1
|
Zeng WJ, Liu JR, Ouyang XY, Zhao QQ, Liu WY, Lv PY, Zhang SN, Zhong JS. The expression levels of chemotaxis-related molecules CXC chemokine receptor 1, interleukin-8, and pro-platelet basic protein in gingival tissues. J Dent Sci 2024; 19:58-63. [PMID: 38303873 PMCID: PMC10829633 DOI: 10.1016/j.jds.2023.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 05/25/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Excessive host immune response is thought to be an important cause of periodontal tissue damage during periodontitis. The potent chemotaxis produced by locally released chemokines is the key signal to trigger this response. Here, we aimed to investigate the expression of CXC chemokine receptor 1 (CXCR1), and chemokines interleukin-8 (IL-8) and pro-platelet basic protein (PPBP) in human inflammatory gingival tissues compared with healthy tissues. Materials and methods A total of 54 human gingival tissues, 27 healthy and 27 inflammatory samples, were collected. Fifteen specimens of each group were employed for quantitative reverse transcription polymerase chain reaction to determine the mRNA levels of CXCR1, IL-8, and PPBP. Six samples of each group were used for Western blotting to investigate the protein expression of CXCR1 and for enzyme-linked immunosorbent assay to evaluate the protein levels of IL-8 and PPBP, respectively. Results The mRNA levels of chemokine receptor CXCR1, chemokine IL-8, and PPBP in inflammatory gingival tissues were significantly higher than those in healthy controls (P < 0.05). The protein levels of CXCR1, IL-8, and PPBP in inflammatory gingival tissues were also significantly higher than those in healthy gingival tissues (P < 0.05). Conclusion When compared to healthy gingival tissues, the expression of CXCR1, IL-8, and PPBP in inflammatory gingival tissues is higher.
Collapse
Affiliation(s)
| | | | - Xiang-Ying Ouyang
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Quan-Quan Zhao
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Wen-Yi Liu
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Pei-Ying Lv
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Sheng-Nan Zhang
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| | - Jin-Sheng Zhong
- Department of Periodontology, Peking University School and Hospital of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentisitry Minisrty of Health, Beijing, China
| |
Collapse
|
2
|
Bourbour S, Darbandi A, Bostanghadiri N, Ghanavati R, Taheri B, Bahador A. Effects of Antimicrobial Photosensitizers of Photodynamic Therapy (PDT) to Treat Periodontitis. Curr Pharm Biotechnol 2024; 25:1209-1229. [PMID: 37475551 DOI: 10.2174/1389201024666230720104516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Antimicrobial photodynamic therapy or aPDT is an alternative therapeutic approach in which lasers and different photosensitizing agents are used to eradicate periodontopathic bacteria in periodontitis. Periodontitis is a localized infectious disease caused by periodontopathic bacteria and can destroy bones and tissues surrounding and supporting the teeth. The aPDT system has been shown by in vitro studies to have high bactericidal efficacy. It was demonstrated that aPDT has low local toxicity, can speed up dental therapy, and is cost-effective. Several photosensitizers (PSs) are available for each type of light source which did not induce any damage to the patient and are safe. In recent years, significant advances have been made in aPDT as a non-invasive treatment method, especially in treating infections and cancers. Besides, aPDT can be perfectly combined with other treatments. Hence, this survey focused on the effectiveness and mechanism of aPDT of periodontitis by using lasers and the most frequently used antimicrobial PSs such as methylene blue (MB), toluidine blue ortho (TBO), indocyanine green (ICG), malachite green (MG) (Triarylmethanes), erythrosine dyes (ERY) (Xanthenes dyes), rose bengal (RB) (Xanthenes dyes), eosin-Y (Xanthenes dyes), radachlorin group and curcumin. The aPDT with these PSs can reduce pathogenic bacterial loads in periodontitis. Therefore, it is clear that there is a bright future for using aPDT to fight microorganisms causing periodontitis.
