1
|
Nathan Mandal R, Ke J, Hasan Kanika N, Hou X, Zhang Z, Zhang P, Chen H, Zeng C, Chen X, Wang J, Wang C. Gut Microbiome-Driven metabolites influence skin pigmentation in TYRP1 mutant Oujiang Color Common Carp. Gene 2024; 928:148811. [PMID: 39094713 DOI: 10.1016/j.gene.2024.148811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/28/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
The gut microbiome plays a key role in regulating the gut-skin axis, and host genetics partially influence this regulation. The study investigated the role of gut microbiota and host genetics in the gut-skin axis, focusing on the unusual "coffee-like" color phenotype observed in TYRP1 mutant Oujiang Color Common Carp. We employed comparative high-throughput omics data from wild-type and mutant fish to quantify the influence of both genetics and gut microbes on skin transcriptomic expression and blood metabolites. We found 525 differential metabolites (DMs) and 45 distinct gut microbial genera in TYRP1 mutant fish compared to wild type. Interaction and causal mediation analyses revealed a complex interplay. The TYRP1 mutation likely triggers an inflammatory pathway involving Acinetobacter bacteria, Leukotrience-C4 and Spermine. This inflammatory response appears to be counterbalanced by an anti-inflammatory cardiovascular genetic network. The net effect is the upregulation of COMT, PLG, C2, C3, F10, TDO2, MHC1, and SERPINF2, leading to unusual coffee-like coloration. This study highlights the intricate interplay between gut microbiota, host genetics, and metabolic pathways in shaping complex phenotypes.
Collapse
Affiliation(s)
- Roland Nathan Mandal
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Ke
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Nusrat Hasan Kanika
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Xin Hou
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Zhiyi Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Penghui Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Huifan Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Chunxiao Zeng
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaowen Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated by the Ministry of Agriculture and Rural Affairs, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Green KJ, Pokorny J, Jarrell B. Dangerous liaisons: Loss of keratinocyte control over melanocytes in melanomagenesis. Bioessays 2024; 46:e2400135. [PMID: 39233509 DOI: 10.1002/bies.202400135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Melanomas arise from transformed melanocytes, positioned at the dermal-epidermal junction in the basal layer of the epidermis. Melanocytes are completely surrounded by keratinocyte neighbors, with which they communicate through direct contact and paracrine signaling to maintain normal growth control and homeostasis. UV radiation from sunlight reshapes this communication network to drive a protective tanning response. However, repeated rounds of sun exposure result in accumulation of mutations in melanocytes that have been considered as primary drivers of melanoma initiation and progression. It is now clear that mutations in melanocytes are not sufficient to drive tumor formation-the tumor environment plays a critical role. This review focuses on changes in melanocyte-keratinocyte communication that contribute to melanoma initiation and progression, with a particular focus on recent mechanistic insights that lay a foundation for developing new ways to intercept melanoma development.
Collapse
Affiliation(s)
- Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, USA
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, USA
| | - Jenny Pokorny
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Brieanna Jarrell
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, USA
| |
Collapse
|
3
|
Cheung ST, Do Y, Kim E, Rella A, Goyarts E, Pernodet N, Wong YH. G Protein-Coupled Receptors in Skin Aging. J Invest Dermatol 2024:S0022-202X(24)01919-5. [PMID: 39186022 DOI: 10.1016/j.jid.2024.06.1288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 08/27/2024]
Abstract
Skin aging is a complex biological process affected by a plethora of intrinsic and extrinsic factors that alter cutaneous functions through the modulations of signaling pathways and responses. Expressed in various cell types and skin tissue layers, G protein-coupled receptors (GPCRs) play a vital role in regulating skin aging. We have cataloged 156 GPCRs expressed in the skin and reviewed their roles in skin aging, such as pigmentation, loss of elasticity, wrinkles, rough texture, and aging-associated skin disorders. By exploring the GPCRs found in the skin, it may be possible to develop new treatment regimens for aging-associated skin conditions using GPCR ligands.
Collapse
Affiliation(s)
- Suet Ting Cheung
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yelim Do
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Eunah Kim
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Antonella Rella
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Earl Goyarts
- Research and Development, The Estée Lauder Companies, New York, New York, USA
| | - Nadine Pernodet
- Research and Development, The Estée Lauder Companies, New York, New York, USA; Estée Lauder Research Laboratories, Melville, New York, USA
| | - Yung Hou Wong
- The Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; The Biotechnology Research Institute, The Hong Kong University of Science and Technology, Hong Kong, China; Molecular Neuroscience Center, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China; Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
4
|
Mandal RN, Ke J, Kanika NH, Wang F, Wang J, Wang C. Regulatory gene network for coffee-like color morph of TYRP1 mutant of oujiang color common carp. BMC Genomics 2024; 25:659. [PMID: 38956500 PMCID: PMC11218255 DOI: 10.1186/s12864-024-10550-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Neither a TYRP1-mediated highly conserved genetic network underlying skin color towards optimum defense nor the pathological tendency of its mutation is well understood. The Oujiang Color Common Carp (Cyprinus carpio var. color) as a model organism, offering valuable insights into genetics, coloration, aquaculture practices, and environmental health. Here, we performed a comparative skin transcriptome analysis on TYRP1 mutant and wild fishes by applying a conservative categorical approach considering different color phenotypes. RESULTS Our results reveal that an unusual color phenotype may be sensitized with TYRP1 mutation as a result of upregulating several genes related to an anti-inflammatory autoimmune system in response to the COMT-mediated catecholamine neurotransmitters in the skin. Particularly, catecholamines-derived red/brown, red with blue colored membrane attack complex, and brown/grey colored reduced eumelanin are expected to be aggregated in the regenerated cells. CONCLUSIONS It is, thus, concluded that the regenerated cells with catecholamines, membrane attack complex, and eumelanin altogether may contribute to the formation of the unusual (coffee-like) color phenotype in TYRP1 mutant.
Collapse
Affiliation(s)
- Roland Nathan Mandal
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated By the Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jing Ke
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated By the Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Nusrat Hasan Kanika
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated By the Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Fuyan Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated By the Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jun Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated By the Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999, Huchenghuan Road, Shanghai, 201306, China.
| | - Chenghui Wang
- Key Laboratory of Freshwater Aquatic Genetic Resources Certificated By the Ministry of Agriculture and Rural Affairs, Shanghai Engineering Research Center of Aquaculture, National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999, Huchenghuan Road, Shanghai, 201306, China.
| |
Collapse
|
5
|
Hirobe T. Role of Dermal Factors Involved in Regulating the Melanin and Melanogenesis of Mammalian Melanocytes in Normal and Abnormal Skin. Int J Mol Sci 2024; 25:4560. [PMID: 38674144 PMCID: PMC11049857 DOI: 10.3390/ijms25084560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024] Open
Abstract
Mammalian melanin is produced in melanocytes and accumulated in melanosomes. Melanogenesis is supported by many factors derived from the surrounding tissue environment, such as the epidermis, dermis, and subcutaneous tissue, in addition to numerous melanogenesis-related genes. The roles of these genes have been fully investigated and the molecular analysis has been performed. Moreover, the role of paracrine factors derived from epidermis has also been studied. However, the role of dermis has not been fully studied. Thus, in this review, dermis-derived factors including soluble and insoluble components were overviewed and discussed in normal and abnormal circumstances. Dermal factors play an important role in the regulation of melanogenesis in the normal and abnormal mammalian skin.
Collapse
Affiliation(s)
- Tomohisa Hirobe
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| |
Collapse
|
6
|
Tagore M, Hergenreder E, Perlee SC, Cruz NM, Menocal L, Suresh S, Chan E, Baron M, Melendez S, Dave A, Chatila WK, Nsengimana J, Koche RP, Hollmann TJ, Ideker T, Studer L, Schietinger A, White RM. GABA Regulates Electrical Activity and Tumor Initiation in Melanoma. Cancer Discov 2023; 13:2270-2291. [PMID: 37553760 PMCID: PMC10551668 DOI: 10.1158/2159-8290.cd-23-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/27/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Oncogenes can initiate tumors only in certain cellular contexts, which is referred to as oncogenic competence. In melanoma, whether cells in the microenvironment can endow such competence remains unclear. Using a combination of zebrafish transgenesis coupled with human tissues, we demonstrate that GABAergic signaling between keratinocytes and melanocytes promotes melanoma initiation by BRAFV600E. GABA is synthesized in melanoma cells, which then acts on GABA-A receptors in keratinocytes. Electron microscopy demonstrates specialized cell-cell junctions between keratinocytes and melanoma cells, and multielectrode array analysis shows that GABA acts to inhibit electrical activity in melanoma/keratinocyte cocultures. Genetic and pharmacologic perturbation of GABA synthesis abrogates melanoma initiation in vivo. These data suggest that GABAergic signaling across the skin microenvironment regulates the ability of oncogenes to initiate melanoma. SIGNIFICANCE This study shows evidence of GABA-mediated regulation of electrical activity between melanoma cells and keratinocytes, providing a new mechanism by which the microenvironment promotes tumor initiation. This provides insights into the role of the skin microenvironment in early melanomas while identifying GABA as a potential therapeutic target in melanoma. See related commentary by Ceol, p. 2128. This article is featured in Selected Articles from This Issue, p. 2109.
Collapse
Affiliation(s)
- Mohita Tagore
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emiliano Hergenreder
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, New York
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York
| | - Sarah C. Perlee
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nelly M. Cruz
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Laura Menocal
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York
| | - Shruthy Suresh
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Eric Chan
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Maayan Baron
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Stephanie Melendez
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Asim Dave
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Walid K. Chatila
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeremie Nsengimana
- Biostatistics Research Group, Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Richard P. Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Travis J. Hollmann
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Trey Ideker
- Division of Genetics, Department of Medicine, University of California San Diego, La Jolla, California
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, New York
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Richard M. White
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Sengupta R, Roy M, Dey NS, Kaye PM, Chatterjee M. Immune dysregulation and inflammation causing hypopigmentation in post kala-azar dermal leishmaniasis: partners in crime? Trends Parasitol 2023; 39:822-836. [PMID: 37586987 DOI: 10.1016/j.pt.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 08/18/2023]
Abstract
Post kala-azar dermal leishmaniasis (PKDL), a heterogeneous dermal sequela of visceral leishmaniasis (VL), is challenging in terms of its etiopathogenesis. Hypopigmentation is a consistent clinical feature in PKDL, but mechanisms contributing to the loss of melanocytes remains poorly defined. Like other hypopigmentary dermatoses - for example, vitiligo, psoriasis, and leprosy - the destruction of melanocytes is likely a multifactorial phenomenon, key players being immune dysregulation and inflammation. This review focuses on immunological mechanisms responsible for the 'murder' of melanocytes, prime suspects at the lesional sites being CD8+ T cells and keratinocytes and their criminal tools being proinflammatory cytokines, for example, IFN-γ, IL-6, and TNF-α. Collectively, these may cause decreased secretion of melanocyte growth factors, loss/attenuation of cell adhesion molecules and inflammasome activation, culminating in melanocyte death.
