1
|
Lymer J, Bergman H, Yang S, Mallick R, Galea LAM, Choleris E, Fergusson D. The effects of estrogens on spatial learning and memory in female rodents - A systematic review and meta-analysis. Horm Behav 2024; 164:105598. [PMID: 38968677 DOI: 10.1016/j.yhbeh.2024.105598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 06/01/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
Estrogens have inconsistent effects on learning and memory in both the clinical and preclinical literature. Preclinical literature has the advantage of investigating an array of potentially important factors contributing to the varied effects of estrogens on learning and memory, with stringently controlled studies. This study set out to identify specific factors in the animal literature that influence the effects of estrogens on cognition, for possible translation back to clinical practice. The literature was screened and studies meeting strict inclusion criteria were included in the analysis. Eligible studies included female ovariectomized rodents with an adequate vehicle for the estrogen treatment, with an outcome of spatial learning and memory in the Morris water maze. Training days of the Morris water maze were used to assess acquisition of spatial learning, and the probe trial was used to evaluate spatial memory recall. Continuous outcomes were pooled using a random effects inverse variance method and reported as standardized mean differences with 95 % confidence intervals. Subgroup analyses were developed a priori to assess important factors. The overall analysis favoured treatment for the later stages of training and for the probe trial. Factors including the type of estrogen, route, schedule of administration, age of animals, timing relative to ovariectomy, and duration of treatment were all found to be important. The subgroup analyses showed that chronic treatment with 17β-estradiol, either cyclically or continuously, to young animals improved spatial recall. These results, observed in animals, can inform and guide further clinical research on hormone replacement therapy for cognitive benefits.
Collapse
Affiliation(s)
- Jennifer Lymer
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada; Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada.
| | - Hailey Bergman
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Sabrina Yang
- Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | | | - Liisa A M Galea
- Department of Psychiatry, University of Toronto, ON, Canada; Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| | - Dean Fergusson
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
2
|
Barrón-González M, Rosales-Hernández MC, Abad-García A, Ocampo-Néstor AL, Santiago-Quintana JM, Pérez-Capistran T, Trujillo-Ferrara JG, Padilla-Martínez II, Farfán-García ED, Soriano-Ursúa MA. Synthesis, In Silico, and Biological Evaluation of a Borinic Tryptophan-Derivative That Induces Melatonin-like Amelioration of Cognitive Deficit in Male Rat. Int J Mol Sci 2022; 23:ijms23063229. [PMID: 35328650 PMCID: PMC8952423 DOI: 10.3390/ijms23063229] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
Preclinical and clinical evidence supports melatonin and its analogues as potential treatment for diseases involving cognitive deficit such as Alzheimer's disease. In this work, we evaluated by in silico studies a set of boron-containing melatonin analogues on MT1 and MT2 receptors. Then, we synthesized a compound (borolatonin) identified as potent agonist. After chemical characterization, its evaluation in a rat model with cognitive deficit showed that it induced ameliorative effects such as those induced by equimolar administration of melatonin in behavioral tests and in neuronal immunohistochemistry assays. Our results suggest the observed effects are by means of action on the melatonin system. Further studies are required to clarify the mechanism(s) of action, as the beneficial effects on disturbed memory by gonadectomy in male rats are attractive.
Collapse
Affiliation(s)
- Mónica Barrón-González
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Martha C. Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico;
| | - Antonio Abad-García
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Ana L. Ocampo-Néstor
- Departamento de Nefrología, Hospital General de México, “Dr. Eduardo Liceaga”, Dr. Balmis 148, Alc. Cuauhtémoc, Mexico City 06720, Mexico;
| | - José M. Santiago-Quintana
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la Laguna, Ticomán, Mexico City 07340, Mexico;
| | - Teresa Pérez-Capistran
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - José G. Trujillo-Ferrara
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
| | - Itzia I. Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias, Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la Laguna, Ticomán, Mexico City 07340, Mexico;
| | - Eunice D. Farfán-García
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
- Correspondence: (E.D.F.-G.); (M.A.S.-U.); Tel.: +52-5729-6000 (ext. 62751) (M.A.S.-U.)
| | - Marvin A. Soriano-Ursúa
- Academias de Fisiología, Bioquímica Médica, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Diaz Mirón s/n, Col. Casco de Santo Tomás, Alc. Miguel Hidalgo, Mexico City 11340, Mexico; (M.B.-G.); (A.A.-G.); (J.M.S.-Q.); (T.P.-C.); (J.G.T.-F.)
- Correspondence: (E.D.F.-G.); (M.A.S.-U.); Tel.: +52-5729-6000 (ext. 62751) (M.A.S.-U.)
| |
Collapse
|
3
|
Lubas MM, Mandrell BN, Greene WL, Howell CR, Christensen R, Kimberg CI, Li C, Ness KK, Srivastava DK, Hudson MM, Robison LL, Krull KR, Brinkman TM. A randomized double-blind placebo-controlled trial of the effectiveness of melatonin on neurocognition and sleep in survivors of childhood cancer. Pediatr Blood Cancer 2022; 69:e29393. [PMID: 34674368 PMCID: PMC8859989 DOI: 10.1002/pbc.29393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Adult survivors of childhood cancer are at risk of developing sleep and neurocognitive problems, yet few efficacious interventions exist targeting these prevalent late effects. Melatonin has known sleep-promoting effects; however, it has not been well studied among childhood cancer survivors. METHOD Survivors (n = 580; mean age = 33.5 years; 26 years post-diagnosis) from the St. Jude Lifetime Cohort were randomized (1:1) to a six-month double-blind placebo-controlled trial of 3 mg time-release melatonin within three strata (stratum 1: neurocognitive impairment only; stratum 2: neurocognitive and sleep impairment; stratum 3: sleep impairment only). Neurocognitive performance was assessed at baseline and post-intervention using standardized measures. Sleep was assessed via self-report and actigraphy. Independent sample t tests compared mean change scores from baseline to six months. Post-hoc analyses compared the prevalence of clinically significant treatment responders among melatonin and placebo conditions within and across strata. RESULTS Intent-to-treat analyses revealed no statistically significant differences in neurocognitive performance or sleep from baseline to post-intervention. However, among survivors with neurocognitive impairment only, a larger proportion randomized to melatonin versus placebo demonstrated a treatment response for visuomotor speed (63% vs 41%, P = 0.02) and nonverbal reasoning (46% vs 28%, P = 0.04). Among survivors with sleep impairment only, a larger proportion treated with melatonin demonstrated a treatment response for shifting attention (44% vs 28%, P = 0.05), short-term memory (39% vs 19%, P = 0.01), and actigraphy-assessed sleep duration (47% vs 29%, P = 0.05). CONCLUSION Melatonin was not associated with improved neurocognitive performance or sleep in our intent-to-treat analyses; however, a subset of survivors demonstrated a clinically significant treatment response.
Collapse
Affiliation(s)
- Margaret M. Lubas
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital
| | | | - William L. Greene
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital
| | - Carrie R. Howell
- Department of Medicine, Division of Preventive Medicine, University of Alabama at Birmingham
| | - Robbin Christensen
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital
| | - Cara I. Kimberg
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital
| | - Chenghong Li
- Department of Biostatistics, St. Jude Children’s Research Hospital
| | - Kirsten K. Ness
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital
| | | | - Melissa M. Hudson
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital,Department of Oncology, St. Jude Children’s Research Hospital
| | - Leslie L. Robison
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital
| | - Kevin R. Krull
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital,Department of Psychology, St. Jude Children’s Research Hospital
| | - Tara M. Brinkman
- Department of Epidemiology and Cancer Control, St. Jude Children’s Research Hospital,Department of Psychology, St. Jude Children’s Research Hospital
| |
Collapse
|
4
|
Prakapenka AV, Quihuis AM, Carson CG, Patel S, Bimonte-Nelson HA, Sirianni RW. Poly(lactic-co-glycolic Acid) Nanoparticle Encapsulated 17β-Estradiol Improves Spatial Memory and Increases Uterine Stimulation in Middle-Aged Ovariectomized Rats. Front Behav Neurosci 2021; 14:597690. [PMID: 33424559 PMCID: PMC7793758 DOI: 10.3389/fnbeh.2020.597690] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/23/2020] [Indexed: 12/02/2022] Open
Abstract
Hormone therapy that contains 17β-estradiol (E2) is used commonly for treatment of symptoms associated with menopause. E2 treatment has been shown to improve cognitive function following the decrease in ovarian hormones that is characteristic of menopause. However, once in circulation, the majority of E2 is bound to serum hormone binding globulin or albumin, becoming biologically inactive. Thus, therapeutic efficacy of E2 stands to benefit from increased bioavailability via sustained release of the hormone. Here, we focus on the encapsulation of E2 within polymeric nanoparticles composed of poly(lactic-co-glycolic) acid (PLGA). PLGA agent encapsulation offers several delivery advantages, including improved bioavailability and sustained biological activity of encapsulated agents. We hypothesized that delivery of E2 from PLGA nanoparticles would enhance the beneficial cognitive effects of E2 relative to free E2 or non-hormone loaded nanoparticle controls in a rat model of menopause. To test this hypothesis, spatial learning and memory were assessed in middle-aged ovariectomized rats receiving weekly subcutaneous treatment of either oil-control, free (oil-solubilized) E2, blank (non-hormone loaded) PLGA, or E2-loaded PLGA. Unexpectedly, learning and memory differed significantly between the two vehicle control groups. E2-loaded PLGA nanoparticles improved learning and memory relative to its control, while learning and memory were not different between free E2 and its vehicle control. These results suggest that delivery of E2 from PLGA nanoparticles offered cognitive benefit. However, when evaluating peripheral burden, E2-loaded PLGA was found to increase uterine stimulation compared to free E2, which is an undesired outcome, as estrogen exposure increases uterine cancer risk. In sum, a weekly E2 treatment regimen of E2 from PLGA nanoparticles increased cognitive efficacy and was accompanied with an adverse impact on the periphery, effects that may be due to the improved agent bioavailability and sustained biological activity offered by PLGA nanoparticle encapsulation. These findings underscore the risk of non-specific enhancement of E2 delivery and provide a basic framework for the study and development of E2's efficacy as a cognitive therapeutic with the aid of customizable polymeric nano-carriers.