Collapse
Affiliation(s)
- Samaneh Bourbour
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Darbandi
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghanavati
- Department of Microbiology, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Behrouz Taheri
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Albuquerque-Souza E, Ishikawa KH, Amado PP, Nicoli JR, Holzhausen M, Mayer MPA. Probiotics improve re-epithelialization of scratches infected by Porphyromonas gingivalis through up-regulating CXCL8-CXCR1/CXCR2 axis. Anaerobe 2021; 72:102458. [PMID: 34547426 DOI: 10.1016/j.anaerobe.2021.102458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Porphyromonas gingivalis inhibits the release of CXCL8 by gingival epithelial cells and reduces their proliferation. We previously reported that Bifidocaterium sp. and Lactobacillus sp. immunomodulate gingival epithelial cells response to this periodontal pathogen, but their effects on re-epithelialization properties are still unknown. Herein we explored these activities of potential probiotics on gingival epithelial cells and clarified their mechanisms. The immortalized OBA-9 lineage was used to perform in vitro scratches. Twelve clinical isolates and commercially available strains of Bifidobacterium sp. and Lactobacillus sp. were screened. L. casei 324 m and B. pseudolongum 1191A were selected to perform mechanistic assays with P. gingivalis W83 infection and the following parameters were measured: percentage of re-epithelialization by DAPI immunofluorescence area measurement; cell number by Trypan Blue exclusion assay; CXCL8 regulation by ELISA and RT-qPCR; and expression of CXCL8 cognate receptors-CXCR1 and CXCR2 by Flow Cytometry. Complementary mechanistic assays were performed with CXCL8, in the presence or absence of the CXCR1/CXCR2 inhibitor-reparixin. L. casei 324 m and B. pseudolongum 1191A enhanced re-epithelialization/cell proliferation as well as inhibited the harmful effects of P. gingivalis W83 on these activities through an increase in the expression and release of CXCL8 and in the number of cells positive for CXCR1/CXCR2. Further, we revealed that the beneficial effects of these potential probiotics were dependent on activation of the CXCL8-CXCR1/CXCR2 axis. The current findings indicate that these potential probiotics strains may improve wound healing in the context of the periodontal tissues by a CXCL8 dependent mechanism.
Collapse
Affiliation(s)
- Emmanuel Albuquerque-Souza
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, SP, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Karin Hitomi Ishikawa
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, SP, Brazil
| | - Pâmela Penas Amado
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil
| | - Jacques Robert Nicoli
- Department of Microbiology, Biological Science Institute, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marinella Holzhausen
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, SP, Brazil
| | - Marcia P A Mayer
- Division of Periodontics, Department of Stomatology, School of Dentistry, University of São Paulo, SP, Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Ali M, Yang F, Plachokova AS, Jansen JA, Walboomers XF. Application of specialized pro-resolving mediators in periodontitis and peri-implantitis: a review. Eur J Oral Sci 2021; 129:e12759. [PMID: 33565133 PMCID: PMC7986752 DOI: 10.1111/eos.12759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Scaling and root planning is a key element in the mechanical therapy used for the eradication of biofilm, which is the major etiological factor for periodontitis and peri‐implantitis. However, periodontitis is also a host mediated disease, therefore, removal of the biofilm without adjunctive therapy may not achieve the desired clinical outcome due to persistent activation of the innate and adaptive immune cells. Most recently, even the resident cells of the periodontium, including periodontal ligament fibroblasts, have been shown to produce several inflammatory factors in response to bacterial challenge. With increased understanding of the pathophysiology of periodontitis, more research is focusing on opposing excessive inflammation with specialized pro‐resolving mediators (SPMs). This review article covers the major limitations of current standards of care for periodontitis and peri‐implantitis, and it highlights recent advances and prospects of SPMs in the context of tissue reconstruction and regeneration. Here, we focus primarily on the role of SPMs in restoring tissue homeostasis after periodontal infection.
