxic compound found in the atmosphere, water, and soil that may affect the life cycle of amphibians. In this study, a few contamination biomarkers, such as hepatic melanomacrophages (MMs), mast cells, erythrocyte micronuclei (MN) and white blood cells were used to determine how BaP acts in these cells in the anurans Physalaemus cuvieri and Leptodactylus fuscus. Animals of both species were divided into three treatment groups: 1 day, 7 days and 13 days, subcutaneously injected 2 mg/kg BaP diluted in mineral oil and control group with only mineral oil. After 7 days, BaP caused the frequency of MN to increase in both species while reducing melanin area. The micronucleus frequency increased due to the genotoxicity of BaP, while the decreasing melanin area may be related to the inhibition of tyrosinase activity, an enzyme responsible for regulating melanogenesis, decreasing the synthesis of melanin. The mast cell density increased in all groups and in both species as a response to the inflammatory action of BaP. These cells respond to nonspecific inflammatory effects leading, therefore, to this response in all treatments. The percentage of leukocytes remained unchanged probably due to great intraspecific variability. Additionally, the leukocyte profiles of both species were characterized and the differences were attributed to extrinsic factors. In short, BaP can affect the integrity of several organs and tissues, and cell functions leading to the conclusion that this compound is hepatotoxic, genotoxic and immunotoxic for anurans.
Collapse
Affiliation(s)
- Lara Zácari Fanali
- Graduate Program in Animal Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil.
| | - Lilian Franco-Belussi
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil; Graduate Program in Biotechnology and Environmental monitoring, CCTS, Federal University of São Carlos, 18052-780, Sorocaba, São Paulo, Brazil
| | | | - Classius de Oliveira
- Department of Biology, Universidade Estadual Paulista (UNESP), São José do Rio Preto, São Paulo, 15054-000, Brazil
| |
Collapse
|
44
|
Brash DE, Goncalves LCP, Bechara EJH. Chemiexcitation and Its Implications for Disease. Trends Mol Med 2018; 24:527-541. [PMID: 29751974 DOI: 10.1016/j.molmed.2018.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 12/20/2022]
Abstract
Quantum mechanics rarely extends to molecular medicine. Recently, the pigment melanin was found to be susceptible to chemiexcitation, in which an electron is chemically excited to a high-energy molecular orbital. In invertebrates, chemiexcitation causes bioluminescence; in mammals, a higher-energy process involving melanin transfers energy to DNA without photons, creating the lethal and mutagenic cyclobutane pyrimidine dimer that can cause melanoma. This process is initiated by NO and O2- radicals, the formation of which can be triggered by ultraviolet light or inflammation. Several chronic diseases share two properties: inflammation generates these radicals across the tissue, and the diseased cells lie near melanin. We propose that chemiexcitation may be an upstream event in numerous human diseases.
Collapse
Affiliation(s)
- Douglas E Brash
- Departments of Therapeutic Radiology and Dermatology, and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520-8040, USA.
