1
|
Rojasawasthien T, Srithanyarat SS, Bulanawichit W, Osathanon T. Effect of Mechanical Force Stress on the Inflammatory Response in Human Periodontal Ligament Cells. Int Dent J 2025; 75:117-126. [PMID: 39730290 PMCID: PMC11806315 DOI: 10.1016/j.identj.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/18/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Human periodontal ligament (hPDL) is continuously exposed to mechanical forces that can induce inflammatory responses in resident stem cells (hPDLSCs). Here, we review the impact of mechanical force on hPDLSCs, focusing on the activation of inflammatory cytokines and related signalling pathways, which subsequently influence periodontal tissue remodelling. The effects of various mechanical forces, including compressive, shear, and tensile forces, on hPDLSCs are discussed. The review highlights the role of pro-inflammatory cytokines such as IL-1β, IL-6, and TNF-α in mediating inflammatory responses, as well as the counteracting effects of anti-inflammatory cytokines like IL-4 and IL-10. Additionally, we underscore the involvement of toll-like receptors (TLRs), particularly TLR4, in transducing mechanical stress signals and modulating cytokine production. This review demonstrates that hPDLSCs respond to different mechanical forces with specific gene expression changes that direct inflammatory and bone remodelling signals, leading to increased osteoblast and osteoclast activity. Moreover, hPDLSCs, together with contiguous hPDL cells, respond to various mechanical forces by regulating the immune function of several immune cells. This complex relationship between the mechanical force stress, inflammation, and the cellular response in hPDLSCs warrants further research to develop therapeutic strategies for periodontal and related diseases.
Collapse
Affiliation(s)
- Thira Rojasawasthien
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Periodontology, Chulalongkorn University, Bangkok, Thailand
| | - Supreda Suphanantachat Srithanyarat
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Periodontology, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Periodontology and Dental Implants, Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Wajathip Bulanawichit
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Faculty of Dentistry, Department of Anatomy, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Wu Y, Qu F, Zhang Y, Song Y, Zhong Q, Huang Y, Wang Y, Cao X, Fan Z, Xu C. Exosomes from Cyclic Stretched Periodontal Ligament Cells Induced Periodontal Inflammation through miR-9-5p/SIRT1/NF-κB Signaling Pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:2001-2015. [PMID: 37154707 DOI: 10.4049/jimmunol.2300074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
Abundant evidence demonstrates that mechanical stress could induce an inflammatory response in periodontal tissue, but the precise mechanism remains unclear. In the past few years, periodontal ligament cells (PDLCs), as the most force-sensitive cells, have been investigated in depth as local immune cells, associated with activation of inflammasomes and secretion of inflammatory cytokines in response to mechanical stimuli. However, this study innovatively inspected the effect of PDLCs on the other immune cells after stretch loading to reveal the detailed mechanism by which mechanical stimuli initiate immunoreaction in periodontium. In the present study, we found that cyclic stretch could stimulate human PDLCs to secret exosomes and that these exosomes could further induce the increase of phagocytic cells in the periodontium in Sprague-Dawley rats and the M1 polarization of the cultured macrophages (including the mouse macrophage cell line RAW264.7 and the bone marrow-derived macrophages from C57BL/6 mice). Furthermore, the exosomal miR-9-5p was detected to be overexpressed after mechanical stimuli in both in vivo and in vitro experiments and could trigger M1 polarization via the SIRT1/NF-κB signaling pathway in the cultured macrophages. In summary, this study revealed that PDLCs could transmit the mechanobiological signals to immune cells by releasing exosomes and simultaneously enhance periodontal inflammation through the miR-9-5p/SIRT1/NF-κB pathway. We hope that our research can improve understanding of force-related periodontal inflammatory diseases and lead to new targets for treatment.
Collapse
Affiliation(s)
- Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fang Qu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yifan Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yingshuang Song
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Qi Zhong
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yujie Huang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yingying Wang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ximeng Cao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhen Fan
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
3
|
Kamei H, Ishii T, Nishii Y. Semaphorin 3A regulates alveolar bone remodeling on orthodontic tooth movement. Sci Rep 2022; 12:9243. [PMID: 35654941 PMCID: PMC9163121 DOI: 10.1038/s41598-022-13217-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022] Open
Abstract
Semaphorin 3A (Sema3A) promotes osteoblast differentiation and inhibits osteoclast differentiation. In the present study, we observed the regulation of alveolar bone remodeling by Sema3A during orthodontic tooth movement (OTM). Four inflammatory cytokines (IL-1β, IL-6, TNFα, and INF-γ) involved in OTM were applied to osteoblasts in vitro, and Sema3A expression was determined by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). In vivo, springs were attached to the maxillary first molars of C56BL/6J mice (OTM model) and the localization of Sema3A was confirmed by immunofluorescent. Recombinant Sema3A (rSema3A) was locally injected into the OTM model. Inflammatory cytokine localization in the OTM model was confirmed by immunohistochemistry. In vivo, more Sema3A was observed on the tension side in the OTM group. Injection of rSema3A into the OTM model increased mineralization on the tension side and decreased the number of osteoclasts on the compression side. In vitro, IL-1β significantly increased Sema3A mRNA levels. Immunohistochemistry for IL-1β in vivo showed more concentrated staining in the periodontal ligament on the tension side than on the compression side. In summary, our findings revealed the distribution of Sema3A in the periodontal ligament and demonstrated that rSema3A administration promotes bone formation and inhibits bone resorption during OTM.
Collapse
Affiliation(s)
- Hirokazu Kamei
- Department of Orthodontics, Tokyo Dental College, Tokyo, Japan
| | - Takenobu Ishii
- Department of Orthodontics, Tokyo Dental College, Tokyo, Japan.
| | - Yasushi Nishii
- Department of Orthodontics, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
4
|
Zhao Z, Behm C, Rausch MA, Tian Z, Rausch-Fan X, Andrukhov O. Cyclic tensile strain affects the response of human periodontal ligament stromal cells to tumor necrosis factor-α. Clin Oral Investig 2022; 26:609-622. [PMID: 34185172 PMCID: PMC8791913 DOI: 10.1007/s00784-021-04039-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Orthodontic treatment in adult patients predisposed to mild or severe periodontal disease is challenging for orthodontists. Orthodontic malpractice or hyper-occlusal forces may aggravate periodontitis-induced destruction of periodontal tissues, but the specific mechanism remains unknown. In the present study, the combined effect of mechanical stress and tumor necrosis factor (TNF)-α on the inflammatory response in human periodontal ligament stromal cells (hPDLSCs) was investigated. MATERIALS AND METHODS hPDLSCs from 5 healthy donors were treated with TNF-α and/or subjected to cyclic tensile strain (CTS) of 6% or 12% elongation with 0.1 Hz for 6- and 24 h. The gene expression of interleukin (IL)-6, IL-8 and cell adhesion molecules VCAM and ICAM was analyzed by qPCR. The protein levels of IL-6 and IL-8 in conditioned media was measured by ELISA. The surface expression of VCAM-1 and ICAM-1 was quantified by immunostaining followed by flow cytometry analysis. RESULTS TNF-α-induced IL-6 gene and protein expression was inhibited by CTS, whereas TNF-α-induced IL-8 expression was decreased at mRNA expression level but enhanced at the protein level in a magnitude-dependent manner. CTS downregulated the gene expression of VCAM-1 and ICAM-1 under TNF-α stimulation, but the downregulation of the surface expression analyzed by flow cytometry was observed chiefly for VCAM-1. CONCLUSIONS Our findings show that mechanical force differentially regulates TNF-α-induced expression of inflammatory mediators and adhesion molecules at the early stage of force application. The effect of cyclic tensile strain is complex and could be either anti-inflammatory or pro-inflammatory depending on the type of pro-inflammatory mediators and force magnitude. CLINICAL RELEVANCE Orthodontic forces regulate the inflammatory mediators of periodontitis. The underlying mechanism may have significant implications for future strategies of combined periodontal and orthodontic treatment.
Collapse
Affiliation(s)
- Zhongqi Zhao
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
| | - Christian Behm
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Marco Aoqi Rausch
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Zhiwei Tian
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, 1090, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry and Periodontology, Medical University of Vienna, Sensengasse 2A, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Nazet U, Schröder A, Spanier G, Wolf M, Proff P, Kirschneck C. Simplified method for applying static isotropic tensile strain in cell culture experiments with identification of valid RT-qPCR reference genes for PDL fibroblasts. Eur J Orthod 2020; 42:359-370. [PMID: 31352484 DOI: 10.1093/ejo/cjz052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVE Periodontal ligament fibroblasts (PDLF) play an important mediating role in orthodontic tooth movement expressing various cytokines, when exposed to compressive or tensile strain. Here, we present a simplified and easy-to-handle, but reliable and valid method for simulating static isotropic tensile strain in vitro using spherical silicone cap stamps. Furthermore, we identify appropriate reference genes for data normalization in real-time quantitative polymerase chain reaction (RT-qPCR) experiments on PDLF subjected to tensile strain. MATERIALS AND METHODS PDLF were cultivated on flexible bioflex membranes and exposed to static isotropic tensile strain of different magnitudes and timeframes. We determined cell number, cytotoxicity, and relative expression of proinflammatory genes cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6). For normalization of RT-qPCR data, we tested the stability and validity of nine candidate reference genes with four mathematical algorithms (geNorm, NormFinder, comparative ΔCq, and BestKeeper) and ranked them based on their calculated expression stability. RESULTS We observed no decrease in cell number or cytotoxic effect at any of the applied magnitudes and timeframes of tensile strain. At 16 per cent and 35 per cent tensile strain for 48 hours, we detected a significant increase in COX-2 and decrease in IL-6 gene expression. Highest stability was found for TBP (TATA-box-binding protein) and PPIB (peptidylprolyl isomerase A) in reference gene validation. According to the geNorm algorithm, both genes in conjunction are sufficient for normalization. In contrast to all other candidate genes tested, gene expression normalization of target gene COX-2 to reference genes EEF1A1, RPL22, and RNA18S5 indicated no significant upregulation of COX-2 expression. CONCLUSIONS A strain magnitude of 16 per cent for 48 hours elicited the most distinct cellular response by PDLF subjected to static tensile isotropic strain by the presented method. TBP and PPIB in conjunction proved to be the most appropriate reference genes to normalize target gene expression in RT-qPCR studies on PDLF subjected to tensile strain.
