1
|
Samuels N, Shapira S, Ben-Arye E. Herb-antitumour drug interaction risks: retrospective integrative oncology study. BMJ Support Palliat Care 2024:spcare-2024-005098. [PMID: 39137966 DOI: 10.1136/spcare-2024-005098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVES The use of herbal medicine is widespread among oncology patients, with potentially negative interactions with anticancer drugs. This study identified herbal products being used among a cohort of oncology patients, assessing the risk for an herb-drug interaction. METHODS Herbal medicine use was examined among 42 oncology patients, identifying potential herb-drug interactions using four online sites. The risk for an interaction was scored using the Working Group on Pharmacotherapy and Drug Information of the Royal Dutch Association for the Advancement of Pharmacy (KNMP). RESULTS Most patients (62%) reported herbal medicine use, with 70 products identified; 8 herbs and 13 herbal formulas with unidentified components; and 24 anticancer drugs. Herbal medicine use was more prevalent among female patients (p=0.038), with only nine potential herb-drug interactions identified on at least one site. A maximal KNMP Score of 1 (ie, incomplete published case report) was found with only one interaction. CONCLUSIONS The risk for interactions between herbal products and anticancer drugs is difficult to predict, with online search engines providing limited and inconsistent information. Clinical implications of herb-antitumor drug interactions need to be better understood, enabling patients and their oncology healthcare providers to make informed decisions regarding their care.
Collapse
Affiliation(s)
- Noah Samuels
- Center for Integrative Complementary Medicine, Shaare Zedek Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shir Shapira
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eran Ben-Arye
- Integrative Oncology Program, Oncology Service, Lin Medical Center, Haifa, Israel
- Faculty of Medicine, Family Medicine Program, Technion Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
2
|
Pan Y, Iwata T. Exploring the Genetic Landscape of Childhood Glaucoma. CHILDREN (BASEL, SWITZERLAND) 2024; 11:454. [PMID: 38671671 PMCID: PMC11048810 DOI: 10.3390/children11040454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
Childhood glaucoma, a significant cause of global blindness, represents a heterogeneous group of disorders categorized into primary or secondary forms. Primary childhood glaucoma stands as the most prevalent subtype, comprising primary congenital glaucoma (PCG) and juvenile open-angle glaucoma (JOAG). Presently, multiple genes are implicated in inherited forms of primary childhood glaucoma. This comprehensive review delves into genetic investigations into primary childhood glaucoma, with a focus on identifying causative genes, understanding their inheritance patterns, exploring essential biological pathways in disease pathogenesis, and utilizing animal models to study these mechanisms. Specifically, attention is directed towards genes such as CYP1B1 (cytochrome P450 family 1 subfamily B member 1), LTBP2 (latent transforming growth factor beta binding protein 2), TEK (TEK receptor tyrosine kinase), ANGPT1 (angiopoietin 1), and FOXC1 (forkhead box C1), all associated with PCG; and MYOC (myocilin), associated with JOAG. Through exploring these genetic factors, this review aims to deepen our understanding of the intricate pathogenesis of primary childhood glaucoma, thereby facilitating the development of enhanced diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
| | - Takeshi Iwata
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Tokyo 152-8902, Japan;
| |
Collapse
|
3
|
Lee JW, Lee H, Noh SW, Choi HK. Co-treatment with melatonin and ortho-topolin riboside reduces cell viability by altering metabolic profiles in non-small cell lung cancer cells. Chem Biol Interact 2024; 391:110900. [PMID: 38325522 DOI: 10.1016/j.cbi.2024.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/29/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Lung cancer is a highly prevalent and lethal malignancy worldwide, with non-small cell lung cancer (NSCLC) accounting for 85% of cancer-related deaths. In this study, the effects of co-treatment with melatonin and ortho-topolin riboside (oTR) on the cell viability and alteration of metabolites and transcripts were investigated in NSCLC cells using gas chromatography-mass spectrometry (GC-MS) and next-generation sequencing (NGS). The co-treatment of melatonin and oTR exhibited synergistic effects on the reduction of cell viability and alteration of metabolic and transcriptomic profiles in NSCLC cells. We observed that the co-treatment inhibited glycolytic function and mitochondria respiration, and downregulated glycine, serine and threonine metabolism alongside tyrosine metabolism in NSCLC cells. In the glycine, serine and threonine metabolism pathway, the co-treatment resulted in a significant 8.4-fold reduction in the expression level of the SDS gene, which encodes the enzyme responsible for the breakdown of serine to pyruvate. Moreover, co-treatment decreased the gene expression of TH, DDC, and CYP1A1 in tyrosine metabolism. Additionally, we observed that the co-treatment resulted in a significant 146.9-fold reduction in the expression of the DISC1 gene. The alteration in metabolites and transcript expressions might provide information to explain the cytotoxicity of co-treatment of melatonin and oTR in NSCLC cells. Our study presents insights into the synergistic anticancer effect of the co-treatment of melatonin and oTR, which could be a potential future therapeutic strategy for the treatment of NSCLC patients.
Collapse
Affiliation(s)
- Ji Won Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hwanhui Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Soon-Wook Noh
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Hyung-Kyoon Choi
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
4
|
Dai Z, Wu Y, Xiong Y, Wu J, Wang M, Sun X, Ding X, Yang L, Sun X, Ge G. CYP1A inhibitors: Recent progress, current challenges, and future perspectives. Med Res Rev 2024; 44:169-234. [PMID: 37337403 DOI: 10.1002/med.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Mammalian cytochrome P450 1A (CYP1A) are key phase I xenobiotic-metabolizing enzymes that play a distinctive role in metabolic activation or metabolic clearance of a variety of procarcinogens, drugs, and endogenous substances. Human CYP1A subfamily contains two members (hCYP1A1 and hCYP1A2), which are known to catalyze the oxidative activation of some environmental procarcinogens into carcinogenic species. Increasing evidence has demonstrated that CYP1A inhibitor therapies are promising strategies for cancer chemoprevention or overcoming CYP1A-associated drug toxicity and resistance. Herein, we reviewed recent advances in the discovery and characterization of hCYP1A inhibitors, from the discovery approaches to structural features and biomedical applications of hCYP1A inhibitors. The inhibition potentials, inhibition modes, and inhibition constants of all reported hCYP1A inhibitors are comprehensively summarized. Meanwhile, the structural features and structure-activity relationships of different classes of hCYP1A1 and hCYP1A2 inhibitors are analyzed and discussed in depth. Furthermore, the major challenges and future directions for this field are presented and highlighted. Collectively, the information and knowledge presented here will strongly facilitate the researchers to discover and develop more efficacious CYP1A inhibitors for specific purposes, such as chemo-preventive agents or as tool molecules in hCYP1A-related fundamental studies.