| | - Leticia C P Goncalves
- Departments of Therapeutic Radiology and Dermatology, and Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520-8040, USA
| | - Etelvino J H Bechara
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05513-970 SP, and Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo, Diadema, São Paulo 09972-270 SP, Brazil
| | | |
Collapse
|
45
|
Kirla KT, Groh KJ, Poetzsch M, Banote RK, Stadnicka-Michalak J, Eggen RIL, Schirmer K, Kraemer T. Importance of Toxicokinetics to Assess the Utility of Zebrafish Larvae as Model for Psychoactive Drug Screening Using Meta-Chlorophenylpiperazine (mCPP) as Example. Front Pharmacol 2018; 9:414. [PMID: 29755353 PMCID: PMC5932571 DOI: 10.3389/fphar.2018.00414] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/10/2018] [Indexed: 01/05/2023] Open
Abstract
The number of new psychoactive substances (NPS) increases rapidly, harming society and fuelling the need for alternative testing strategies. These should allow the ever-increasing number of drugs to be tested more effectively for their toxicity and psychoactive effects. One proposed strategy is to complement rodent models with zebrafish (Danio rerio) larvae. Yet, our understanding of the toxicokinetics in this model, owing to the waterborne drug exposure and the distinct physiology of the fish, is incomplete. We here explore the toxicokinetics and behavioral effects of an NPS, meta-chlorophenylpiperazine (mCPP), in zebrafish larvae. Uptake kinetics of mCPP, supported by toxicokinetic modeling, strongly suggested the existence of active transport processes. Internal distribution showed a dominant accumulation in the eye, implying that in zebrafish, like in mammals, melanin could serve as a binding site for basic drugs. We confirmed this by demonstrating significantly lower drug accumulation in two types of hypo-pigmented fish. Comparison of the elimination kinetics between mCPP and previously characterized cocaine demonstrated that drug affinities to melanin in zebrafish vary depending on the structure of the test compound. As expected from mCPP-elicited responses in rodents and humans, zebrafish larvae displayed hypoactive behavior. However, significant differences were seen between zebrafish and rodents with regard to the concentration-dependency of the behavioral response and the comparability of tissue levels, corroborating the need to consider the organism-internal distribution of the chemical to allow appropriate dose modeling while evaluating effects and concordance between zebrafish and mammals. Our results highlight commonalities and differences of mammalian versus the fish model in need of further exploration.
Collapse
Affiliation(s)
- Krishna Tulasi Kirla
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland.,Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
| | - Ksenia J Groh
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.,Food Packaging Forum Foundation, Zurich, Switzerland
| | - Michael Poetzsch
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Rakesh Kumar Banote
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julita Stadnicka-Michalak
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.,Civil and Environmental Engineering, School of Architecture, EPFL, Lausanne, Switzerland
| | - Rik I L Eggen
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Kristin Schirmer
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland.,Civil and Environmental Engineering, School of Architecture, EPFL, Lausanne, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
46
|
Rimpelä AK, Reinisalo M, Hellinen L, Grazhdankin E, Kidron H, Urtti A, del Amo EM. Implications of melanin binding in ocular drug delivery. Adv Drug Deliv Rev 2018; 126:23-43. [PMID: 29247767 DOI: 10.1016/j.addr.2017.12.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/04/2017] [Accepted: 12/11/2017] [Indexed: 12/20/2022]
Abstract
Pigmented ocular tissues contain melanin within the intracellular melanosomes. Drugs bind to melanin at varying extent that ranges from no binding to extensive binding. Binding may lead to drug accumulation to the pigmented tissues and prolonged drug retention in the melanin containing cells. Therefore, melanin binding is an important feature that affects ocular drug delivery and biodistribution, but this topic has not been reviewed since 1998. In this review, we present current knowledge on ocular melanin, melanosomes and binding of drugs to pigmented cells and tissues. In vitro, in vivo and in silico methods in the field were critically evaluated, because the literature in this field can be confusing if the reader does not properly understand the methodological aspects. Literature analysis includes a comprehensive table of literature data on melanin binding of drugs. Furthermore, we aimed to give some insights beyond the current literature by making a chemical structure based classification model for melanin binding of drugs and kinetic simulations that revealed significant interplay between melanin binding and drug permeability across the melanosomal and plasma membranes. Overall, more mechanistic and systematic research is needed before the impact of melanin binding on ocular drug delivery can be properly understood and predicted.