Collapse
Affiliation(s)
- Ute Nazet
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Gerrit Spanier
- Department of Maxillo-Facial Surgery, University Medical Centre of Regensburg, Germany
| | - Michael Wolf
- Department of Orthodontics, RWTH Aachen, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | | |
Collapse
|
6
|
Nassar EA, Fouda AM, Hassan KS. Influence of low-level laser (LLL) on interleukin 6 (IL-6) levels in gingival crevicular fluid (GCF) during orthodontic tooth movement of periodontally affected rabbits. Int Orthod 2019; 17:227-234. [PMID: 31053447 DOI: 10.1016/j.ortho.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIM To evaluate the effects of LLL on IL-6 levels in the GCF and the Probing Pocket Depth measurements (PPD) during orthodontic tooth movement in periodontally affected rabbits. METHODS Twenty-four rabbits were divided into 3 groups: Group 1(G1), healthy rabbits with orthodontic movement, Group 2(G2) periodontally affected rabbits and orthodontic movement, Group 3(G3) periodontally affected rabbits with orthodontic movement and LLL therapy. A 0.014 stainless steel spring was inserted in the upper central incisors to produce 60gm force. Laser CAT 500 was applied for 3min/day for 2 weeks. PPD measurements were obtained at base line and after 14 days with electronic periodontal probe. RESULTS IL-6 levels increased gradually after application of orthodontic force, afterwards the 8th day, a significant difference in the Il-6 levels between G1 vs. G2 and G2 vs. G3 was observed. PPD measurements showed significant difference between the three groups at base line and after 14 days. CLINICAL SIGNIFICANCE LLL application can enhance periodontal ligament regeneration and decrease the periodontal tissue destruction through suppression of IL-6 levels.
Collapse
Affiliation(s)
- Essam Abdelalim Nassar
- Imam Abdurahman Bin Faisal University, Preventive Dental Science Department, Saudi Arabia; Mansoura University, Orthodontic Department, Faculty of Dentistry, Egypt.
| | - Ahmed Maher Fouda
- Mansoura University, Orthodontic Department, Faculty of Dentistry, Egypt
| | | |
Collapse
|
7
|
Chukkapalli SS, Lele TP. Periodontal cell mechanotransduction. Open Biol 2019; 8:rsob.180053. [PMID: 30209038 PMCID: PMC6170509 DOI: 10.1098/rsob.180053] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/16/2018] [Indexed: 01/09/2023] Open
Abstract
The periodontium is a structurally and functionally complex tissue that facilitates the anchorage of teeth in jaws. The periodontium consists of various cell types including stem cells, fibroblasts and epithelial cells. Cells of the periodontium are constantly exposed to mechanical stresses generated by biological processes such as the chewing motions of teeth, by flows generated by tongue motions and by forces generated by implants. Mechanical stresses modulate the function of cells in the periodontium, and may play a significant role in the development of periodontal disease. Here, we review the literature on the effect of mechanical forces on periodontal cells in health and disease with an emphasis on molecular and cellular mechanisms.
Collapse
Affiliation(s)
- Sasanka S Chukkapalli
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL 32610, USA.,Center for Molecular Microbiology, University of Florida, College of Dentistry, Gainesville, FL 32610, USA
| | - Tanmay P Lele
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
8
|
Zhao D, Wu Y, Zhuang J, Xu C, Zhang F. Activation of NLRP1 and NLRP3 inflammasomes contributed to cyclic stretch-induced pyroptosis and release of IL-1β in human periodontal ligament cells. Oncotarget 2018; 7:68292-68302. [PMID: 27626170 PMCID: PMC5356555 DOI: 10.18632/oncotarget.11944] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022] Open
Abstract
Inflammasomes have been reported to be present in periodontal inflammatory tissue, but the exact role of inflammasomes in periodontal inflammatory reactions especially those related to mechanical stimulations has not been clarified. In this study, it was shown that cyclic stretch activated the nucleotide-binding oligomerization domain-like receptor containing pyrin domain 1 and 3 (NLRP1 and NLRP3) inflammasomes and induced the release of IL-1β and pyroptosis via a caspase-1-related mechanism in human periodontal ligament cells (HPDLCs). This study firstly demonstrated that activation of NLRP inflammasomes contributed to the stretch-induced inflammatory response in HPDLCs. As inflammasomes have been reported to be involved in both programmed cell death and inflammation, further studies are required to elucidate the exact roles and signaling pathway of inflammasomes in stretch-induced periodontal inflammation.
Collapse
Affiliation(s)
- Dan Zhao
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yaqin Wu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiabao Zhuang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fuqiang Zhang
- Department of Prosthodontics, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
9
|
Wada S, Kanzaki H, Narimiya T, Nakamura Y. Novel device for application of continuous mechanical tensile strain to mammalian cells. Biol Open 2017; 6:518-524. [PMID: 28302667 PMCID: PMC5399557 DOI: 10.1242/bio.023671] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
During orthodontic tooth movement, the periodontal ligament (PDL) is exposed to continuous mechanical strain. However, many researchers have applied cyclic tensile strain, not continuous tensile strain, to PDL cells in vitro because there has been no adequate device to apply continuous tensile strain to cultured cells. In this study, we contrived a novel device designed to apply continuous tensile strain to cells in culture. The continuous tensile strain was applied to human immortalized periodontal ligament cell line (HPL cells) and the cytoskeletal structures of HPL cells were examined by immunohistochemistry. The expression of both inflammatory and osteogenic markers was also examined by real-time reverse transcription polymerase chain reaction. The osteogenic protein, Osteopontin (OPN), was also detected by western blot analysis. The actin filaments of HPL cells showed uniform arrangement under continuous tensile strain. The continuous tensile strain increased the expression of inflammatory genes such as IL-1β, IL-6, COX-2 and TNF-α, and osteogenic genes such as RUNX2 and OPN in HPL cells. It also elevated the expression of OPN protein in HPL cells. These results suggest that our new simple device is useful for exploring the responses to continuous tensile strain applied to the cells. Summary: Continuous tensile strain from the device changed the cell morphology and increased the expression of inflammatory and osteogenic gene. These effects were similar to those in the PDL during orthodontic tooth movement.
Collapse
Affiliation(s)
- Satoshi Wada
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Hiroyuki Kanzaki
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Tsuyoshi Narimiya
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| | - Yoshiki Nakamura
- Department of Orthodontics, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama, Kanagawa 230-8501, Japan
| |
Collapse
|
10
|
Mehdizadeh A, Gardiner BS, Lavagnino M, Smith DW. Predicting tenocyte expression profiles and average molecular concentrations in Achilles tendon ECM from tissue strain and fiber damage. Biomech Model Mechanobiol 2017; 16:1329-1348. [DOI: 10.1007/s10237-017-0890-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 02/18/2017] [Indexed: 11/28/2022]
|
11
|
Maeda A, Soejima K, Bandow K, Kuroe K, Kakimoto K, Miyawaki S, Okamoto A, Matsuguchi T. Force-induced IL-8 from Periodontal Ligament Cells Requires IL-1β. J Dent Res 2016; 86:629-34. [PMID: 17586709 DOI: 10.1177/154405910708600709] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
During orthodontic tooth movement, mechanical stresses induce inflammatory reactions in the periodontal ligament (PDL). We hypothesized that chemokines released from PDL cells under mechanical stress regulate osteoclastogenesis, and investigated the profiles and mechanisms of chemokine expression by human PDL cells in response to mechanical stress. In vitro, shear stress and pressure force rapidly increased the gene and protein expressions of IL-8/CXCL8 by PDL cells. Consistently, amounts of IL-8 in the gingival crevicular fluid of healthy individuals increased within 2 to 4 days of orthodontic force application. The PDL cells constitutively expressed low levels of IL-1β, which were not further increased by mechanical stress. Interestingly, neutralization of IL-1β abolished IL-8 induction by mechanical stresses, indicating that IL-1β is essential for IL-8 induction, presumably though autocrine or paracrine mechanisms. Finally, experiments with signal-specific inhibitors indicated that MAP kinase activation is essential for IL-8 induction.
Collapse
Affiliation(s)
- A Maeda
- Department of Orthodontics, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Morikawa T, Matsuzaka K, Nakajima K, Yasumura T, Sueishi K, Inoue T. Dental pulp cells promote the expression of receptor activator of nuclear factor-κB ligand, prostaglandin E 2 and substance P in mechanically stressed periodontal ligament cells. Arch Oral Biol 2016; 70:158-164. [PMID: 27371807 DOI: 10.1016/j.archoralbio.2016.06.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 06/08/2016] [Accepted: 06/19/2016] [Indexed: 11/17/2022]
Abstract
OBJECTIVE This study investigated the expression of receptor activator of nuclear factor-κB ligand (RANKL) in periodontal ligament (PDL) cells co-cultured with dental pulp (DP) cells following mechanical stress in vitro. Furthermore, the expression of prostaglandin (PG) E2 and substance P (SP) by the PDL cells and by the DP cells were also examined. DESIGN PDL and DP cells were obtained from 10 rats. The experimental group consisted of PDL cells subjected to centrifugal force as mechanical stress and co-cultured with DP cells. The 3 control groups of PDL cells were: 1) PDL cells without mechanical stress, 2) PDL cells treated with mechanical stress and 3) PDL cells co-cultured with DP cells. The 2 control groups of DP cells were: 1) DP cells without mechanical stress and 2) DP cells co-cultured with PDL cells. In each group, both cells were examined at day 1 and day 3, and mRNA levels of RANKL by PDL cells were analyzed using Real time quantitative Reverse Transcription (RT)-PCR. Furthermore, RANKL expression was observed using Immunofluorescence staining. PGE2 and SP expression levels by PDL cells and DP cells were characterized by ELISA analysis. RESULTS The expression of RANKL by PDL cells under mechanical stress increased by co-culture with DP cells. PGE2 and SP expressions were increased in the group of PDL cells subjected to mechanical stress and co-cultured with DP cells. CONCLUSION DP cells may facilitate the expression of RANKL in PDL cells under mechanical stress via PGE2 and SP.