Collapse
Affiliation(s)
- Ritika Sengupta
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B AJC Bose Road, Kolkata 700020, India
| | - Madhurima Roy
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B AJC Bose Road, Kolkata 700020, India
| | - Nidhi S Dey
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York, YO10 5DD, UK
| | - Mitali Chatterjee
- Dept. of Pharmacology, Institute of Post Graduate Medical Education and Research, 244B AJC Bose Road, Kolkata 700020, India.
| |
Collapse
|
8
|
Lee S, Choi SP, Jeong H, Yu WK, Kim SW, Park YS. The Radical Scavenging Activities and Anti-Wrinkle Effects of Soymilk Fractions Fermented with Lacticaseibacillus paracasei MK1 and Their Derived Peptides. Antioxidants (Basel) 2023; 12:1392. [PMID: 37507931 PMCID: PMC10376689 DOI: 10.3390/antiox12071392] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Soybean-derived peptides exert several beneficial effects in various experimental models. However, only a few studies have focused on the radical scavenging and anti-wrinkle effects of soymilk-derived peptides produced via different processes, such as fermentation, enzymatic treatment, and ultrafiltration. Therefore, in this study, we investigated the radical scavenging and antiwrinkle effects of soymilk fractions produced using these processes. We found that 50SFMKUF5, a 5 kDa ultrafiltration fraction fermented with Lacticaseibacillus paracasei MK1 after flavourzyme treatment, exhibited the highest radical scavenging activity using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay as well as potent anti-wrinkle effects assessed by type 1 procollagen production and tumor necrosis factor-α production in ultraviolet B (UVB)-treated human dermal fibroblasts and HaCaT keratinocytes. To identify potential bioactive peptides, candidate peptides were synthesized, and their anti-wrinkle effects were assessed. APEFLKEAFGVN (APE), palmitoyl-APE, and QIVTVEGGLSVISPK peptides were synthesized and used to treat UVB-irradiated fibroblasts, HaCaT keratinocytes, and α-melanocyte-stimulating hormone-induced B16F1 melanoma cells. Among these peptides, Pal-APE exerted the strongest effect. Our results highlight the potential of soymilk peptides as anti-aging substances.
Collapse
Affiliation(s)
- Sulhee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Sang-Pil Choi
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - Huijin Jeong
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Won Kyu Yu
- Yonsei University Dairy, Asan 31419, Republic of Korea
| | - Sang Won Kim
- Yonsei University Dairy, Asan 31419, Republic of Korea
| | - Young-Seo Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
9
|
Goenka S. Novel Hydrogenated Derivatives of Chemically Modified Curcumin CMC2.24 Are Potent Inhibitors of Melanogenesis in an In Vitro Model: Influence of Degree of Hydrogenation. Life (Basel) 2023; 13:1373. [PMID: 37374155 DOI: 10.3390/life13061373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Chemically modified curcumin, CMC2.24, is a promising therapeutic that has shown efficacy in ameliorating excessive pigmentation in our previous studies. However, its inherent disadvantages of color, stability, solubility, and cytotoxicity to melanocytes and keratinocytes at concentrations > 4 µg/mL posed challenges in its use in cosmetic formulations. To overcome these limitations, chemical reduction by hydrogenation of CMC2.24 (compound 1) was developed to yield products at different time points of hydrogenation (1 h, 2 h, 4 h, and 24 h) referred to as partially (2, 3, 4) or fully hydrogenated (5) products, and the effects of the degree of hydrogenation on melanogenesis in vitro were explored. Compound 1 and products 2-5 were evaluated using mushroom tyrosinase activity assays with two substrates (L-tyrosine and L-DOPA), then cellular assays using B16F10 mouse melanoma cells, MNT-1 human melanoma cells, and physiological normal human melanocytes (HEMn-DP cells). The cytotoxicity, melanin contents, cellular tyrosinase activities, and cellular oxidative stress were evaluated. Moreover, the recovery of melanin contents in HEMn-DP cells was also studied. Our results provide novel insights into the role of the degree of hydrogenation of compound 1 on the biological effects of melanogenesis, which were dependent on cell type. To the best of our knowledge, this is the first study to show that in HEMn-DP cells, the anti-melanogenic efficacy of the yellow-colored CMC2.24 is retained as early as 1 h after its hydrogenation; this efficacy is enhanced with longer durations of hydrogenation, with a robust efficacy achieved for the 24 h hydrogenated product 5 at the lowest concentration of 4 µg/mL. A similar potency could be achieved for product 4 at higher concentrations, although interestingly, both differ only by a minor amount of dihydro-CMC2.24. Our results indicate promise for using products 4 & 5 as a skin-lightener in cosmetic formulations with the advantages of lack of color combined with a potency much greater than that of the parent compound 1 at lower concentrations and reversibility of the effects on melanocytes. This, along with the easy synthesis and scale-up of the hydrogenation method for CMC2.24 and the documented higher solubility, stability, and bioavailability of tetrahydrocurcumin, provides further impetus to incorporating these derivatives in cosmetic formulations. The results of this study can help to extend the therapeutic window of the lead compound CMC2.24 by providing options for selecting partially or fully hydrogenated derivatives for cosmetic applications where a trade-off between color and efficacy is needed. Thus, the degree of hydrogenation can be tuned for desired biological effects. Further studies are warranted to evaluate the efficacy of products 4 & 5 at suppressing pigmentation in 3D skin-tissue equivalents and in vivo models.
Collapse
Affiliation(s)
- Shilpi Goenka
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794-5281, USA
| |
Collapse
|
10
|
Alfredo MG, Maribel PM, Eloy PR, Susana GE, Luis LGS, Carmen GM. Depigmenting topical therapy based on a synergistic combination of compounds targeting the key pathways involved in melasma pathophysiology. Exp Dermatol 2023; 32:611-619. [PMID: 36682042 DOI: 10.1111/exd.14752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/01/2022] [Accepted: 01/14/2023] [Indexed: 01/23/2023]
Abstract
Melasma has a complex pathophysiology with different cell types and signalling pathways involved. Paracrine factors secreted by keratinocytes, fibroblasts and endothelial cells act on melanocytes and stimulate melanogenesis. These paracrine factors are involved in the oxidative stress, inflammatory, vascular and hormonal pathways, among others. Damage of the dermoepidermal barrier also occurs and facilitates melanin deposition in the dermis, also known as dermal or mixed melasma. We used artificial intelligence tools to define the best combination of compounds for skin pigmentation inhibition. Mathematical models suggested the combination of retinol, diosmin and ferulic acid to be the most effective one. In vitro cellular tyrosinase activity assay proved that this combination had a synergistic depigmenting effect. Further assays proved that the combination could inhibit key pathways involved in melasma by downregulating ET-1 and COX-2 gene expression and IBMX-induced dendricity in human melanocytes, and upregulated the gene expression of IL-1b, TIMP3 and several endogenous antioxidant enzymes. The combination also reduced melanin levels in a phototype VI 3D epidermis model. These results indicate that the combination of retinol, diosmin and ferulic acid is an effective synergistic complex for the treatment of melasma by regulating the key molecular pathways involved in skin hyperpigmentation pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | - Luis G S Luis
- Medical Unit, Mesoestetic Pharma Group, Barcelona, Spain
| | | |
Collapse
|
11
|
Wu HY, Chen KS, Huang YS, Hsieh HY, Tsai H. Comparative transcriptome analysis of skin color-associated genes in leopard coral grouper (Plectropomus leopardus). BMC Genomics 2023; 24:5. [PMID: 36604632 PMCID: PMC9817277 DOI: 10.1186/s12864-022-09091-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The leopard coral grouper (Plectropomus leopardus) is an important economic species in East Asia-Pacific countries. To meet the market demand, leopard coral grouper is facing overfishing and their population is rapidly declining. With the improvement of the artificial propagation technique, the leopard coral grouper has been successfully cultured by Fisheries Research Institute in Taiwan. However, the skin color of farmed individuals is often lacking bright redness. As such, the market price of farmed individuals is lower than wild-type. RESULTS To understand the genetic mechanisms of skin coloration in leopard coral grouper, we compared leopard coral grouper with different skin colors through transcriptome analysis. Six cDNA libraries generated from wild-caught leopard coral grouper with different skin colors were characterized by using the Illumina platform. Reference-guided de novo transcriptome data of leopard coral grouper obtained 24,700 transcripts, and 1,089 differentially expressed genes (DEGs) were found between red and brown skin color individuals. The results showed that nine candidate DEGs (epha2, sema6d, acsl4, slc7a5, hipk1, nol6, timp2, slc25a42, and kdf1) significantly associated with skin color were detected by using comparative transcriptome analysis and quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSIONS The findings may provide genetic information for further skin color research, and to boost the market price of farmed leopard coral grouper by selective breeding.
Collapse
Affiliation(s)
- Hung-Yi Wu
- grid.412036.20000 0004 0531 9758Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | - Kao-Sung Chen
- grid.453140.70000 0001 1957 0060Planning and Information Division, Fisheries Research Institute, Council of Agriculture, Keelung, Taiwan
| | - You-Syu Huang
- Eastern Marine Biology Research Center, Taitung City, Taiwan
| | - Hern-Yi Hsieh
- Penghu Marine Biology Research Center, Penghu County, Magong, Taiwan
| | - HsinYuan Tsai
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, Taiwan. .,Doctoral Degree Program in Marine Biotechnology, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| |
Collapse
|
12
|
Reduced Elastin Fibers and Melanocyte Loss in Vitiliginous Skin Are Restored after Repigmentation by Phototherapy and/or Autologous Minigraft Transplantation. Int J Mol Sci 2022; 23:ijms232315361. [PMID: 36499690 PMCID: PMC9739647 DOI: 10.3390/ijms232315361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Vitiligo is a hypopigmentation disease characterized by melanocyte death in the human epidermis. However, the mechanism of vitiligo development and repigmentation is largely unknown. Dermal fiber components might play an important role in vitiligo development and repigmentation. Indeed, our preliminary study demonstrated that elastin fibers were decreased in vitiliginous skin, suggesting that the elastin fiber is one of the factors involved in vitiligo development and repigmentation. To confirm our hypothesis, we investigated whether elastin fibers can be restored after treatment using phototherapy and/or autologous skin transplantation. Punch biopsies from 14 patients of stable nonsegmental vitiligo vulgaris were collected from nonlesional, lesional, and repigmented skin, and processed to dopa and combined dopa-premelanin reactions. Melanocytes positive to the dopa reaction and melanoblasts/melanocytes positive to the combined dopa-premelanin reaction were surveyed. Moreover, elastin fibers were detected by Victoria blue staining. Numerous melanocytes and melanoblasts were observed in the epidermis of repigmented skin after the treatment. Moreover, in the dermis of repigmented skin, elastin fibers were completely recovered or even upregulated. These results suggest that melanocyte loss in the vitiliginous skin, as well as melanocyte differentiation in repigmented skin, may be at least in part regulated by elastin fibers in the dermis.
Collapse
|
13
|
Nakano T, Takenaka M, Sugiyama M, Ishikawa A. QTL Mapping for Age-Related Eye Pigmentation in the Pink-Eyed Dilution Castaneus Mutant Mouse. Genes (Basel) 2022; 13:genes13071138. [PMID: 35885921 PMCID: PMC9318509 DOI: 10.3390/genes13071138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Pink-eyed dilution castaneus (Oca2p-cas) is a mutant gene on mouse chromosome 7 that arose spontaneously in wild Mus musculus castaneus. Homozygotes for Oca2p-cas exhibit pink eyes and a light gray coat throughout life. In an ordinary mutant strain carrying Oca2p-cas, we previously discovered a novel spontaneous mutation that gradually increases melanin pigmentation in the eyes and coat with aging, and we developed a novel mutant strain that was fixed for the novel phenotype. The purpose of this study was to map major quantitative trait loci (QTLs) for the novel pigmentation phenotype and for expression levels of four important melanogenesis genes, microphthalmia-associated transcription factor (Mitf), tyrosinase (Tyr), tyrosinase-related protein-1 (Tyrp1) and dopachrome tautomerase (Dct). We developed 69 DNA markers and created 303 F2 mice from two reciprocal crosses between novel and ordinary mutant strains. The QTL analysis using a selective genotyping strategy revealed a significant QTL for eye pigmentation between 34 and 64 Mb on chromosome 13. This QTL explained approximately 20% of the phenotypic variance. The QTL allele derived from the novel strain increased pigmentation. Although eye pigmentation was positively correlated with Dct expression, no expression QTLs were found, suggesting that the pigmentation QTL on chromosome 13 may not be directly in the pathway of any of the four melanogenesis genes. This study is the first step toward identifying a causal gene for the novel spontaneous phenotype in mice and is expected to discover a new regulatory mechanism for complex melanin biosynthesis during aging.
