1
|
Borgert CJ. Hypothesis-driven weight of evidence evaluation indicates styrene lacks endocrine disruption potential. Crit Rev Toxicol 2023:1-16. [PMID: 37216681 DOI: 10.1080/10408444.2022.2112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 05/24/2023]
Abstract
Styrene is among the U.S. EPA's List 2 chemicals for Tier 1 endocrine screening subject to the agency's two-tiered Endocrine Disruptor Screening Program (EDSP). Both U.S. EPA and OECD guidelines require a Weight of Evidence (WoE) to evaluate a chemical's potential for disrupting the endocrine system. Styrene was evaluated for its potential to disrupt estrogen, androgen, thyroid, and steroidogenic (EATS) pathways using a rigorous WoE methodology that included problem formulation, systematic literature search and selection, data quality evaluation, relevance weighting of endpoint data, and application of specific interpretive criteria. Sufficient data were available to assess the endocrine disruptive potential of styrene based on endpoints that would respond to EATS modes of action in some Tier 1-type and many Tier 2-type reproductive, developmental, and repeat dose toxicity studies. Responses to styrene were inconsistent with patterns of responses expected for chemicals and hormones known to operate via EATS MoAs, and thus, styrene cannot be deemed an endocrine disruptor, a potential endocrine disruptor, or to exhibit endocrine disruptive properties. Because Tier 1 EDSP screening results would trigger Tier 2 studies, like those evaluated here, subjecting styrene to further endocrine screening would produce no additional useful information and would be unjustified from animal welfare perspectives.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology Inc, Gainesville, FL, USA
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| |
Collapse
|
2
|
Banton MI, Bus JS, Collins JJ, Delzell E, Gelbke HP, Kester JE, Moore MM, Waites R, Sarang SS. Evaluation of potential health effects associated with occupational and environmental exposure to styrene - an update. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:1-130. [PMID: 31284836 DOI: 10.1080/10937404.2019.1633718] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potential chronic health risks of occupational and environmental exposure to styrene were evaluated to update health hazard and exposure information developed since the Harvard Center for Risk Analysis risk assessment for styrene was performed in 2002. The updated hazard assessment of styrene's health effects indicates human cancers and ototoxicity remain potential concerns. However, mechanistic research on mouse lung tumors demonstrates these tumors are mouse-specific and of low relevance to human cancer risk. The updated toxicity database supports toxicity reference levels of 20 ppm (equates to 400 mg urinary metabolites mandelic acid + phenylglyoxylic acid/g creatinine) for worker inhalation exposure and 3.7 ppm and 2.5 mg/kg bw/day, respectively, for general population inhalation and oral exposure. No cancer risk value estimates are proposed given the established lack of relevance of mouse lung tumors and inconsistent epidemiology evidence. The updated exposure assessment supports inhalation and ingestion routes as important. The updated risk assessment found estimated risks within acceptable ranges for all age groups of the general population and workers with occupational exposures in non-fiber-reinforced polymer composites industries and fiber-reinforced polymer composites (FRP) workers using closed-mold operations or open-mold operations with respiratory protection. Only FRP workers using open-mold operations not using respiratory protection have risk exceedances for styrene and should be considered for risk management measures. In addition, given the reported interaction of styrene exposure with noise, noise reduction to sustain levels below 85 dB(A) needs be in place.