Collapse
Affiliation(s)
- Ziru Dai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, America
| | - Ling Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Chavez Alvarez AC, Bouzriba C, Moreau E, Auzeloux P, Besse S, Ouellette V, Zarifi Khosroshahi M, Côté MF, Pilote S, Miot-Noirault E, Chezal JM, Simard C, C-Gaudreault R, Fortin S. Homologation of the Alkyl Side Chain of Antimitotic Phenyl 4-(2-Oxo-3-alkylimidazolidin-1-yl)benzenesulfonate Prodrugs Selectively Targeting CYP1A1-Expressing Breast Cancers Improves Their Stability in Rodent Liver Microsomes. J Med Chem 2023; 66:2477-2497. [PMID: 36780426 DOI: 10.1021/acs.jmedchem.2c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates (PAIB-SOs) are a new family of antimitotic prodrugs bioactivated in breast cancer cells expressing CYP1A1. In this study, we report that the 14C-labeled prototypical PAIB-SO [14C]CEU-818 and its antimitotic counterpart [14C]CEU-602 are distributed in whole mouse body and they show a short half-life in mice. To circumvent this limitation, we evaluated the effect of the homologation of the alkyl side chain of the imidazolidin-2-one moiety of PAIB-SOs. Our studies evidence that PAIB-SOs bearing an n-pentyl side chain exhibit antiproliferative activity in the nanomolar-to-low-micromolar range and a high selectivity toward CYP1A1-positive breast cancer cells. Moreover, the most potent n-pentyl PAIB-SOs were significantly more stable toward rodent liver microsomes. In addition, PAIB-SOs 10 and 14 show significant antitumor activity and low toxicity in chorioallantoic membrane (CAM) assay. Our study confirms that homologation is a suitable approach to improve the rodent hepatic stability of PAIB-SOs.
Collapse
Affiliation(s)
- Atziri Corin Chavez Alvarez
- Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.,Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada.,Axe cardiologie, Centre de Recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, 2725 chemin Sainte-Foy, Québec, Québec G1V 4G5, Canada
| | - Chahrazed Bouzriba
- Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.,Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada
| | - Emmanuel Moreau
- Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont-Auvergne, BP 184, F-63005 Clermont-Ferrand, France.,INSERM U1240 IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Philippe Auzeloux
- Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont-Auvergne, BP 184, F-63005 Clermont-Ferrand, France.,INSERM U1240 IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Sophie Besse
- Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont-Auvergne, BP 184, F-63005 Clermont-Ferrand, France.,INSERM U1240 IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Vincent Ouellette
- Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.,Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada
| | - Mitra Zarifi Khosroshahi
- Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.,Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada
| | - Marie-France Côté
- Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada
| | - Sylvie Pilote
- Axe cardiologie, Centre de Recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, 2725 chemin Sainte-Foy, Québec, Québec G1V 4G5, Canada
| | - Elisabeth Miot-Noirault
- Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont-Auvergne, BP 184, F-63005 Clermont-Ferrand, France.,INSERM U1240 IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Chezal
- Imagerie Moléculaire et Stratégies Théranostiques, Université Clermont-Auvergne, BP 184, F-63005 Clermont-Ferrand, France.,INSERM U1240 IMoST, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Chantale Simard
- Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.,Axe cardiologie, Centre de Recherche de l'Institut universitaire de cardiologie et pneumologie de Québec-Université Laval, 2725 chemin Sainte-Foy, Québec, Québec G1V 4G5, Canada
| | - René C-Gaudreault
- Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada.,Département de médecine moléculaire, Faculté de médecine, Université Laval, Québec, Québec G1V 0A6, Canada
| | - Sébastien Fortin
- Faculté de pharmacie, Université Laval, Québec, Québec G1V 0A6, Canada.,Axe oncologie, Hôpital Saint-François d'Assise, Centre de recherche du CHU de Québec-Université Laval, 10, Rue de l'Espinay, Québec, Québec G1L 3L5, Canada
| |
Collapse
|
6
|
Yang J, Tang Q, Zeng Y. Melatonin: Potential avenue for treating iron overload disorders. Ageing Res Rev 2022; 81:101717. [PMID: 35961513 DOI: 10.1016/j.arr.2022.101717] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 08/08/2022] [Indexed: 02/08/2023]
Abstract
Iron overload as a highly risk factor, can be found in almost all human chronic and common diseases. Iron chelators are often used to treat iron overload; however, patient adherence to these chelators is poor due to obvious side effects and other disadvantages. Numerous studies have shown that melatonin has a high iron chelation ability and direct free radical scavenging activity, and can inhibit the lipid peroxidation process caused by iron overload. Therefore, melatonin may become potential complementary therapy for iron overload-related disorders due to its iron chelating and antioxidant activities. Here, the research progress of iron overload is reviewed and the therapeutic potential of melatonin in the treatment of iron overload is analyzed. In addition, studies related to the protective effects of melatonin on oxidative damage induced by iron overload are discussed. This review provides a foundation for preventing and treating iron homeostasis disorders with melatonin.
Collapse
Affiliation(s)
- Jiancheng Yang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qinghua Tang
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuhong Zeng
- Department of Osteoporosis, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
7
|
Rolling J, Rabot J, Schroder CM. Melatonin Treatment for Pediatric Patients with Insomnia: Is There a Place for It? Nat Sci Sleep 2022; 14:1927-1944. [PMID: 36325278 PMCID: PMC9621019 DOI: 10.2147/nss.s340944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/18/2022] [Indexed: 01/24/2023] Open
Abstract
Sleep is a vital physiological function that is impaired in ranges from 10% in the typically developing pediatric population to over 80% in populations of children with neurodevelopmental disorders and/or psychiatric comorbidities. Pediatric insomnia disorder is an increasing public health concern given its negative impact on synaptic plasticity involved in learning and memory consolidation but also on mood regulation, hormonal development and growth, and its significant impact on quality of life of the child, the adolescent and the family. While first-line treatment of pediatric insomnia should include parental education on sleep as well as sleep hygiene measures and behavioural treatment approaches, pharmacological interventions may be necessary if these strategies fail. Melatonin treatment has been increasingly used off-label in pediatric insomnia, given its benign safety profile. This article aims to identify the possible role of melatonin treatment for pediatric insomnia, considering its physiological role in sleep regulation and the differential effects of immediate release (IR) versus prolonged release (PR) melatonin. For the physician dealing with pediatric insomnia, it is particularly important to be able to distinguish treatment rationales implying different dosages and times of treatment intake. Finally, we discuss the benefit-risk ratio for melatonin treatment in different pediatric populations, ranging from the general pediatric population to children with different types of neurodevelopmental disorders, such as autism spectrum disorder or ADHD.