Collapse
Affiliation(s)
- Alesia V Prakapenka
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,School of Life Sciences, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Alicia M Quihuis
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Catherine G Carson
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Shruti Patel
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, United States.,Arizona Alzheimer's Consortium, Phoenix, AZ, United States
| | - Rachael W Sirianni
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
5
|
Prakapenka AV, Peña VL, Strouse I, Northup-Smith S, Schrier A, Ahmed K, Bimonte-Nelson HA, Sirianni RW. Intranasal 17β-Estradiol Modulates Spatial Learning and Memory in a Rat Model of Surgical Menopause. Pharmaceutics 2020; 12:E1225. [PMID: 33348722 PMCID: PMC7766209 DOI: 10.3390/pharmaceutics12121225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 01/23/2023] Open
Abstract
Exogenously administered 17β-estradiol (E2) can improve spatial learning and memory, although E2 also exerts undesired effects on peripheral organs. Clinically, E2 has been solubilized in cyclodextrin for intranasal administration, which enhances brain-specific delivery. Prior work shows that the cyclodextrin structure impacts region-specific brain distribution of intranasally administered small molecules. Here, we investigated (1) cyclodextrin type-specific modulation of intranasal E2 brain distribution, and (2) cognitive and peripheral tissue effects of intranasal E2 in middle-aged ovariectomized rats. First, brain and peripheral organ distribution of intranasally administered, tritiated E2 was measured for E2 solubilized freely or in one of four cyclodextrin formulations. The E2-cyclodextrin formulation with greatest E2 uptake in cognitive brain regions versus uterine horns was then compared to free E2 on learning, memory, and uterine measures. Free E2 improved spatial reference memory, whereas E2-cyclodextrin impaired spatial working memory compared to their respective controls. Both E2 formulations increased uterine horn weights relative to controls, with E2-cyclodextrin resulting in the greatest uterine horn weight, suggesting increased uterine stimulation. Thus, intranasal administration of freely solubilized E2 is a strategic delivery tool that can yield a cognitively beneficial impact of the hormone alongside decreased peripheral effects compared to intranasal administration of cyclodextrin solubilized E2.
Collapse
Affiliation(s)
- Alesia V. Prakapenka
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Veronica L. Peña
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Isabel Strouse
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Steven Northup-Smith
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Ally Schrier
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Kinza Ahmed
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85281, USA; (A.V.P.); (V.L.P.); (I.S.); (S.N.-S.); (A.S.); (K.A.); (H.A.B.-N.)
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85014, USA
| | - Rachael W. Sirianni
- Vivian L. Smith Department of Neurosurgery, UTHealth Medical School, Houston, TX 77030, USA
| |
Collapse
|
6
|
Chen D, Zhang T, Lee TH. Cellular Mechanisms of Melatonin: Insight from Neurodegenerative Diseases. Biomolecules 2020; 10:biom10081158. [PMID: 32784556 PMCID: PMC7464852 DOI: 10.3390/biom10081158] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Neurodegenerative diseases are the second most common cause of death and characterized by progressive impairments in movement or mental functioning in the central or peripheral nervous system. The prevention of neurodegenerative disorders has become an emerging public health challenge for our society. Melatonin, a pineal hormone, has various physiological functions in the brain, including regulating circadian rhythms, clearing free radicals, inhibiting biomolecular oxidation, and suppressing neuroinflammation. Cumulative evidence indicates that melatonin has a wide range of neuroprotective roles by regulating pathophysiological mechanisms and signaling pathways. Moreover, melatonin levels are decreased in patients with neurodegenerative diseases. In this review, we summarize current knowledge on the regulation, molecular mechanisms and biological functions of melatonin in neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, vascular dementia and multiple sclerosis. We also discuss the clinical application of melatonin in neurodegenerative disorders. This information will lead to a better understanding of the regulation of melatonin in the brain and provide therapeutic options for the treatment of various neurodegenerative diseases.
Collapse
Affiliation(s)
- Dongmei Chen
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| | | | - Tae Ho Lee
- Correspondence: (D.C.); (T.H.L.); Tel.: +86-591-2286-2498 (D.C.); +86-591-2286-2498 (T.H.L.)
| |
Collapse
|
7
|
Neuroprotective effect of exogenous melatonin on the noradrenergic neurons of adult male rats’ locus coeruleus nucleus following REM sleep deprivation. J Chem Neuroanat 2019; 100:101656. [DOI: 10.1016/j.jchemneu.2019.101656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022]
|
8
|
Protective effects of melatonin against valproic acid-induced memory impairments and reductions in adult rat hippocampal neurogenesis. Neuroscience 2019; 406:580-593. [DOI: 10.1016/j.neuroscience.2019.02.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 01/12/2023]
|
9
|
Atwood CS, Ekstein SF. Human versus non-human sex steroid use in hormone replacement therapies part 1: Preclinical data. Mol Cell Endocrinol 2019; 480:12-35. [PMID: 30308266 DOI: 10.1016/j.mce.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 03/12/2018] [Accepted: 10/04/2018] [Indexed: 11/24/2022]
Abstract
Prior to 2002, hormone replacement therapy (HRT) was considered to be an important component of postmenopausal healthcare. This was based on a plethora of basic, epidemiological and clinical studies demonstrating the health benefits of supplementation with human sex steroids. However, adverse findings from the Women's Health Initiative (WHI) studies that examined the 2 major forms of HRT in use in the US at that time - Premarin (conjugated equine estrogens; CEE) and Prempro (CEE + medroxyprogesterone acetate; MPA), cast a shadow over the use of any form of HRT. Here we review the biochemical and physiological differences between the non-human WHI study hormones - CEE and MPA, and their respective human counterparts 17β-estradiol (E2) and progesterone (P4). Preclinical data from the last 30 years demonstrate clear differences between human and non-human sex steroids on numerous molecular, physiological and functional parameters in brain, heart and reproductive tissue. In contrast to CEE supplementation, which is not always detrimental although certainly not as optimal as E2 supplementation, MPA is clearly not equivalent to P4, having detrimental effects on cognitive, cardiac and reproductive function. Moreover, unlike P4, MPA is clearly antagonistic of the positive effects of E2 and CEE on tissue function. These data indicate that minor chemical changes to human sex steroids result in physiologically distinct actions that are not optimal for tissue health and functioning.
Collapse
Affiliation(s)
- Craig S Atwood
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI, 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027, WA, Australia.
| | - Samuel F Ekstein
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, USA
| |
Collapse
|
10
|
Chen BH, Park JH, Lee YL, Kang IJ, Kim DW, Hwang IK, Lee CH, Yan BC, Kim YM, Lee TK, Lee JC, Won MH, Ahn JH. Melatonin improves vascular cognitive impairment induced by ischemic stroke by remyelination via activation of ERK1/2 signaling and restoration of glutamatergic synapses in the gerbil hippocampus. Biomed Pharmacother 2018; 108:687-697. [PMID: 30245469 DOI: 10.1016/j.biopha.2018.09.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 01/02/2023] Open
Abstract
Vascular dementia affects cognition by damaging axons and myelin. Melatonin is pharmacologically associated with various neurological disorders. In this study, effects of melatonin on cognitive impairment and related mechanisms were investigated in an animal model of ischemic vascular dementia (IVD). Melatonin was intraperitoneally administered to adult gerbils after transient global cerebral ischemia (tGCI) for 25 days beginning 5 days after tGCI. Cognitive impairment was examined using a passive avoidance test and the Barnes maze test. To investigate mechanisms of restorative effects by melatonin, neuronal damage/death, myelin basic protein (MBP, a marker for myelin), Rip (a marker for oligodendrocyte), extracellular signal-regulated protein kinase1/2 (ERK1/2) and phospho-ERK1/2 (p-ERK1/2), and vesicular glutamate transporter (VGLUT)-1 (a glutamatergic synaptic marker) in the hippocampal Cornu Ammonis 1 area (CA1) were evaluated using immunohistochemistry. Melatonin treatment significantly improved tGCI-induced cognitive impairment. Death of CA1 pyramidal neurons after tGCI was not affected by melatonin treatment. However, melatonin treatment significantly increased MBP immunoreactivity and numbers of Rip-immunoreactive oligodendrocytes in the ischemic CA1. In addition, melatonin treatment significantly increased ERK1/2 and p-ERK1/2 immunoreactivities in oligodendrocytes in the ischemic CA1. Furthermore, melatonin treatment significantly increased VGLUT-1 immunoreactive structures in the ischemic CA1. These results indicate that long-term melatonin treatment after tGCI improves cognitive deficit via restoration of myelin, increase of oligodendrocytes which is closely related to the activation of ERK1/2 signaling, and increase of glutamatergic synapses in the ischemic brain area.
Collapse
Affiliation(s)
- Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Gangwon, 24252, Republic of Korea
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung, Gangwon, 25457, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam, 31116, Republic of Korea
| | - Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, People's Republic of China
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Jae Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon, 24341, Republic of Korea.
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon, 24252, Republic of Korea.
| |
Collapse
|
11
|
Chen BH, Park JH, Kim DW, Park J, Choi SY, Kim IH, Cho JH, Lee TK, Lee JC, Lee CH, Hwang IK, Kim YM, Yan BC, Kang IJ, Shin BN, Lee YL, Shin MC, Cho JH, Lee YJ, Jeon YH, Won MH, Ahn JH. Melatonin Improves Cognitive Deficits via Restoration of Cholinergic Dysfunction in a Mouse Model of Scopolamine-Induced Amnesia. ACS Chem Neurosci 2018; 9:2016-2024. [PMID: 28901737 DOI: 10.1021/acschemneuro.7b00278] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Melatonin is known to improve cognitive deficits, and its functions have been studied in various disease models, including Alzheimer's disease. In this study, we investigated effects of melatonin on cognition and the cholinergic system of the septum and hippocampus in a mouse model of scopolamine-induced amnesia. Scopolamine (1 mg/kg) and melatonin (10 mg/kg) were administered intraperitoneally to mice for 2 and 4 weeks. The Morris water maze and passive avoidance tests revealed that both treatments of scopolamine significantly impaired spatial learning and memory; however, 2- and 4-week melatonin treatments significantly improved spatial learning and memory. In addition, scopolamine treatments significantly decreased protein levels and immunoreactivities of choline acetyltransferase (ChAT), high-affinity choline transporter (CHT), vesicular acetylcholine transporter (VAChT), and muscarinic acetylcholine receptor M1 (M1R) in the septum and hippocampus. However, the treatments with melatonin resulted in increased ChAT-, CHT-, VAChT-, and M1R-immunoreactivities and their protein levels in the septum and hippocampus. Our results demonstrate that melatonin treatment is effective in improving the cognitive deficits via restoration of the cholinergic system in the septum and hippocampus of a mouse model of scopolamine-induced amnesia.