Collapse
Affiliation(s)
- Taiki Morikawa
- Department of Orthodontics, Tokyo Dental College, 2-9-18, Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan.
| | - Kenichi Matsuzaka
- Department of Clinical Pathophysiology, Tokyo Dental College, 2-9-18, Misaki-cho, Chiyoda-ku, 101-0061, Tokyo, Japan
| | - Kei Nakajima
- Department of Clinical Pathophysiology, Tokyo Dental College, 2-9-18, Misaki-cho, Chiyoda-ku, 101-0061, Tokyo, Japan
| | - Toshihiko Yasumura
- Department of Orthodontics, Tokyo Dental College, 2-9-18, Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Kenji Sueishi
- Department of Orthodontics, Tokyo Dental College, 2-9-18, Misaki-cho, Chiyoda-ku, Tokyo, 101-0061, Japan
| | - Takashi Inoue
- Department of Clinical Pathophysiology, Tokyo Dental College, 2-9-18, Misaki-cho, Chiyoda-ku, 101-0061, Tokyo, Japan
| |
Collapse
|
13
|
Maeda A, Bandow K, Kusuyama J, Kakimoto K, Ohnishi T, Miyawaki S, Matsuguchi T. Induction of CXCL2 and CCL2 by pressure force requires IL-1β-MyD88 axis in osteoblasts. Bone 2015; 74:76-82. [PMID: 25603464 DOI: 10.1016/j.bone.2015.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 12/22/2014] [Accepted: 01/13/2015] [Indexed: 11/17/2022]
Abstract
Mechanical stresses including pressure force induce chemokine expressions in osteoblasts resulting in inflammatory reactions and bone remodeling. However, it has not been well elucidated how mechanical stresses induce inflammatory chemokine expressions in osteoblasts. IL-1β has been identified as an important pathogenic factor in bone loss diseases, such as inflammatory arthritis and periodontitis. Myeloid differentiation factor 88 (MyD88) is an essential downstream adaptor molecule of IL-1 receptor signaling. This study was to examine the gene expression profiles of inflammatory chemokines and the role of MyD88 in osteoblasts stimulated by pressure force. Pressure force (10g/cm(2)) induced significant mRNA increases of CXCL2, CCL2, and CCL5, as well as prompt phosphorylation of MAP kinases (ERK, p38 and JNK), in wild-type primary osteoblasts. The CXCL2 and CCL2 mRNA increases and MAP kinase phosphorylation were severely impaired in MyD88(-/-) osteoblasts. Constitutive low-level expression of IL-1β mRNA was similarly observed in both wild-type and MyD88(-/-) osteoblasts, which was not altered by pressure force stimulation. Notably, neutralization of IL-1β with a specific antibody significantly impaired pressure force-induced mRNA increases of CXCL2 and CCL2, as well as MAP kinase phosphorylation, in wild-type osteoblasts. Furthermore, pre-treatment with recombinant IL-1β significantly enhanced MAP kinase phosphorylation and mRNA increases of CXCL2 and CCL2 by pressure force in wild-type but not MyD88(-/-) osteoblasts. These results have suggested that the activation of MyD88 pathway by constitutive low-level IL-1β expression is essential for pressure force-induced CXCL2 and CCL2 expression in osteoblasts. Thus MyD88 signal in osteoblasts may be required for bone resorption by pressure force through chemokine induction.
Collapse
Affiliation(s)
- Aya Maeda
- Department of Orthodontics, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kenjiro Bandow
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Joji Kusuyama
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kyoko Kakimoto
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tomokazu Ohnishi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tetsuya Matsuguchi
- Department of Oral Biochemistry, Field of Developmental Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.
| |
Collapse
|
14
|
Saminathan A, Sriram G, Vinoth JK, Cao T, Meikle MC. Engineering the Periodontal Ligament in Hyaluronan–Gelatin–Type I Collagen Constructs: Upregulation of Apoptosis and Alterations in Gene Expression by Cyclic Compressive Strain. Tissue Eng Part A 2015; 21:518-29. [DOI: 10.1089/ten.tea.2014.0221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Aarthi Saminathan
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Jayasaleen Kumar Vinoth
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- National Dental Centre, Singapore, Singapore
| | - Tong Cao
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Murray C. Meikle
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
- Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
15
|
Meeran NA. Biological response at the cellular level within the periodontal ligament on application of orthodontic force - An update. J Orthod Sci 2014; 1:2-10. [PMID: 24987618 PMCID: PMC4072349 DOI: 10.4103/2278-0203.94769] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Orthodontic force elicits a biological response in the tissues surrounding the teeth, resulting in remodeling of the periodontal ligament and the alveolar bone. The force-induced tissue strain result in reorganization of both cellular and extracellular matrix, besides producing changes in the local vascularity. This in turn leads to the synthesis and release of various neurotransmitters, arachidonic acid, growth factors, metabolites, cytokines, colony-stimulating factors, and enzymes like cathepsin K, matrix metalloproteinases, and aspartate aminotransferase. Despite the availability of many studies in the orthodontic and related scientific literature, a concise integration of all data is still lacking. Such a consolidation of the rapidly accumulating scientific information should help in understanding the biological processes that underlie the phenomenon of tooth movement in response to mechanical loading. Therefore, the aim of this review was to describe the biological processes taking place at the molecular level on application of orthodontic force and to provide an update of the current literature.
Collapse
Affiliation(s)
- Nazeer Ahmed Meeran
- Departments of Orthodontics and Dentofacial Orthopedics, Priyadarshini Dental College and Hospital, Tamil Nadu, India
| |
Collapse
|
16
|
Patil AK, Shetty AS, Setty S, Thakur S. Understanding the advances in biology of orthodontic tooth movement for improved ortho-perio interdisciplinary approach. J Indian Soc Periodontol 2014; 17:309-18. [PMID: 24049330 PMCID: PMC3768180 DOI: 10.4103/0972-124x.115648] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 02/24/2013] [Indexed: 02/03/2023] Open
Abstract
This article provides an insight on detailed current advances in molecular understandings of periodontal ligament cells and the influence of orthodontic force on them in the light of recent advances in molecular and genetic sciences. It sequentially unfolds the cellular events beginning from the mechanical force initiated events of cellular responses to bone remodeling. It also highlights the risks and limitations of orthodontic treatment in certain periodontal conditions, the important areas of team work, orthodontic expectations from periodontal treatment and the possibility of much more future combined research to improve the best possible periodontal health and esthetic outcome of the patient.
Collapse
Affiliation(s)
- Anand K Patil
- Department of Orthodontics, SDM College of Dental Sciences, Dharwad, Karnataka, India
| | | | | | | |
Collapse
|
17
|
Li L, Han M, Li S, Wang L, Xu Y. Cyclic tensile stress during physiological occlusal force enhances osteogenic differentiation of human periodontal ligament cells via ERK1/2-Elk1 MAPK pathway. DNA Cell Biol 2013; 32:488-97. [PMID: 23781879 PMCID: PMC3752521 DOI: 10.1089/dna.2013.2070] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/09/2013] [Accepted: 05/21/2013] [Indexed: 12/27/2022] Open
Abstract
Physiological occlusal force constitutively exists in the oral environment and is important for periodontal homeostasis and remodeling. Cyclic tensile stress (CTS) triggers the biological response of periodontal ligament (PDL). However, a few reports have studied the correlation between CTS during physiological occlusal force and PDL cell activities such as osteogenic differentiation. In the present study, human PDL cells (hPDLCs) were subjected to 10% elongation CTS loading at 0.5 Hz for 24 h, which represents the physiological conditions of occlusal force. Gene expression microarray was used to investigate the mechano-induced differential gene profile and pathway analysis in vitro. The osteogenic relative factors, that is, SPP1, RUNX2, and SP7, were assessed by real-time PCR and Western blot. The involvement of mitogen-activated protein kinase (MAPK) signaling pathways was investigated by Western blot with a specific inhibitor. The expressions of SPP1, RUNX2, SP7, p-ERK1/2, and p-Elk1 were up-regulated after 10% CTS exposure. However, these up-regulated expressions were prevented by ERK1/2 inhibitor U0126 in the physiological occlusal force-applied hPDLCs. These results showed that 10% CTS could enhance osteogenic differentiation of hPDLCs via ERK1/2-Elk1 MAPK pathway, indicating that CTS during physiological occlusal force is a potent agent for PDL remodeling.
Collapse
Affiliation(s)
- Lu Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Minxuan Han
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Sheng Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lin Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontics, School of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
18
|
Meeran NA. Cellular response within the periodontal ligament on application of orthodontic forces. J Indian Soc Periodontol 2013; 17:16-20. [PMID: 23633766 PMCID: PMC3636936 DOI: 10.4103/0972-124x.107468] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Accepted: 08/17/2012] [Indexed: 11/14/2022] Open
Abstract
During application of controlled orthodontic force on teeth, remodeling of the periodontal ligament (PDL) and the alveolar bone takes place. Orthodontic forces induce a multifaceted bone remodeling response. Osteoclasts responsible for bone resorption are mainly derived from the macrophages and osteoblasts are produced by proliferations of the cells of the periodontal ligament. Orthodontic force produces local alterations in vascularity, as well as cellular and extracellular matrix reorganization, leading to the synthesis and release of various neurotransmitters, cytokines, growth factors, colony-stimulating factors, and metabolites of arachidonic acid. Although many studies have been reported in the orthodontic and related scientific literature, research is constantly being done in this field resulting in numerous current updates in the biology of tooth movement, in response to orthodontic force. Therefore, the aim of this review is to describe the mechanical and biological processes taking place at the cellular level during orthodontic tooth movement.