Collapse
Affiliation(s)
- Julie Rolling
- Department of Child and Adolescent Psychiatry, Strasbourg University Hospitals, Strasbourg, France
- CNRS UPR3212- Research Team “Light, Circadian Rhythms, Sleep Homeostasis and Neuropsychiatry”, Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Excellence Centre for Autism and Neurodevelopmental Disorders STRAS&ND, Strasbourg, France
- Sleep Disorders Centre & International Research Centre for ChronoSomnology (Circsom), University Hospitals Strasbourg, Strasbourg, France
| | - Juliette Rabot
- Department of Child and Adolescent Psychiatry, Strasbourg University Hospitals, Strasbourg, France
- CNRS UPR3212- Research Team “Light, Circadian Rhythms, Sleep Homeostasis and Neuropsychiatry”, Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Excellence Centre for Autism and Neurodevelopmental Disorders STRAS&ND, Strasbourg, France
- Expert Centre for High-Functioning Autism, Fondation FondaMental, Strasbourg, France
- Autism Resources Centre 67 for Children and Adolescents, Strasbourg, France
| | - Carmen M Schroder
- Department of Child and Adolescent Psychiatry, Strasbourg University Hospitals, Strasbourg, France
- CNRS UPR3212- Research Team “Light, Circadian Rhythms, Sleep Homeostasis and Neuropsychiatry”, Institute of Cellular and Integrative Neurosciences, Strasbourg, France
- Excellence Centre for Autism and Neurodevelopmental Disorders STRAS&ND, Strasbourg, France
- Sleep Disorders Centre & International Research Centre for ChronoSomnology (Circsom), University Hospitals Strasbourg, Strasbourg, France
- Expert Centre for High-Functioning Autism, Fondation FondaMental, Strasbourg, France
- Autism Resources Centre 67 for Children and Adolescents, Strasbourg, France
| |
Collapse
|
8
|
Liu Y, Zhao N, Xu Q, Deng F, Wang P, Dong L, Lu X, Xia L, Wang M, Chen Z, Zhou J, Zuo D. MBL Binding with AhR Controls Th17 Immunity in Silicosis-Associated Lung Inflammation and Fibrosis. J Inflamm Res 2022; 15:4315-4329. [PMID: 35923908 PMCID: PMC9342710 DOI: 10.2147/jir.s357453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Mannan-binding lectin (MBL), a soluble pattern recognition molecule of the innate immune system, is primarily synthesized in the liver and secreted into the circulation. Low serum level of MBL has been reported to be related to an increased risk of lung diseases. Herein, we aimed to investigate the function of MBL in silicosis-associated pulmonary inflammation. Methods Serum collected from silicosis patients was tested for correlation between serum MBL levels and Th17 immunity. In vitro studies were performed to further demonstrated the effect of MBL on Th17 polarization. Silica was intratracheally injected in wild type (WT) or MBL-deficient (MBL–/–) mice to induce silicosis-associated lung inflammation and fibrosis. Th17 response was evaluated to explore the effect of MBL on silicosis in vivo. Results Silicosis patients with high serum MBL levels displayed ameliorative lung function. We demonstrated that serum MBL levels negatively correlated to Th17 cell frequency in silicosis patients. MBL protein markedly reduced expression of IL-17 but enhanced expression of Foxp3 in CD4+ T cells in vitro when subjected to Th17 or Treg polarizing conditions, respectively. The presence of MBL during Th17 cell polarization significantly limited aryl hydrocarbon receptor (AhR) expression and suppressed the signal transducer and activator of transcription 3 (STAT3) phosphorylation. Treatment with the AhR antagonist abolished the effect of MBL on Th17 response. Strikingly, MBL directly bound to AhR and affected its nuclear translocation. Furthermore, MBL–/– mice displayed elevated Th17 cell levels compared with WT mice in response to the silica challenge. The CD4+ T lymphocytes from silica-administrated MBL–/– mice exhibited more AhR expression than the wild-type counterparts. Conclusion Our study suggested that MBL limited the Th17 immunity via controlling the AhR/STAT3 pathway, thus providing new insight into silicosis and other inflammatory diseases in patients with MBL deficiency.
Collapse
Affiliation(s)
- Yunzhi Liu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Na Zhao
- Department of Medical Laboratory, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, 510399, People’s Republic of China
| | - Qishan Xu
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Fan Deng
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Ping Wang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Lijun Dong
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Xiao Lu
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Lihua Xia
- Department of Medical Laboratory, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, Guangdong, 510399, People’s Republic of China
| | - Mingyong Wang
- Xinxiang Key Laboratory of Immunoregulation and Molecular Diagnostics, Xinxiang, 453003, People’s Republic of China
| | - Zhengliang Chen
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
| | - Jia Zhou
- Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Correspondence: Jia Zhou, Guangdong Province Key Laboratory of Proteomics, Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China, Tel +86-20-61648220, Fax +86-20-61648221, Email
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China
- Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, People’s Republic of China
- Daming Zuo, Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, 510515, People’s Republic of China, Tel +86-20-61648552, Fax + 86-20-61648221, Email
| |
Collapse
|
9
|
Verma VV, Bhargava L, Sajid M, Kumar A, Singh H, Bharadwaj M. Structure-based study to identify alkaloids as promising cytochrome P450 (CYP1A1) inhibitors: An in silico approach using virtual screening, molecular dynamic simulations, and binding free energy calculation. J Cell Biochem 2022; 123:1422-1439. [PMID: 35765708 DOI: 10.1002/jcb.30302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022]
Abstract
Carcinogens present in smokeless tobacco (SLT) like tobacco-specific nitrosamines can be metabolized by the cytochrome P450 (CYP450) enzyme. Functionally, the CYP450 enzyme resides in a heme pigment to perform the catalytic activity. The CYP1A1 is one of the main extrahepatic CYP450 enzymes known to detoxify toxic substances and activate carcinogens. The CYP1A1 inhibition by potential inhibitors reduce the chance of oral cancer. The current study aimed to explore more about the inhibitor binding site and identification of lead alkaloids, that could work as putative inhibitors against target CYP1A1. In respect, we have performed docking studies, virtual screening of alkaloids, and natural product libraries against CYP1A1 followed by molecular dynamic simulations and binding free energy calculations. Docking studies of tobacco-specific nitrosamine (TSNA) products and their similar carcinogen analogs revealed that the heme group is bound to the floor of the bowl-shaped cavity whereas carcinogens are bound to the roof of the rounded shape cavity. Furthermore, virtual screening and binding free energy calculations revealed Tomatidine as a putative inhibitor against CYP1A1. On the basis of altogether outcomes of the current study, we have concluded that the addition of lead-hit alkaloid Tomatidine and others in SLT products may be working as a supplement that could be able to reduce the expression of human CYP1A1 and suppresses carcinogenic by-products formations.