Collapse
Affiliation(s)
- Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Joon Ha Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Kangnung-Wonju National University, Gangneung 25457, South Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Jae Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan 31116, South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, South Korea
| | - Young-Myeong Kim
- Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Bing Chun Yan
- Jiangsu Key Laboratory
of Integrated Traditional Chinese and Western Medicine for Prevention
and Treatment of Senile Diseases, Yangzhou 225001, People’s Republic of China
| | - Il Jun Kang
- Department of Food Science and Nutrition, Hallym University, Chuncheon 24252, South Korea
| | - Bich Na Shin
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 24252, South Korea
| | - Yun Lyul Lee
- Department of Physiology, College of Medicine, and Institute of Neurodegeneration and Neuroregeneration, Hallym University, Chuncheon 24252, South Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Young Joo Lee
- Department of Emergency Medicine, Seoul Hospital, College of Medicine, Sooncheonhyang University, Seoul 04401, South Korea
| | - Yong Hwan Jeon
- Department of Radiology, School of Medicine, Kangwon National University, Chuncheon 24289, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science and Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon 24252, South Korea
| |
Collapse
|
12
|
Bin-Jaliah I, Sakr HF. Melatonin ameliorates brain oxidative stress and upregulates senescence marker protein-30 and osteopontin in a rat model of vascular dementia. Physiol Int 2018; 105:38-52. [PMID: 29602294 DOI: 10.1556/2060.105.2018.1.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The aim of this study was to investigate the effect of melatonin on oxidative stress and senescence marker protein-30 (SMP30) as well as osteopontin (OPN) expression in the hippocampus of rats subjected to vascular dementia (VD). A total of 72 male rats were divided into six groups (n = 12 each) as follows: (i) untreated control (CON), (ii) sham-operated group, (iii) sham-operated + melatonin, (iv) rats exposed to VD induced by permanent bilateral occlusion of the common carotid arteries (BCCAO) leading to chronic cerebral hypoperfusion, (v) rats exposed to VD + melatonin, and (vi) rats exposed to VD + donepezil (DON). At the end of experiment, the hippocampal levels of acetylcholine (ACh), norepinephrine (NE), and dopamine (Dop) were measured. Expression of OPN was determined using immunohistochemistry, and SMP30 expression was determined using real-time PCR in the hippocampus. Hippocampal thiobarbituric acid reactive substances (TBARS) and total antioxidant capacity (TAC) were evaluated. The BCCAO group showed significantly decreased TAC (p < 0.05) and significantly increased in TBARS levels compared with the CON group. In addition, BCCAO significantly decreased (p < 0.05) the expression of both OPN and SMP30 and the levels of ACh, NE, and Dop in the hippocampus compared with CON treatment. Treatment with melatonin significantly increased OPN and SMP30 expression and ACh, NE, and Dop levels in the hippocampus with amelioration of the oxidative stress compared with BCCAO rats. Melatonin might produce a neuroprotective effect through its antioxidant action and by increasing the expression of SMP30 and OPN that is not comparable with that of DON.
Collapse
Affiliation(s)
- I Bin-Jaliah
- 1 Department of Physiology, College of Medicine, King Khalid University , Abha, Saudi Arabia
| | - H F Sakr
- 2 Faculty of Medicine, Department of Medical Physiology, Mansoura University , Mansoura, Egypt.,3 Faculty of Medicine and Health Sciences, Department of Medical Physiology, Sultan Qaboos University , Muscat, Oman
| |
Collapse
|
13
|
Prakapenka AV, Hiroi R, Quihuis AM, Carson C, Patel S, Berns-Leone C, Fox C, Sirianni RW, Bimonte-Nelson HA. Contrasting effects of individual versus combined estrogen and progestogen regimens as working memory load increases in middle-aged ovariectomized rats: one plus one does not equal two. Neurobiol Aging 2018; 64:1-14. [PMID: 29316527 PMCID: PMC5820186 DOI: 10.1016/j.neurobiolaging.2017.11.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 02/03/2023]
Abstract
Most estrogen-based hormone therapies are administered in combination with a progestogen, such as Levonorgestrel (Levo). Individually, the estrogen 17β-estradiol (E2) and Levo can improve cognition in preclinical models. However, although these hormones are often given together clinically, the impact of the E2 + Levo combination on cognitive function has yet to be methodically examined. Thus, we investigated E2 + Levo treatment on a cognitive battery in middle-aged, ovariectomized rats. When administered alone, E2 and Levo treatments each enhanced spatial working memory relative to vehicle treatment, whereas the E2 + Levo combination impaired high working memory load performance relative to E2 only and Levo only treatments. There were no effects on spatial reference memory. Mitogen-activated protein kinases/extracellular signal-regulated kinases pathway activation, which is involved in memory formation and estrogen-induced memory effects, was evaluated in 5 brain regions implicated in learning and memory. A distinct relationship was seen in the E2-only treatment group between mitogen-activated protein kinases/extracellular signal-regulated kinases pathway activation in the frontal cortex and working memory performance. Collectively, the results indicate that the differential neurocognitive effects of combination versus sole treatments are vital considerations as we move forward as a field to develop novel, and to understand currently used, exogenous hormone regimens across the lifespan.
Collapse
Affiliation(s)
- Alesia V Prakapenka
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA; Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Ryoko Hiroi
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Alicia M Quihuis
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Catie Carson
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Shruti Patel
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Claire Berns-Leone
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Carly Fox
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Rachael W Sirianni
- Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| |
Collapse
|
14
|
He Q, Luo Y, Lv F, Xiao Q, Chao F, Qiu X, Zhang L, Gao Y, Xiu Y, Huang C, Tang Y. Effects of estrogen replacement therapy on the myelin sheath ultrastructure of myelinated fibers in the white matter of middle-aged ovariectomized rats. J Comp Neurol 2017; 526:790-802. [PMID: 29205359 DOI: 10.1002/cne.24366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
Abstract
The effects of estrogen replacement therapy (ORT) on white matter and the myelin sheath ultrastructure in the white matter of middle-aged ovariectomized (OVX) rats were investigated in this study. Middle-aged rats were ovariectomized and divided into a placebo replacement (OVX + O) group and an estrogen replacement (OVX + E) group. Then, the Morris water maze, electron microscope techniques, and stereological methods were used to investigate the effects of ORT on spatial learning capacity, white matter volume and the myelin sheath ultrastructure in the white matter. We found that the spatial learning capacity of the OVX + E rats was significantly improved compared with that of the OVX + O rats. When compared with that of OVX + O rats, the total volume of the myelin sheaths in the white matter of the OVX + E rats was significantly increased by 27%, and the difference between the outer perimeter and inner perimeter of the myelin sheaths of the white matter in the OVX + E rats increased significantly by 12.6%. The myelinated fibers with mean diameters of 1.2-1.4 μm were significantly longer (46.1%) in the OVX + E rats; the difference between the mean diameter of myelinated fibers and the mean diameter of axons (0-0.4 μm) was significantly increased by 21.6% in the OVX + E rats. These results suggested that ORT had positive protective effects on the spatial learning ability and on the myelin sheath ultrastructure in the white matter of middle-aged OVX rats.
Collapse
Affiliation(s)
- Qi He
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Yanmin Luo
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Fulin Lv
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Qian Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Fenglei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Xuan Qiu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China.,Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine, Ministry of Education, Chongqing Medical University, Chongqing, P. R. China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| | - Yuan Gao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China.,Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing, P. R. China
| | - Yun Xiu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Institute of Life Science, Chongqing Medical University, Chongqing, P. R. China
| | - Chunxia Huang
- Department of Physiology, Chongqing Medical University, Chongqing, P. R. China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, P. R. China.,Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing, P. R. China
| |
Collapse
|
15
|
Gong YH, Hua N, Zang X, Huang T, He L. Melatonin ameliorates Aβ1-42-induced Alzheimer's cognitive deficits in mouse model. J Pharm Pharmacol 2017; 70:70-80. [DOI: 10.1111/jphp.12830] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/16/2017] [Indexed: 01/09/2023]
Abstract
Abstract
Objectives
The objective of this study was to evaluate whether melatonin could ameliorate cognitive function in Aβ1-42-induced mouse model and its underlying mechanisms.
Methods
Series behaviour tests were performed to demonstrate the amelioration of cognitive function of the Alzheimer's disease (AD) mice induced by Aβ1-42. Additionally, enzyme-linked immunosorbent assay was applied to detect the expression of Aβ1-42, BACE1 and p-tau protein in the brain of the AD mice. JC-1 was performed to investigate the role in alleviating mitochondrial damage by melatonin in vitro. Western blot was used to detect the expression of melatonin on apoptosis-related factors caspase-3 and Bcl-2, as well as the expressions of GSK-3β and PP2A to further determine the mechanisms of melatonin on the expression of p-tau protein.
Key findings
Melatonin significantly ameliorated the cognitive function and mitochondrial damage in AD mice, reduced the expression levels of GSK-3β, caspase-3, Aβ1-42, BACE1, p-tau protein and increased the expressions of PP2A and Bcl-2.
Conclusion
From the overall results, we concluded that melatonin alleviated the mitochondrial damage effectively and decreased the expressions of the p-tau and some key proteins of apoptosis, leading to the improvement of cognitive function of the mice induced by Aβ1-42.
Collapse
Affiliation(s)
- Yu-Hang Gong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Nan Hua
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xuan Zang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Tao Huang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
16
|
Engler-Chiurazzi EB, Brown CM, Povroznik JM, Simpkins JW. Estrogens as neuroprotectants: Estrogenic actions in the context of cognitive aging and brain injury. Prog Neurobiol 2017; 157:188-211. [PMID: 26891883 PMCID: PMC4985492 DOI: 10.1016/j.pneurobio.2015.12.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/06/2015] [Accepted: 12/10/2015] [Indexed: 12/30/2022]
Abstract
There is ample empirical evidence to support the notion that the biological impacts of estrogen extend beyond the gonads to other bodily systems, including the brain and behavior. Converging preclinical findings have indicated a neuroprotective role for estrogen in a variety of experimental models of cognitive function and brain insult. However, the surprising null or even detrimental findings of several large clinical trials evaluating the ability of estrogen-containing hormone treatments to protect against age-related brain changes and insults, including cognitive aging and brain injury, led to hesitation by both clinicians and patients in the use of exogenous estrogenic treatments for nervous system outcomes. That estrogen-containing therapies are used by tens of millions of women for a variety of health-related applications across the lifespan has made identifying conditions under which benefits with estrogen treatment will be realized an important public health issue. Here we provide a summary of the biological actions of estrogen and estrogen-containing formulations in the context of aging, cognition, stroke, and traumatic brain injury. We have devoted special attention to highlighting the notion that estrogen appears to be a conditional neuroprotectant whose efficacy is modulated by several interacting factors. By developing criteria standards for desired beneficial peripheral and neuroprotective outcomes among unique patient populations, we can optimize estrogen treatments for attenuating the consequences of, and perhaps even preventing, cognitive aging and brain injury.