Collapse
Affiliation(s)
- Takaya Nakano
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (T.N.); (M.T.)
| | - Momoko Takenaka
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (T.N.); (M.T.)
| | - Makoto Sugiyama
- Faculty of Veterinary Medicine, Kitasato University School of Veterinary Medicine, Towada 034-8628, Japan;
| | - Akira Ishikawa
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (T.N.); (M.T.)
- Correspondence:
| |
Collapse
|
14
|
Zhang C, Liu X, Wu H, Wang Y, Fan Y, Guo B, Bian X, Li X, Zhang J. Proteomic Response Revealed Signaling Pathways Involving in the Mechanism of Polymyxin B-Induced Melanogenesis. Microbiol Spectr 2022; 10:e0273021. [PMID: 35377227 PMCID: PMC9045165 DOI: 10.1128/spectrum.02730-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/05/2022] [Indexed: 12/03/2022] Open
Abstract
Polymyxin B is a last-line antibiotic for extensively resistant Gram-negative bacterial infection. Skin hyperpigmentation is a serious side effect induced by polymyxin B that severely compromises the psychological health and compliance of patients. The literature lacks mechanistic studies that explain how hyperpigmentation occurs, and this substantially hinders the development of intervention strategies and improved compliance. SK-MEL-2 cells were used for the polymyxin B-induced hyperpigmentation mechanism study. Melanin content and tyrosinase activity were measured after polymyxin B treatment. Tandem mass tag (TMT)-labeling quantitative proteomics was employed to investigate the response of SK-MEL-2 cells to polymyxin B treatment. Real-time quantitative PCR and Western blot were applied to validate the mRNA and protein levels of related genes and proteins. The melanin content and tyrosinase activity were significantly upregulated after polymyxin B treatment in SK-MEL-2 cells at 48 h and 72 h. Quantitative proteomics showed that 237 proteins were upregulated and 153 proteins were downregulated in the 48 h group, and 49 proteins were upregulated and 49 proteins were downregulated in the 72 h group. The differentially expressed proteins were involved in pathways such as lysosome, PI3K/Akt signaling pathway, and calcium signaling pathway. The upregulation of melanogenic enzymes and microphthalmia-associated transcription factor (MITF) was validated by qPCR and Western blot. Meanwhile, phosphorylation of PI3K, β-catenin, and cyclic-AMP response binding protein (CREB) in response to polymyxin B treatment was observed. The present study reveals the proteomic response of polymyxin B-induced melanogenesis in SK-MEL-2 cells for the first time. Signaling pathways, including melanin biosynthesis, PI3K/Akt, and calcium signaling pathways may be involved in the mechanism of melanogenesis. IMPORTANCE Polymyxin B-induced skin hyperpigmentation seriously affects the psychological health and compliance of patients. This study provides a proteomic clue to the mechanism at the cellular level for understanding polymyxin B-induced hyperpigmentation, contributing to a follow-up investigation of the corresponding PI3K/Akt signaling transduction pathway and calcium signaling pathway. The elucidation of its underlying mechanism is of great significance for patients' compliance improvement, intervention strategy, and new drug development.
Collapse
Affiliation(s)
- Chuhan Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People’s Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People’s Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hailan Wu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People’s Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yu Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People’s Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yaxin Fan
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People’s Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Beining Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People’s Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People’s Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People’s Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, National Health Commission of the People’s Republic of China, Shanghai, China
- National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Phase I Clinical Trial Center, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Flori E, Mastrofrancesco A, Mosca S, Ottaviani M, Briganti S, Cardinali G, Filoni A, Cameli N, Zaccarini M, Zouboulis CC, Picardo M. Sebocytes contribute to melasma onset. iScience 2022; 25:103871. [PMID: 35252805 PMCID: PMC8891974 DOI: 10.1016/j.isci.2022.103871] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 12/30/2022] Open
Abstract
Melasma is a hyperpigmentary disorder with photoaging features, whose manifestations appear on specific face areas, rich in sebaceous glands (SGs). To explore the SGs possible contribution to the onset, the expression of pro-melanogenic and inflammatory factors from the SZ95 SG cell line exposed to single or repetitive ultraviolet (UVA) radiation was evaluated. UVA up-modulated the long-lasting production of α-MSH, EDN1, b-FGF, SCF, inflammatory cytokines and mediators. Irradiated SZ95 sebocyte conditioned media increased pigmentation in melanocytes and the expression of senescence markers, pro-inflammatory cytokines, and growth factors regulating melanogenesis in fibroblasts cultures. Cocultures experiments with skin explants confirmed the role of sebocytes on melanogenesis promotion. The analysis on sebum collected from melasma patients demonstrated that in vivo sebocytes from lesional areas express the UVA-activated pathways markers observed in vitro. Our results indicate sebocytes as one of the actors in melasma pathogenesis, inducing prolonged skin cell stimulation, contributing to localized dermal aging and hyperpigmentation.
Collapse
Affiliation(s)
- Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Stefania Briganti
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Angela Filoni
- Dermatology Department, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Norma Cameli
- Dermatology Department, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
16
|
Insights on the Inhibitory Power of Flavonoids on Tyrosinase Activity: A Survey from 2016 to 2021. Molecules 2021; 26:molecules26247546. [PMID: 34946631 PMCID: PMC8705159 DOI: 10.3390/molecules26247546] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023] Open
Abstract
Tyrosinase is a multifunctional copper-containing oxidase enzyme that initiates melanin synthesis in humans. Excessive accumulation of melanin pigments or the overexpression of tyrosinase may result in skin-related disorders such as aging spots, wrinkles, melasma, freckles, lentigo, ephelides, nevus, browning and melanoma. Nature expresses itself through the plants as a source of phytochemicals with diverse biological properties. Among these bioactive compounds, flavonoids represent a huge natural class with different categories such as flavones, flavonols, isoflavones, flavan-3-ols, flavanones and chalcones that display antioxidant and tyrosinase inhibitor activities with a diversity of mechanistic approaches. In this review, we explore the role of novel or known flavonoids isolated from different plant species and their participation as tyrosinase inhibitors reported in the last five years from 2016 to 2021. We also discuss the mechanistic approaches through the different studies carried out on these compounds, including in vitro, in vivo and in silico computational research. Information was obtained from Google Scholar, PubMed, and Science Direct. We hope that the updated comprehensive data presented in this review will help researchers to develop new safe, efficacious, and effective drug or skin care products for the prevention of and/or protection against skin-aging disorders.
Collapse
|
17
|
Kim YJ, Granstein RD. Roles of calcitonin gene-related peptide in the skin, and other physiological and pathophysiological functions. Brain Behav Immun Health 2021; 18:100361. [PMID: 34746878 PMCID: PMC8551410 DOI: 10.1016/j.bbih.2021.100361] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 01/05/2023] Open
Abstract
Skin immunity is regulated by many mediator molecules. One is the neuropeptide calcitonin gene-related peptide (CGRP). CGRP has roles in regulating the function of components of the immune system including T cells, B cells, dendritic cells (DCs), endothelial cells (ECs), and mast cells (MCs). Herein we discuss actions of CGRP in mediating inflammatory and vascular effects in various cutaneous models and disorders. CGRP can help to recruit immune cells through endothelium-dependent vasodilation. CGRP plays an important role in the pathogenesis of neurogenic inflammation. Functions of many components in the immune system are influenced by CGRP. CGRP regulates various inflammatory processes in human skin by affecting different cell-types.
Collapse
Affiliation(s)
- Yee Jung Kim
- Department of Dermatology, Weill Cornell Medicine, 1305 York Avenue, WGC9, New York, NY, 10021, USA
| | - Richard D Granstein
- Department of Dermatology, Weill Cornell Medicine, 1305 York Avenue, WGC9, New York, NY, 10021, USA
| |
Collapse
|
18
|
Dilshat R, Vu HN, Steingrímsson E. Epigenetic regulation during melanocyte development and homeostasis. Exp Dermatol 2021; 30:1033-1050. [PMID: 34003523 DOI: 10.1111/exd.14391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/09/2021] [Accepted: 05/09/2021] [Indexed: 12/26/2022]
Abstract
Melanocytes originate in the neural crest as precursor cells which then migrate and proliferate to reach their destination where they differentiate into pigment-producing cells. Melanocytes not only determine the colour of hair, skin and eyes but also protect against the harmful effects of UV irradiation. The establishment of the melanocyte lineage is regulated by a defined set of transcription factors and signalling pathways that direct the specific gene expression programmes underpinning melanoblast specification, survival, migration, proliferation and differentiation. In addition, epigenetic modifiers and replacement histones play key roles in regulating gene expression and its timing during the different steps of this process. Here, we discuss the evidence for the role of epigenetic regulators in melanocyte development and function and how they interact with transcription factors and signalling pathways to establish and maintain this important cell lineage.
Collapse
Affiliation(s)
- Ramile Dilshat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Hong Nhung Vu
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavik, Iceland
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
19
|
TGF-β2 upregulates tyrosinase activity via Opsin3 in human skin melanocytes in vitro. J Invest Dermatol 2021; 141:2679-2689. [PMID: 34029574 DOI: 10.1016/j.jid.2021.01.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/12/2021] [Accepted: 01/25/2021] [Indexed: 01/17/2023]
Abstract
Opsin3 (OPN3) is a potential key regulator of human melanocyte melanogenesis. How OPN3-mediated regulation of melanocyte melanogenesis is triggered is largely unclear. Transforming growth factor-β (TGF-β) can inhibit the growth of human melanocytes and reduce melanin synthesis in melanocytes. However, whether TGF-β2 can modulate pigmentation in normal human primary melanocytes via OPN3 is entirely unknown. Here, we constructed a co-culture model with human epidermal melanocytes and keratinocytes. Higher OPN3, tyrosinase (TYR), tyrosinase-related protein (TRP)-1, and TRP-2 expression and higher tyrosinase activity were detected in co-cultured cells than in mono-cultured cells. Moreover, elevated levels of TGF-β2 were detected in the culture supernatant of melanocytes co-cultured with keratinocytes. OPN3 inhibition in melanocytes decreased TYR, TRP-1, and TRP-2 expression and downregulated tyrosinase activity. Our findings indicate that TGF-β2 upregulates TYR, TRP-1 and TRP-2 expression in human melanocytes via OPN3 and downstream calcium-dependent G protein-coupled signalling pathways to induce melanogenesis. Interestingly, treatment with the TGF-β2 receptor inhibitor LY2109761 (10 μM) did not inhibit TGF-β2-induced melanocyte melanogenesis via OPN3. Collectively, our data suggest that TGF-β2 upregulates tyrosinase activity via OPN3 through a TGF-β2R-independent and calcium-dependent G protein-coupled signalling pathway.