Collapse
Affiliation(s)
- Muhanad Ali
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fang Yang
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Adelina S Plachokova
- Department of Dentistry, Implantology and Periodontology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - John A Jansen
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| | - X Frank Walboomers
- Department of Dentistry, Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Carrouel F, Viennot S, Santamaria J, Veber P, Bourgeois D. Quantitative Molecular Detection of 19 Major Pathogens in the Interdental Biofilm of Periodontally Healthy Young Adults. Front Microbiol 2016; 7:840. [PMID: 27313576 PMCID: PMC4889612 DOI: 10.3389/fmicb.2016.00840] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022] Open
Abstract
In oral health, the interdental spaces are a real ecological niche for which the body has few or no alternative defenses and where the traditional daily methods for control by disrupting biofilm are not adequate. The interdental spaces are the source of many hypotheses regarding their potential associations with and/or causes of cardiovascular disease, diabetes, chronic kidney disease, degenerative disease, and depression. This PCR study is the first to describe the interdental microbiota in healthy adults aged 18–35 years-old with reference to the Socransky complexes. The complexes tended to reflect microbial succession events in developing dental biofilms. Early colonizers included members of the yellow, green, and purple complexes. The orange complex bacteria generally appear after the early colonizers and include many putative periodontal pathogens, such as Fusobacterium nucleatum. The red complex (Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola) was considered the climax community and is on the list of putative periodontal pathogens. The 19 major periodontal pathogens tested were expressed at various levels. F. nucleatum was the most abundant species, and the least abundant were Actinomyces viscosus, P. gingivalis, and Aggregatibacter actinomycetemcomitans. The genome counts for Eikenella corrodens, Campylobacter concisus, Campylobacter rectus, T. denticola, and Tannerella forsythensis increased significantly with subject age. The study highlights the observation that bacteria from the yellow complex (Streptococcus spp., S. mitis), the green complex (E. corrodens, Campylobacter gracilis, Capnocytophaga ochracea, Capnocytophaga sputigena, A. actinomycetemcomitans), the purple complex (Veillonella parvula, Actinomyces odontolyticus) and the blue complex (A. viscosus) are correlated. Concerning the orange complex, F. nucleatum is the most abundant species in interdental biofilm. The red complex, which is recognized as the most important pathogen in adult periodontal disease, represents 8.08% of the 19 bacteria analyzed. P. gingivalis was detected in 19% of healthy subjects and represents 0.02% of the interdental biofilm. T. forsythensis and T. denticola (0.02 and 0.04% of the interdental biofilm) were detected in 93 and 49% of healthy subjects, respectively. The effective presence of periodontal pathogens is a strong indicator of the need to develop new methods for disrupting interdental biofilm in daily oral hygiene.
Collapse
Affiliation(s)
- Florence Carrouel
- Institute of Functional Genomics of Lyon, UMR CNRS 5242, Ecole Normale Supérieure de Lyon, University Lyon 1, Lyon France
| | - Stéphane Viennot
- Laboratory "Health, Individual, Society" EA4129, University Lyon 1, Lyon France
| | - Julie Santamaria
- Department of Prevention and Public Health, Faculty of Dentistry, University Lyon 1, Lyon France
| | - Philippe Veber
- Laboratory "Biométrie et Biologie Évolutive", UMR CNRS 5558 - LBBE, University Lyon 1, Villeurbanne France
| | - Denis Bourgeois
- Laboratory "Health, Individual, Society" EA4129, University Lyon 1, Lyon France
| |
Collapse
|
6
|
Kumari M, Pradeep AR, Priyanka N, Kalra N, Naik SB. Crevicular and serum levels of monocyte chemoattractant protein-4 and high-sensitivity C-reactive protein in periodontal health and disease. Arch Oral Biol 2014; 59:645-53. [DOI: 10.1016/j.archoralbio.2014.03.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 03/19/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
7
|
Zeng Z, Shaffer J, Wang X, Feingold E, Weeks D, Lee M, Cuenco K, Wendell S, Weyant R, Crout R, McNeil D, Marazita M. Genome-wide association studies of pit-and-fissure- and smooth-surface caries in permanent dentition. J Dent Res 2013; 92:432-7. [PMID: 23470693 PMCID: PMC3627505 DOI: 10.1177/0022034513481976] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 02/01/2013] [Accepted: 02/16/2013] [Indexed: 11/16/2022] Open
Abstract
While genetics clearly influences dental caries risk, few caries genes have been discovered and validated. Recent studies have suggested differential genetic factors for primary dentition caries and permanent dentition caries, as well as for pit-and-fissure- (PF) and smooth- (SM) surface caries. We performed separate GWAS for caries in permanent-dentition PF surfaces (1,017 participants, adjusted for age, sex, and the presence of Streptococcus mutans) and SM surfaces (1,004 participants, adjusted for age, education group, and the presence of Streptococcus mutans) in self-reported whites (ages 14 to 56 yrs). Caries scores were derived based on visual assessment of each surface of each tooth; more than 1.2 million SNPs were either successfully genotyped or imputed and were tested for association. Two homologous genes were suggestively associated: BCOR (Xp11.4) in PF-surface caries (p value = 1.8E-7), and BCORL1 (Xq26.1) in SM-surface caries (p value = 1.0E-5). BCOR mutations cause oculofaciocardiodental syndrome, a Mendelian disease involving multiple dental anomalies. Associations of other plausible cariogenesis genes were also observed for PF-surface caries (e.g., INHBA, p value = 6.5E-6) and for SM-surface caries (e.g., CXCR1 and CXCR2, p value = 1.9E-6). This study supports the notion that genes differentially affect cariogenesis across the surfaces of the permanent dentition, and nominates several novel genes for investigation.