Collapse
Affiliation(s)
- Ved Vrat Verma
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Lalit Bhargava
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Mohammad Sajid
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Amit Kumar
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Harpreet Singh
- Division of Biomedical Informatics, ICMR-AIIMS Computational Genomics Centre, Indian Council of Medical Research (ICMR), New Delhi, India
| | - Mausumi Bharadwaj
- Division of Molecular Genetics and Biochemistry, Molecular Biology Group, ICMR-National Institute of Cancer Prevention and Research, Noida, India
| |
Collapse
|
10
|
El-Khouly FE, Adil SM, Wiese M, Hulleman E, Hendrikse NH, Kaspers GJL, Kramm CM, Veldhuijzen van Zanten SEM, van Vuurden DG. Complementary and alternative medicine in children with diffuse intrinsic pontine glioma-A SIOPE DIPG Network and Registry study. Pediatr Blood Cancer 2021; 68:e29061. [PMID: 33942498 DOI: 10.1002/pbc.29061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/27/2021] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Diffuse intrinsic pontine glioma (DIPG) is a rare and aggressive childhood brainstem malignancy with a 2-year survival rate of <10%. This international survey study aims to evaluate the use of complementary and alternative medicine (CAM) in this patient population. METHODS Parents and physicians of patients with DIPG were asked to participate in a retrospective online survey regarding CAM use during time of illness. RESULTS Between January and May 2020, 120 parents and 75 physicians contributed to the online survey. Most physicians estimated that <50% of their patients used CAM, whereas 69% of the parents reported using CAM to treat their child during time of illness. Cannabis was the most frequently used form of CAM, followed by vitamins and minerals, melatonin, curcumin, and boswellic acid. CAM was mainly used with the intention of direct antitumor effect. Other motivations were to treat side effects of chemotherapy or to increase comfort of the child. Children diagnosed from 2016 onwards were more likely to use CAM (χ2 = 6.08, p = .014). No significant difference was found between CAM users and nonusers based on ethnicity (χ2 = 4.18, p = .382) or country of residence (χ2 = 9.37, p = .154). Almost 50% of the physicians do not frequently ask their patients about possible CAM use. CONCLUSION This survey demonstrates that worldwide, a considerable number of patients with DIPG use CAM. Physicians should be more aware of potential CAM use and actively discuss the topic. In addition, more research is needed to gain knowledge about possible anticancer effects of CAM and (positive/negative) interactions with conventional therapies.
Collapse
Affiliation(s)
- Fatma E El-Khouly
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Syed M Adil
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Maria Wiese
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Esther Hulleman
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - N Harry Hendrikse
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Clinical Pharmacology and Pharmacy, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Gertjan J L Kaspers
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Christof M Kramm
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Sophie E M Veldhuijzen van Zanten
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands.,Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Dannis G van Vuurden
- Pediatric Oncology, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | |
Collapse
|
11
|
Novel Synthetic Analogues of 19(S/R)-Hydroxyeicosatetraenoic Acid Exhibit Noncompetitive Inhibitory Effect on the Activity of Cytochrome P450 1A1 and 1B1. Eur J Drug Metab Pharmacokinet 2021; 46:613-624. [PMID: 34235626 DOI: 10.1007/s13318-021-00699-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVES Cytochrome P450 (CYP) 1A1 and CYP1B1 enzymes play a significant role in the pathogenesis of cancer and cardiovascular diseases (CVD) such as cardiac hypertrophy and heart failure. Previously, we have demonstrated that R- and S-enantiomers of 19-hydroxyeicosatetraenoic acid (19-HETE), an arachidonic acid endogenous metabolite, enantioselectively inhibit CYP1B1. The current study was conducted to test the possible inhibitory effect of novel synthetic analogues of R- and S-enantiomers of 19-HETE on the activity of CYP1A1, CYP1A2, and CYP1B1. METHODS The O-dealkylation rate of 7-ethoxyresorufin (EROD) by recombinant human CYP1A1 and CYP1B1, in addition to the O-dealkylation rate of 7-methoxyresorufin (MROD) by recombinant human CYP1A2, were measured in the absence and presence of varying concentrations (0-40 nM) of the synthetic analogues of 19(R)- and 19(S)-HETE. Also, the possible inhibitory effect of both analogues on the catalytic activity of EROD and MROD, using RL-14 cells and human liver microsomes, was assessed. RESULTS The results showed that both synthetic analogues of 19(R)- and 19(S)-HETE exhibited direct inhibitory effects on the activity of CYP1A1 and CYP1B1, while they had no significant effect on CYP1A2 activity. Nonlinear regression analysis and comparisons showed that the mode of inhibition for both analogues is noncompetitive inhibition of CYP1A1 and CYP1B1 enzymes. Also, nonlinear regression analysis and Dixon plots showed that the R- and S-analogues have KI values of 15.7 ± 4.4 and 6.1 ± 1.5 nM for CYP1A1 and 26.1 ± 2.9 and 9.1 ± 1.8 nM for CYP1B1, respectively. Moreover, both analogues were able to inhibit EROD and MROD activities in a cell-based assay and human liver microsomes. CONCLUSIONS Therefore, the synthetic analogues of 19-HETE could be considered as a novel therapeutic approach in the treatment of cancer and CVD.