Collapse
|
20
|
Guo MS, Wu Q, Lai QWS, Wang X, Bai P, Fung KWC, Dong TT, Tsim KWK. A prepared platelet-rich plasma extract, namely Self-Growth Colony, inhibits melanogenesis by down-regulating microphthalmia-associated transcription factor in skin melanocyte. J Cosmet Dermatol 2021; 20:3278-3288. [PMID: 33896085 DOI: 10.1111/jocd.14175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND During melanogenesis, melanocytes produce melanin through enzymatic reactions. Microphthalmia-associated transcription factor (MITF) is a major regulator in controlling the expressions of melanogenic enzymes tyrosinase (TYR), tyrosine-related protein-1 (TRP1), and dopachrome tautomerase (DCT). Self-Growth Colony (SGC) is prepared from human platelet-rich plasma (PRP) having an enrichment of growth factors, and which has claimed skin regeneration function. AIM In this study, we aim to identify and investigate the novel role of SGC in skin melanogenesis. METHODS MTT assay was performed to determine the cytotoxicity of applied SGC. Melanin assay was adopted to quantify the intracellular melanin after SGC treatment. Promoter-driven luciferase assay, real-time PCR, and Western blotting were performed to determine the expressions of melanogenic enzymes and MITF in SGC-treated cultured Melan-A cells, being treated with or without UV induction. Ex vivo mouse skin was treated with SGC, and then was subjected to Western blotting and histochemical staining. RESULTS We identified that SGC inhibited melanogenesis in cultured melanocytes and ex vivo mouse skin. The phenomena were attributed to a reduction of MITF expression, which subsequently down-regulated the melanogenic enzymes, that is, TYR, TRP1, and DCT. Moreover, ERK signaling was activated in the SGC-inhibited melanogenesis. CONCLUSIONS The findings suggest that SGC extracting from human blood can be a safe and potential agent in promoting skin whitening.
Collapse
Affiliation(s)
- Maggie Suisui Guo
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China
| | - Qiyun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China
| | - Queenie Wing Sze Lai
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China
| | - Xiaoyang Wang
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Panzhu Bai
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Kelly Wing Chi Fung
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina Tingxia Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Karl Wah Keung Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, Shenzhen Research Institute, Shenzhen, China.,Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
21
|
Carney BC, Travis TE, Moffatt LT, Johnson LS, McLawhorn MM, Simbulan-Rosenthal CM, Rosenthal DS, Shupp JW. Hypopigmented burn hypertrophic scar contains melanocytes that can be signaled to re-pigment by synthetic alpha-melanocyte stimulating hormone in vitro. PLoS One 2021; 16:e0248985. [PMID: 33765043 PMCID: PMC7993611 DOI: 10.1371/journal.pone.0248985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/09/2021] [Indexed: 02/03/2023] Open
Abstract
There are limited treatments for dyschromia in burn hypertrophic scars (HTSs). Initial work in Duroc pig models showed that regions of scar that are light or dark have equal numbers of melanocytes. This study aims to confirm melanocyte presence in regions of hypo- and hyper-pigmentation in an animal model and patient samples. In a Duroc pig model, melanocyte presence was confirmed using en face staining. Patients with dyschromic HTSs had demographic, injury details, and melanin indices collected. Punch biopsies were taken of regions of hyper-, hypo-, or normally pigmented scar and skin. Biopsies were processed to obtain epidermal sheets (ESs). A subset of ESs were en face stained with melanocyte marker, S100β. Melanocytes were isolated from a different subset. Melanocytes were treated with NDP α-MSH, a pigmentation stimulator. mRNA was isolated from cells, and was used to evaluate gene expression of melanin-synthetic genes. In patient and pig scars, regions of hyper-, hypo-, and normal pigmentation had significantly different melanin indices. S100β en face staining showed that regions of hyper- and hypo-pigmentation contained the same number of melanocytes, but these cells had different dendricity/activity. Treatment of hypo-pigmented melanocytes with NDP α-MSH produced melanin by microscopy. Melanin-synthetic genes were upregulated in treated cells over controls. While traditionally it may be thought that hypopigmented regions of burn HTS display this phenotype because of the absence of pigment-producing cells, these data show that inactive melanocytes are present in these scar regions. By treating with a pigment stimulator, cells can be induced to re-pigment.
Collapse
Affiliation(s)
- Bonnie C. Carney
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States of America
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States of America
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Taryn E. Travis
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States of America
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States of America
- Department of Surgery, The Burn Center, MedStar Washington Hospital Center, Washington, DC, United States of America
| | - Lauren T. Moffatt
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States of America
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States of America
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Laura S. Johnson
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States of America
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States of America
- Department of Surgery, The Burn Center, MedStar Washington Hospital Center, Washington, DC, United States of America
| | - Melissa M. McLawhorn
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States of America
| | - Cynthia M. Simbulan-Rosenthal
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Dean S. Rosenthal
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States of America
| | - Jeffrey W. Shupp
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC, United States of America
- Firefighters’ Burn and Surgical Research Laboratory, MedStar Health Research Institute, Washington, DC, United States of America
- Department of Surgery, Georgetown University School of Medicine, Washington, DC, United States of America
- Department of Surgery, The Burn Center, MedStar Washington Hospital Center, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|
22
|
Tran CM, Kuroshima T, Oikawa Y, Michi Y, Kayamori K, Harada H. Clinicopathological and immunohistochemical characteristics of pigmented oral squamous cell carcinoma. Oncol Lett 2021; 21:339. [PMID: 33692871 PMCID: PMC7933752 DOI: 10.3892/ol.2021.12600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/12/2021] [Indexed: 12/23/2022] Open
Abstract
Pigmented oral squamous cell carcinoma (POSCC) is a rare and underrecognized pathological variant of oral squamous cell carcinoma (OSCC). The current study aimed to evaluate the clinicopathological characteristics, treatment outcomes and prognosis of patients with POSCC and to investigate its oncological properties using immunohistochemical studies. A total of 1,512 patients were pathologically diagnosed with squamous cell carcinoma of the oral cavity, and were treated at the Department of Oral and Maxillofacial Surgery, Tokyo Medical and Dental University between January 2001 and December 2018. A total of 25 patients had POSCC and underwent radical surgery. Of these 25 patients, 23 presented with early T stage disease. Additionally, 22 patients were negative for cervical lymph nodes metastasis. Only one patient had local recurrence. The 5-year disease-free and disease-specific survival rates were 86.6 and 95.8%, respectively. Immunohistochemically, a high percentage of POSCC exhibited low p53 and Ki-67, preserved E-cadherin or negative vimentin expression. The results suggested that POSCC tends to exhibit non-aggressive oncological behavior and demonstrates a good prognosis.
Collapse
Affiliation(s)
- Cuong Minh Tran
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Takeshi Kuroshima
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yu Oikawa
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Yasuyuki Michi
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Kou Kayamori
- Department of Oral Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
| | - Hiroyuki Harada
- Department of Oral and Maxillofacial Surgery, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8549, Japan
| |
Collapse
|
23
|
Hirobe T, Enami H, Nakayama A. The human melanocyte and melanoblast populations per unit area of epidermis in the rete ridge are greater than in the inter-rete ridge. Int J Cosmet Sci 2021; 43:211-217. [PMID: 33296514 DOI: 10.1111/ics.12682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/05/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE In human skin, melanocytes and melanoblasts are mostly located in the epidermis in addition to hair follicles. In hairy skin such as mouse skin, the inter-follicular epidermis is generally flat. In contrast, in human skin, the epidermis is wavy and possesses well-developed rete ridges. It is not well understood what difference exists in cell function between melanocytes present in the inter-rete ridge and those in the rete ridge. To clarify this problem, we first tried to determine the melanocyte and melanoblast populations per unit area of epidermis both in the rete ridge and inter-rete ridge epidermis. METHODS Thirty-eight samples from normal skin sites of 28 patients (14 males and 14 females) aged from 5 to 76 years were fixed and processed to dopa and combined dopa-premelanin reactions. The numbers of cells positive to the dopa (melanocytes) and combined dopa-premelanin (melanoblasts and melanocytes) reactions were scored. RESULTS The average melanocyte population/0.1 mm2 of the inter-rete ridge was 74 cells, whereas that of the rete ridge was 147 cells. Moreover, the average melanoblast population/0.1 mm2 in the inter-rete ridge was 43 cells, whereas that of the rete ridge was 131 cells. The melanoblast population in the rete ridge differed between female and male, but the melanocyte populations in the rete ridge and inter-rete ridge and the melanoblast population in the inter-rete ridge did not differ between female and male. However, no age difference in the melanocyte and melanoblast populations was observed between the rete ridge and inter-rete ridge. CONCLUSION Human epidermal melanocytes and melanoblasts in the rete ridge exist more numerously than in the inter-rete ridge.
Collapse
Affiliation(s)
| | - Hisao Enami
- Shinjuku Skin Clinic, Shinjuku-ku, Tokyo, Japan
| | - Ai Nakayama
- Shinjuku Skin Clinic, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
24
|
Zhou S, Xu S, Li H, Zhao C. The inhibitory effects of different kinds of ginsenosides on skin pigmentation in melasma mice model. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_9_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
25
|
Inami Y, Fukushima M, Murota H. Expression of histidine decarboxylase in melanocytes of the human skin. Biochem Biophys Res Commun 2020; 535:19-24. [PMID: 33340761 DOI: 10.1016/j.bbrc.2020.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022]
Abstract
Histamine-producing cells include storage-type cells (e.g., mast cells and basophils), which store histamine intracellularly, and inducible-type cells (e.g., keratinocytes and macrophages), which induce histidine decarboxylase (HDC, a key enzyme for histamine biosynthesis) activity but do not have a storage pool of histamine. Most of the studies focused on identifying HDC-expressing cells by using cultured cells, and few on investigating the localization of HDC by using skin tissues. Hence, this study conducted immunohistochemical studies using human healthy skin samples. HDC-positive and cytokeratin 14 (a marker of basal keratinocytes)-negative cells were present around the basal layer of the epidermis. These cells did not immunohistochemically react with mast cell tryptase but expressed tyrosinase (a key enzyme for melanin biosynthesis) and microphthalmia-associated transcription factor (MITF, a transcription factor controlling the expression of tyrosinase genes). Melanin granules were clearly observed around HDC-positive and MITF-positive cells. Moreover, HDC mRNA and protein were both detected in cultured normal human epidermal melanocytes. In conclusion, HDC-positive and cytokeratin 14-negative cells around the basal layer of the epidermis are melanocytes.