Collapse
Affiliation(s)
- E B Engler-Chiurazzi
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| | - C M Brown
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Neurobiology and Anatomy, West Virginia University, Morgantown, WV 26506, United States.
| | - J M Povroznik
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Pediatrics, West Virginia University, Morgantown, WV 26506, United States.
| | - J W Simpkins
- Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University, Morgantown, WV 26506, United States.
| |
Collapse
|
17
|
Cheon S. Hippocampus-dependent Task Improves the Cognitive Function after Ovariectomy in Rats. Osong Public Health Res Perspect 2017; 8:227-234. [PMID: 28781946 PMCID: PMC5525566 DOI: 10.24171/j.phrp.2017.8.3.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 11/11/2022] Open
Abstract
Objectives Estrogen is an important hormone for cell growth, development, and differentiation by transcriptional regulation and modulation of intracellular signaling via second messengers. The reduction in the estrogen level after ovariectomy may lead to cognitive impairments associated with morphological changes in areas of the brain mediate memory. The aim of the present study was to find out the effect of tasks on the cognitive function after ovariectomy in rats. Methods The animals used in the experiment were 50 Sprague-Dawley female rats. This study applied a hippocampus-independent task (wheel running) and a hippocampus-dependent task (Morris water maze) after ovariectomy in rats and measured the cognitive performance (object-recognition and object-location test) and growth-associated protein 43 (GAP-43) and neurotrophin 3 (NT-3) expression in the hippocampus, which is an important center for memory and learning. Results There were meaningful differences between the hippocampus-independent and hippocampus-dependent task groups for the object-location test and GAP-43 and NT-3 expression in the hippocampus, but not the object-recognition test. However, the hippocampus-independent task group showed a significant improvement in the object-recognition test, compared to the control group. Conclusion These results suggest that hippocampus-dependent task training after ovariectomy enhances the hippocampus-related memory and cognitive function that are associated with morphological and functional changes in the cells of the hippocampus.
Collapse
Affiliation(s)
- Songhee Cheon
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Korea
| |
Collapse
|
18
|
Peng C, Hong X, Chen W, Zhang H, Tan L, Wang X, Ding Y, He J. Melatonin ameliorates amygdala-dependent emotional memory deficits in Tg2576 mice by up-regulating the CREB/c-Fos pathway. Neurosci Lett 2017; 638:76-82. [DOI: 10.1016/j.neulet.2016.11.066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/04/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022]
|
19
|
Shukla M, Govitrapong P, Boontem P, Reiter RJ, Satayavivad J. Mechanisms of Melatonin in Alleviating Alzheimer's Disease. Curr Neuropharmacol 2017; 15:1010-1031. [PMID: 28294066 PMCID: PMC5652010 DOI: 10.2174/1570159x15666170313123454] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/10/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic, progressive and prevalent neurodegenerative disease characterized by the loss of higher cognitive functions and an associated loss of memory. The thus far "incurable" stigma for AD prevails because of variations in the success rates of different treatment protocols in animal and human studies. Among the classical hypotheses explaining AD pathogenesis, the amyloid hypothesis is currently being targeted for drug development. The underlying concept is to prevent the formation of these neurotoxic peptides which play a central role in AD pathology and trigger a multispectral cascade of neurodegenerative processes post-aggregation. This could possibly be achieved by pharmacological inhibition of β- or γ-secretase or stimulating the nonamyloidogenic α-secretase. Melatonin the pineal hormone is a multifunctioning indoleamine. Production of this amphiphilic molecule diminishes with advancing age and this decrease runs parallel with the progression of AD which itself explains the potential benefits of melatonin in line of development and devastating consequences of the disease progression. Our recent studies have revealed a novel mechanism by which melatonin stimulates the nonamyloidogenic processing and inhibits the amyloidogenic processing of β-amyloid precursor protein (βAPP) by stimulating α -secretases and consequently down regulating both β- and γ-secretases at the transcriptional level. In this review, we discuss and evaluate the neuroprotective functions of melatonin in AD pathogenesis, including its role in the classical hypotheses in cellular and animal models and clinical interventions in AD patients, and suggest that with early detection, melatonin treatment is qualified to be an anti-AD therapy.
Collapse
Affiliation(s)
- Mayuri Shukla
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
| | - Piyarat Govitrapong
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakornpathom 73170, Thailand
| | - Parichart Boontem
- Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 54 Kamphaeng Phet 6 Road, Lak Si, Bangkok10210, Thailand
| | - Russel J. Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jutamaad Satayavivad
- Chulabhorn Research Institute and Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok10210, Thailand
| |
Collapse
|
20
|
Hiroi R, Weyrich G, Koebele SV, Mennenga SE, Talboom JS, Hewitt LT, Lavery CN, Mendoza P, Jordan A, Bimonte-Nelson HA. Benefits of Hormone Therapy Estrogens Depend on Estrogen Type: 17β-Estradiol and Conjugated Equine Estrogens Have Differential Effects on Cognitive, Anxiety-Like, and Depressive-Like Behaviors and Increase Tryptophan Hydroxylase-2 mRNA Levels in Dorsal Raphe Nucleus Subregions. Front Neurosci 2016; 10:517. [PMID: 28008302 PMCID: PMC5143618 DOI: 10.3389/fnins.2016.00517] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/26/2016] [Indexed: 11/23/2022] Open
Abstract
Decreased serotonin (5-HT) function is associated with numerous cognitive and affective disorders. Women are more vulnerable to these disorders and have a lower rate of 5-HT synthesis than men. Serotonergic neurons in the dorsal raphe nucleus (DRN) are a major source of 5-HT in the forebrain and play a critical role in regulation of stress-related disorders. In particular, polymorphisms of tryptophan hydroxylase-2 (TpH2, the brain-specific, rate-limiting enzyme for 5-HT biosynthesis) are implicated in cognitive and affective disorders. Administration of 17β-estradiol (E2), the most potent naturally circulating estrogen in women and rats, can have beneficial effects on cognitive, anxiety-like, and depressive-like behaviors. Moreover, E2 increases TpH2 mRNA in specific subregions of the DRN. Although conjugated equine estrogens (CEE) are a commonly prescribed estrogen component of hormone therapy in menopausal women, there is a marked gap in knowledge regarding how CEE affects these behaviors and the brain 5-HT system. Therefore, we compared the effects of CEE and E2 treatments on behavior and TpH2 mRNA. Female Sprague-Dawley rats were ovariectomized, administered either vehicle, CEE, or E2 and tested on a battery of cognitive, anxiety-like, and depressive-like behaviors. The brains of these animals were subsequently analyzed for TpH2 mRNA. Both CEE and E2 exerted beneficial behavioral effects, although efficacy depended on the distinct behavior and for cognition, on the task difficulty. Compared to CEE, E2 generally had more robust anxiolytic and antidepressant effects. E2 increased TpH2 mRNA in the caudal and mid DRN, corroborating previous findings. However, CEE increased TpH2 mRNA in the caudal and rostral, but not the mid, DRN, suggesting that distinct estrogens can have subregion-specific effects on TpH2 gene expression. We also found differential correlations between the level of TpH2 mRNA in specific DRN subregions and behavior, depending on the type of behavior. These distinct associations imply that cognition, anxiety-like, and depressive-like behaviors are modulated by unique serotonergic neurocircuitry, opening the possibility of novel avenues of targeted treatment for different types of cognitive and affective disorders.
Collapse
Affiliation(s)
- Ryoko Hiroi
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Giulia Weyrich
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Stephanie V Koebele
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Sarah E Mennenga
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Joshua S Talboom
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Lauren T Hewitt
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Courtney N Lavery
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Perla Mendoza
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Ambra Jordan
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| | - Heather A Bimonte-Nelson
- Department of Psychology, Arizona State UniversityTempe, AZ, USA; Arizona Alzheimer's ConsortiumPhoenix, AZ, USA
| |
Collapse
|
21
|
Bakoyiannis I, Tsigka EA, Perrea D, Pergialiotis V. The Impact of Endocrine Therapy on Cognitive Functions of Breast Cancer Patients: A Systematic Review. Clin Drug Investig 2016; 36:109-18. [PMID: 26619839 DOI: 10.1007/s40261-015-0364-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE The purpose of the present review was to study the impact of endocrine therapy (ET) on the cognitive outcomes of breast cancer patients. MATERIALS AND METHODS We systematically searched the literature using the MEDLINE (1966-2015), Scopus (2004-2015), ClinicalTrials.gov (2008-2015) and Cochrane Central Register (CENTRAL) databases, as well as the references of the electronically retrieved articles. RESULTS Twelve studies were included in the present systematic review, which assessed the cognitive function of 2756 patients. Among these patients, 2381 received ET, whereas the remaining 375 served as controls (placebo or no therapy). The majority of patients were postmenopausal, and the minimum follow-up period was 3 months and the maximum 2 years. Treatment with ET seems to be accompanied by altered cognitive abilities, including verbal memory, verbal fluency, motor speed, attention and working memory. Tamoxifen seems to be related to decreased cognitive performances compared with treatment with an aromatase inhibitor. CONCLUSIONS ET among breast cancer patients seems to negatively alter the cognitive outcomes of breast cancer patients. However, the methodological heterogeneity of the included studies, as well as the relatively small follow-up period, render imperative the conduct of further studies in the field.
Collapse
Affiliation(s)
- Ioannis Bakoyiannis
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, University of Athens, Athens, Greece
| | - Eleousa-Alexandra Tsigka
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, University of Athens, Athens, Greece
| | - Despina Perrea
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, University of Athens, Athens, Greece
| | - Vasilios Pergialiotis
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, University of Athens, Athens, Greece. .,, 6, Danaidon Str., 15232, Halandri, Greece.
| |
Collapse
|
22
|
Hendaus MA, Jomha FA, Alhammadi AH. Melatonin in the management of perinatal hypoxic-ischemic encephalopathy: light at the end of the tunnel? Neuropsychiatr Dis Treat 2016; 12:2473-2479. [PMID: 27729791 PMCID: PMC5045913 DOI: 10.2147/ndt.s115533] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Perinatal hypoxic-ischemic encephalopathy (HIE) affects one to three per 1,000 live full-term births and can lead to severe and permanent neuropsychological sequelae, such as cerebral palsy, epilepsy, mental retardation, and visual motor or visual perceptive dysfunction. Melatonin has begun to be contemplated as a good choice in order to diminish the neurological sequelae from hypoxic-ischemic brain injury. Melatonin emerges as a very interesting medication, because of its capacity to cross all physiological barriers extending to subcellular compartments and its safety and effectiveness. The purpose of this commentary is to detail the evidence on the use of melatonin as a neuroprotection agent. The pharmacologic aspects of the drug as well as its potential neuroprotective characteristics in human and animal studies are described in this study. Melatonin seems to be safe and beneficial in protecting neonatal brains from perinatal HIE. Larger randomized controlled trials in humans are required, to implement a long-awaited feasible treatment in order to avoid the dreaded sequelae of HIE.