Collapse
Affiliation(s)
- Nazeer Ahmed Meeran
- Department of Orthodontics and Dentofacial Orthopedics, Priyadarshini Dental College and Hospital, Thiruvallur Taluk, Pandur, Tamilnadu, India
| |
Collapse
|
19
|
Osteoblasts stimulate osteoclastogenesis via RANKL expression more strongly than periodontal ligament cells do in response to PGE2. Arch Oral Biol 2012; 57:1377-84. [DOI: 10.1016/j.archoralbio.2012.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 07/17/2012] [Accepted: 07/22/2012] [Indexed: 11/23/2022]
|
20
|
Lee SI, Park KH, Kim SJ, Kang YG, Lee YM, Kim EC. Mechanical stress-activated immune response genes via Sirtuin 1 expression in human periodontal ligament cells. Clin Exp Immunol 2012; 168:113-24. [PMID: 22385246 DOI: 10.1111/j.1365-2249.2011.04549.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Recently, Sirtuin 1 (SIRT1) has been implicated in the molecular control of ageing and immune response. Although the remodelling of periodontal ligament (PDL) in response to mechanical stress (MS) is mediated by several host factors, including cytokines and chemokines, the transmission of mechanical stimuli into specific cellular activity is still not understood fully. This study aimed to investigate the effects of MS, particularly cyclic strain, on immune response genes, as well as SIRT1 and its signal transduction pathways, in human PDL cells. MS up-regulated the expression of SIRT1 and immune response genes encoding cytokines [tumour necrosis factor (TNF)-α, interleukin (IL)-1β], chemokines [IL-8, monocyte cheoattractant protein (CCL)-20], defensins [human β-defensin (hBD)-2, hBD-3] and Toll-like receptors (TLR-2 and TLR-4) in a force- and time-dependent manner. The SIRT1 inducers resveratrol and isonicotinamide attenuated MS-induced cytokine and chemokine expression, but enhanced the expression of defensins and TLRs. Blockade of SIRT1 activity by the SIRT1 inhibitors sirtinol and nicotinamide and down-regulation of SIRT1 expression by SIRT1 siRNA reduced the stimulatory effects of MS on defensins and TLRs, but increased its effects on cytokines and chemokines. MS induced activation of protein kinase B (Akt), protein kinase C (PKC), nuclear factor (NF)-κB and p38 mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). Treatment with the anti-oxidants N-acetylcysteine and glutathione inhibited MS-induced reactive oxygen species production and expression of cytokines, chemokines, defensins and TLRs. These results suggest that MS activates human PDL cells to express immune/defence genes encoding cytokines, chemokines, defensins and TLRs via a SIRT1 pathway.
Collapse
Affiliation(s)
- S-I Lee
- Department of Maxillofacial Tissue Regeneration, School of Dentistry and Institute of Oral Biology, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
21
|
Saminathan A, Vinoth KJ, Wescott DC, Pinkerton MN, Milne TJ, Cao T, Meikle MC. The effect of cyclic mechanical strain on the expression of adhesion-related genes by periodontal ligament cells in two-dimensional culture. J Periodontal Res 2011; 47:212-21. [PMID: 22010885 DOI: 10.1111/j.1600-0765.2011.01423.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND OBJECTIVE Cell adhesion plays important roles in maintaining the structural integrity of connective tissues and sensing changes in the biomechanical environment of cells. The objective of the present investigation was to extend our understanding of the effect of cyclic mechanical strain on the expression of adhesion-related genes by human periodontal ligament cells. MATERIAL AND METHODS Cultured periodontal ligament cells were subjected to a cyclic in-plane tensile deformation of 12% for 5 s (0.2 Hz) every 90 s for 6-24 h in a Flexercell FX-4000 Strain Unit. The following parameters were measured: (i) cell viability by the MTT assay; (ii) caspase-3 and -7 activity; and (iii) the expression of 84 genes encoding adhesion-related molecules using real-time RT-PCR microarrays. RESULTS Mechanical stress reduced the metabolic activity of deformed cells at 6 h, and caspase-3 and -7 activity at 6 and 12 h. Seventy-three genes were detected at critical threshold values < 35. Fifteen showed a significant change in relative expression: five cell adhesion molecules (ICAM1, ITGA3, ITGA6, ITGA8 and NCAM1), three collagen α-chains (COL6A1, COL8A1 and COL11A1), four MMPs (ADAMTS1, MMP8, MMP11 and MMP15), plus CTGF, SPP1 and VTN. Four genes were upregulated (ADAMTS1, CTGF, ICAM1 and SPP1) and 11 downregulated, with the range extending from a 1.76-fold induction of SPP1 at 12 h to a 2.49-fold downregulation of COL11A1 at 24 h. CONCLUSION The study has identified several mechanoresponsive adhesion-related genes, and shown that onset of mechanical stress was followed by a transient reduction in overall cellular activity, including the expression of two apoptosis 'executioner' caspases.
Collapse
Affiliation(s)
- A Saminathan
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
22
|
Wu J, Li Y, Fan X, Zhang C, Wang Y, Zhao Z. Analysis of gene expression profile of periodontal ligament cells subjected to cyclic compressive force. DNA Cell Biol 2011; 30:865-73. [PMID: 21510798 DOI: 10.1089/dna.2010.1139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Cyclic compressive force is an important mechanical stimulus on periodontal ligament (PDL). The differential expression of genes in PDL cells is thought to be involved in the remodeling of periodontal tissues subjected to mechanical stress. However, little is known about differentially expressed genes in PDL cells under cyclic compressive force. In our study, human PDL cells were subjected to 4000 μ strain compressive stress loading at 0.5 Hz for 2 h. The effect of mechanical stress on PDL cells proliferation was observed by flow cytometry. Microarray analysis was used to investigate the mechano-induced differential gene profile in PDL cells. Differential expression was confirmed by quantitative real-time polymerase chain reaction (RT-PCR) analysis on genes of interest and explored at two more force loading times (6 h, 12 h). After mechanical loading, cell proliferation was repressed. The microarray data showed that 217 out of 35,000 genes were differentially expressed; among the 217 genes, 207 were up-regulated whereas 10 were down-regulated (p < 0.05). Gene ontology analysis suggested that majority of differentially expressed genes were located in the nucleus and functioned as transcription factors involved in a variety of biological processes. Five genes of interest (IL6, IL8, ETS1, KLF10, and DLC1) were found to be closely related to negative regulation of cell proliferation. The PCR results showed increased expression after 2 h loading, then a decline with extended loading time. The signaling pathways involved were also identified. These findings expand understanding of molecular regulation in the mechano-response of PDL cells.
Collapse
Affiliation(s)
- Jiapei Wu
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | | | | | | | | | | |
Collapse
|
23
|
Enokiya Y, Hashimoto S, Muramatsu T, Jung HS, Tazaki M, Inoue T, Abiko Y, Shimono M. Effect of stretching stress on gene transcription related to early-phase differentiation in rat periodontal ligament cells. THE BULLETIN OF TOKYO DENTAL COLLEGE 2011; 51:129-37. [PMID: 20877159 DOI: 10.2209/tdcpublication.51.129] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mechanical stress such as occlusal and orthodontic loading has been suggested to induce a homeostatic and regenerative response in periodontal ligament (PDL), but the underlying mechanism remains to be clarified. The purpose of this study was to investigate expression of mRNAs encoding proteins involved in osteogenesis and homeostasis by PDL cells following application of tensile stress and characterize the relationship between such expression and the regenerative and homeostatic functions of the PDL. PDL cells were obtained from rats and stretched by 9% or 18% at a frequency of 6 cycles/min for 12 hr to 5 days in a FX-4000T™ culture system. After stretching, expression of mRNAs encoding collagen type I (Col-I), alkaline phosphatase (ALP), bone morphogenetic protein-2 (BMP-2), bone morphogenetic protein-4 (BMP-4), heat shock protein 70 (HSP70) and basic fibroblast growth factor (bFGF) was investigated. The highest levels of Col-I, ALP and BMP-2 mRNA expression occurred at 12 hr, while those of BMP-4 and HSP70 occurred at 1 day and 5 days, respectively. Expression levels of Col-I, ALP, BMP-2, BMP-4 and HSP70 increased magnitude-dependently with stretching force in the stretching groups. In contrast, expression of bFGF mRNA showed statistically significant reduction in both stretching groups, with the largest reduction seen in the 9% stretching group (p<0.01). These results suggest that stretching of PDL cells provokes significant increases in expression of factors promoting osteogenic differentiation and HSP70, which protects PDL cells undergoing mechanical stress and contributes to maintenance of PDL homeostasis. However, expression of bFGF was restrained. Reduced expression of bFGF mRNA suggested that there was an optimum magnitude of stretching force for increasing expression.
Collapse
|
24
|
Nokhbehsaim M, Deschner B, Winter J, Reimann S, Bourauel C, Jepsen S, Jäger A, Deschner J. Contribution of Orthodontic Load to Inflammationmediated Periodontal Destruction. J Orofac Orthop 2010; 71:390-402. [DOI: 10.1007/s00056-010-1031-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/08/2010] [Indexed: 11/30/2022]
|
25
|
Takano M, Yamaguchi M, Nakajima R, Fujita S, Kojima T, Kasai K. Effects of relaxin on collagen type I released by stretched human periodontal ligament cells. Orthod Craniofac Res 2009; 12:282-8. [PMID: 19840280 DOI: 10.1111/j.1601-6343.2009.01463.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVES Relapse of teeth that have moved during orthodontic treatment is a major clinical issue with respect to the goals of successful treatment. Such relapse is a physiologic response of the supporting tissues to application of force, and is mainly attributed to occlusal instability and increased mechanical tension exerted by the periodontal ligament (PDL). Relaxin, a member of the insulin/relaxin family of structurally related hormones, has an influence on many physiologic processes, such as collagen turnover, angiogenesis, and antifibrosis. Therefore, relaxin may also affect orthodontic tooth movement through alterations of the PDL, though little is known regarding the relationship between relaxin and stretched human PDL (hPDL) cells. In the present study, we investigated the effects of relaxin on the expression of collagen type I (Col-I) and matrix metalloproteinase 1 (MMP-1) in stretched hPDL cells in vitro. MATERIALS AND METHODS The release and gene expression of Col-I, as well as those of MMP-1 in stretched hPDL cells treated with relaxin were investigated using enzyme-linked immunosorbent assay and real-time PCR methods. RESULTS Relaxin decreased the release and gene expression of Col-I, and increased those of MMP-1 by stretched hPDL cells in a magnitude-dependent manner. CONCLUSION Our results indicate that relaxin modulates collagen metabolism in stretched hPDL cells via the release and expression of Col-I and MMP-1. This hormone may be useful to prevent orthodontic relapse following orthodontic treatment.