Collapse
Affiliation(s)
| | - Miki Fukushima
- Advanced Research Laboratory, Hoyu Co., Ltd., Aichi, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
26
|
Akinmoladun AC, Adetuyi AR, Komolafe K, Oguntibeju OO. Nutritional benefits, phytochemical constituents, ethnomedicinal uses and biological properties of Miracle fruit plant ( Synsepalum dulcificum Shumach. & Thonn. Daniell). Heliyon 2020; 6:e05837. [PMID: 33426338 PMCID: PMC7785844 DOI: 10.1016/j.heliyon.2020.e05837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/26/2020] [Accepted: 12/21/2020] [Indexed: 10/31/2022] Open
Abstract
Miracle fruit plant or Miracle berry plant (Synsepalum dulcificum) is a peculiar medicinal plant because of the unique taste-modifying property of its fruit which is due to the presence of the glycoprotein, miraculin. This property has been known for centuries to the people of tropical Western and Central Africa who also employ different parts of the plant in the management of various ailments. Scientific investigations have unravelled several pharmacological properties of the plant which include antidiabetic, blood cholesterol-lowering, anti-hyperuricaemia, antioxidant, anticonvulsant and anticancer properties. Also, subacute administration of the plant extract up to 200 mg/kg was not found to be toxic in rats. Apart from miraculin, other pharmacologically active compounds have been identified in the plant including alkaloids (dihydro-feruloyl-5-methoxytyramine, N-cis-caffeoyltyramine, N-cis-feruloyl-tyramine), lignins (+-syringaresinol, +-epi-syringaresinol), phytosterols, triterpenoids, phenolic acids, flavonoids, and amino acids. The plant has also been credited with notable nutritional benefits. Proper documentation of available information on folkloric use, biological activity, constituent phytocompounds, and nutritional benefits of ethnobotanicals will go a long way in affording optimal benefits from their therapeutic potentials. This can also aid in the conservation of species at risk of extinction. This work presents an up-to-date review of the ethnobotany, phytochemistry, biological and nutritional properties of Synsepalum dulcificum.
Collapse
Affiliation(s)
- Afolabi Clement Akinmoladun
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, Ondo State, Nigeria
| | - Aanuoluwapo Ruth Adetuyi
- Department of Biochemistry, School of Sciences, The Federal University of Technology, Akure, Ondo State, Nigeria
| | - Kayode Komolafe
- Department of Biochemistry, Faculty of Science, Federal University Oye Ekiti, Ekiti State, Nigeria
| | - Oluwafemi Omoniyi Oguntibeju
- Department of Biomedical Sciences, Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville Campus, Bellville 7535, South Africa
| |
Collapse
|
27
|
Zhang X, Li J, Li Y, Liu Z, Lin Y, Huang JA. Anti-melanogenic effects of epigallocatechin-3-gallate (EGCG), epicatechin-3-gallate (ECG) and gallocatechin-3-gallate (GCG) via down-regulation of cAMP/CREB /MITF signaling pathway in B16F10 melanoma cells. Fitoterapia 2020; 145:104634. [PMID: 32454171 DOI: 10.1016/j.fitote.2020.104634] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022]
Abstract
Tea catechins, the main bioactive polyphenols in green tea, are well known for their health promoting effects. Previous studies have shown that gallocatechin-3-gallate (GCG), epigallocatechin-3-gallate (EGCG) and epicatechin-3-gallate (ECG) exerted strong inhibitory effects on mushroom tyrosinase activity in vitro, whilst EGCG inhibited melanogenesis in vivo, yet the underlying mechanisms are not entirely clear. In this study, we (i) evaluated and compared the inhibitory effects of the main tea catechins (GCG, EGCG, and ECG) on melanogenesis in B16F10 melanoma cells, and (ii) explain the underlying mechanisms. The results showed that the tea catechins significantly suppressed tyrosinase activity and melanin synthesis in B16F10 cells, where the effects of ECG > EGCG > GCG. Interestingly, the inhibitory effects of the catechins were stronger than those of arbutin (AT), a well-known depigmenting agent. Moreover, GCG, EGCG, and ECG regulated the melanogenesis of B16F10 cells through the cAMP/CREB/MITF pathway. These results revealed catechins could be used as anti-melanogenic agents to protect cells from abnormal melanogenesis.
Collapse
Affiliation(s)
- Xiangna Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Yinhua Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China
| | - Yong Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China.
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, China.
| |
Collapse
|
28
|
Esmat S, Bassiouny D, Saleh MA, AbdelHalim D, Hegazy R, ElHawary M, Gawdat H, Gouda H, Khorshied M, Samir N. Studying the effect of adding growth factors to the autologous melanocyte keratinocyte suspension in segmental vitiligo. Dermatol Ther 2020; 33:e13368. [PMID: 32243651 DOI: 10.1111/dth.13368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/18/2020] [Accepted: 03/30/2020] [Indexed: 11/28/2022]
Abstract
Addition of different growth factors to the medium used in autologous melanocyte-keratinocyte transplantation procedure (MKTP) was reported in the literature. The aim of the current study was comparison of response to MKTP in segmental vitiligo (SV) with and without adding growth factors to the suspension medium. Eighteen cases with SV were randomly divided into two groups. In group A: Ham F12 medium was used for suspension and in group B: 5 ng/mL recombinant basic fibroblast growth factor (bFGF) and 25 mg/500 mL 3'5' cyclic adenosine monophosphate (cAMP) were added to the medium. All cases received NB-UVB twice weekly for 24 weeks. The area of vitiligo lesions was measured before and after therapy by point-counting technique and complications were recorded. Excellent response (90%-100% repigmentation) occurred in 5/9 cases (56%) in group A and 7/9 cases (78%) in group B (with growth factors). A significant decrease in the area of treated lesions before and after therapy was found in both groups A and B (P = .0012 and .0004, respectively), however, a higher percentage of reduction in area of vitiligo was seen in group B cases (70% in group A vs 90% in group B; P value: .028). Marginal halo was seen in five cases in group A and six in group B. In conclusion addition of bFGF and cAMP to MKTP medium improved the results of the procedure. It could be considered if economically feasible.
Collapse
Affiliation(s)
- Samia Esmat
- Department of Dermatology, Kasr El-Ainy Teaching Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia Bassiouny
- Department of Dermatology, Kasr El-Ainy Teaching Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwah A Saleh
- Department of Dermatology, Kasr El-Ainy Teaching Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dalia AbdelHalim
- Department of Dermatology, Kasr El-Ainy Teaching Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rehab Hegazy
- Department of Dermatology, Kasr El-Ainy Teaching Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa ElHawary
- Department of Dermatology, Kasr El-Ainy Teaching Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba Gawdat
- Department of Dermatology, Kasr El-Ainy Teaching Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba Gouda
- Department of Clinical Pathology, Kasr El-Ainy Teaching Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mervat Khorshied
- Department of Clinical Pathology, Kasr El-Ainy Teaching Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Nesrin Samir
- Department of Dermatology, Kasr El-Ainy Teaching Hospital, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
29
|
Arnette CR, Roth-Carter QR, Koetsier JL, Broussard JA, Burks HE, Cheng K, Amadi C, Gerami P, Johnson JL, Green KJ. Keratinocyte cadherin desmoglein 1 controls melanocyte behavior through paracrine signaling. Pigment Cell Melanoma Res 2020; 33:305-317. [PMID: 31563153 PMCID: PMC7028503 DOI: 10.1111/pcmr.12826] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022]
Abstract
The epidermis is the first line of defense against ultraviolet (UV) light from the sun. Keratinocytes and melanocytes respond to UV exposure by eliciting a tanning response dependent in part on paracrine signaling, but how keratinocyte:melanocyte communication is regulated during this response remains understudied. Here, we uncover a surprising new function for the keratinocyte-specific cell-cell adhesion molecule desmoglein 1 (Dsg1) in regulating keratinocyte:melanocyte paracrine signaling to promote the tanning response in the absence of UV exposure. Melanocytes within Dsg1-silenced human skin equivalents exhibited increased pigmentation and altered dendrite morphology, phenotypes which were confirmed in 2D culture using conditioned media from Dsg1-silenced keratinocytes. Dsg1-silenced keratinocytes increased melanocyte-stimulating hormone precursor (Pomc) and cytokine mRNA. Melanocytes cultured in media conditioned by Dsg1-silenced keratinocytes increased Mitf and Tyrp1 mRNA, TYRP1 protein, and melanin production and secretion. Melanocytes in Dsg1-silenced skin equivalents mislocalized suprabasally, reminiscent of early melanoma pagetoid behavior. Together with our previous report that UV reduces Dsg1 expression, these data support a role for Dsg1 in controlling keratinocyte:melanocyte paracrine communication and raise the possibility that a Dsg1-deficient niche contributes to pagetoid behavior, such as occurs in early melanoma development.
Collapse
Affiliation(s)
- Christopher R. Arnette
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Quinn R. Roth-Carter
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jennifer L. Koetsier
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Joshua A. Broussard
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Hope E. Burks
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kathleen Cheng
- Feinberg School of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Christine Amadi
- Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Pedram Gerami
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jodi L. Johnson
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kathleen J. Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
30
|
Yang TT, Chiu SH, Lan CCE. The effects of UVB irradiance on vitiligo phototherapy and UVB-induced photocarcinogenesis. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2020; 36:257-262. [PMID: 32022939 DOI: 10.1111/phpp.12536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/13/2020] [Accepted: 02/03/2020] [Indexed: 01/10/2023]
Abstract
Phototherapy is the most commonly used modality for repigmenting vitiligo. Currently, UVB emitting devices, including narrow-band UVB (NBUVB) and excimer laser/light, are considered as the treatment of choice. While emitting wavelengths at close proximity, excimer lights emit higher irradiance (HI; W/m2 ) compared to NBUVB. Clinical reports have shown that excimer light is more efficacious in treating vitiligo compared to NBUVB, and we demonstrated that irradiance plays a critical role in promoting melanoblasts differentiation. UVB radiation from the sun is closely associated with photocarcinogenesis of the skin. Sunscreens were used to protect the skin by reducing UVB irradiance (low irradiance (LI) UVB). Sunscreen use was associated with skin cancer reduction in clinical trials. Paradoxically, sunscreen use was associated with increased sunburn episodes in the real-world settings. It was shown that UVB-induced sunburn depends on fluence (J/m2 ) but not irradiance of UVB radiation. We investigated the significance of irradiance in the context of UVB-induced carcinogenesis of the skin. For mice receiving equivalent fluence of UVB exposure, the LIUVB-treated mice showed earlier tumor development, larger tumor burden, and more epidermal keratinocytes harboring mutant p53 as compared to their HIUVB-treated counterparts. These results suggested that at equivalent fluence, LIUVB radiation has more photocarcinogenic potential on the skin compared to its HI counterpart. Since development of sunburn with or without sunscreen use indicates that certain threshold of UVB fluence has been received by the skin at LI and HI, respectively, sunburn episodes with sunscreen use (LIUVB) are more damaging to the skin compared to that without sunscreen (HIUVB) application. In summary, since irradiance plays an important role determining the biological effects of UVB radiation on the skin, future related studies should take this critical parameter into consideration.
Collapse
Affiliation(s)
- Ting-Ting Yang
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Szu-Hao Chiu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Che E Lan
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
31
|
Zhu Z, Ma Y, Li Y, Li P, Cheng Z, Li H, Zhang L, Tang Z. The comprehensive detection of miRNA, lncRNA, and circRNA in regulation of mouse melanocyte and skin development. Biol Res 2020; 53:4. [PMID: 32014065 PMCID: PMC6998077 DOI: 10.1186/s40659-020-0272-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/22/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Pigmentation development, is a complex process regulated by many transcription factors during development. With the development of the RNA sequencing (RNA-seq), non-coding RNAs, such as miRNAs, lncRNAs, and circRNAs, are found to play an important role in the function detection of related regulation factors. In this study, we provided the expression profiles and development of ncRNAs related to melanocyte and skin development in mice with black coat color skin and mice with white coat color skin during embryonic day 15 (E15) and postnatal day 7 (P7). The expression profiles of different ncRNAs were detected via RNA-seq and also confirmed by the quantitative real-time PCR (qRT-PCR) method. GO and KEGG used to analyze the function the related target genes. RESULTS We identified an extensive catalogue of 206 and 183 differently expressed miRNAs, 600 and 800 differently expressed lncRNAs, and 50 and 54 differently expressed circRNAs, respectively. GO terms and pathway analysis showed the target genes of differentially expressed miRNA and lncRNA. The host genes of circRNA were mainly enriched in cellular process, single organism process. The target genes of miRNAs were mainly enriched in chromatin binding and calcium ion binding in the nucleus. The function of genes related to lncRNAs are post translation modification. The competing endogenous RNA (ceRNA) network of lncRNAs and circRNAs displays a complex interaction between ncRNA and mRNA related to skin development, such as Tcf4, Gnas, and Gpnms related to melanocyte development. CONCLUSIONS The ceRNA network of lncRNA and circRNA displays a complex interaction between ncRNA and mRNA related to skin development and melanocyte development. The embryonic and postnatal development of skin provide a reference for further studies on the development mechanisms of ncRNA during pigmentation.