Collapse
Affiliation(s)
- Mohamed A Hendaus
- Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation
- Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha, Qatar
| | - Fatima A Jomha
- School of Pharmacy, Lebanese International University, Khiara, Lebanon
| | - Ahmed H Alhammadi
- Department of Pediatrics, Section of Academic General Pediatrics, Hamad Medical Corporation
- Department of Clinical Pediatrics, Weill-Cornell Medical College, Doha, Qatar
| |
Collapse
|
23
|
Weinert D, Schöttner K, Müller L, Wienke A. Intensive voluntary wheel running may restore circadian activity rhythms and improves the impaired cognitive performance of arrhythmic Djungarian hamsters. Chronobiol Int 2016; 33:1161-1170. [DOI: 10.1080/07420528.2016.1205083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dietmar Weinert
- Institute of Biology, Department of Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Konrad Schöttner
- Institute of Entomology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | - Lisa Müller
- Institute of Biology, Department of Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andreas Wienke
- Institute of Medical Epidemiology, Biometrics and Informatics, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
24
|
Anukulthanakorn K, Parhar IS, Jaroenporn S, Kitahashi T, Watanbe G, Malaivijitnond S. Neurotherapeutic Effects of Pueraria mirifica Extract in Early- and Late-Stage Cognitive Impaired Rats. Phytother Res 2016; 30:929-39. [PMID: 26915634 DOI: 10.1002/ptr.5595] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/24/2016] [Accepted: 01/30/2016] [Indexed: 12/28/2022]
Abstract
We determined the neurotherapeutic effects of Pueraria mirifica extract (PME) and pure puerarin (PU) in comparison with 17β-estradiol (E2 ) in early- and late-stage cognitive impaired rats. Rats were ovariectomized (OVX), kept for 2 and 4 months to induce early- and late-stage cognitive impairment, respectively, and divided into four groups that were treated daily with (i) distilled water, (ii) 100 mg/kg of PME, (iii) 7 mg/kg of PU, and (iv) 80 µg/kg of E2 for 4 months. The estrogen deficiency symptoms of OVX rats were abrogated by treatment with E2 or PME, but not by treatment with PU. The mRNA level of genes associated with amyloid production (App and Bace1) and hyperphosphorylated Tau (Tau4) were upregulated together with the level of impaired cognition in the 2- and 4-month OVX rats. Treatment with E2 reduced the level of cognitive impairment more than that with PME and PU, and 2-month OVX rats were more responsive than 4-month OVX rats. All treatments down-regulated the Bace1 mRNA level in 2-month OVX rats, while PU and PME also decreased the App mRNA level in 2- and 4-month OVX rats, respectively. Only PU suppressed Tau4 expression in 2-month OVX rats. Thus, PME and PU elicit neurotherapeutic effects in different pathways, and earlier treatment is optimal. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kanya Anukulthanakorn
- Biological Sciences Program, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, PJ46150, Malaysia
| | - Sukanya Jaroenporn
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Takashi Kitahashi
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, PJ46150, Malaysia
| | - Gen Watanbe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Suchinda Malaivijitnond
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
25
|
Hu Z, Yang Y, Gao K, Rudd JA, Fang M. Ovarian hormones ameliorate memory impairment, cholinergic deficit, neuronal apoptosis and astrogliosis in a rat model of Alzheimer's disease. Exp Ther Med 2015; 11:89-97. [PMID: 26889223 PMCID: PMC4726845 DOI: 10.3892/etm.2015.2868] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/24/2015] [Indexed: 01/10/2023] Open
Abstract
Ovarian hormones, including progesterone (P4) and 17 β-estradiol (E2), have been shown to affect memory functions; however, the underlying mechanism whereby ovarian hormone replacement therapy may decrease the risk of Alzheimer's disease (AD) is currently unclear. The present study aimed to investigate the effects of P4 and E2 on spatial and learning memory in an ovariectomized rat model of AD. β-amyloid (Aβ) or saline were stereotaxically injected into the hippocampus of the rats and, after 1 day, ovariectomy or sham operations were performed. Subsequently, the rats were treated with P4 alone, E2 alone, or a combination of P4 and E2. Treatment with E2 and/or P4 was shown to improve the learning and memory functions of the rats, as demonstrated by the Morris water maze test. In addition, treatment with E2 and P4 was associated with increased expression levels of choline acetyltransferase and 5-hydroxytryptamine receptor 2A (5-HT2A), and decreased expression levels of the glial fibrillary acidic protein in the hippocampus of the rats. Furthermore, E2 and P4 treatment significantly attenuated neuronal cell apoptosis, as demonstrated by terminal deoxynucleotidyl transferase dUTP nick end labeling assays; thus suggesting that the ovarian hormones were able to protect against Aβ-induced neuronal cell toxicity. The results of the present study suggested that the neuroprotective effects of P4 and E2 were associated with amelioration of the cholinergic deficit, suppression of apoptotic signals and astrogliosis, and upregulation of 5-HT2A expression levels. Therefore, hormone replacement therapy may be considered an effective strategy for the treatment of patients with cognitive disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiying Hu
- Department of Obstetrics and Gynecology, Hangzhou Red Cross Hospital, Hangzhou, Zheijiang, P.R. China
| | - Yang Yang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Keqiang Gao
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - John A Rudd
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
26
|
İlkaya F, Yüce M, Ağrı AE, Güzel H, Balcı H, Uçar F, Babadağı Z, Müjdeci M, Mutlu E. The combination of agomelatine and ritanserin exerts a synergistic interaction in passive avoidance task. Hum Exp Toxicol 2015; 34:787-95. [DOI: 10.1177/0960327114559613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Agomelatine is a potent agonist at melatonergic 1 and 2 (MT1 and MT2) receptors and an antagonist at serotonin-2C (5HT-2C) receptors. It was suggested that psychotropic effects of agomelatine is associated with its melatonergic and serotonergic effects. In this study, we aimed to evaluate the effects of agomelatine alone or in combination with ritanserin (5HT-2A/2C antagonist) on memory and learning. Male Balb-C mice (25–30 g) were used, and all drugs and saline were administrated by intraperitoneal (i.p.) route 30 min prior to evaluating retention time. Whilst agomelatine was administered at the doses of 1, 10 and 30 mg/kg, ritanserin was administered at the doses of 0.1, 1 and 10 mg/kg. To evaluate memory function, passive avoidance test was used. On the first day, acquisition time and on the second day (after 24h), retention time of mice were recorded. To evaluate the synergistic activity, only the least doses of agomelatine and ritanserine were used, that is, 1 and 0.1 mg/kg, respectively. Scopolamine (1 mg/kg) was used as a reference drug, so it was combined with drug groups. Our results show that 5HT-2A/2C receptor antagonist ritanserin (1 and 4 mg/kg, i.p.) and agomelatine (10 and 30 mg/kg, i.p.) improve memory deficit induced by scopolamine, whilst a synergistic interaction is observed between ritanserin and agomelatine (0.1 mg/kg and 1 mg/kg, i.p., respectively) when they were administered at their ineffective doses. According to our findings, we concluded that agomelatine improves memory deficit and thus improves the effect of agomelatine arises from its 5HT-2C receptor antagonist activity.
Collapse
Affiliation(s)
- F İlkaya
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - M Yüce
- Department of Medicine Child and Adolescent Psychiatry, Ondokuz Mayıs University, Samsun, Turkey
| | - AE Ağrı
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - H Güzel
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - H Balcı
- Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - F Uçar
- Department of Medicine Child and Adolescent Psychiatry, Ondokuz Mayıs University, Samsun, Turkey
| | - Z Babadağı
- Department of Medicine Child and Adolescent Psychiatry, Ondokuz Mayıs University, Samsun, Turkey
| | - M Müjdeci
- Department of Medicine Child and Adolescent Psychiatry, Ondokuz Mayıs University, Samsun, Turkey
| | - E Mutlu
- Department of Pharmacology, Faculty of Medicine, Ordu University, Ordu, Turkey
| |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW Alzheimer's disease is a complex multifactorial age-related neurodegenerative disorder. Current transgenic animal models do not fully recapitulate human Alzheimer's disease at the molecular, cellular and behavioural levels. This review aims to address the clinical relevance of using 'physiologically' aged rats, dogs and Octodon degus, as more representative 'natural' ecologically valid models to elucidate mechanistic aspects of Alzheimer's disease, and for the development of therapeutic agents to attenuate age-related cognitive decline. RECENT FINDINGS Aged rats, dogs and O. degus decline cognitively and ultimately develop Alzheimer's disease-like symptoms in response to the natural ageing process. Aged rats provide a tractable and popular model to examine the neurobiological basis underlying cognitive decline with age, but they do not develop Alzheimer's disease pathology. Progressive accumulation of abnormal amyloid-beta in extracellular plaques and surrounding cerebral vasculature is a common feature in human Alzheimer's disease, aged canine model and most nonhuman primates. Interestingly, the O. degus develops amyloid-beta deposits, neurofibrillary tangles containing hyperphosphorylated tau protein, altered cholinergic transmission and cognitive deficits analogous to those observed in Alzheimer's disease. Natural animal models better represent the full pathophysiology of Alzheimer's disease and are not only a viable alternative to transgenic models, but also are arguably the preferable model. SUMMARY 'Natural' models are useful to elucidate the neurobiological basis of Alzheimer's disease and develop effective therapeutic strategies that can be translated into human clinical trials.
Collapse
|
28
|
Müller L, Fritzsche P, Weinert D. Novel object recognition of Djungarian hamsters depends on circadian time and rhythmic phenotype. Chronobiol Int 2014; 32:458-67. [DOI: 10.3109/07420528.2014.992526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
29
|
Monthakantirat O, Sukano W, Umehara K, Noguchi H, Chulikhit Y, Matsumoto K. Effect of miroestrol on ovariectomy-induced cognitive impairment and lipid peroxidation in mouse brain. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1249-1255. [PMID: 25172786 DOI: 10.1016/j.phymed.2014.06.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/29/2014] [Accepted: 06/19/2014] [Indexed: 06/03/2023]
Abstract
Miroestrol (MR) is a phytoestrogen isolated from Pueraria candollei var. mirifica (KwaoKrueaKhao), a Thai medicinal plant used for rejuvenation. We examined the effects of MR on cognitive function, oxidative brain damage, and the expression of genes encoding brain-derived neurotrophic factor (BDNF) and cyclic AMP-responsive element-binding protein (CREB), factors implicated in neurogenesis and synaptic plasticity, in ovariectomized (OVX) mice. OVX decreased serum 17β-estradiol level and uterine weight. OVX also impaired object recognition performance in the novel object recognition test and spatial cognitive performance in the Y-maze test and the water maze test. Daily treatment of MR dose-dependently attenuated OVX-induced cognitive dysfunction. Moreover, OVX mice had a significantly increased level of thiobarbituric acid-reactive substances, and down-regulated expression levels of BDNF and CREB mRNAs in the hippocampus and frontal cortex. MR treatment as well as hormone replacement therapy with 17β-estradiol significantly reversed these neurochemical alterations caused by OVX. These results suggest that MR ameliorates cognitive deficits in OVX animals via attenuation of OVX-induced oxidative stress and down-regulation of BDNF and CREB mRNA transcription in the brain. Our findings raise the possibility that MR and Pueraria candollei var. mirifica, the plant of origin of MR, may have a beneficial effect on cognitive deficits like AD in which menopause/ovariectomy are implicated as risk factors.