Collapse
Affiliation(s)
- M Takano
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
26
|
|
27
|
Pinkerton MN, Wescott DC, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC. Cultured human periodontal ligament cells constitutively express multiple osteotropic cytokines and growth factors, several of which are responsive to mechanical deformation. J Periodontal Res 2008; 43:343-51. [DOI: 10.1111/j.1600-0765.2007.01040.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Nakajima R, Yamaguchi M, Kojima T, Takano M, Kasai K. Effects of compression force on fibroblast growth factor-2 and receptor activator of nuclear factor kappa B ligand production by periodontal ligament cells in vitro. J Periodontal Res 2008; 43:168-73. [DOI: 10.1111/j.1600-0765.2007.01008.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Tsuzaki M, Bynum D, Almekinders L, Faber J, Banes AJ. Mechanical loading stimulates ecto-ATPase activity in human tendon cells. J Cell Biochem 2008; 96:117-25. [PMID: 16052485 DOI: 10.1002/jcb.20491] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Response to external stimuli such as mechanical signals is critical for normal function of cells, especially when subjected to repetitive motion. Tenocytes receive mechanical stimuli from the load-bearing matrix as tension, compression, and shear stress during tendon gliding. Overloading a tendon by high strain, shear, or repetitive motion can cause matrix damage. Injury may induce cytokine expression, matrix metalloproteinase (MMP) expression and activation resulting in loss of biomechanical properties. These changes may result in tendinosis or tendinopathy. Alternatively, an immediate effector molecule may exist that acts in a signal-dampening pathway. Adenosine 5'-triphosphate (ATP) is a candidate signal blocker of mechanical stimuli. ATP suppresses load-inducible inflammatory genes in human tendon cells in vitro. ATP and other extracellular nucleotide signaling are regulated efficiently by two distinct mechanisms: purinoceptors via specific receptor-ligand binding and ecto-nucleotidases via the hydrolysis of specific nucleotide substrates. ATP is released from tendon cells by mechanical loading or by uridine 5'-triphosphate (UTP) stimulation. We hypothesized that mechanical loading might stimulate ecto-ATPase activity. Human tendon cells of surface epitenon (TSC) and internal compartment (TIF) were cyclically stretched (1 Hz, 0.035 strain, 2 h) with or without ATP. Aliquots of the supernatant fluids were collected at various time points, and ATP concentration (ATP) was determined by a luciferin-luciferase bioluminescence assay. Total RNA was isolated from TSC and TIF (three patients) and mRNA expression for ecto-nucleotidase was analyzed by RT-PCR. Human tendon cells secreted ATP in vitro (0.5-1 nM). Exogenous ATP was hydrolyzed within minutes. Mechanical load stimulated ATPase activity. ATP was hydrolyzed in mechanically loaded cultures at a significantly greater rate compared to no load controls. Tenocytes (TSC and TIF) expressed ecto-nucleotidase mRNA (ENTPD3 and ENPP1, ENPP2). These data suggest that motion may release ATP from tendon cells in vivo, where ecto-ATPase may also be activated to hydrolyze ATP quickly. Ecto-ATPase may act as a co-modulator in ATP load-signal modulation by regulating the half-life of extracellular purine nucleotides. The extracellular ATP/ATPase system may be important for tendon homeostasis by protecting tendon cells from responding to excessive load signals and activating injurious pathways.
Collapse
Affiliation(s)
- M Tsuzaki
- Department of Orthopaedics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7055, USA.
| | | | | | | | | |
Collapse
|
30
|
Wescott DC, Pinkerton MN, Gaffey BJ, Beggs KT, Milne TJ, Meikle MC. Osteogenic gene expression by human periodontal ligament cells under cyclic tension. J Dent Res 2008; 86:1212-6. [PMID: 18037658 DOI: 10.1177/154405910708601214] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The forces that orthodontic appliances apply to the teeth are transmitted through the periodontal ligament (PDL) to the supporting alveolar bone, leading to the deposition or resorption of bone, depending upon whether the tissues are exposed to a tensile or compressive mechanical strain. To evaluate the osteogenic potential of PDL cells, we applied a 12% uni-axial cyclic tensile strain to cultured human PDL cells and analyzed the differential expression of 78 genes implicated in osteoblast differentiation and bone metabolism by real-time RT-PCR array technology. Sixteen genes showed statistically significant changes in expression in response to alterations in their mechanical environment, including cell adhesion molecules and collagen fiber types. Genes linked to the osteoblast phenotype that were up-regulated included BMP2, BMP6, ALP, SOX9, MSX1, and VEGFA; those down-regulated included BMP4 and EGF. This study has expanded our knowledge of the transcriptional profile of PDL cells and identified several new mechanoresponsive genes.
Collapse
Affiliation(s)
- D C Wescott
- Department of Oral Sciences, Faculty of Dentistry, University of Otago, PO Box 647, Dunedin, New Zealand
| | | | | | | | | | | |
Collapse
|
31
|
Nakao K, Goto T, Gunjigake KK, Konoo T, Kobayashi S, Yamaguchi K. Intermittent force induces high RANKL expression in human periodontal ligament cells. J Dent Res 2007; 86:623-8. [PMID: 17586708 DOI: 10.1177/154405910708600708] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Intermittent compressive force stimulates bone resorption in orthodontic treatment. This study examined the molecular mechanism in human periodontal ligament (PDL) cells stimulated by an intermittent force. PDL cells were subjected to compressive force (2.0 or 5.0 g/cm(2)) for 2-4 days. Continuous or intermittent force was applied all day or for 8 hrs per day, respectively. At days 3 and 4, cell damage was less with intermittent force than with continuous force. At day 4, RANKL and IL-1beta expressions were greater with intermittent force than with continuous force. An IL-1 receptor antagonist inhibited the compressive force-induced RANKL expression. These findings indicate that IL-1beta is an autocrine factor regulating compressive force-induced RANKL expression in PDL cells, and that intermittent force can effectively induce RANKL in PDL cells with less cell damage.
Collapse
Affiliation(s)
- K Nakao
- Division of Orofacial Functions and Orthodontics, Kyushu Dental College, Kitakyushu, Japan
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Mayahara K, Kobayashi Y, Takimoto K, Suzuki N, Mitsui N, Shimizu N. Aging stimulates cyclooxygenase-2 expression and prostaglandin E2 production in human periodontal ligament cells after the application of compressive force. J Periodontal Res 2007; 42:8-14. [PMID: 17214634 DOI: 10.1111/j.1600-0765.2006.00885.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Some clinical studies show that alveolar crestal bone loss is higher in adults than in young patients during orthodontic treatment, but the causes of such a phenomenon have not been elucidated. It is known that prostaglandin E2 (PGE2) is a proinflammatory agent and one of the potent osteoclast-inducing factors, and is produced by human periodontal ligament cells in response to orthodontic force. The aim of this study was to investigate age-related change in the biosynthetic capacity of PGE2 and its regulatory gene, cyclooxygenase 2 (COX-2) from periodontal ligament cells in response to mechanical stress. METHODS Compressive force of 2 g/cm2 was applied for 3-48 h to periodontal ligament cells obtained from human donors aged 9-50 years, and COX-2 mRNA expression in and PGE2 production by the periodontal ligament cells in response to the compressive force were examined. RESULTS Application of a compressive force of 2 g/cm2 for 3-48 h significantly stimulated these factors in both time- and age-dependent manners. Furthermore, these increases were dramatically larger in periodontal ligament cells obtained from donors over the age of 35. CONCLUSIONS Periodontal ligament cells obtained from old donors have significantly greater COX-2 expression and PGE2 production in response to compressive force than those from younger donors. The turning point of aging, where significantly larger amounts of theses factors begin production, appears to be around the age of 35. These results may be positively related to the acceleration of alveolar crestal bone loss during orthodontic treatment in adult patients.
Collapse
Affiliation(s)
- Kotoe Mayahara
- Department of Orthodontics, Dental Research Center, Nihon University School of Dentistry, Tokyo 101-8310, Japan
| | | | | | | | | | | |
Collapse
|
34
|
Youssef M, Ashkar S, Hamade E, Gutknecht N, Lampert F, Mir M. The effect of low-level laser therapy during orthodontic movement: a preliminary study. Lasers Med Sci 2007; 23:27-33. [PMID: 17361391 DOI: 10.1007/s10103-007-0449-7] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 01/22/2007] [Indexed: 01/11/2023]
Abstract
It has been emphasized that one of the most valuable treatment objectives in dental practice is to afford the patient a pain-free treatment. By the evolution of the laser applications, the dental committee aimed to achieve this goal without analgesic drugs and painful methods. Orthodontic treatment is one of these concerns, that one of the major components of patient to reject this treatment is the pain accompanied during the different treatment phases. Another great concern of the patient is not to get through prolonged periods of treatment. The aim of this study is to evaluate the effect of the low-level (GaAlAs) diode laser (809 nm, 100 mW) on the canine retraction during an orthodontic movement and to assess pain level during this treatment. A group of 15 adult patients with age ranging from 14 to 23 years attended the orthodontic department at Dental School, Damascus University. The treatment plan for these patients included extraction of the upper and lower first premolars because there was not enough space for a complete alignment or presence of biprotrusion. For each patient, this diagnosis was based on a standard orthodontic documentation with photographs, model casts, cephalometric, panorama, and superior premolar periapical radiographies. The orthodontic treatment was initiated 14 days after the premolar extraction with a standard 18 slot edgewise brackets [Rocky Mountain Company (RMO)]. The canine retraction was accomplished by using prefabricated Ricketts springs (RMO), in both upper and lower jaws. The right side of the upper and lower jaw was chosen to be irradiated with the laser, whereas the left side was considered the control without laser irradiation. The laser was applied with 0-, 3-, 7-, and 14-day intervals. The retraction spring was reactivated on day 21 for all sides. The amount of canine retraction was measured at this stage with a digital electronic caliper (Myoto, Japan) and compared each side of the relative jaw (i.e., upper left canine with upper right canine and lower left canine with lower right canine). The pain level was prompted by a patient questionnaire. The velocity of canine movement was significantly greater in the lased group than in the control group. The pain intensity was also at lower level in the lased group than in the control group throughout the retraction period. Our findings suggest that low-level laser therapy can highly accelerate tooth movement during orthodontic treatment and can also effectively reduce pain level.