Collapse
|
47
|
Temoçin Z, Kim E, Li J, Panzella L, Alfieri ML, Napolitano A, Kelly DL, Bentley WE, Payne GF. The Analgesic Acetaminophen and the Antipsychotic Clozapine Can Each Redox-Cycle with Melanin. ACS Chem Neurosci 2017; 8:2766-2777. [PMID: 28945963 DOI: 10.1021/acschemneuro.7b00310] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Melanins are ubiquitous but their complexity and insolubility has hindered characterization of their structures and functions. We are developing electrochemical reverse engineering methodologies that focus on properties and especially on redox properties. Previous studies have shown that melanins (i) are redox-active and can rapidly and repeatedly exchange electrons with diffusible oxidants and reductants, and (ii) have redox potentials in midregion of the physiological range. These properties suggest the functional activities of melanins will depend on their redox context. The brain has a complex redox context with steep local gradients in O2 that can promote redox-cycling between melanin and diffusible redox-active chemical species. Here, we performed in vitro reverse engineering studies and report that melanins can redox-cycle with two common redox-active drugs. Experimentally, we used two melanin models: a convenient natural melanin derived from cuttlefish (Sepia melanin) and a synthetic cysteinyldopamine-dopamine core-shell model of neuromelanin. One drug, acetaminophen (APAP), has been used clinically for over a century, and recent studies suggest that low doses of APAP can protect the brain from oxidative-stress-induced toxicity and neurodegeneration, while higher doses can have toxic effects in the brain. The second drug, clozapine (CLZ), is a second generation antipsychotic with polypharmacological activities that remain incompletely understood. These in vitro observations suggest that the redox activities of drugs may be relevant to their modes-of-action, and that melanins may interact with drugs in ways that affect their activities, metabolism, and toxicities.
Collapse
Affiliation(s)
- Zülfikar Temoçin
- Department
of Chemistry, Science and Arts Faculty, Kırıkkale University, Yahs̨ihan,71450 Kırıkkale, Turkey
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Jinyang Li
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Lucia Panzella
- Department
of Chemical Sciences, University of Naples Federico II, Via Cintia
4, I-80126 Naples, Italy
| | - Maria Laura Alfieri
- Department
of Chemical Sciences, University of Naples Federico II, Via Cintia
4, I-80126 Naples, Italy
| | - Alessandra Napolitano
- Department
of Chemical Sciences, University of Naples Federico II, Via Cintia
4, I-80126 Naples, Italy
| | - Deanna L. Kelly
- Maryland
Psychiatric Research Center, University of Maryland School of Medicine, Baltimore, Maryland 21228, United States
| | - William E. Bentley
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Institute
for Bioscience and Biotechnology Research, University of Maryland, 5115 Plant Sciences Building, College Park, Maryland 20742, United States
- Fischell
Department of Bioengineering University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
48
|
Rok J, Wrześniok D, Beberok A, Otręba M, Delijewski M, Buszman E. Phototoxic effect of oxytetracycline on normal human melanocytes. Toxicol In Vitro 2017; 48:26-32. [PMID: 29248593 DOI: 10.1016/j.tiv.2017.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
Oxytetracycline is a broad-spectrum antibiotic, used in dermatology and veterinary medicine. Like other tetracyclines, it may evoke skin phototoxic reactions related to generation of reactive oxygen species (ROS). Melanins are biopolymers synthesised in melanocytes - highly specialised cells, localised in the basal layer of epidermis. Production of melanin is a defence mechanism against harmful effects of UV radiation, ROS and many chemical substances, including drugs. In the present study the influence of oxytetracycline and UVA radiation on darkly pigmented melanocytes viability, the melanogenesis process and the activity of antioxidant enzymes were analysed. The obtained results show that oxytetracycline decreases cell viability in a dose-dependent manner. It has also been stated that UVA radiation as well as simultaneous exposure to oxytetracycline and UVA radiation reduce melanocytes viability. The tested drug alone exhibits little effect on antioxidant enzymes activity and has no influence on the synthesis of melanin. However, simultaneous exposure of the cells to oxytetracycline and UVA radiation causes an increase of SOD and GPx activity, a decrease of CAT activity as well as stimulates melanogenesis. The obtained results suggest that phototoxicity of oxytetracycline towards normal human melanocytes depends on both time of UVA exposure and the drug concentration.