Collapse
Affiliation(s)
- Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Wichitsak Sukano
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Kaoru Umehara
- Department of Pharmacognosy, School of Pharmaceutical Sciences, University of Shizuoka, Yada 52-1, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Hiroshi Noguchi
- Department of Pharmacognosy, School of Pharmaceutical Sciences, University of Shizuoka, Yada 52-1, Shizuoka-shi, Shizuoka 422-8526, Japan
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand; Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Kinzo Matsumoto
- Division of Medicinal Pharmacology, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
30
|
Cardinali DP, Vigo DE, Olivar N, Vidal MF, Brusco LI. Melatonin Therapy in Patients with Alzheimer's Disease. Antioxidants (Basel) 2014; 3:245-77. [PMID: 26784870 PMCID: PMC4665493 DOI: 10.3390/antiox3020245] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/09/2014] [Accepted: 03/17/2014] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is a major health problem and a growing recognition exists that efforts to prevent it must be undertaken by both governmental and non-governmental organizations. In this context, the pineal product, melatonin, has a promising significance because of its chronobiotic/cytoprotective properties potentially useful for a number of aspects of AD. One of the features of advancing age is the gradual decrease in circulating melatonin levels. A limited number of therapeutic trials have indicated that melatonin has a therapeutic value as a neuroprotective drug in the treatment of AD and minimal cognitive impairment (which may evolve to AD). Both in vitro and in vivo, melatonin prevented the neurodegeneration seen in experimental models of AD. For these effects to occur, doses of melatonin about two orders of magnitude higher than those required to affect sleep and circadian rhythmicity are needed. More recently, attention has been focused on the development of potent melatonin analogs with prolonged effects, which were employed in clinical trials in sleep-disturbed or depressed patients in doses considerably higher than those employed for melatonin. In view that the relative potencies of the analogs are higher than that of the natural compound, clinical trials employing melatonin in the range of 50-100 mg/day are urgently needed to assess its therapeutic validity in neurodegenerative disorders such as AD.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Departamento de Docencia e Investigación, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires 1007, Argentina.
| | - Daniel E Vigo
- Departamento de Docencia e Investigación, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires 1007, Argentina.
| | - Natividad Olivar
- Centro de Neuropsiquiatría y Neurología de la Conducta, Hospital de Clínicas "José de San Martín", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina.
| | - María F Vidal
- Centro de Neuropsiquiatría y Neurología de la Conducta, Hospital de Clínicas "José de San Martín", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina.
| | - Luis I Brusco
- Centro de Neuropsiquiatría y Neurología de la Conducta, Hospital de Clínicas "José de San Martín", Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina.
| |
Collapse
|
31
|
Do Carmo S, Cuello AC. Modeling Alzheimer's disease in transgenic rats. Mol Neurodegener 2013; 8:37. [PMID: 24161192 PMCID: PMC4231465 DOI: 10.1186/1750-1326-8-37] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/28/2013] [Indexed: 11/10/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. At the diagnostic stage, the AD brain is characterized by the accumulation of extracellular amyloid plaques, intracellular neurofibrillary tangles and neuronal loss. Despite the large variety of therapeutic approaches, this condition remains incurable, since at the time of clinical diagnosis, the brain has already suffered irreversible and extensive damage. In recent years, it has become evident that AD starts decades prior to its clinical presentation. In this regard, transgenic animal models can shed much light on the mechanisms underlying this "pre-clinical" stage, enabling the identification and validation of new therapeutic targets. This paper summarizes the formidable efforts to create models mimicking the various aspects of AD pathology in the rat. Transgenic rat models offer distinctive advantages over mice. Rats are physiologically, genetically and morphologically closer to humans. More importantly, the rat has a well-characterized, rich behavioral display. Consequently, rat models of AD should allow a more sophisticated and accurate assessment of the impact of pathology and novel therapeutics on cognitive outcomes.
Collapse
Affiliation(s)
- Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, Quebec H3G 1Y6, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Room 1325, Montreal, Quebec H3G 1Y6, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec H3A 2B2, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
32
|
Lin L, Huang QX, Yang SS, Chu J, Wang JZ, Tian Q. Melatonin in Alzheimer's disease. Int J Mol Sci 2013; 14:14575-93. [PMID: 23857055 PMCID: PMC3742260 DOI: 10.3390/ijms140714575] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 06/21/2013] [Accepted: 07/05/2013] [Indexed: 11/18/2022] Open
Abstract
Alzheimer’s disease (AD), an age-related neurodegenerative disorder with progressive cognition deficit, is characterized by extracellular senile plaques (SP) of aggregated β-amyloid (Aβ) and intracellular neurofibrillary tangles, mainly containing the hyperphosphorylated microtubule-associated protein tau. Multiple factors contribute to the etiology of AD in terms of initiation and progression. Melatonin is an endogenously produced hormone in the brain and decreases during aging and in patients with AD. Data from clinical trials indicate that melatonin supplementation improves sleep, ameliorates sundowning and slows down the progression of cognitive impairment in AD patients. Melatonin efficiently protects neuronal cells from Aβ-mediated toxicity via antioxidant and anti-amyloid properties. It not only inhibits Aβ generation, but also arrests the formation of amyloid fibrils by a structure-dependent interaction with Aβ. Our studies have demonstrated that melatonin efficiently attenuates Alzheimer-like tau hyperphosphorylation. Although the exact mechanism is still not fully understood, a direct regulatory influence of melatonin on the activities of protein kinases and protein phosphatases is proposed. Additionally, melatonin also plays a role in protecting the cholinergic system and in anti-inflammation. The aim of this review is to stimulate interest in melatonin as a potentially useful agent in the prevention and treatment of AD.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Department of Pathology and Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; E-Mail:
- Department of Pathology and Pathophysiology, College of Medical Science, Jishou University, 120 People Road, Jishou 436100, China; E-Mails: (L.L.); (S.-S.Y.)
| | - Qiong-Xia Huang
- Department of TCM Rationale, College of Basic Medicine, Hubei University of Chinese Medicine, 1 West Road Huangjia Lake, Wuhan 430065, China; E-Mail:
| | - Shu-Sheng Yang
- Department of Pathology and Pathophysiology, College of Medical Science, Jishou University, 120 People Road, Jishou 436100, China; E-Mails: (L.L.); (S.-S.Y.)
| | - Jiang Chu
- Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Department of Pathology and Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; E-Mail:
| | - Jian-Zhi Wang
- Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Department of Pathology and Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (J.-Z.W.); (Q.T.); Tel./Fax: +86-27-8369-3883 (J.-Z.W.); Tel.: +86-27-8369-2625 (Q.T.)
| | - Qing Tian
- Key Laboratory of Neurological Disease of National Education Ministry and Hubei Province, Department of Pathology and Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (J.-Z.W.); (Q.T.); Tel./Fax: +86-27-8369-3883 (J.-Z.W.); Tel.: +86-27-8369-2625 (Q.T.)
| |
Collapse
|
33
|
Acosta JI, Hiroi R, Camp BW, Talboom JS, Bimonte-Nelson HA. An update on the cognitive impact of clinically-used hormone therapies in the female rat: models, mazes, and mechanisms. Brain Res 2013; 1514:18-39. [PMID: 23333453 PMCID: PMC3739440 DOI: 10.1016/j.brainres.2013.01.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/09/2013] [Indexed: 01/05/2023]
Abstract
In women, ovarian hormone loss associated with menopause has been related to cognitive decline. Hormone therapy (HT) may ameliorate some of these changes. Understanding the cognitive impact of female steroids, including estrogens, progestogens, and androgens, is key to discovering treatments that promote brain health in women. The preclinical literature has presented elegant and methodical experiments allowing a better understanding of parameters driving the cognitive consequences of ovarian hormone loss and HT. Animal models have been a valuable tool in this regard, and will be vital to future discoveries. Here, we provide an update on the literature evaluating the impact of female steroid hormones on cognition, and the putative mechanisms mediating these effects. We focus on preclinical work that was done with an eye toward clinical realities. Parameters that govern the cognitive efficacy of HT, from what we know thus far, include but are not limited to: type, dose, duration, and route of HT, age at HT initiation, timing of HT relative to ovarian hormone loss, memory type examined, menopause history, and hormone receptor status. Researchers have identified intricate relationships between some of these factors by studying their individual effects on cognition. As of late, there is increased focus on studying interactions between these variables as well as multiple hormone types when administered concomitantly. This is key to translating preclinical data to the clinic, wherein women typically have concurrent exposure to endogenous ovarian hormones as well as exogenous combination HTs, which include both estrogens and progestins. Gains in understanding the parameters of HT effects on cognition provide exciting novel avenues that can inform clinical treatments, eventually expanding the window of opportunity to optimally enhance cognition and brain health in aging women. This article is part of a Special Issue entitled Hormone Therapy.
Collapse
Affiliation(s)
- J I Acosta
- Department of Psychology, Arizona State University, Tempe, AZ 85287, USA
| | | | | | | | | |
Collapse
|
34
|
Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia. Int J Mol Sci 2013; 14:9379-95. [PMID: 23629670 PMCID: PMC3676788 DOI: 10.3390/ijms14059379] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/15/2013] [Accepted: 04/16/2013] [Indexed: 01/01/2023] Open
Abstract
One of the most common causes of mortality and morbidity in children is perinatal hypoxia-ischemia (HI). In spite of the advances in neonatology, its incidence is not diminishing, generating a pediatric population that will require an extended amount of chronic care throughout their lifetime. For this reason, new and more effective neuroprotective strategies are urgently required, in order to minimize as much as possible the neurological consequences of this encephalopathy. In this sense, interest has grown in the neuroprotective possibilities of melatonin, as this hormone may help to maintain cell survival through the modulation of a wide range of physiological functions. Although some of the mechanisms by which melatonin is neuroprotective after neonatal asphyxia remain a subject of investigation, this review tries to summarize some of the most recent advances related with its use as a therapeutic drug against perinatal hypoxic-ischemic brain injury, supporting the high interest in this indoleamine as a future feasible strategy for cerebral asphyctic events.
Collapse
|
35
|
Corrales A, Martínez P, García S, Vidal V, García E, Flórez J, Sanchez-Barceló EJ, Martínez-Cué C, Rueda N. Long-term oral administration of melatonin improves spatial learning and memory and protects against cholinergic degeneration in middle-aged Ts65Dn mice, a model of Down syndrome. J Pineal Res 2013; 54:346-58. [PMID: 23350971 DOI: 10.1111/jpi.12037] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 12/14/2012] [Indexed: 01/08/2023]
Abstract
Ts65Dn mice (TS), the most commonly used model of Down syndrome (DS), exhibit phenotypic characteristics of this condition. Both TS mice and DS individuals present cognitive disturbances, age-related cholinergic degeneration, and increased brain expression of β-amyloid precursor protein (AβPP). These neurodegenerative processes may contribute to the progressive cognitive decline observed in DS. Melatonin is a pineal indoleamine that has been reported to reduce neurodegenerative processes and improve cognitive deficits in various animal models. In this study, we evaluated the potentially beneficial effects of long-term melatonin treatment on the cognitive deficits, cholinergic degeneration, and enhanced AβPP and β-amyloid levels of TS mice. Melatonin was administered for 5 months to 5- to 6-month-old TS and control (CO) mice. Melatonin treatment improved spatial learning and memory and increased the number of choline acetyltransferase (ChAT)-positive cells in the medial septum of both TS and CO mice. However, melatonin treatment did not significantly reduce AβPP or β-amyloid levels in the cortex or the hippocampus of TS mice. Melatonin administration did reduce anxiety in TS mice without inducing sensorimotor alterations, indicating that prolonged treatment with this indoleamine is devoid of noncognitive behavioral side effects (e.g., motor coordination, sensorimotor abilities, or spontaneous activity). Our results suggest that melatonin administration might improve the cognitive abilities of both TS and CO mice, at least partially, by reducing the age-related degeneration of basal forebrain cholinergic neurons. Thus, chronic melatonin supplementation may be an effective treatment for delaying the age-related progression of cognitive deterioration found in DS.