Collapse
Affiliation(s)
- M I Banton
- a Gorge View Consulting LLC , Hood River , OR , USA
| | - J S Bus
- b Health Sciences , Exponent , Midland , MI , USA
| | - J J Collins
- c Health Sciences , Saginaw Valley State University , Saginaw , MI , USA
| | - E Delzell
- d Private consultant , Birmingham , AL , USA
| | | | - J E Kester
- f Kester Consulting LLC , Wentzville , MO , USA
| | | | - R Waites
- h Sabic , Innovative Plastics US LLC , Mount Vernon , IN , USA
| | - S S Sarang
- i Shell Health , Shell International , Houston , TX , USA
| |
Collapse
|
3
|
Buser MC, Abadin HG, Irwin JL, Pohl HR. Windows of sensitivity to toxic chemicals in the development of reproductive effects: an analysis of ATSDR's toxicological profile database. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2018; 28:553-578. [PMID: 30022686 PMCID: PMC6261274 DOI: 10.1080/09603123.2018.1496235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Development of the fetus is a complex process influenced by many factors including genetics, maternal health, and environmental exposures to toxic chemicals. Adverse developmental effects on the reproductive system have the potential to harm generations beyond those directly exposed. Here, we review the available literature in Agency for Toxic Substances and Disease Registry toxicological profiles related to reproductive-developmental effects in animals following in utero exposure to chemicals. We attempt to identify windows of sensitivity. In the discussion, we correlate the findings with human development. The endpoints noted are fertility, estrus, anogenital distance, sex ratio, spermatogenesis, and mammary gland development. We identified some windows of sensitivity; however, the results were hampered by chronic-exposure studies designed to detect effects occurring throughout developmental, including multi-generational studies. This paper demonstrates the need for more acute studies in animals aimed at understanding time periods of development that are more susceptible to chemically induced adverse effects.
Collapse
Affiliation(s)
- Melanie C Buser
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - Henry G Abadin
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - John L Irwin
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| | - Hana R Pohl
- a US Department of Health and Human Services , Agency for Toxic Substances and Disease Registry , Atlanta , GA , USA
| |
Collapse
|
4
|
Gelbke HP, Banton M, Leibold E, Pemberton M, Samson SL. A critical review finds styrene lacks direct endocrine disruptor activity. Crit Rev Toxicol 2015; 45:727-64. [PMID: 26406562 DOI: 10.3109/10408444.2015.1064091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The European Commission lists styrene (S) as an endocrine disruptor based primarily on reports of increased prolactin (PRL) levels in S-exposed workers. The US Environmental Protection Agency included S in its list of chemicals to be tested for endocrine activity. Therefore, the database of S for potential endocrine activity is assessed. In vitro and in vivo screening studies, as well as non-guideline and guideline investigations in experimental animals indicate that S is not associated with (anti)estrogenic, (anti)androgenic, or thyroid-modulating activity or with an endocrine activity that may be relevant for the environment. Studies in exposed workers have suggested elevated PRL levels that have been further examined in a series of human and animal investigations. While there is only one definitively known physiological function of PRL, namely stimulation of milk production, many normal stress situations may lead to elevations without any chemical exposure. Animal studies on various aspects of dopamine (DA), the PRL-regulating neurotransmitter, in the central nervous system did not give mechanistic explanations on how S may affect PRL levels. Overall, a neuroendocrine disruption of PRL regulation cannot be deduced from a large experimental database. The effects in workers could not consistently be reproduced in experimental animals and the findings in humans represented acute reversible effects clearly below clinical and pathological levels. Therefore, unspecific acute workplace-related stress is proposed as an alternative mode of action for elevated PRL levels in workers.
Collapse
Affiliation(s)
| | - Marcy Banton
- b Lyondell Chemical Company , Houston, Texas , USA
| | | | | | - Susan Leanne Samson
- e Division of Endocrinology, Department of Medicine , Baylor College of Medicine , Houston, Texas , USA
| |
Collapse
|
5
|
Luderer U, Collins TFX, Daston GP, Fischer LJ, Gray RH, Mirer FE, Olshan AF, Setzer RW, Treinen KA, Vermeulen R. NTP-CERHR Expert Panel Report on the reproductive and developmental toxicity of styrene. ACTA ACUST UNITED AC 2006; 77:110-93. [PMID: 16345075 DOI: 10.1002/bdrb.20061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Brown NA, Lamb JC, Brown SM, Neal BH. A review of the developmental and reproductive toxicity of styrene. Regul Toxicol Pharmacol 2000; 32:228-47. [PMID: 11162717 DOI: 10.1006/rtph.2000.1406] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The reproductive and developmental toxicity of styrene has been studied in animals and humans. The animal studies on styrene have diverse study designs and conclusions. Developmental or reproductive toxicity studies have been conducted in rats, mice, rabbits, and hamsters. In most cases, high doses are required to elicit effects, and the effects are not unique to reproduction or development. In a number of the reports, either the experimental designs are limited or the descriptions of the designs and the endpoints measured are insufficient to draw conclusions about the toxicity of styrene. The more complete and better-reported studies show that styrene does not cause developmental toxicity at dose levels that are not maternally toxic. Some neurochemical or neurobehavioral effects have been reported at high exposures. Styrene does not affect fertility or reproductive function. Considerable animal toxicity data on styrene support the conclusion that styrene is neither an endocrine-active substance nor an endocrine disrupter. Human studies often suffer from either inadequate exposure data or exposure to a wide variety of materials, so that attribution of effects to styrene exposure is impossible. Furthermore, investigators often have failed to account for other exposures in the workplace or for other potentially confounding factors in their studies. Menstrual cycle irregularities and congenital abnormalities were initially reported; however, the better and more recent reports do not show that styrene causes developmental or reproductive effects in humans. Human studies also support the conclusion that styrene is not an endocrine disrupter. Although some study authors have concluded that styrene is either a human or an animal reproductive or developmental toxicant, careful review demonstrates that such conclusions are not justified.