Collapse
Affiliation(s)
- Jakub Rok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland.
| | - Dorota Wrześniok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Artur Beberok
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Michał Otręba
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Marcin Delijewski
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| | - Ewa Buszman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Silesia, Jagiellońska 4, PL 41-200 Sosnowiec, Poland
| |
Collapse
|
49
|
Awwad S, Mohamed Ahmed AHA, Sharma G, Heng JS, Khaw PT, Brocchini S, Lockwood A. Principles of pharmacology in the eye. Br J Pharmacol 2017; 174:4205-4223. [PMID: 28865239 PMCID: PMC5715579 DOI: 10.1111/bph.14024] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
The eye is a highly specialized organ that is subject to a huge range of pathology. Both local and systemic disease may affect different anatomical regions of the eye. The least invasive routes for ocular drug administration are topical (e.g. eye drops) and systemic (e.g. tablets) formulations. Barriers that subserve as protection against pathogen entry also restrict drug permeation. Topically administered drugs often display limited bioavailability due to many physical and biochemical barriers including the pre-corneal tear film, the structure and biophysiological properties of the cornea, the limited volume that can be accommodated by the cul-de-sac, the lacrimal drainage system and reflex tearing. The tissue layers of the cornea and conjunctiva are further key factors that act to restrict drug delivery. Using carriers that enhance viscosity or bind to the ocular surface increases bioavailability. Matching the pH and polarity of drug molecules to the tissue layers allows greater penetration. Drug delivery to the posterior segment is a greater challenge and, currently, the standard route is via intravitreal injection, notwithstanding the risks of endophthalmitis and retinal detachment with frequent injections. Intraocular implants that allow sustained drug release are at different stages of development. Novel exciting therapeutic approaches include methods for promoting transscleral delivery, sustained release devices, nanotechnology and gene therapy.
Collapse
Affiliation(s)
- Sahar Awwad
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Abeer H A Mohamed Ahmed
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Garima Sharma
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Jacob S Heng
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Steve Brocchini
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | | |
Collapse
|
50
|
Rendón-Lugo AN, Santiago P, Puente-Lee I, León-Paniagua L. Permeability of hair to cadmium, copper and lead in five species of terrestrial mammals and implications in biomonitoring. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:640. [PMID: 29151127 DOI: 10.1007/s10661-017-6338-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/26/2017] [Indexed: 06/07/2023]
Abstract
The capacity of mammal hair to absorb toxic metals and its utility in biomonitoring has been broadly studied. Though these metal-binding properties has generally been attributed to the sulphur contained in cysteine, an amino acid that forms part of keratin, there are not many experimental studies that analyze the role of sulphur in the external deposition of potentially toxic metallic elements in order to better understand the potential of hair in biomonitoring and generate better tools for differentiating between internal and external deposition of contaminants. In this study, an experimental analysis is carried out using a scanning electron microscope on hairs of five terrestrial mammal species (Peromyscus furvus, P. maniculatus, Glossophaga soricina, Artibeus jamaicensis and Marmosa mexicana) treated with cadmium, copper and lead salts. We quantified absorbed metals as well as natural elements of the hair by energy dispersive X-ray spectroscopy (EDS) to analyze using simple statistics the role of sulphur in the absorption Cd, Cu and Pb. Given the lack of studies comparing the mechanisms of deposition of metal elements among different orders of Class Mammalia, external morphology was considered to be an important factor in the deposition of metallic particles of Cd, Cu and Pb. Bat species (Glossophaga soricina, Artibeus jamaicensis) showed a high concentration of particles in their scales, however, no between-species differences in metal absorption were observed, and during the exogenous deposition metal particles do not permeate the medulla. These results suggest that the sulphur in hair itself cannot bind metals to hair cuticle and that hair absorption capacity depends on a variety of factors such as aspects of hair morphology.
Collapse
Affiliation(s)
- A N Rendón-Lugo
- Museo de Zoología "Alfonso L. Herrera", Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, A. P. 70-399, D. F, 04510, Coyoacán, Mexico
| | - P Santiago
- Instituto de Física, UNAM, Mexico City, Mexico
| | | | - L León-Paniagua
- Museo de Zoología "Alfonso L. Herrera", Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, A. P. 70-399, D. F, 04510, Coyoacán, Mexico.
| |
Collapse
|