Collapse
Affiliation(s)
- Zhiwei Zhu
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, China.
| | - Yueyue Ma
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Yuan Li
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agriculture University, Beijing, 100094, China
| | - Pengfei Li
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhixue Cheng
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu, 030801, China
| | - Huifeng Li
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Lihuan Zhang
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhongwei Tang
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, China
| |
Collapse
|
32
|
Wäster P, Eriksson I, Vainikka L, Öllinger K. Extracellular vesicles released by melanocytes after UVA irradiation promote intercellular signaling via miR21. Pigment Cell Melanoma Res 2020; 33:542-555. [PMID: 31909885 DOI: 10.1111/pcmr.12860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022]
Abstract
Skin pigmentation is controlled by complex crosstalk between melanocytes and keratinocytes and is primarily induced by exposure to ultraviolet (UV) irradiation. Several aspects of UVA-induced signaling remain to be explored. In skin cells, UVA induces plasma membrane damage, which is repaired by lysosomal exocytosis followed by instant shedding of extracellular vesicles (EVs) from the plasma membrane. The released EVs are taken up by neighboring cells. To elucidate the intercellular crosstalk induced by UVA irradiation, EVs were purified from UVA-exposed melanocytes and added to keratinocytes. Transcriptome analysis of the keratinocytes revealed the activation of TGF-β and IL-6/STAT3 signaling pathways and subsequent upregulation of microRNA (miR)21. EVs induced phosphorylation of ERK and JNK, reduced protein levels of PDCD4 and PTEN, and augment antiapoptotic signaling. Consequently, keratinocyte proliferation and migration were stimulated and UV-induced apoptosis was significantly reduced. Interestingly, melanoma cells and melanoma spheroids also generate increased amounts of EVs with capacity to stimulate proliferation and migration upon UVA. In conclusion, we present a novel intercellular crosstalk mediated by UVA-induced lysosome-derived EVs leading to the activation of proliferation and antiapoptotic signaling via miR21.
Collapse
Affiliation(s)
- Petra Wäster
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ida Eriksson
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Linda Vainikka
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Karin Öllinger
- Experimental Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
33
|
Fu C, Chen J, Lu J, Yi L, Tong X, Kang L, Pei S, Ouyang Y, Jiang L, Ding Y, Zhao X, Li S, Yang Y, Huang J, Zeng Q. Roles of inflammation factors in melanogenesis (Review). Mol Med Rep 2020; 21:1421-1430. [PMID: 32016458 PMCID: PMC7002987 DOI: 10.3892/mmr.2020.10950] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
The occurrence of hyperpigmentation or hypopigmentation after inflammation is a common condition in dermatology and cosmetology. Since the exact mechanism of its occurrence is not yet known, prevention and treatment are troublesome. Previous studies have confirmed that α-melanocyte-stimulating hormone, stem cell factor and other factors can promote melanogenesis-related gene expression through the activation of signaling pathways. Recent studies have revealed that a variety of inflammatory mediators can also participate in the regulation of melanogenesis in melanocytes. In this review, we summarized that interleukin-18, interleukin-33, granulocyte-macrophage colony stimulating factor, interferon-γ, prostaglandin E2 have the effect of promoting melanogenesis, while interleukin-1, interleukin-4, interleukin-6, interleukin-17 and tumor necrosis factor can inhibit melanogenesis. Further studies have found that these inflammatory factors may activate or inhibit melanogenesis-related signaling pathways (such as protein kinase A and mitogen activated protein kinase) by binding to corresponding receptors, thereby promoting or inhibiting the expression of melanogenesis-related genes and regulating skin pigmentation processes. This suggests that the development of drugs or treatment methods from the perspective of regulating inflammation can provide new ideas and new targets for the treatment of pigmented dermatosis. This review outlines the current understanding of the inflammation factors' roles in melanogenesis.
Collapse
Affiliation(s)
- Chuhan Fu
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jing Chen
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jianyun Lu
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Lu Yi
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaoliang Tong
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Liyang Kang
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Shiyao Pei
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yujie Ouyang
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Ling Jiang
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yufang Ding
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xiaojiao Zhao
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Si Li
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Yan Yang
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Jinhua Huang
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
34
|
Zhu L, Lin X, Zhi L, Fang Y, Lin K, Li K, Wu L. Mesenchymal stem cells promote human melanocytes proliferation and resistance to apoptosis through PTEN pathway in vitiligo. Stem Cell Res Ther 2020; 11:26. [PMID: 31941556 PMCID: PMC6961270 DOI: 10.1186/s13287-019-1543-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/14/2019] [Accepted: 12/26/2019] [Indexed: 01/14/2023] Open
Abstract
Background Vitiligo is an acquired chronic and recurrent skin disease that causes a depigmentation disorder, resulting in selective destruction of melanocytes (MC). However, the mechanism that leads to melanocyte dysfunction and death remains unclear. Methods We performed RNA sequencing, immunohistochemistry, and immunoblotting to characterize the patterns of phosphatase and tensin homolog (PTEN)/phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT) pathway activation in vitiligo. We also cocultured primary melanocytes with mesenchymal stem cells (MSCs) in a Transwell system to explore how MSCs inhibit the PTEN/PI3K/AKT pathway in melanocytes. Results We identified that vitiligo normal-lesional junction skin presented with high expression of PTEN, which led to the inhibition of AKT phosphorylation (p-AKT) at S-473. Furthermore, PTEN overexpression led to oxidative stress-induced apoptosis in melanocytes. Coculturing with MSCs enhanced the cell proliferation of human melanocytes and repressed PTEN expression, which inhibited oxidative stress-induced apoptosis. Conclusion We report that vitiligo patients present with high PTEN expression, which may play a role in the impairment of melanocytes. Furthermore, our study provides evidence that MSCs target the PTEN/PI3K/AKT pathway to regulate cell proliferation and apoptosis in human melanocytes, indicating that MSCs may serve as a promising therapy for vitiligo.
Collapse
Affiliation(s)
- Lifei Zhu
- Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China
| | - Xi Lin
- Pharmacology Department of Basic Medical Sciences School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Lin Zhi
- Pharmacology Department of Basic Medical Sciences School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yushan Fang
- Pharmacology Department of Basic Medical Sciences School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Keming Lin
- Pharmacology Department of Basic Medical Sciences School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Kai Li
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China. .,Guangdong Research Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.
| | - Liangcai Wu
- Department of Dermatology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510655, China.
| |
Collapse
|
35
|
Takano K, Hachiya A, Murase D, Tanabe H, Kasamatsu S, Takahashi Y, Moriwaki S, Hase T. Quantitative changes in the secretion of exosomes from keratinocytes homeostatically regulate skin pigmentation in a paracrine manner. J Dermatol 2020; 47:265-276. [PMID: 31916286 DOI: 10.1111/1346-8138.15202] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022]
Abstract
The content and distribution of melanin in the epidermis determines the wide variety of skin colors associated with ethnic/racial diversity. Although it was previously reported that qualitative changes in keratinocyte-derived exosomes regulate melanocyte pigmentation in vitro, their practical involvement, especially in skin color development in vivo, has remained unclear. To address this unexplained scientific concern, the correlation of epidermal exosomes isolated from human skin tissues with melanosomal protein expression levels was demonstrated in this study for the first time. After confirming the quantitative effect of human keratinocyte-derived exosomes on human melanocyte activation, even in the absence of ultraviolet B (UV-B) exposure, the impact of exosomes secreted from UV-B-irradiated keratinocytes on melanogenesis was consistently detected, which suggests their constitutive role in regulating cutaneous pigmentation. Additionally, both a specific exosome secretion inducer and a suppressor were consistently found to significantly control melanin synthesis in a co-culture system composed of keratinocytes and melanocytes as well as in an ex vivo skin culture system. These results suggest that quantitative changes, in addition to already known qualitative changes, in exosomes secreted from human epidermal keratinocytes homeostatically regulate melanogenic activity in a paracrine manner, which leads to skin color determination.
Collapse
Affiliation(s)
- Kei Takano
- Biological Science Laboratories, Kao Corporation, Odawara, Kanagawa, Japan
| | - Akira Hachiya
- Planning and Implementation, Kao Corporation, Haga, Tochigi, Japan
| | - Daiki Murase
- Biological Science Laboratories, Kao Corporation, Odawara, Kanagawa, Japan
| | - Hiroki Tanabe
- Skin Care Laboratories, Kao Corporation, Sumida, Tokyo, Japan
| | - Shinya Kasamatsu
- Biological Science Laboratories, Kao Corporation, Odawara, Kanagawa, Japan
| | - Yoshito Takahashi
- Biological Science Laboratories, Kao Corporation, Odawara, Kanagawa, Japan
| | - Shigeru Moriwaki
- Biological Science Laboratories, Kao Corporation, Haga, Tochigi, Japan
| | - Tadashi Hase
- Core Technology Sector, Kao Corporation, Sumida, Tokyo, Japan
| |
Collapse
|
36
|
Škalamera D, Stevenson AJ, Ehmann A, Ainger SA, Lanagan C, Sturm RA, Gabrielli B. Melanoma mutations modify melanocyte dynamics in co-culture with keratinocytes or fibroblasts. J Cell Sci 2019; 132:jcs.234716. [PMID: 31767623 DOI: 10.1242/jcs.234716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/21/2019] [Indexed: 12/25/2022] Open
Abstract
Melanocytic cell interactions are integral to skin homeostasis, and affect the outcome of multiple diseases, including cutaneous pigmentation disorders and melanoma. By using automated-microscopy and machine-learning-assisted morphology analysis of primary human melanocytes in co-culture, we performed combinatorial interrogation of melanocyte genotypic variants and functional assessment of lentivirus-introduced mutations. Keratinocyte-induced melanocyte dendricity, an indicator of melanocyte differentiation, was reduced in the melanocortin 1 receptor (MC1R) R/R variant strain and by NRAS.Q61K and BRAF.V600E expression, while expression of CDK4.R24C and RAC1.P29S had no detectable effect. Time-lapse tracking of melanocytes in co-culture revealed dynamic interaction phenotypes and hyper-motile cell states that indicated that, in addition to the known role in activating mitogenic signalling, MEK-pathway-activating mutations may also allow melanocytes to escape keratinocyte control and increase their invasive potential. Expanding this combinatorial platform will identify other therapeutic target mutations and melanocyte genetic variants, as well as increase understanding of skin cell interactions.