Collapse
|
12
|
Anderson G, Carbone A, Mazzoccoli G. Tryptophan Metabolites and Aryl Hydrocarbon Receptor in Severe Acute Respiratory Syndrome, Coronavirus-2 (SARS-CoV-2) Pathophysiology. Int J Mol Sci 2021; 22:ijms22041597. [PMID: 33562472 PMCID: PMC7915649 DOI: 10.3390/ijms22041597] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
The metabolism of tryptophan is intimately associated with the differential regulation of diverse physiological processes, including in the regulation of responses to severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) infection that underpins the COVID-19 pandemic. Two important products of tryptophan metabolism, viz kynurenine and interleukin (IL)4-inducible1 (IL41)-driven indole 3 pyruvate (I3P), activate the aryl hydrocarbon receptor (AhR), thereby altering the nature of immune responses to SARS-CoV-2 infection. AhR activation dysregulates the initial pro-inflammatory cytokines production driven by neutrophils, macrophages, and mast cells, whilst AhR activation suppresses the endogenous antiviral responses of natural killer cells and CD8+ T cells. Such immune responses become further dysregulated by the increased and prolonged pro-inflammatory cytokine suppression of pineal melatonin production coupled to increased gut dysbiosis and gut permeability. The suppression of pineal melatonin and gut microbiome-derived butyrate, coupled to an increase in circulating lipopolysaccharide (LPS) further dysregulates the immune response. The AhR mediates its effects via alterations in the regulation of mitochondrial function in immune cells. The increased risk of severe/fatal SARS-CoV-2 infection by high risk conditions, such as elderly age, obesity, and diabetes are mediated by these conditions having expression levels of melatonin, AhR, butyrate, and LPS that are closer to those driven by SARS-CoV-2 infection. This has a number of future research and treatment implications, including the utilization of melatonin and nutraceuticals that inhibit the AhR, including the polyphenols, epigallocatechin gallate (EGCG), and resveratrol.
Collapse
Affiliation(s)
- George Anderson
- CRC Scotland & London, Eccleston Square, London SW1V 1PX, UK
| | - Annalucia Carbone
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| | - Gianluigi Mazzoccoli
- Department of Medical Sciences, Division of Internal Medicine and Chronobiology Laboratory, Fondazione IRCCS "Casa Sollievo della Sofferenza", 71013 San Giovanni Rotondo, Italy
| |
Collapse
|
13
|
Li Y, Cui J, Jia J. The Activation of Procarcinogens by CYP1A1/1B1 and Related Chemo-Preventive Agents: A Review. Curr Cancer Drug Targets 2021; 21:21-54. [PMID: 33023449 DOI: 10.2174/1568009620666201006143419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
CYP1A1 and CYP1B1 are extrahepatic P450 family members involved in the metabolism of procarcinogens, such as PAHs, heterocyclic amines and halogen-containing organic compounds. CYP1A1/1B1 also participate in the metabolism of endogenous 17-β-estradiol, producing estradiol hydroquinones, which are the intermediates of carcinogenic semiquinones and quinones. CYP1A1 and CYP1B1 proteins share approximately half amino acid sequence identity but differ in crystal structures. As a result, CYP1A1 and CYP1B1 have different substrate specificity to chemical procarcinogens. This review will introduce the general molecular biology knowledge of CYP1A1/1B1 and the metabolic processes of procarcinogens regulated by these two enzymes. Over the last four decades, a variety of natural products and synthetic compounds which interact with CYP1A1/1B1 have been identified as effective chemo-preventive agents against chemical carcinogenesis. These compounds are mainly classified as indirect or direct CYP1A1/1B1 inhibitors based on their distinct mechanisms. Indirect CYP1A1/1B1 inhibitors generally impede the transcription and translation of CYP1A1/1B1 genes or interfere with the translocation of aryl hydrocarbon receptor (AHR) from the cytosolic domain to the nucleus. On the other hand, direct inhibitors inhibit the catalytic activities of CYP1A1/1B1. Based on the structural features, the indirect inhibitors can be categorized into the following groups: flavonoids, alkaloids and synthetic aromatics, whereas the direct inhibitors can be categorized into flavonoids, coumarins, stilbenes, sulfur containing isothiocyanates and synthetic aromatics. This review will summarize the in vitro and in vivo activities of these chemo-preventive agents, their working mechanisms, and related SARs. This will provide a better understanding of the molecular mechanism of CYP1 mediated carcinogenesis and will also give great implications for the discovery of novel chemo-preventive agents in the near future.
Collapse
Affiliation(s)
- Yubei Li
- China-UK Low Carbon College, Shanghai Jiaotong University, Shanghai, China
| | - Jiahua Cui
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
14
|
Shirinzadeh H, Neuhaus E, Ince Erguc E, Tascioglu Aliyev A, Gurer-Orhan H, Suzen S. New indole-7-aldehyde derivatives as melatonin analogues; synthesis and screening their antioxidant and anticancer potential. Bioorg Chem 2020; 104:104219. [PMID: 32916391 DOI: 10.1016/j.bioorg.2020.104219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022]
Abstract
Over the last decade, there has been substantial interest in the use of melatonin (MLT) and MLT-like compounds in the treatment of several diseases. MLT can scavenge different reactive oxygen species and can also stimulate the synthesis of antioxidant enzymes. Our ongoing study relies on changing the groups in the different modifiable sites of the indole ring to increase the antioxidant activity. In this study a new approach for substitution of indole ring as indole based MLT analogue was proposed. We report the synthesis and characterization of a series of new indole-7-aldehyde hydrazide/hydrazone derivatives as indole-based MLT analogues. Anticancer potential of the compounds were evaluated both by their antioxidant and CYP1 inhibitory activities. In vitro antioxidant capacity of the compounds was investigated both in a cell-based (DCFH assay) and a cell-free (DPPH assay) assay. Potential inhibitory effects of the compounds on CYP1 catalytic activity were investigated via EROD assay. Cytotoxic activity of the compounds was further evaluated by the MTT assay in CHO-K1 cells. MLT analogues having an o-halogenated aromatic moiety exhibited effective antioxidant properties without having any cytotoxic effect. In conclusion, MLT derivatives represent promising scaffolds for discovery of effective antioxidant agents.