Collapse
|
35
|
de Araujo RMS, Oba Y, Moriyama K. Identification of genes related to mechanical stress in human periodontal ligament cells using microarray analysis. J Periodontal Res 2007; 42:15-22. [PMID: 17214635 DOI: 10.1111/j.1600-0765.2006.00906.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND AND OBJECTIVE Differential expression of genes in human periodontal ligament (PDL) under mechanical stress, such as orthodontic force, is thought to be involved in the remodeling of PDL cells and periodontal tissues. However, little is known about the genes expressed in PDL cells under mechanical stress. MATERIAL AND METHODS We employed microarray analysis to assess, in a comprehensive manner, the gene expression profiles in PDL cells compressed by a static force using an in vitro three-dimensional culture system. Six genes were selected and validated by quantitative real-time polymerase chain reaction analysis, consistent with the microarray data. RESULTS The microarray data revealed that 108 of 30,000 genes tested were differentially expressed by mechanical force loading. Among them, 85 genes were up-regulated by mechanical stress, while 23 genes were down-regulated, judging by the thresholds of a two-fold increase/decrease compared with the controls. Thirty-two of the up-regulated and eight of the down-regulated genes, well-characterized in protein function, were involved in numerous biological processes including cell communication, cell signaling, cell cycle, stress response, and calcium release. However, several genes differentially expressed in our microarray data have not been well defined as stress-response molecules. CONCLUSION Our microarray is the first to show the gene profile in PDL cells caused by mechanical stress; however, further studies to clarify the physiological function of these molecules in PDL cells are required.
Collapse
Affiliation(s)
- R M S de Araujo
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan
| | | | | |
Collapse
|
36
|
Kanzaki H, Chiba M, Sato A, Miyagawa A, Arai K, Nukatsuka S, Mitani H. Cyclical tensile force on periodontal ligament cells inhibits osteoclastogenesis through OPG induction. J Dent Res 2006; 85:457-62. [PMID: 16632761 DOI: 10.1177/154405910608500512] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The periodontal ligament (PDL) maintains homeostasis of periodontal tissue under mechanical tensile-loading caused by mastication. Occlusal load inhibits atrophic alveolar bone resorption. Previously, we discovered that continuous compressive force on PDL cells induced osteoclastogenesis-supporting activity, with up-regulation of RANKL. We hypothesized that, unlike compression, cyclical tensile force up-regulates OPG expression in PDL cells via TGF-beta up-regulation, and does not induce osteoclastogenesis-supporting activity. PDL cells were mechanically stimulated by cyclical tensile force in vitro. The conditioned media of PDL cells that had been subjected to cyclical tensile force inhibited osteoclastogenesis. Cyclical tensile force up-regulated not only RANKL mRNA expression, but also OPG mRNA expression in PDL cells. Tensile force up-regulated TGF-beta expression in PDL cells as well. Administration of neutralizing antibodies to TGF-beta inhibited OPG up-regulation under cyclical tensile-force stimulation in a dose-dependent manner. Additionally, the osteoclastogenesis-inhibitory effect of the conditioned media of PDL cells under cyclical tensile force was partially rescued by the administration of TGF-beta neutralizing antibodies. In conclusion, tensile force inhibited the osteoclastogenesis-supporting activity of PDL cells by inducing the up-regulation of OPG via TGF-beta stimulation.
Collapse
Affiliation(s)
- H Kanzaki
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
Iwasaki LR, Crouch LD, Tutor A, Gibson S, Hukmani N, Marx DB, Nickel JC. Tooth movement and cytokines in gingival crevicular fluid and whole blood in growing and adult subjects. Am J Orthod Dentofacial Orthop 2005; 128:483-91. [PMID: 16214631 DOI: 10.1016/j.ajodo.2004.03.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2003] [Revised: 03/01/2004] [Accepted: 03/01/2004] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Tooth movement has been studied largely with respect to the force required for tipping when pressure distribution varies along the length of the periodontal ligament. But important factors for effective canine translation include the nature and magnitude of applied stress and the patient's cell biology. The purpose of this research was to test 3 hypotheses: (1) the velocity of tooth translation (v(t)) is related to applied stress and growth status, (2) a threshold of stress accounts for the lag phase, and (3) v(t) is correlated with the ratio (AI) of 2 cytokines (IL-1beta, IL-1RA) measured in gingival crevicular fluid (GCF) and stimulated whole blood (SWB). METHODS Continuous maxillary canine retraction stresses of 13 kPa and 4, 26, or 52 kPa were applied bilaterally in 6 growing and 4 adult subjects for 84 days. Dental models and GCF samples were collected at 1- to 14-day intervals. Cytokines were measured in GCF and SWB cell cultures. RESULTS V(t) was positively related to stress and was higher in growing subjects (P = .001). It was also related to AI(GCF) in growers (R2= 0.56) and nongrowers (R2= 0.72). Canines moved with 52 kPa showed a lag phase, and postlag phase AI(GCF) was twice that of lag phase AI(GCF). Mean v(t) and associated AI(GCF) during the postlag phase were nearly double the values for canines moved with 13 and 26 kPa. SWB production of cytokines was dose-dependent. For growing subjects, SWB IL-1RA was correlated with v(t) (R = 0.70-0.72), and AI(SWB) and IL-1beta concentrations were correlated with AI(GCF) (R = 0.73-0.78). CONCLUSIONS V(t) varied with growth status and stresses < or = 52 kPa; stresses of < 52 kPa showed no lag phase; and equivalent stresses yielded subject-dependent differences in v(t), which correlated with cytokines in GCF and SWB.
Collapse
Affiliation(s)
- Laura R Iwasaki
- Department of Oral Biology and Department of Growth and Development, University of Nebraska Medical Center, College of Dentistry, Lincoln, NE 68583-0755, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Ozaki S, Kaneko S, Podyma-Inoue KA, Yanagishita M, Soma K. Modulation of extracellular matrix synthesis and alkaline phosphatase activity of periodontal ligament cells by mechanical stress. J Periodontal Res 2005; 40:110-7. [PMID: 15733145 DOI: 10.1111/j.1600-0765.2004.00782.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Loss of occlusal function has been reported to induce atrophic changes in the periodontal ligament. It is likely that mechanical stress triggers the biological response of periodontal ligament. However, there have been few reports studying the correlation between mechanical stress of varying magnitude and periodontal ligament cell activities such as extracellular matrix (ECM) synthesis. OBJECTIVE The objective of this study is to clarify the influence of the mechanical stress on changes in mRNA expression levels of type I collagen and decorin genes, as well as alkaline phosphatase (ALP) activity in response to mechanical stress of varying magnitude. METHODS Bovine periodontal ligament cells were cultured on flexible-bottomed culture plates and placed on the BioFlex Loading Stations. Cells were elongated at 6 cycles/min (5 s on and 5 s off) at each of six levels of stretch (0.2, 1.0, 2.0, 3.0, 10, 18% increase in the surface area of the bottom) for 48 h. We measured mRNA expression levels of type I collagen and decorin genes using quantitative reverse transcription-polymerase chain reaction (RT-PCR), and ALP activity in periodontal ligament cell culture under cyclic mechanical stretching. RESULTS Mechanical tensional stress of low magnitude induced the increase of both type I collagen and decorin mRNA expression without changing ALP activity in periodontal ligament cells. Mechanical tensional stress of high magnitude induced the increase of type I collagen and decorin mRNA expression while decreasing ALP activity. CONCLUSION These results suggest that different magnitude of tensional force induces different responses from periodontal ligament cells, and that mechanical stress plays an important role in remodeling and functional regulation of periodontal ligament.
Collapse
Affiliation(s)
- S Ozaki
- Orthodontic Science, Department of Orofacial Development and Function, Division of Oral Health Sciences, Gradute School, Tokyo Medical and Dental University, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
39
|
Kubota Y, Yamashiro T, Oka S, Ninomiya T, Ogata S, Shirasuna K. Relation between size of odontogenic jaw cysts and the pressure of fluid within. Br J Oral Maxillofac Surg 2004; 42:391-5. [PMID: 15336763 DOI: 10.1016/j.bjoms.2004.02.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2004] [Indexed: 11/17/2022]
Abstract
Intracystic fluid pressure may have a crucial role in the growth of odontogenic jaw cysts. In this study, we investigated the relation between the size of the cyst and the pressure of the fluid within odontogenic keratocysts, dentigerous cysts, and radicular cysts. The radiolucent area of the cyst on a panoramic radiograph was linearly related to the volume in the cavity, and the correlation coefficient (gamma) was 0.70 (n = 25, P < 0.001). Intracystic fluid pressure correlated negatively with the radiolucent area in odontogenic keratocysts (gamma = -0.76, n = 9, P = 0.02), dentigerous cysts (gamma = -0.54, n = 16, P = 0.03), and radicular cysts (gamma = -0.69, n = 10, P = 0.03). The values of [(intracystic fluid pressure (mmHg)) x (radiolucent area (cm(2)))] did not differ significantly among the three types of cyst. Intracystic fluid pressure may therefore be negatively related to the size of all three types of cyst.