Collapse
Affiliation(s)
- Andrea Corrales
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria, Santander, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Anukulthanakorn K, Malaivijitnond S, Kitahashi T, Jaroenporn S, Parhar I. Molecular events during the induction of neurodegeneration and memory loss in estrogen-deficient rats. Gen Comp Endocrinol 2013; 181:316-23. [PMID: 23036734 DOI: 10.1016/j.ygcen.2012.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 07/25/2012] [Indexed: 12/23/2022]
Abstract
This study aims to delineate the relationship among estrogen deficiency, neurodegeneration, and cognitive impairment of ovariectomized rats. Female Sprague-Dawley rats were ovariectomized and euthanized after 1-4 month periods (M(0)-M(4) groups). Blood samples were collected for the determination of serum levels of 17β-estradiol (E(2)), luteinizing hormone (LH), and follicle stimulating hormone (FSH). Five consecutive days before the euthanization, cognitive performance of the rats was examined by Morris water maze test. After euthanization, the hippocampus was collected, and expression of the genes associated with amyloid plaques (App, Adam10 and Bace1) and neurofibrillary tangles (Tau4 and Tau3) were examined by real-time PCR. Serum E(2) levels were declined following 2 weeks of ovariectomy. Conversely, serum FSH and LH levels were profoundly increased by 2 weeks of ovariectomy for approximately 4 and 22 times, respectively. Cognitive impairments, indicated by the longer latency and distance, were observed only in the M(3) and M(4) groups. The Tau4 mRNA levels were significantly increased as early as 1 month after ovariectomy (in the M(1) group; P<0.05), and tended to be increased further with the advancing time. Similarly, the Tau3 mRNA levels were increased by ovariectomy, but with the highest level in the M(1) group, and decreased thereafter. The mRNA levels of App, Adam10 and Bace1 were increased by ovariectomy, but significant differences were observed only in the M(4) group. These results indicate that estrogen deficiency can induce a sequence of events that results in the production of neurofibrillary tangles, amyloid deposition, and spatial memory deficit in rats.
Collapse
Affiliation(s)
- Kanya Anukulthanakorn
- Biological Science Program, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | |
Collapse
|
37
|
Ni C, Tan G, Luo A, Qian M, Tang Y, Zhou Y, Wang J, Li M, Zhang Y, Jia D, Wu C, Guo X. Melatonin Premedication Attenuates Isoflurane Anesthesia-Induced β-Amyloid Generation and Cholinergic Dysfunction in the Hippocampus of Aged Rats. Int J Neurosci 2012; 123:213-20. [DOI: 10.3109/00207454.2012.742895] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
38
|
Salami M, Talaei SA, Davari S, Hamidi G. Interaction of visual experience and melatonin in the spatial task learning. BIOL RHYTHM RES 2012. [DOI: 10.1080/09291016.2011.593849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, DK 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
40
|
Engler-Chiurazzi EB, Talboom JS, Braden BB, Tsang CW, Mennenga S, Andrews M, Demers LM, Bimonte-Nelson HA. Continuous estrone treatment impairs spatial memory and does not impact number of basal forebrain cholinergic neurons in the surgically menopausal middle-aged rat. Horm Behav 2012; 62:1-9. [PMID: 22522079 PMCID: PMC3397199 DOI: 10.1016/j.yhbeh.2012.04.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 03/21/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
CEE (conjugated equine estrogens) is the most widely prescribed estrogen-only menopausal hormone therapy in the United States, and is comprised of over 50% estrone (E1) sulfate. Following CEE administration, E1 is the principal circulating estrogen. However, the cognitive and neurobiological effects of E1 in a middle-aged rodent model have not yet been evaluated. We assessed cognitive effects of continuous E1 treatment in middle-aged surgically menopausal rats using a maze battery. We also quantified number of choline acetyltransferase-immunoreactive (ChAT-IR) neurons in distinct basal forebrain regions known in earlier studies in to be impacted by the most potent naturally-circulating estrogen in rodents and women, 17β-estradiol (17β-E2), as well as CEE. On the spatial working memory delayed-match-to-sample water maze, the highest E1 dose impaired memory performance during acquisition and after delay challenge. E1 did not impact ChAT-IR neuron number in the medial septum (MS) or horizontal/vertical diagonal bands. In a comparison study, 17β-E2 increased MS ChAT-IR neuron number. Findings indicate that E1 negatively impacts spatial working memory and memory retention, and does not increase ChAT-IR neuron number in basal forebrain, as does 17β-E2. Thus, data from prior studies suggest that 17β-E2 and CEE can enhance cognition and increase number of ChAT-IR basal forebrain neurons, while here we show that E1 does not induce these effects. Findings from preclinical basic science studies can inform the design of specific combinations of estrogens that could be beneficial to the brain and cognition. Accumulating data suggest that E1 is not likely to be among these key beneficial estrogens.
Collapse
Affiliation(s)
- Elizabeth B. Engler-Chiurazzi
- Department of Psychology, Arizona State University, Tempe, AZ, USA 85287
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006
| | - Joshua S. Talboom
- Department of Psychology, Arizona State University, Tempe, AZ, USA 85287
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006
| | - B. Blair Braden
- Department of Psychology, Arizona State University, Tempe, AZ, USA 85287
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006
| | - Candy W.S. Tsang
- Department of Psychology, Arizona State University, Tempe, AZ, USA 85287
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006
| | - Sarah Mennenga
- Department of Psychology, Arizona State University, Tempe, AZ, USA 85287
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006
| | - Madeline Andrews
- Department of Psychology, Arizona State University, Tempe, AZ, USA 85287
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006
| | - Laurence M. Demers
- Department of Pathology, Pennsylvania State University College of Medicine, Hershey, PA, USA 17033
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ, USA 85287
- Arizona Alzheimer’s Consortium, Phoenix, AZ 85006
| |
Collapse
|
41
|
Li L, Xiao N, Yang X, Gao J, Ding J, Wang T, Hu G, Xiao M. A high cholesterol diet ameliorates hippocampus-related cognitive and pathological deficits in ovariectomized mice. Behav Brain Res 2012; 230:251-8. [DOI: 10.1016/j.bbr.2012.02.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 02/07/2012] [Accepted: 02/11/2012] [Indexed: 12/12/2022]
|
42
|
Kiss Á, Delattre AM, Pereira SI, Carolino RG, Szawka RE, Anselmo-Franci JA, Zanata SM, Ferraz AC. 17β-Estradiol replacement in young, adult and middle-aged female ovariectomized rats promotes improvement of spatial reference memory and an antidepressant effect and alters monoamines and BDNF levels in memory- and depression-related brain areas. Behav Brain Res 2012; 227:100-8. [DOI: 10.1016/j.bbr.2011.10.047] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/27/2011] [Accepted: 10/31/2011] [Indexed: 12/20/2022]
|
43
|
Martins DB, Mazzanti CM, França RT, Pagnoncelli M, Costa MM, de Souza EM, Gonçalves J, Spanevello R, Schmatz R, da Costa P, Mazzanti A, Beckmann DV, Cecim MDS, Schetinger MR, Lopes STDA. 17-β estradiol in the acetylcholinesterase activity and lipid peroxidation in the brain and blood of ovariectomized adult and middle-aged rats. Life Sci 2011; 90:351-9. [PMID: 22227472 DOI: 10.1016/j.lfs.2011.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2011] [Revised: 12/04/2011] [Accepted: 12/13/2011] [Indexed: 01/21/2023]
Abstract
AIMS To investigate the 17-β estradiol in the acetylcholinesterase activity and lipid peroxidation in the brain and blood of ovariectomized rats of different ages. MAIN METHODS Animals were randomly assigned into three experimental groups of each age (n=6). Control groups consisted of adult (sham-A) and middle-aged (sham-MA) female rats, ovariectomized adult (OVX-A) and middle-aged (OVX-MA) rats without estrogen therapy reposition, and ovariectomized adult (OVX+E2-A) and middle-aged (OVX+E2-MA) rats treated with 17-β estradiol for 30days. After this period, AChE activity and lipid peroxidation were measured in the brain and blood. KEY FINDINGS The AChE activity increased (p<0.05) in striatum (ST) in OVX-A, OVX+E2-A and OVX-MA, and hippocampus (HP) in OVX-MA. The enzyme activity decreased (p<0.05) in ST of OVX+E2-MA, and cerebral cortex (CC) in OVX+E2-A, OVX-MA and OVX+E2-MA. Blood AChE activity increased (p<0.05) in OVX+E2-A and decreased (p<0.05) in OVX-MA. Lymphocyte AChE activity increased (p<0.05) in OVX-A and OVX+E2-A and decreased (p<0.05) in OVX-MA. Lipid peroxidation increased (p<0.05) in ST of OVX-A, CC of OVX-A and OVX-MA, HP of OVX-A, and cerebellum (CE) of OVX-A, OVX-MA, and OVX+E2-MA. Lipid peroxidation decreased (p<0.05) in ST, CC and CE of OVX+E2-A, and ST and HP of OVX+E2-MA. Similar values of lipid peroxidation to control groups were found in ST and HP of OVX-MA, HP of OVX+E2-A and CC of OVX+E2-MA. SIGNIFICANCE 17-β estradiol is able to modulate the AChE activity and non-neuronal cholinergic response as well as to reduce lipid peroxidation. Its response is dependent on the age and brain structure analyzed.
Collapse
Affiliation(s)
- Danieli Brolo Martins
- Departamento de Clínica de Pequenos Animais, Universidade Federal de Santa Maria, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Recent rodent models for Alzheimer's disease: clinical implications and basic research. J Neural Transm (Vienna) 2011; 119:173-95. [PMID: 22086139 DOI: 10.1007/s00702-011-0731-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/24/2011] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common origin of dementia in the elderly. Although the cause of AD remains unknown, several factors have been identified that appear to play a critical role in the development of this debilitating disorder. In particular, amyloid precursor protein (APP), tau hyperphosphorylation, and the secretase enzymes, have become the focal point of recent research. Over the last two decades, several transgenic and non-transgenic animal models have been developed to elucidate the mechanistic aspects of AD and to validate potential therapeutic targets. Transgenic rodent models over-expressing human β-amyloid precursor protein (β-APP) and mutant forms of tau have become precious tools to study and understand the pathogenesis of AD at the molecular, cellular and behavioural levels, and to test new therapeutic agents. Nevertheless, none of the transgenic models of AD recapitulate fully all of the pathological features of the disease. Octodon degu, a South American rodent has been recently found to spontaneously develop neuropathological signs of AD in old age. This review aims to address the limitations and clinical relevance of transgenic rodent models in AD, and to highlight the potential for O. degu as a natural model for the study of AD neuropathology.