Collapse
Affiliation(s)
- Z. Zeng
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - J.R. Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - X. Wang
- Center for Craniofacial & Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - E. Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - D.E. Weeks
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M. Lee
- Center for Craniofacial & Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - K.T. Cuenco
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial & Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - S.K. Wendell
- Center for Craniofacial & Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - R.J. Weyant
- Department of Dental Public Health and Information Management, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - R. Crout
- Department of Periodontics, School of Dentistry, West Virginia University, Morgantown, WV, USA
| | - D.W. McNeil
- Dental Practice and Rural Health, West Virginia University, Morgantown, WV, USA
| | - M.L. Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial & Dental Genetics, Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Clinical and Translational Science, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Berglundh T, Zitzmann NU, Donati M. Are peri-implantitis lesions different from periodontitis lesions? J Clin Periodontol 2011; 38 Suppl 11:188-202. [PMID: 21323715 DOI: 10.1111/j.1600-051x.2010.01672.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To compare histopathological characteristics of peri-implantitis and periodontitis lesions. METHODS A search was conducted on publications up to July 2010. Studies carried out on human biopsy material and animal experiments were considered. RESULTS While comprehensive information exists regarding histopathological characteristics of human periodontitis lesions, few studies evaluated peri-implantitis lesions in human biopsy material. Experimental peri-implantitis lesions were evaluated in 10 studies and three of the studies included comparisons to experimental periodontitis. Human biopsy material: the apical extension of the inflammatory cell infiltrate (ICT) was more pronounced in peri-implantitis than in periodontitis and was in most cases located apical of the pocket epithelium. Plasma cells and lymphocytes dominated among cells in both types of lesions, whereas neutrophil granulocytes and macrophages occurred in larger proportions in peri-implantitis. EXPERIMENTAL STUDIES placement of ligatures together with plaque formation resulted in loss of supporting tissues and large ICTs around implants and teeth. Following ligature removal, a "self-limiting" process occurred in the tissues around teeth with a connective tissue capsule that separated the ICT from bone, while in peri-implant tissues the ICT extended to the bone crest. CONCLUSION Despite similarities regarding clinical features and aetiology of peri-implantitis and periodontitis, critical histopathological differences exist between the two lesions.
Collapse
Affiliation(s)
- Tord Berglundh
- Department of Periodontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | |
Collapse
|
9
|
Barros SP, Arce RM, Galloway P, Lawter R, Offenbacher S. Therapeutic effect of a topical CCR2 antagonist on induced alveolar bone loss in mice. J Periodontal Res 2011; 46:246-51. [DOI: 10.1111/j.1600-0765.2010.01340.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Impact of female cigarette smoking on circulating B cells in vivo: the suppressed ICOSLG, TCF3, and VCAM1 gene functional network may inhibit normal cell function. Immunogenetics 2010; 62:237-51. [PMID: 20217071 DOI: 10.1007/s00251-010-0431-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 02/03/2010] [Indexed: 12/11/2022]
Abstract
As pivotal immune guardians, B cells were found to be directly associated with the onset and development of many smoking-induced diseases. However, the in vivo molecular response of B cells underlying the female cigarette smoking remains unknown. Using the genome-wide Affymetrix HG-133A GeneChip microarray, we firstly compared the gene expression profiles of peripheral circulating B cells between 39 smoking and 40 non-smoking healthy US white women. A total of 125 differential expressed genes were identified in our study, and 75.2% of them were down-regulated in smokers. We further obtained genotypes of 702 single nucleotide polymorphisms in those promising genes and assessed their associations with smoking status. Using a novel multicriteria evaluation model integrating information from microarray and the association studies, several genes were further revealed to play important roles in the response of smoking, including ICOSLG (CD275, inducible T-cell co-stimulator ligand), TCF3 (E2A immunoglobulin enhancer binding factors E12/E47), VCAM1 (CD106, vascular cell adhesion molecule 1), CCR1 (CD191, chemokine C-C motif receptor 1) and IL13 (interleukin 13). The differential expression of ICOSLG (p = 0.0130) and TCF3 (p = 0.0125) genes between the two groups were confirmed by real-time reverse transcription PCR experiment. Our findings support the functional importance of the identified genes in response to the smoking stimulus. This is the first in vivo genome-wide expression study on B cells at today's context of high prevalence rate of smoking for women. Our results highlight the potential usage of integrated analyses for unveiling the novel pathogenesis mechanism and emphasized the significance of B cells in the etiology of smoking-induced disease.
Collapse
|