Collapse
Affiliation(s)
- Y Kubota
- Department of Oral and Maxillofacial Surgery, Graduate School of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 2004; 84:649-98. [PMID: 15044685 DOI: 10.1152/physrev.00031.2003] [Citation(s) in RCA: 997] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM), and especially the connective tissue with its collagen, links tissues of the body together and plays an important role in the force transmission and tissue structure maintenance especially in tendons, ligaments, bone, and muscle. The ECM turnover is influenced by physical activity, and both collagen synthesis and degrading metalloprotease enzymes increase with mechanical loading. Both transcription and posttranslational modifications, as well as local and systemic release of growth factors, are enhanced following exercise. For tendons, metabolic activity, circulatory responses, and collagen turnover are demonstrated to be more pronounced in humans than hitherto thought. Conversely, inactivity markedly decreases collagen turnover in both tendon and muscle. Chronic loading in the form of physical training leads both to increased collagen turnover as well as, dependent on the type of collagen in question, some degree of net collagen synthesis. These changes will modify the mechanical properties and the viscoelastic characteristics of the tissue, decrease its stress, and likely make it more load resistant. Cross-linking in connective tissue involves an intimate, enzymatical interplay between collagen synthesis and ECM proteoglycan components during growth and maturation and influences the collagen-derived functional properties of the tissue. With aging, glycation contributes to additional cross-linking which modifies tissue stiffness. Physiological signaling pathways from mechanical loading to changes in ECM most likely involve feedback signaling that results in rapid alterations in the mechanical properties of the ECM. In developing skeletal muscle, an important interplay between muscle cells and the ECM is present, and some evidence from adult human muscle suggests common signaling pathways to stimulate contractile and ECM components. Unaccostumed overloading responses suggest an important role of ECM in the adaptation of myofibrillar structures in adult muscle. Development of overuse injury in tendons involve morphological and biochemical changes including altered collagen typing and fibril size, hypervascularization zones, accumulation of nociceptive substances, and impaired collagen degradation activity. Counteracting these phenomena requires adjusted loading rather than absence of loading in the form of immobilization. Full understanding of these physiological processes will provide the physiological basis for understanding of tissue overloading and injury seen in both tendons and muscle with repetitive work and leisure time physical activity.
Collapse
Affiliation(s)
- Michael Kjaer
- Sports Medicine Research Unit, Department of Rheumatology, Copenhagen University Hospital at Bispebjerg, 23 Bispebjerg Bakke, DK-2400 Copenhagen NV, Denmark.
| |
Collapse
|
41
|
Tsuzaki M, Bynum D, Almekinders L, Yang X, Faber J, Banes AJ. ATP modulates load-inducible IL-1beta, COX 2, and MMP-3 gene expression in human tendon cells. J Cell Biochem 2003; 89:556-62. [PMID: 12761889 DOI: 10.1002/jcb.10534] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tendon cells receive mechanical signals from the load bearing matrices. The response to mechanical stimulation is crucial for tendon function. However, overloading tendon cells may deteriorate extracellular matrix integrity by activating intrinsic factors such as matrix metalloproteinases (MMPs) that trigger matrix destruction. We hypothesized that mechanical loading might induce interleukin-1beta (IL-1beta) in tendon cells, which can induce MMPs, and that extracellular ATP might inhibit the load-inducible gene expression. Human tendon cells isolated from flexor digitorum profundus tendons (FDPs) of four patients were made quiescent and treated with ATP (10 or 100 microM) for 5 min, then stretched equibiaxially (1 Hz, 3.5% elongation) for 2 h followed by an 18-h-rest period. Stretching induced IL-1beta, cyclooxygenase 2 (COX 2), and MMP-3 genes but not MMP-1. ATP reduced the load-inducible gene expression but had no effect alone. A medium change caused tendon cells to secrete ATP into the medium, as did exogenous UTP. The data demonstrate that mechanical loading induces ATP release in tendon cells and stimulates expression of IL-1beta, COX 2, and MMP-3. Load-induced endogenous IL-1beta may trigger matrix remodeling or a more destructive pathway(s) involving IL-1beta, COX 2, and MMP-3. Concomitant autocrine and paracrine release of ATP may serve as a negative feedback mechanism to limit activation of such an injurious pathway. Attenuation or failure of this negative feedback mechanism may result in the progression to tendinosis.
Collapse
Affiliation(s)
- M Tsuzaki
- Department of Orthopaedics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Ninomiya T, Kubota Y, Koji T, Shirasuna K. Marsupialization inhibits interleukin-1α expression and epithelial cell proliferation in odontogenic keratocysts. J Oral Pathol Med 2002; 31:526-33. [PMID: 12269991 DOI: 10.1034/j.1600-0714.2002.00029.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Marsupialization results in the reduction of odontogenic cyst size. Interleukin-1alpha (IL-1alpha) is thought to play a crucial role for the expansion of odontogenic keratocysts. The aim of this study was to investigate the effects of marsupialization on the expression of IL-1alpha and on the proliferating activity of a lining epithelium in odontogenic keratocysts. METHODS The concentrations of IL-1alpha, interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-alpha) in the intracystic fluids of odontogenic keratocysts were measured by the enzyme-linked immunosorbent assay (ELISA). The expression of IL-1alpha mRNA in odontogenic keratocysts was measured before and after marsupialization by in situ hybridization. The expression of IL-1alpha and epithelial cell-proliferating activities in odontogenic keratocysts were also measured by immunohistochemistry using antibodies for human IL-1alpha and Ki-67 antigen, respectively. RESULTS The intracystic fluid levels of IL-1alpha were significantly higher than those of IL-6 and TNF-alpha in odontogenic keratocysts. In situ hybridization and immunohistochemistry showed that strong expression of IL-1alpha mRNA and protein was mainly detected in the epithelial cells of odontogenic keratocysts. After marsupialization, the signal intensities for IL-1alpha mRNA and protein were significantly decreased. In addition, the Ki-67 labeling index of the epithelial cells was decreased proportionally with the grade of IL-1alpha mRNA expression after the marsupialization. CONCLUSION Our findings suggest that marsupialization may reduce the size of odontogenic keratocyst by inhibiting IL-1alpha expression and the epithelial cell proliferation.
Collapse
Affiliation(s)
- Tomohiro Ninomiya
- Department of Oral and Maxillofacial Surgery, Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
43
|
Long P, Liu F, Piesco NP, Kapur R, Agarwal S. Signaling by mechanical strain involves transcriptional regulation of proinflammatory genes in human periodontal ligament cells in vitro. Bone 2002; 30:547-52. [PMID: 11934644 PMCID: PMC4948986 DOI: 10.1016/s8756-3282(02)00673-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Intracellular signals generated by mechanical strain profoundly affect the metabolic function of osteoblast-like periodontal ligament (PDL) cells, which reside between the tooth and alveolar bone. In response to applied mechanical forces, PDL cells synthesize bone-resorptive cytokines to induce bone resorption at sites exposed to compressive forces and deposit bone at sites exposed to tensile forces in an environment primed for catabolic processes. The intracellular mechanisms that regulate this bone remodeling remain unclear. Here, in an in vitro model system, we show that tensile strain is a critical determinant of PDL-cell metabolic functions. Equibiaxial tensile strain (TENS), when applied at low magnitudes, acts as a potent antagonist of interleukin (IL)-1beta actions and suppresses transcriptional regulation of multiple proinflammatory genes. This is evidenced by the fact that TENS at low magnitude: (i) inhibits recombinant human (rh)IL-1beta-dependent induction of cyclooxygenase-2 (COX-2) mRNA expression and production of prostaglandin estradiol (PGE2); (ii) inhibits rhIL-1beta-dependent induction matrix metalloproteinase-1 (MMP-1) and MMP-3 synthesis by suppressing their mRNA expression; (iii) abrogates rhIL-1beta-induced suppression of tissue inhibitor of metalloprotease-II (TIMP-II) expression; and (iv) reverses IL-1beta-dependent suppression of osteocalcin and alkaline phosphatase synthesis. Nevertheless, these actions of TENS were observed only in the presence of IL-1beta, as TENS alone failed to affect any of the aforementioned responses. The present findings are the first to show that intracellular signals generated by low-magnitude mechanical strain interfere with one or more critical step(s) in the signal transduction cascade of rhIL-1beta upstream of mRNA expression, while concurrently promoting the expression of osteogenic proteins in PDL cells.
Collapse
Affiliation(s)
- P Long
- Department of Oral Medicine and Pathology, University of Pittsburgh, Pittsburgh, PA 15261-1964, USA
| | | | | | | | | |
Collapse
|
44
|
Abstract
The objective of this work was to assess the response of tendon to chronic repetitive loading. Controlled muscle stimulation was used to load the rabbit Achilles tendon at a frequency of 1.25 Hz for two hours per day, three days per week for a period of 11 weeks. Average peak tendon force was 26 N during the protocol. The loading protocol did not modify the gross morphology of the tissue, nor its water content or cellularity. Increases in mRNA expression of collagen Type III and MMPs were observed, but no signs of injury were detected by histologic examination of tendon and paratenon structures. The lack of a detectable injury response suggests that the tendons were not loaded beyond their capacity for repair. Factors additional to mechanical loading such as aging, illness or stress may be necessary to produce pathology.
Collapse
Affiliation(s)
- J M Archambault
- Human Performance Laboratory, University of Calgary, 2500 University Drive N.W., Calgary, AB, Canada
| | | | | |
Collapse
|
45
|
Kanzaki H, Chiba M, Shimizu Y, Mitani H. Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 2002; 17:210-20. [PMID: 11811551 DOI: 10.1359/jbmr.2002.17.2.210] [Citation(s) in RCA: 396] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Previously, we discovered that periodontal ligament (PDL) cells not only support osteoclastogenesis through cell-to-cell contact, but also inhibit the formation of tartrate-resistant acid phosphatase-positive (TRAP+) multinucleated cells by a producing soluble factor(s). Furthermore, PDL cells express both receptor activator of nuclear factor kappaB ligand (RANKL) and osteoprotegerin (OPG) messenger RNA (mRNA). Clinically, "ankylosed teeth," which lack periodontal ligament, cannot be moved with orthodontic tooth treatment. From this, we hypothesized that PDL cells under mechanical stress should play a pivotal role in osteoclast formation during orthodontic tooth movement. This study examined how mechanical stress affects the osteoclastogenesis-supporting activity of PDL cells. PDL cells were compressed continuously and then cocultured with peripheral blood mononuclear cells (PBMCs) for 4 weeks. PDL cells under mechanical stress up-regulated osteoclastogenesis from PBMCs. Furthermore, the expression of RANKL mRNA and protein in PDL cells increased with compressive force in parallel with the change in the number of osteoclasts. In addition, cyclo-oxygenase 2 (COX-2) mRNA expression was induced by compressive force, and indomethacin inhibited the RANKL up-regulation resulting from compressive force. PDL cells under compressive force exhibited significantly increased prostaglandin E2 (PGE2) production in comparison with control PDL cells. Exogenous PGE2 treatment increased RANKL mRNA expression in PDL cells. Interestingly, OPG expression remained constant throughout compressive force or PGE2 treatment. In conclusion, compressive force up-regulated RANKL expression in PDL cells. Furthermore, RANKL up-regulation in mechanically stressed PDL cells was dependent on PGE2.