Collapse
Affiliation(s)
- Hanif Shirinzadeh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali YildirimUniversity, Yanlızbag Yerleskesi, 24100 Erzincan, Turkey.
| | - Eddy Neuhaus
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan-06100, Ankara, Turkey
| | - Elif Ince Erguc
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Izmir, Turkey; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, İzmir Katip Celebi University, 35620 Izmir, Turkey
| | - Alev Tascioglu Aliyev
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Izmir, Turkey
| | - Hande Gurer-Orhan
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, 35040 Izmir, Turkey
| | - Sibel Suzen
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Tandogan-06100, Ankara, Turkey
| |
Collapse
|
15
|
Sharma R, Williams IS, Gatchie L, Sonawane VR, Chaudhuri B, Bharate SB. Furanoflavones pongapin and lanceolatin B blocks the cell cycle and induce senescence in CYP1A1-overexpressing breast cancer cells. Bioorg Med Chem 2018; 26:6076-6086. [PMID: 30448188 DOI: 10.1016/j.bmc.2018.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 11/19/2022]
Abstract
Expression of cytochrome P450-1A1 (CYP1A1) is suppressed under physiologic conditions but is induced (a) by polycyclic aromatic hydrocarbons (PAHs) which can be metabolized by CYP1A1 to carcinogens, and (b) in majority of breast cancers. Hence, phytochemicals or dietary flavonoids, if identified as CYP1A1 inhibitors, may help in preventing PAH-mediated carcinogenesis and breast cancer. Herein, we have investigated the cancer chemopreventive potential of a flavonoid-rich Indian medicinal plant, Pongamia pinnata (L.) Pierre. Methanolic extract of its seeds inhibits CYP1A1 in CYP1A1-overexpressing normal human HEK293 cells, with IC50 of 0.6 µg/mL. Its secondary metabolites, the furanoflavonoids pongapin/lanceolatin B, inhibit CYP1A1 with IC50 of 20 nM. Although the furanochalcone pongamol inhibits CYP1A1 with IC50 of only 4.4 µM, a semisynthetic pyrazole-derivative P5b, has ∼10-fold improved potency (IC50, 0.49 μM). Pongapin/lanceolatin B and the methanolic extract of P. pinnata seeds protect CYP1A1-overexpressing HEK293 cells from B[a]P-mediated toxicity. Remarkably, they also block the cell cycle of CYP1A1-overexpressing MCF-7 breast cancer cells, at the G0-G1 phase, repress cyclin D1 levels and induce cellular-senescence. Molecular modeling studies demonstrate the interaction pattern of pongapin/lanceolatin B with CYP1A1. The results strongly indicate the potential of methanolic seed-extract and pongapin/lanceolatin B for further development as cancer chemopreventive agents.
Collapse
Affiliation(s)
- Rajni Sharma
- Natural Products Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ibidapo S Williams
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Linda Gatchie
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Vinay R Sonawane
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK
| | - Bhabatosh Chaudhuri
- CYP Design Ltd, The Innovation Centre, 49 Oxford Street, Leicester LE1 5XY, UK; Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK.
| | - Sandip B Bharate
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
16
|
Study of melatonin-mediated effects on various hepatic inflammatory responses stimulated by IL-6 in a new HepG2-on-a-chip platform. Biomed Microdevices 2018; 20:54. [DOI: 10.1007/s10544-018-0300-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Baker SC, Arlt VM, Indra R, Joel M, Stiborová M, Eardley I, Ahmad N, Otto W, Burger M, Rubenwolf P, Phillips DH, Southgate J. Differentiation-associated urothelial cytochrome P450 oxidoreductase predicates the xenobiotic-metabolizing activity of "luminal" muscle-invasive bladder cancers. Mol Carcinog 2018; 57:606-618. [PMID: 29323757 PMCID: PMC5900743 DOI: 10.1002/mc.22784] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/21/2017] [Accepted: 01/09/2018] [Indexed: 11/12/2022]
Abstract
Extra-hepatic metabolism of xenobiotics by epithelial tissues has evolved as a self-defence mechanism but has potential to contribute to the local activation of carcinogens. Bladder epithelium (urothelium) is bathed in excreted urinary toxicants and pro-carcinogens. This study reveals how differentiation affects cytochrome P450 (CYP) activity and the role of NADPH:P450 oxidoreductase (POR). CYP1A1 and CYP1B1 transcripts were inducible in normal human urothelial (NHU) cells maintained in both undifferentiated and functional barrier-forming differentiated states in vitro. However, ethoxyresorufin O-deethylation (EROD) activity, the generation of reactive BaP metabolites and BaP-DNA adducts, were predominantly detected in differentiated NHU cell cultures. This gain-of-function was attributable to the expression of POR, an essential electron donor for all CYPs, which was significantly upregulated as part of urothelial differentiation. Immunohistology of muscle-invasive bladder cancer (MIBC) revealed significant overall suppression of POR expression. Stratification of MIBC biopsies into "luminal" and "basal" groups, based on GATA3 and cytokeratin 5/6 labeling, showed POR over-expression by a subgroup of the differentiated luminal tumors. In bladder cancer cell lines, CYP1-activity was undetectable/low in basal PORlo T24 and SCaBER cells and higher in the luminal POR over-expressing RT4 and RT112 cells than in differentiated NHU cells, indicating that CYP-function is related to differentiation status in bladder cancers. This study establishes POR as a predictive biomarker of metabolic potential. This has implications in bladder carcinogenesis for the hepatic versus local activation of carcinogens and as a functional predictor of the potential for MIBC to respond to prodrug therapies.