Collapse
Affiliation(s)
- Dubravka Škalamera
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Alexander J Stevenson
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Anna Ehmann
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Stephen A Ainger
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Catherine Lanagan
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, 4102 QLD, Australia
| | - Brian Gabrielli
- Mater Research Institute, University of Queensland, Translational Research Institute, Brisbane, 4102 QLD, Australia
| |
Collapse
|
37
|
de Oliveira Filho RS, Soares AL, Paschoal FM, Rezze GG, Oliveira E, Macarenco R, Buzaid AC, Ferreira LM. Literature review of Notch melanoma receptors. SURGICAL AND EXPERIMENTAL PATHOLOGY 2019. [DOI: 10.1186/s42047-019-0052-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractDespite the immunotherapeutics and target therapy agents, the survival of patients with advanced melanoma is still low. Notch signaling is able to regulate many aspects of melanomagenesis. Comparative analyses of common melanocytic nevi, dysplastic nevi and melanomas demonstrated increased expression of Notch1, Notch2 and their ligands, indicating that a positive regulation of these components may be related to the progression of melanoma. Some strategies such as gamma-secretase inhibitors (GSI) have been explored in patients with refractory metastatic disease or locally advanced disease of solid tumors. Two major classes of Notch inhibitors are currently in clinical development: GSI and monoclonal antibodies against Notch receptors or their ligands. Inhibition of Notch by GSI has been shown to decrease melanoma growth. GSI RO4929097 co-administered with cisplatin, vinblastine and temozolomide promotes greater elimination of tumor cells. The Notch pathway needs to be explored in the treatment of melanoma.
Collapse
|
38
|
Cario M, Pain C, Kaulanjan-Checkmodine P, Masia D, Delia G, Casoli V, Costet P, Goussot JF, Guyonnet-Duperat V, Bibeyran A, Ezzedine K, Reymermier C, Andre-Frei V, Taieb A. Epidermal keratin 5 expression and distribution is under dermal influence. Pigment Cell Melanoma Res 2019; 33:435-445. [PMID: 31692218 DOI: 10.1111/pcmr.12844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/01/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022]
Abstract
Human skin melanin pigmentation is regulated by systemic and local factors. According to the type of melanin produced by melanocytes, the transfer and degradation of melanosomes differ, thus accounting for most variations between ethnicities. We made the surprising observation that in a drastically changed environment, white and black phenotypes are reversible since Caucasian skin grafted onto nude mice can become black with all black phenotypic characteristics. Black xenografts differed essentially from other grafts by the levels of epidermal FGF-2 and keratin 5. In vitro analysis confirmed that FGF-2 directly regulates keratin 5. Interestingly, this phenomenon may be involved in human pathology. Keratin 5 mutations in Dowling-Degos Disease (DDD) have already been associated with the pheomelanosome-eumelanosome transition. In a DDD patient, keratin 5 was expressed in the basal and spinous layers, as observed in black xenografts. Furthermore, in a common age-related hyperpigmentation disorder like senile lentigo (SL), keratin 5 distribution is also altered. In conclusion, modulation of keratin 5 expression and distribution either due to mutations or factors may account for the development of pigmentary disorders.
Collapse
Affiliation(s)
- Muriel Cario
- INSERM U1035, Bordeaux, France.,BMGIC, Universite de Bordeaux, Bordeaux, France.,National Reference Center for Rare skin Diseases, Bordeaux University Hospitals, Bordeaux, France.,AquiDerm, Bordeaux, France
| | - Catherine Pain
- INSERM U1035, Bordeaux, France.,BMGIC, Universite de Bordeaux, Bordeaux, France
| | | | - Daniela Masia
- Department of Plastic Surgery and Hand Surgery, Aurelia Hospital, Rome, Italy
| | - Gabriele Delia
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Vincent Casoli
- Department of Plastic Surgery, Bordeaux University Hospitals, Bordeaux, France
| | - Pierre Costet
- Animalerie Spécialisée, Bordeaux University, Bordeaux, France
| | | | | | - Alice Bibeyran
- Plateforme de Vectorologie VectUb, Bordeaux University, Bordeaux, France
| | - Khaled Ezzedine
- EA EpiDermE (Epidémiologie en Dermatologie et Evaluation des Thérapeutiques), Service de Dermatologie, UPE-Université Paris-Est, Hôpital Henri Mondor, Créteil, France
| | | | | | - Alain Taieb
- INSERM U1035, Bordeaux, France.,BMGIC, Universite de Bordeaux, Bordeaux, France.,National Reference Center for Rare skin Diseases, Bordeaux University Hospitals, Bordeaux, France.,Department of Dermatology, Bordeaux University Hospitals, Bordeaux, France
| |
Collapse
|
39
|
Goyer B, Pereira U, Magne B, Larouche D, Kearns-Turcotte S, Rochette PJ, Martin L, Germain L. Impact of ultraviolet radiation on dermal and epidermal DNA damage in a human pigmented bilayered skin substitute. J Tissue Eng Regen Med 2019; 13:2300-2311. [PMID: 31502756 DOI: 10.1002/term.2959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 12/18/2022]
Abstract
Our laboratory has developed a scaffold-free cell-based method of tissue engineering to produce bilayered tissue-engineered skin substitutes (TESs) from epidermal and dermal cells. However, TES pigmentation is absent or heterogeneous after grafting, due to a suboptimal number of melanocytes in culture. Our objectives were to produce TESs with a sufficient quantity of melanocytes from different pigmentation phototypes (light and dark) to achieve a homogeneous color and to evaluate whether the resulting pigmentation was photoprotective against ultraviolet radiation (UVR)-induced DNA damage in the dermis and the epidermis. TESs were cultured using different concentrations of melanocytes (100, 200, and 1,500 melanocytes/mm2 ), and pigmentation was evaluated in vitro and after grafting onto an athymic mouse excisional model. Dermal and epidermal DNA damage was next studied, exposing pigmented TESs to 13 and 32.5 J/cm2 UVR in vitro. We observed that melanocyte cell density increased with culture time until reaching a plateau corresponding to the cell distribution of native skin. Pigmentation of melanocyte-containing TESs was similar to donor skin, with visible melanin transfer from melanocytes to keratinocytes. The amount of melanin in TESs was inversely correlated to the UVR-induced formation of cyclobutane pyrimidine dimer in dermal fibroblasts and keratinocytes. Our results indicate that the pigmentation conferred by the addition of melanocytes in TESs protects against UVR-induced DNA damage. Therefore, autologous pigmented TESs could ensure photoprotection after grafting.
Collapse
Affiliation(s)
- Benjamin Goyer
- Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Ulysse Pereira
- Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Brice Magne
- Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Danielle Larouche
- Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Sélia Kearns-Turcotte
- Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Patrick J Rochette
- Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département d'ophtalmologie et d'oto-rhino-laryngologie - chirurgie cervico-faciale, Faculté de médecine, Université Laval, Québec, QC, Canada
| | - Ludovic Martin
- Service de Dermatologie, CHU d'Angers, et Institut MitoVasc (UMR INSERM 1083, UMR CNRS 6015), Université d'Angers, Angers, France
| | - Lucie Germain
- Centre de recherche du CHU de Québec, Université Laval and Centre de recherche en organogénèse expérimentale de l'Université Laval/LOEX, Québec, QC, Canada
- Département de chirurgie, Faculté de médecine, Université Laval, Québec, QC, Canada
| |
Collapse
|
40
|
Iida M, Tazaki A, Deng Y, Chen W, Yajima I, Kondo-Ida L, Hashimoto K, Ohgami N, Kato M. A unique system that can sensitively assess the risk of chemical leukoderma by using murine tail skin. CHEMOSPHERE 2019; 235:713-718. [PMID: 31279121 DOI: 10.1016/j.chemosphere.2019.06.185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Chemical leukoderma is a patchy hypopigmentation in the skin. Phenol derivatives such as raspberry ketone have been reported to cause the development of occupationally induced leukoderma. Recently, 2% (w/w) rhododenol, a reduced form of raspberry ketone used in a skin-lightning agent, also caused the development of leukoderma in >16,000 users, about 2% of all users, in Asian countries including Japan. However, a method for assessing the risk of leukoderma caused by 2% rhododenol has not been established despite the fact that the development of leukoderma caused by 30% rhododenol was previously shown in animal experiments. Establishment of a novel technique for risk assessment of leukoderma in humans caused by external treatment with chemicals is needed to prevent a possible future chemical disaster. This study demonstrated that external treatment with 2% rhododenol and the same concentration of raspberry ketone caused the development of leukoderma in murine tail skin without exception with significant decreases in the amount of melanin and number of melanocytes in the epidermis. Thus, a novel in vivo technique that can assess the risk of leukoderma caused by 2% rhododenol was developed. The unique technique using tail skin has the potential to prevent chemical leukoderma in the future.
Collapse
Affiliation(s)
- Machiko Iida
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Akira Tazaki
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Yuqi Deng
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Wei Chen
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Ichiro Yajima
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Lisa Kondo-Ida
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Kazunori Hashimoto
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Nobutaka Ohgami
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Masashi Kato
- Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan.
| |
Collapse
|
41
|
Mi J, Feng Y, Wen J, Su Y, Xu L, Zu T, Liu C, Fisher DE, Wu X. A ROCK inhibitor promotes keratinocyte survival and paracrine secretion, enhancing establishment of primary human melanocytes and melanocyte–keratinocyte co‐cultures. Pigment Cell Melanoma Res 2019; 33:16-29. [PMID: 31386789 DOI: 10.1111/pcmr.12816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/16/2019] [Accepted: 07/31/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Jun Mi
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
| | - Yang Feng
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
- Huashan Hospital, Fudan University Shanghai China
| | - Jie Wen
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
| | - Yiqun Su
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
| | - Lin Xu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
- Department of Stomatology Liaocheng People's Hospital Liaocheng China
| | - Tingjian Zu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
| | - Chang Liu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
| | - David E. Fisher
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
| | - Xunwei Wu
- Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration Jinan China
- Cutaneous Biology Research Center Massachusetts General Hospital, Harvard Medical School Boston MA USA
| |
Collapse
|
42
|
Vaish U, Kumar AA, Varshney S, Ghosh S, Sengupta S, Sood C, Kar HK, Sharma P, Natarajan VT, Gokhale RS, Rani R. Micro RNAs upregulated in Vitiligo skin play an important role in its aetiopathogenesis by altering TRP1 expression and keratinocyte-melanocytes cross-talk. Sci Rep 2019; 9:10079. [PMID: 31300697 PMCID: PMC6625998 DOI: 10.1038/s41598-019-46529-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/01/2019] [Indexed: 01/20/2023] Open
Abstract
Translation of genes is regulated by many factors including microRNAs (miRNAs). miRNA profiling of lesional and non-lesional epidermal RNA from 18 vitiligo patients revealed significant upregulation of 29 miRNAs in the lesional epidermis, of which 6 miRNAs were transfected in normal human epidermal keratinocytes (NHEKs) to study their downstream effects using quantitative proteomics. Many proteins involved in oxidative stress, Vesicle trafficking, Cellular apoptosis, Mitochondrial proteins and Keratins were regulated after miRNA transfections in the keratinocytes. However, tyrosinase related protein-1 (TRP1/TYRP1), a melanogenesis protein, was consistently downregulated in NHEKs by all the six miRNAs tested, which was quite intriguing. TRP1 was also downregulated in lesional epidermis compared with non-lesional epidermis. Since melanocytes synthesize and transfer melanosomes to the surrounding keratinocytes, we hypothesized that downregulation of TRP1 in NHEKs may have a role in melanosome transfer, which was confirmed by our co-culture experiments. Downregulation of TRP1 in keratinocytes negatively affected the melanosome transfer from melanocytes to keratinocytes resulting in melanin accumulation which may be leading to melanin induced cytotoxicity in melanocytes. Regulation of key processes involved in aetiopathogenesis of vitiligo along with TRP1 suggests that miRNAs act in an integrated manner which may be detrimental for the loss of melanocytes in vitiligo.