Collapse
Affiliation(s)
- Hiroyuki Kanzaki
- Department of Life-Long Oral Health Science, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
46
|
Long P, Hu J, Piesco N, Buckley M, Agarwal S. Low magnitude of tensile strain inhibits IL-1beta-dependent induction of pro-inflammatory cytokines and induces synthesis of IL-10 in human periodontal ligament cells in vitro. J Dent Res 2001; 80:1416-20. [PMID: 11437211 PMCID: PMC4967412 DOI: 10.1177/00220345010800050601] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Applied mechanical loading induces inflammation in the periodontal ligament (PDL). However, the mechanisms involved in bone deposition at tension sites in an inflammatory environment are not clear. Here, in an in vitro model system, we show that equibiaxial tensile strain of low magnitude (TENS) provokes potent anti-inflammatory signals in PDL cells. TENS inhibits IL-1beta-induced synthesis of IL-1beta, IL-6, and IL-8 by inhibiting their mRNA expression, and thus significantly suppresses the amplification of IL-1beta-induced inflammatory responses in PDL cells. Additionally, as an anti-inflammatory signal, TENS induces IL-10 synthesis in the presence and absence of IL-1beta. These observations are the first to demonstrate that TENS antagonizes IL-1beta actions on PDL cells by (i) inhibiting IL-1beta-induced transcriptional regulation of proinflammatory cytokines, and (ii) inducing synthesis of IL-10, which may post-transcriptionally suppress the synthesis of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- P. Long
- Department of Oral Medicine and Pathology, 589 Salk Hall, University of Pittsburgh School of Dental Medicine, 3501 Terrace Street, Pittsburgh, PA 15261-1964
| | - J. Hu
- Department of Oral and Maxillofacial Surgery, University of Pittsburgh School of Dental Medicine, 3501 Terrace Street, Pittsburgh, PA 15261-1964
| | - N. Piesco
- Department of Oral Medicine and Pathology, 589 Salk Hall, University of Pittsburgh School of Dental Medicine, 3501 Terrace Street, Pittsburgh, PA 15261-1964
| | - M. Buckley
- Department of Oral and Maxillofacial Surgery, University of Pittsburgh School of Dental Medicine, 3501 Terrace Street, Pittsburgh, PA 15261-1964
| | - S. Agarwal
- Department of Oral Medicine and Pathology, 589 Salk Hall, University of Pittsburgh School of Dental Medicine, 3501 Terrace Street, Pittsburgh, PA 15261-1964
| |
Collapse
|
47
|
Iwasaki LR, Haack JE, Nickel JC, Reinhardt RA, Petro TM. Human interleukin-1 beta and interleukin-1 receptor antagonist secretion and velocity of tooth movement. Arch Oral Biol 2001; 46:185-9. [PMID: 11163326 DOI: 10.1016/s0003-9969(00)00088-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The cytokines interleukin-1 beta (IL-1 beta) and IL-1 receptor antagonist (IL-1RA) probably play a part in orthodontic tooth movement. Here, the force magnitudes and the area of force application in the compressed periodontal ligament (PDL) were controlled and the velocity of tooth movement correlated with concentrations of IL-1 beta and IL-1RA in the gingival crevicular fluid (GCF). Seven individuals undergoing orthodontic treatment involving maxillary first premolar extractions and distal movement (bodily retraction) of the maxillary canines participated in the 84-day study. For each participant, continuous retraction forces were applied so that they received equivalent PDL stresses of 13 kPa for one canine and 4 kPa for the other. GCF cytokine concentrations from experimental and control teeth were expressed relative to total protein in the GCF and compared using an 'Activity Index' (AI)=Experimental (IL-1 beta/IL-1RA)/Control (IL-1 beta/IL-1RA). The results showed that the velocity of tooth movement in an individual was related to their AI. The correlation between AI and tooth movement was stronger from the distal (R(d)=0.78) than from the mesial (R(m)=0.65) of retracted teeth. The results demonstrate that equivalent force systems produce individual differences in cytokine production, which correlate with interindividual differences in the velocity of canine retraction.
Collapse
Affiliation(s)
- L R Iwasaki
- Department of Growth and Development, College of Dentistry, University of Nebraska Medical Center, P.O. Box 830740, Lincoln, NE 68583-0755, USA.
| | | | | | | | | |
Collapse
|
48
|
Shiraishi C, Hara Y, Abe Y, Ukai T, Kato I. A histopathological study of the role of periodontal ligament tissue in root resorption in the rat. Arch Oral Biol 2001; 46:99-107. [PMID: 11163317 DOI: 10.1016/s0003-9969(00)00112-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Whether periodontal ligament (PDL) tissue is capable of inducing root resorption was examined. The distal root of the rat molar was sectioned at the furcation and the PDL tissue removed from the root (non-PDL group, n=40). The distal root with the PDL intact was also prepared (PDL-intact group, n=40). The roots were transplanted into the dorsal skin of the rat. On the 1st, 3rd, 5th, 7th, 10th, 14th, 21st or 28th day after transplantation, the roots were removed together with surrounding dorsal subcutaneous tissue and were fixed, demineralized and embedded in paraffin. Serial sections from each block were stained with haematoxylin and eosin or by the tartrate-resistant acid phosphatase (TRAP) method to observe root-resorbing cell formation. Cyclo-oxygenase-2 (COX2) was also detected immunohistologically to examine prostaglandin E(2) production. On the 7th day after transplantation, multinucleated root-resorbing cells with TRAP were observed in the PDL-intact group. The number of TRAP-positive cells peaked on the 10th day after transplantation. COX2-positive cells were observed in PDL during the early experimental stages. No root resorption was seen in the non-PDL group. These results suggest that PDL tissue is involved in the formation of root-resorbing cells and root resorption.
Collapse
Affiliation(s)
- C Shiraishi
- Department of Periodontology, Nagasaki University School of Dentistry, 1-7-1 Sakamoto, Nagasaki, 852 8588, Japan
| | | | | | | | | |
Collapse
|
49
|
Shimizu N, Yamaguchi M, Uesu K, Goseki T, Abiko Y. Stimulation of prostaglandin E2 and interleukin-1beta production from old rat periodontal ligament cells subjected to mechanical stress. J Gerontol A Biol Sci Med Sci 2000; 55:B489-95. [PMID: 11034222 DOI: 10.1093/gerona/55.10.b489] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although the severity of periodontal disease is known to be affected by the age of the host, the pathological role of aging in periodontal disease, especially that attributable to trauma from occlusion, has not been well characterized. Prostaglandin (PG)E2 and interleukin (IL)-1beta are key mediators involved in periodontal diseases, potent stimulators of bone resorption, and are produced by human periodontal ligament (PDL) cells in response to mechanical stress. To investigate age-related changes in the biosynthetic capacity of PGE2 and IL-1beta in PDL cells, we examined the effects of in vivo aging with mechanical tension on PGE2 and IL-1beta expression by rat PDL cells. PDL cells obtained from the incisors of 6-week (young) and 60-week (old) rats were cultured on flexible-bottomed culture plates. The cells were deformed by causing a 9% or 18% increase in surface area at 6 cycles per minute for 1 to 5 days. We found an approximately twofold increase in PGE2 and IL-1beta production by old PDL cells subjected to mechanical tension compared with that by young cells, although the constitutive levels were similar in both. The expression of cyclooxygenase (COX)-2 and IL-1beta mRNA (messenger ribonucleic acid) was enhanced by mechanical tension as determined by use of reverse transcription-polymerase chain reaction (RT-PCR), whereas COX-1 and IL-1beta-converting enzyme mRNA remained unchanged. It is possible that the large amount of PGE2 and IL-1beta produced by PDL cells from an aged host in response to mechanical force may be positively related to the acceleration of alveolar bone resorption.
Collapse
Affiliation(s)
- N Shimizu
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Japan.
| | | | | | | | | |
Collapse
|
50
|
Ozawa Y, Shimizu N, Abiko Y. Low-energy diode laser irradiation reduced plasminogen activator activity in human periodontal ligament cells. Lasers Surg Med 2000; 21:456-63. [PMID: 9365956 DOI: 10.1002/(sici)1096-9101(1997)21:5<456::aid-lsm7>3.0.co;2-p] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE The plasminogen activator (PA)-plasmin proteolytic system is implicated in the degradation of the extracellular matrix in inflammation. Since human periodontal ligament (PDL) cells produced high PA activity in response to mechanical stress, excessive mechanical stress to PDL cells such as occlusal trauma may induce collagen breakdown through activation of the PA-plasmin system. As low-energy laser irradiation has anti-inflammatory effects, we examined the effects of low-energy laser irradiation on the PA-plasmin system in stretched PDL cells in vitro. STUDY DESIGN/MATERIALS AND METHODS Human PDL cells obtained from healthy premolars were mechanically stretched and Ga-Al-As low-energy laser was irradiated (830 nm, 3.95 to 7.90 J/cm2) to the stretched cells. RESULTS PDL cells showed a marked elevation in PA activity in response to stretching, which was significantly inhibited by a laser irradiation in a dose-dependent manner (55-86%, p < 0.001). This effect could involve transcriptional events of tissue type (t) PA gene. CONCLUSION These results suggests that laser irradiation may reduce collagen breakdown around the PDL associated with traumatic occlusion.
Collapse
Affiliation(s)
- Y Ozawa
- Department of Orthodontics, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | |
Collapse
|