Collapse
Affiliation(s)
- Simon C. Baker
- Jack Birch Unit of Molecular CarcinogenesisDepartment of BiologyUniversity of YorkHeslingtonYorkUK
| | - Volker M. Arlt
- Department of Analytical, Environmental and Forensic SciencesMRC‐PHE Centre for Environment and HealthKing's College LondonFranklin‐Wilkins BuildingLondonUK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in Partnership with Public Health EnglandFranklin‐Wilkins BuildingLondonUK
| | - Radek Indra
- Faculty of ScienceDepartment of BiochemistryCharles UniversityAlbertovPragueCzech Republic
| | - Madeleine Joel
- Department of Analytical, Environmental and Forensic SciencesMRC‐PHE Centre for Environment and HealthKing's College LondonFranklin‐Wilkins BuildingLondonUK
| | - Marie Stiborová
- Faculty of ScienceDepartment of BiochemistryCharles UniversityAlbertovPragueCzech Republic
| | | | | | - Wolfgang Otto
- Department of UrologyRegensburg University Medical CentreRegensburgGermany
| | - Maximilian Burger
- Department of UrologyRegensburg University Medical CentreRegensburgGermany
- Department of UrologyFrankfurt University Medical Center, Johann Wolfgang Goethe‐UniversityFrankfurt am MainGermany
| | - Peter Rubenwolf
- Department of UrologyRegensburg University Medical CentreRegensburgGermany
| | - David H. Phillips
- Department of Analytical, Environmental and Forensic SciencesMRC‐PHE Centre for Environment and HealthKing's College LondonFranklin‐Wilkins BuildingLondonUK
- NIHR Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London in Partnership with Public Health EnglandFranklin‐Wilkins BuildingLondonUK
| | - Jennifer Southgate
- Jack Birch Unit of Molecular CarcinogenesisDepartment of BiologyUniversity of YorkHeslingtonYorkUK
| |
Collapse
|
18
|
Anderson G. Linking the biological underpinnings of depression: Role of mitochondria interactions with melatonin, inflammation, sirtuins, tryptophan catabolites, DNA repair and oxidative and nitrosative stress, with consequences for classification and cognition. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:255-266. [PMID: 28433458 DOI: 10.1016/j.pnpbp.2017.04.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/01/2017] [Indexed: 01/08/2023]
Abstract
The pathophysiological underpinnings of neuroprogressive processes in recurrent major depressive disorder (rMDD) are reviewed. A wide array of biochemical processes underlie MDD presentations and their shift to a recurrent, neuroprogressive course, including: increased immune-inflammation, tryptophan catabolites (TRYCATs), mitochondrial dysfunction, aryl hydrocarbonn receptor activation, and oxidative and nitrosative stress (O&NS), as well as decreased sirtuins and melatonergic pathway activity. These biochemical changes may have their roots in central, systemic and/or peripheral sites, including in the gut, as well as in developmental processes, such as prenatal stressors and breastfeeding consequences. Consequently, conceptualizations of MDD have dramatically moved from simple psychological and central biochemical models, such as lowered brain serotonin, to a conceptualization that incorporates whole body processes over a lifespan developmental timescale. However, important hubs are proposed, including the gut-brain axis, and mitochondrial functioning, which may provide achievable common treatment targets despite considerable inter-individual variability in biochemical changes. This provides a more realistic model of the complexity of MDD and the pathophysiological processes that underpin the shift to rMDD and consequent cognitive deficits. Such accumulating data on the pathophysiological processes underpinning MDD highlights the need in psychiatry to shift to a classification system that is based on biochemical processes, rather than subjective phenomenology.
Collapse
|
19
|
Cancer chemoprevention revisited: Cytochrome P450 family 1B1 as a target in the tumor and the microenvironment. Cancer Treat Rev 2017; 63:1-18. [PMID: 29197745 DOI: 10.1016/j.ctrv.2017.10.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023]
Abstract
Cancer chemoprevention is the use of synthetic, natural or biological agents to prevent or delay the development or progression of malignancies. Intriguingly, many phytochemicals with anti-inflammatory and anti-angiogenic effects, recently proposed as chemoprevention strategies, are inhibitors of Cytochrome P450 family 1B1 (CYP1B1), an enzyme overexpressed in a wide variety of tumors and associated with angiogenesis. In turn, pro-inflammatory cytokines were reported to boost CYP1B1 expression, suggesting a key role of CYP1B1 in a positive loop of inflammatory angiogenesis. Other well-known pro-tumorigenic activities of CYP1B1 rely on metabolic bioactivation of xenobiotics and steroid hormones into their carcinogenic derivatives. In contrast to initial in vitro observations, in vivo studies demonstrated a protecting role against cancer for the other CYP1 family members (CYP1A1 and CYP1A2), suggesting that the specificity of CYP1 family inhibitors should be carefully taken into account for developing potential chemoprevention strategies. Recent studies also proposed a role of CYP1B1 in multiple cell types found within the tumor microenvironment, including fibroblasts, endothelial and immune cells. Overall, our review of the current literature suggests a positive loop between inflammatory cytokines and CYP1B1, which in turn may play a key role in cancer angiogenesis, acting on both cancer cells and the tumor microenvironment. Strategies aiming at specific CYP1B1 inhibition in multiple cell types may translate into clinical chemoprevention and angioprevention approaches.
Collapse
|
20
|
Dutour R, Poirier D. Inhibitors of cytochrome P450 (CYP) 1B1. Eur J Med Chem 2017; 135:296-306. [DOI: 10.1016/j.ejmech.2017.04.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 12/16/2022]
|
21
|
Abstract
Cytochrome P450 1B1 (CYP1B1), a member of CYP superfamily, is expressed in liver and extrahepatic tissues carries out the metabolism of numerous xenobiotics, including metabolic activation of polycyclic aromatic hydrocarbons. Surprisingly, CYP1B1 was also shown to be important in regulating endogenous metabolic pathways, including the metabolism of steroid hormones, fatty acids, melatonin, and vitamins. CYP1B1 and nuclear receptors including peroxisome proliferator-activated receptors (PPARs), estrogen receptor (ER), and retinoic acid receptors (RAR) contribute to the maintenance of the homeostasis of these endogenous compounds. Many natural flavonoids and synthetic stilbenes show inhibitory activity toward CYP1B1 expression and function, notably isorhamnetin and 2,4,3',5'-tetramethoxystilbene. Accumulating evidence indicates that modulation of CYP1B1 can decrease adipogenesis and tumorigenesis, and prevent obesity, hypertension, atherosclerosis, and cancer. Therefore, it may be feasible to consider CYP1B1 as a therapeutic target for the treatment of metabolic diseases.