Collapse
Affiliation(s)
- N A Brown
- MRC Experimental Embryology and Teratology Unit, St. George's Hospital Medical School, University of London, SW17 0RE, United Kingdom
| | | | | | | |
Collapse
|
7
|
Todoroff EC, Sevcik M, Villeneuve DC, Foster WG, Jarrell JF. The effect of photomirex on the in vitro perfused ovary of the rat. Reprod Toxicol 1998; 12:305-16. [PMID: 9628554 DOI: 10.1016/s0890-6238(98)00008-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photomirex, a photodegradation product of the insecticide mirex, is an environmental contaminant that has been identified in Great Lakes fish, soil, and human adipose tissue. Because of the potential for human exposure, the present study was designed to investigate the short-term effects of photomirex on the in vitro perfused ovary of the rat. Adult Sprague-Dawley rat ovaries were isolated and perfused for a total of 6 h with Medium 199. Following a 2-h baseline period, 10(-4) M of photomirex was administered to the medium. Control ovaries received medium or DMSO (vehicle control). Significant effects of perfusion and chemical intervention were identified using lactate dehydrogenase enzyme, glucose utilization, lactate, pyruvate, and flow:pressure ratio as markers of toxicity (P < 0.05). Lactate:pyruvate ratio, glutathione, and oxygen consumption did not demonstrate significant effects. Post hoc tests showed that there were significant differences between the DMSO + photomirex group and the control group (M199) using lactate dehydrogenase as a marker of toxicity. Pyruvate concentration was also reduced significantly after perfusion with DMSO + photomirex compared to M199 only and DMSO only (P < 0.05). Histopathologic changes were not discernible by light microscopy. These results suggest that metabolic and respiratory processes of the ovary are acutely sensitive to perturbation with photomirex in the in vitro perfused rat ovary model.
Collapse
Affiliation(s)
- E C Todoroff
- Department of Obstetrics and Gynaecology, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
8
|
Pant N, Shankar R, Srivastava SP. In utero and lactational exposure of carbofuran to rats: effect on testes and sperm. Hum Exp Toxicol 1997; 16:267-72. [PMID: 9192206 DOI: 10.1177/096032719701600506] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Male offspring of adult females treated with 0.2 or 0.4 mg/kg during either the whole of pregnancy or the whole of the lactation period did not induce generalised toxic effects. A significant alteration in enzymatic activities i.e. SDH (decreased), LDH and Y-GT (increased) were observed in testes only at 0.4 mg/kg. A decrease in sperm motility, sperm count along with increase in percent abnormal sperm was observed at 0.4 mg/kg dose level. Histopathological examination revealed loss of spermato-genesis, degenerative changes in Sertoli cells which are well supported with biochemical studies indicating that carbofuran interferes with the maturation process of testis. No such effects were observed at 0.2 mg/kg. The testicular and spermatotoxic effects observed in rats given in utero or lactational exposure may be due to transfer of carbofuran or its metabolites through placenta or mothers milk.
Collapse
Affiliation(s)
- N Pant
- Industrial Toxicology Research Centre, Lucknow, India
| | | | | |
Collapse
|