Collapse
|
45
|
Mendoza-Garcés L, Mendoza-Rodríguez CA, Jiménez-Trejo F, Picazo O, Rodríguez MC, Cerbón M. Differential expression of estrogen receptors in two hippocampal regions during the estrous cycle of the rat. Anat Rec (Hoboken) 2011; 294:1913-9. [PMID: 21972199 DOI: 10.1002/ar.21247] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 06/28/2010] [Indexed: 12/29/2022]
Abstract
In the hippocampus, estrogens increase dendritic arborization, long-term potentiation, neuroprotection, and participate in many functions related with learning, memory, and affective behaviors. The presence of both estrogen receptors alpha (ERα) and beta (ERβ) isoforms has been described in the hippocampus where they play different physiological roles. The aim of this study was to investigate, by using both techniques immunohistochemistry and Western Blot, the expression pattern of ERα and ERβ in the hippocampus of the rat along the estrous cycle. Western blot analysis was used to confirm the specificity of the antibodies used against ERα and ERβ and its relative content in the hippocampus. Results from immunohistochemical studies indicate that ERβ expression increased more than the ERα in CA1 and CA3 regions during all phases of the estrous cycle. ERβ immunoreactivity was mainly located in the nucleus and predominantly expressed in CA1 during estrous and metestrus, and in CA3 during diestrus. ERα was more abundant during estrous in comparison to other phases of the cycle in CA1 region, while it was more abundant during metestrus in CA3. Interestingly, the immunolocalization of ERα subtype was both cytoplasmic and nuclear. The overall results indicate that there is a differential expression, cellular localization, and distribution of both ER subtypes in CA1 and CA3 regions, suggesting different roles for these two receptors in the hippocampus along the estrous cycle.
Collapse
Affiliation(s)
- Luciano Mendoza-Garcés
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, Distrito Federal, México
| | | | | | | | | | | |
Collapse
|
46
|
He H, Dong W, Huang F. Anti-amyloidogenic and anti-apoptotic role of melatonin in Alzheimer disease. Curr Neuropharmacol 2011; 8:211-7. [PMID: 21358971 PMCID: PMC3001214 DOI: 10.2174/157015910792246137] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 05/17/2010] [Accepted: 05/28/2010] [Indexed: 01/02/2023] Open
Abstract
Alzheimer disease (AD) is an age-related neurodegenerative disorder characterized by the presence of senile plaques, neurofibrillary tangles and neuronal loss. Amyloid-β protein (Aβ) deposition plays a critical role in the development of AD. It is now generally accepted that massive neuronal death due to apoptosis is a common characteristic in the brains of patients suffering from neurodegenerative diseases, and apoptotic cell death has been found in neurons and glial cells in AD. Melatonin is a secretory product of the pineal gland; melatonin is a potent antioxidant and free radical scavenger and may play an important role in aging and AD. Melatonin decreases during aging and patients with AD have a more profound reduction of this indoleamine. Additionally, the antioxidant properties, the anti-amyloidogenic properties and anti-apoptotic properties of melatonin in AD models have been studied. In this article, we review the anti-amyloidogenic and anti-apoptotic role of melatonin in AD
Collapse
Affiliation(s)
- Hongwen He
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510080, P.R. China
| | | | | |
Collapse
|
47
|
Abstract
Steroid hormones may alter mnemonic processes. The majority of investigations have focused on the effects of 17β-estradiol (E(2)) to mediate learning. However, progesterone (P(4)), which varies across endogenous hormonal milieu with E(2), may also have effects on cognitive processes. P(4) may have effects in the hippocampus, prefrontal cortex (PFC) and/or striatum to enhance cognitive performance. Cognitive performance/learning has been assessed using tasks that are mediated by the hippocampus (water maze), PFC (object recognition) and striatum (conditioning). Our findings suggest that progestogens can have pervasive effects to enhance cognitive performance and learning in tasks mediated by the hippocampus, PFC and striatum and that these effects may be in part independent of actions at intracellular progestin receptors. Progestogens may therefore influence cognitive processes.
Collapse
|
48
|
Massaad CA, Klann E. Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxid Redox Signal 2011; 14:2013-54. [PMID: 20649473 PMCID: PMC3078504 DOI: 10.1089/ars.2010.3208] [Citation(s) in RCA: 413] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The brain is a metabolically active organ exhibiting high oxygen consumption and robust production of reactive oxygen species (ROS). The large amounts of ROS are kept in check by an elaborate network of antioxidants, which sometimes fail and lead to neuronal oxidative stress. Thus, ROS are typically categorized as neurotoxic molecules and typically exert their detrimental effects via oxidation of essential macromolecules such as enzymes and cytoskeletal proteins. Most importantly, excessive ROS are associated with decreased performance in cognitive function. However, at physiological concentrations, ROS are involved in functional changes necessary for synaptic plasticity and hence, for normal cognitive function. The fine line of role reversal of ROS from good molecules to bad molecules is far from being fully understood. This review focuses on identifying the multiple sources of ROS in the mammalian nervous system and on presenting evidence for the critical and essential role of ROS in synaptic plasticity and memory. The review also shows that the inability to restrain either age- or pathology-related increases in ROS levels leads to opposite, detrimental effects that are involved in impairments in synaptic plasticity and memory function.
Collapse
Affiliation(s)
- Cynthia A Massaad
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | | |
Collapse
|
49
|
Pleil KE, Glenn MJ, Williams CL. Estradiol alters Fos-immunoreactivity in the hippocampus and dorsal striatum during place and response learning in middle-aged but not young adult female rats. Endocrinology 2011; 152:946-56. [PMID: 21285311 PMCID: PMC3040062 DOI: 10.1210/en.2010-0715] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 12/08/2010] [Indexed: 11/19/2022]
Abstract
Evidence from lesion and inactivation studies suggests that the hippocampus (HPC) and dorsal striatum compete for control over navigation behavior, and there is some evidence in males that the structure with greater relative activation controls behavior. Estradiol has been shown to enhance HPC-dependent place learning and impair dorsal striatum-dependent response learning in female rats, possibly by increasing hippocampal activation and/or decreasing striatal activation. We used Fos-immunoreactivity (Fos-IR) to examine the activation of several subregions of the HPC and striatum in ovariectomized female rats with or without estradiol replacement 30 min after place or response learning. In 4-month-old rats, neither task nor estradiol increased Fos-IR above explore control levels in any subregion analyzed, even though estradiol impaired response learning. In 12-month-old rats, estradiol increased Fos-IR in the dentate gyrus, dorsal medial striatum, and dorsal lateral striatum in place task learners, while the absence of estradiol increased Fos-IR in these regions in response task learners. However, learning rate was not affected by estradiol in either task. We also included a group of long-term ovariectomized 12-month-old rats that displayed impaired place learning and altered Fos-IR in CA1 of the HPC. These results suggest that task-specific effects of estradiol on hippocampal and striatal activation emerge across age but that relative hippocampal and striatal activation are not related to learning rate during spatial navigation learning.
Collapse
Affiliation(s)
- Kristen E Pleil
- Department of Psychology and Neuroscience, Duke University, Durham, North Carolina 27708, USA
| | | | | |
Collapse
|
50
|
Talboom JS, Engler-Chiurazzi EB, Whiteaker P, Simard AR, Lukas R, Acosta JI, Prokai L, Bimonte-Nelson HA. A component of Premarin(®) enhances multiple cognitive functions and influences nicotinic receptor expression. Horm Behav 2010; 58:917-28. [PMID: 20849857 PMCID: PMC2982882 DOI: 10.1016/j.yhbeh.2010.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 09/02/2010] [Accepted: 09/05/2010] [Indexed: 10/19/2022]
Abstract
In women, ovarian hormone loss at menopause has been related to cognitive decline, and some studies suggest that estrogen-containing hormone therapy (HT) can mitigate these effects. Recently, the Women's Health Initiative study found that conjugated equine estrogens, the most commonly prescribed HT, do not benefit cognition. Isolated components of conjugated equine estrogens (tradename Premarin(®)) have been evaluated in vitro, with delta(8,9)-dehydroestrone (∆(8)E1) and equilin showing the strongest neuroprotective profiles. It has not been evaluated whether ∆(8)E1 or equilin impact cognition or the cholinergic system, which is affected by other estrogens and known to modulate cognition. Here, in middle-aged, ovariectomized rats, we evaluated the effects of ∆(8)E1 and equilin treatments on a cognitive battery and cholinergic nicotinic receptors (nAChR). Specifically, we used (125)I-labeled epibatidine binding to assay brain nicotinic receptor containing 4α and 2β subunits (α4β2-nAChR), since this nicotinic receptor subtype has been shown previously to be sensitive to other estrogens. ∆(8)E1 enhanced spatial working, recent and reference memory. ∆(8)E1 also decreased hippocampal and entorhinal cortex α4β2-nAChR expression, which was related to spatial reference memory performance. Equilin treatment did not affect spatial memory or rat α4β2-nAChR expression, and neither estrogen impacted (86)Rb(+) efflux, indicating lack of direct action on human α4β2 nAChR function. Both estrogens influenced vaginal smear profiles, uterine weights, and serum luteinizing hormone levels, analogous to classic estrogens. The findings indicate that specific isolated Premarin(®) components differ in their ability to affect cognition and nAChR expression. Taken with the works of others showing ∆(8)E1-induced benefits on several dimensions of health-related concerns associated with menopause, this body of research identifies ∆(8)E1 as a new avenue to be investigated as a potential component of HT that may benefit brain health and function during aging.
Collapse
Affiliation(s)
- Joshua S. Talboom
- Department of Psychology, Arizona State University, Tempe, AZ 85287
- Arizona Alzheimer's Consortium, Phoenix, AZ 85006
| | - Elizabeth B. Engler-Chiurazzi
- Department of Psychology, Arizona State University, Tempe, AZ 85287
- Arizona Alzheimer's Consortium, Phoenix, AZ 85006
| | - Paul Whiteaker
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013
| | - Alain R. Simard
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013
| | - Ronald Lukas
- Division of Neurobiology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013
- Arizona Alzheimer's Consortium, Phoenix, AZ 85006
| | - Jazmin I. Acosta
- Department of Psychology, Arizona State University, Tempe, AZ 85287
- Arizona Alzheimer's Consortium, Phoenix, AZ 85006
| | - Laszlo Prokai
- University of North Texas Health Sciences Center, Fort Worth, Texas 76107
| | - Heather A. Bimonte-Nelson
- Department of Psychology, Arizona State University, Tempe, AZ 85287
- Arizona Alzheimer's Consortium, Phoenix, AZ 85006
| |
Collapse
|