Collapse
Affiliation(s)
| | | | - Swati Varshney
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Shreya Ghosh
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Shantanu Sengupta
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Chandni Sood
- National Institute of Immunology, New Delhi, 110067, India
| | - Hemanta K Kar
- Dr. Ram Manohar Lohia Hospital, New Delhi, 110001, India
| | - Pankaj Sharma
- Dr. Ram Manohar Lohia Hospital, New Delhi, 110001, India
| | - Vivek T Natarajan
- CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-IGIB, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Rajesh S Gokhale
- National Institute of Immunology, New Delhi, 110067, India.,CSIR-Institute of Genomics & Integrative Biology, Mathura Road, Sukhdev Vihar, New Delhi, 110025, India
| | - Rajni Rani
- National Institute of Immunology, New Delhi, 110067, India.
| |
Collapse
|
43
|
Cario M. How hormones may modulate human skin pigmentation in melasma: An in vitro perspective. Exp Dermatol 2019; 28:709-718. [PMID: 30883945 DOI: 10.1111/exd.13915] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/05/2019] [Accepted: 03/07/2019] [Indexed: 12/16/2022]
Abstract
Melasma is a common acquired hyperpigmentary disorder occurring primarily in photo-exposed areas and mainly affecting women of childbearing age. To decipher the role of sex hormones in melasma, this viewpoint reviews the effects of sex hormones on cutaneous cells cultured in monolayers, in coculture, in 3D models and explants in the presence or the absence of UV. The data show that sex steroid hormones, especially oestrogen, can modulate in vitro pigmentation by stimulating melanocytes and keratinocyte pro-pigmentary factors, but not via fibroblast or mast cell activation. In vitro data suggest that oestrogen acts on endothelial cell count, which may in turn increase endothelin-1 concentrations. However, data on explants revealed that sex steroid even at doses observed during pregnancy cannot induce melanogenesis alone nor melanosome transfer but that it acts in synergy with UVB. In conclusion, we hypothesize that in predisposed persons, sex steroid hormones initiate hyperpigmentation in melasma by amplifying the effects of UV on melanogenesis via direct effects on melanocytes or indirect effects via keratinocytes and on the transfer of melanosomes. They also help to sustain hyperpigmentation by increasing the number of blood vessels and, in turn, the level of endothelin-1.
Collapse
Affiliation(s)
- Muriel Cario
- Inserm 1035, Bordeaux, France
- Univ. Bordeaux, Bordeaux, France
- Aquiderm, Bordeaux, France
- National reference center for rare skin Diseases, Bordeaux Hospital, Bordeaux, France
| |
Collapse
|
44
|
Mo X, Preston S, Zaidi MR. Macroenvironment-gene-microenvironment interactions in ultraviolet radiation-induced melanomagenesis. Adv Cancer Res 2019; 144:1-54. [PMID: 31349897 DOI: 10.1016/bs.acr.2019.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cutaneous malignant melanoma is one of the few major cancers that continue to exhibit a positive rate of increase in the developed world. A wealth of epidemiological data has undisputedly implicated ultraviolet radiation (UVR) from sunlight and artificial sources as the major risk factor for melanomagenesis. However, the molecular mechanisms of this cause-and-effect relationship remain murky and understudied. Recent efforts on multiple fronts have brought unprecedented expansion of our knowledge base on this subject and it is now clear that melanoma is caused by a complex interaction between genetic predisposition and environmental exposure, primarily to UVR. Here we provide an overview of the effects of the macroenvironment (UVR) on the skin microenvironment and melanocyte-specific intrinsic (mostly genetic) landscape, which conspire to produce one of the deadliest malignancies.
Collapse
Affiliation(s)
- Xuan Mo
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Sarah Preston
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
45
|
Kim H, Yi N, Do BR, Lee AY. Adipose-Derived Stem Cell Coculturing Stimulates Integrin-Mediated Extracellular Matrix Adhesion of Melanocytes by Upregulating Growth Factors. Biomol Ther (Seoul) 2019; 27:185-192. [PMID: 30530924 PMCID: PMC6430229 DOI: 10.4062/biomolther.2018.203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/29/2023] Open
Abstract
Coculture with adipose-derived stem cells (ADSCs) can stimulate proliferation and migration of melanocytes. To enhance outcomes of skin disorders caused by melanocyte loss or death, mixed transplantation with ADSCs has been suggested. However, role of cocultured ADSCs in proliferation and migration of melanocytes remains unclear. This study determined the effect of ADSCs on production of growth factors and expression levels of intergrins in primary culture of adult human melanocytes with or without ADSCs and in nude mice grafted with such melanocytes. Higher amounts of growth factors for melanocytes, such as bFGF and SCF were produced and released from ADSCs by coculturing with melanocytes. Relative levels of integrins β1, α5, and α6 as well as adhesion to fibronectin and laminin were increased in melanocytes cocultured with ADSCs. Such increases were inhibited by neutralization of bFGF or SCF. Relative levels of bFGF, SCF and integrins were increased in nude mice skin after grafting with melanocyte+ADSC cocultures. Collectively, these results indicate that ADSCs can stimulate proliferation and migration of melanocytes by increasing expression of integrins in melanocytes through upregulation of production/release of melanocyte growth factors such as bFGF and SCF.
Collapse
Affiliation(s)
- Hyangmi Kim
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Nayoung Yi
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| | - Byung-Rok Do
- Biotechnology Research Institute, Hurim BioCell Inc., Seoul 07531, Republic of Korea
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang 10326, Republic of Korea
| |
Collapse
|
46
|
Park YS, Lee JE, Park JI, Myung CH, Lim YH, Park CK, Hwang JS. Inhibitory mechanism of ginsenoside Rh3 on granulocyte-macrophage colony-stimulating factor expression in UV-B-irradiated murine SP-1 keratinocytes. J Ginseng Res 2018; 44:274-281. [PMID: 32148409 PMCID: PMC7031754 DOI: 10.1016/j.jgr.2018.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 11/20/2018] [Accepted: 12/18/2018] [Indexed: 12/16/2022] Open
Abstract
Background Ultraviolet (UV) goes through the epidermis and promotes release of inflammatory cytokines in keratinocytes. Granulocyte–macrophage colony-stimulating factor (GM-CSF), one of the keratinocyte-derived cytokines, regulates proliferation and differentiation of melanocytes. Extracellular signal–regulated kinase (ERK1/2) and protein kinase C (PKC) signaling pathways regulate expression of GM-CSF. Based on these results, we found that ginsenoside Rh3 prevented GM-CSF production and release in UV-B–exposed SP-1 keratinocytes and that this inhibitory effect resulted from the reduction of PKCδ and ERK phosphorylation. Methods We investigated the mechanism by which ginsenoside Rh3 from Panax ginseng inhibited GM-CSF release from UV-B–irradiated keratinocytes. Results Treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) or UV-B induced release of GM-CSF in the SP-1 keratinocytes. To elucidate whether the change in GM-CSF expression could be related to PKC signaling, the cells were pretreated with H7, an inhibitor of PKC, and irradiated with UV-B. GM-CSF was decreased by H7 in a dose-dependent manner. When we analyzed which ginsenosides repressed GM-CSF expression among 15 ginsenosides, ginsenoside Rh3 showed the largest decline to 40% of GM-CSF expression in enzyme-linked immunosorbent assay. Western blot analysis showed that TPA enhanced the phosphorylation of PKCδ and ERK in the keratinocytes. When we examined the effect of ginsenoside Rh3, we identified that ginsenoside Rh3 inhibited the TPA-induced phosphorylation levels of PKCδ and ERK. Conclusion In summary, we found that ginsenoside Rh3 impeded UV-B–induced GM-CSF production through repression of PKCδ and ERK phosphorylation in SP-1 keratinocytes.
Collapse
Affiliation(s)
- Young Sun Park
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Ji Eun Lee
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Jong Il Park
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Cheol Hwan Myung
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| | - Young-Ho Lim
- KGC R&D Headquarters, Daejeon, Republic of Korea
| | | | - Jae Sung Hwang
- Department of Genetic Engineering & Graduate School of Biotechnology, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
47
|
Abstract
KIT is a receptor tyrosine kinase that after binding to its ligand stem cell factor activates signaling cascades linked to biological processes such as proliferation, differentiation, migration and cell survival. Based on studies performed on SCF and/or KIT mutant animals that presented anemia, sterility, and/or pigmentation disorders, KIT signaling was mainly considered to be involved in the regulation of hematopoiesis, gametogenesis, and melanogenesis. More recently, novel animal models and ameliorated cellular and molecular techniques have led to the discovery of a widen repertoire of tissue compartments and functions that are being modulated by KIT. This is the case for the lung, heart, nervous system, gastrointestinal tract, pancreas, kidney, liver, and bone. For this reason, the tyrosine kinase inhibitors that were originally developed for the treatment of hemato-oncological diseases are being currently investigated for the treatment of non-oncological disorders such as asthma, rheumatoid arthritis, and alzheimer's disease, among others. The beneficial effects of some of these tyrosine kinase inhibitors have been proven to depend on KIT inhibition. This review will focus on KIT expression and regulation in healthy and pathologic conditions other than cancer. Moreover, advances in the development of anti-KIT therapies, including tyrosine kinase inhibitors, and their application will be discussed.
Collapse
|
48
|
Hirobe T, Enami H. Excellent color-matched repigmentation of human vitiligo can be obtained by mini-punch grafting using a machine in combination with ultraviolet therapy. DERMATOL SIN 2018. [DOI: 10.1016/j.dsi.2018.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
49
|
Hirobe T, Enami H. Histochemical study of the distribution of epidermal melanoblasts and melanocytes in Asian human skin. Skin Res Technol 2018; 25:299-304. [DOI: 10.1111/srt.12649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/29/2018] [Indexed: 12/21/2022]
|
50
|
Exploring major signaling cascades in melanomagenesis: a rationale route for targetted skin cancer therapy. Biosci Rep 2018; 38:BSR20180511. [PMID: 30166456 PMCID: PMC6167501 DOI: 10.1042/bsr20180511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/14/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
Although most melanoma cases may be treated by surgical intervention upon early diagnosis, a significant portion of patients can still be refractory, presenting low survival rates within 5 years after the discovery of the illness. As a hallmark, melanomas are highly prone to evolve into metastatic sites. Moreover, melanoma tumors are highly resistant to most available drug therapies and their incidence have increased over the years, therefore leading to public health concerns about the development of novel therapies. Therefore, researches are getting deeper in unveiling the mechanisms by which melanoma initiation can be triggered and sustained. In this context, important progress has been achieved regarding the roles and the impact of cellular signaling pathways in melanoma. This knowledge has provided tools for the development of therapies based on the intervention of signal(s) promoted by these cascades. In this review, we summarize the importance of major signaling pathways (mitogen-activated protein kinase (MAPK), phosphoinositide 3-kinase (PI3K)-Akt, Wnt, nuclear factor κ-light-chain-enhancer of activated B cell (NF-κB), Janus kinase (JAK)-signal transducer and activator of transcription (STAT), transforming growth factor β (TGF-β) and Notch) in skin homeostasis and melanoma progression. Available and developing melanoma therapies interfering with these signaling cascades are further discussed.
Collapse
|