Collapse
|
22
|
Anderson G, Maes M. Interactions of Tryptophan and Its Catabolites With Melatonin and the Alpha 7 Nicotinic Receptor in Central Nervous System and Psychiatric Disorders: Role of the Aryl Hydrocarbon Receptor and Direct Mitochondria Regulation. Int J Tryptophan Res 2017; 10:1178646917691738. [PMID: 28469467 PMCID: PMC5398327 DOI: 10.1177/1178646917691738] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/11/2017] [Indexed: 11/16/2022] Open
Abstract
Recent work indicates an intimate interaction of the tryptophan catabolite (TRYCAT) pathways with the melatonergic pathways, primarily via TRYCAT pathway induction taking tryptophan away from the production of serotonin, which is a necessary precursor for the melatonergic pathways. The alpha 7 nicotinic receptor may be significantly modulated by this interaction, given its inactivation by the TRYCAT, kynurenic acid, and its induction by melatonin. Similarly, the aryl hydrocarbon receptor is activated by both kynurenic acid and kynurenine, leading to CYP1A2 and melatonin metabolism, whereas melatonin may act to inhibit the aryl hydrocarbon receptor. These 2 receptors and pathways may therefore be intimately linked, with relevance to a host of intracellular processes of clinical relevance. In this article, these interactions are reviewed. Interestingly, mitochondria may be a site for direct interactions of these pathways and receptors, suggesting that their differential induction may not only be modulating neuronal, glia, and immune cell processes and activity but also be directly acting to regulate mitochondrial functioning. This is likely to have significant consequences as to how an array of diverse central nervous system and psychiatric conditions are conceptualized and treated.
Collapse
Affiliation(s)
| | - Michael Maes
- Department of Psychiatry, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
23
|
Tang J, Song M, Watanabe G, Nagaoka K, Rui X, Li C. Effects of 4-nitrophenol on expression of the ER-α and AhR signaling pathway-associated genes in the small intestine of rats. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:27-37. [PMID: 27235926 DOI: 10.1016/j.envpol.2016.05.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
4-Nitrophenol (PNP) is a persistent organic pollutant that was proven to be an environmental endocrine disruptor. The aim of this study was to evaluate the role of the estrogen receptor-α (ER-α) and aryl hydrocarbon receptor (AhR) signaling pathway in regulating the damage response to PNP in the small intestine of rats. Wistar-Imamichi male rats (21 d) were randomly divided into two groups: the control group and PNP group. Each group had three processes that were gavaged with PNP or vehicle daily: single dose (1 d), repeated dose (3 consecutive days) (3 d), and repeated dose with recovery (3 consecutive days and 3 recovery days) (6 d). The weight of the body, the related viscera, and small intestine were examined. Histological parameters of the small intestine and the quantity of mucus proteins secreted by small goblet cells were determined using HE staining and PAS staining. The mRNA expression of AhR, ER-α, CYP1A1, and GST was measured by real-time qPCR. In addition, we also analyzed the AhR, ER-α, and CYP1A1 expression in the small intestine by immunohistochemical staining. The small intestines histologically changed in the PNP-treated rat and the expression of AhR, CYP1A1, and GST was increased. While ER-α was significantly decreased in the small intestine, simultaneously, when rats were exposed to a longer PNP treatment, the damages disappeared. Our results demonstrate that PNP has an effect on the expression of AhR signaling pathway genes, AhR, CYP1A1, and GST, and ER-α in the rat small intestine.
Collapse
Affiliation(s)
- Juan Tang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiyan Song
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Xiaoli Rui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - ChunMei Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
24
|
Modulation of aryl hydrocarbon receptor-regulated enzymes by trimethylarsine oxide in C57BL/6 mice: In vivo and in vitro studies. Toxicol Lett 2015; 238:17-31. [PMID: 26144063 DOI: 10.1016/j.toxlet.2015.06.1646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 06/19/2015] [Accepted: 06/28/2015] [Indexed: 01/10/2023]
Abstract
Arsenic is a worldwide environmental pollutant that is associated with skin and several types of internal cancers. Recent reports revealed that arsenic biomethylation could activate the toxic and carcinogenic potential of arsenic. Therefore, we investigated the effect of trimethylarsine oxide (TMAO) on the activation of AhR-regulated genes in vivo and in vitro. In vivo, C57BL/6 mice received TMAO (13mg/kg i.p.) with or without the prototypical AhR ligand, TCDD (15μg/kg), then the livers were harvested at 6 and 24h post-treatment. In vitro, isolated hepatocytes from C57BL/6 mice were treated with TMAO (5μM) in the absence and presence of TCDD (1nM) for 6 and 24h. Our in vivo results demonstrated that, TMAO alone increased Cyp1a1, Cyp1a2, Cyp1b1, Nqo1, Gsta1, and Ho-1 at mRNA level. Upon co-exposure to TMAO and TCDD, TMAO potentiated the TCDD-mediated induction of Cyp1a1, Cyp1b1, and Nqo1 mRNA levels. Western blotting revealed that, TMAO alone increased Cyp1a1, Cyp1a2, Nqo1, Gsta1/2, and Ho-1 protein levels, and potentiated the TCDD-mediated induction of Cyp1a1 and Cyp1b1 protein level. In addition, TMAO alone significantly increased Cyp1a1, Cyp1a2, Nqo1, Gst, and Ho-1 activities and significantly potentiated the TCDD-mediated induction of Cyp1a1 activity. At the in vitro level, TMAO induced Cyp1a1 and potentiated the TCDD-mediated induction of Cyp1a1 at mRNA, protein and activity levels. In addition, TMAO increased the nuclear localization of AhR and AhR-dependent XRE-driven luciferase activity. Our results demonstrate that the TMAO, modulates AhR-regulated genes which could potentially participate, at least in part, in arsenic induced toxicity and carcinogenicity.
Collapse
|
25
|
Slominski AT, Zmijewski MA, Semak I, Zbytek B, Pisarchik A, Li W, Zjawiony J, Tuckey RC. Cytochromes p450 and skin cancer: role of local endocrine pathways. Anticancer Agents Med Chem 2014; 14:77-96. [PMID: 23869782 DOI: 10.2174/18715206113139990308] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/30/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
Abstract
Skin is the largest body organ forming a metabolically active barrier between external and internal environments. The metabolic barrier is composed of cytochromes P450 (CYPs) that regulate its homeostasis through activation or inactivation of biologically relevant molecules. In this review we focus our attention on local steroidogenic and secosteroidogenic systems in relation to skin cancer, e.g., prevention, attenuation of tumor progression and therapy. The local steroidogenic system is composed of locally expressed CYPs involved in local production of androgens, estrogens, gluco- and mineralo-corticosteroids from cholesterol (initiated by CYP11A1) or from steroid precursors delivered to the skin, and of their metabolism and/or inactivation. Cutaneous 7-hydroxylases (CYP7A1, CYP7B1 and CYP39) potentially can produce 7-hydroxy/oxy-steroids/sterols with modifying effects on local tumorigenesis. CYP11A1 also transforms 7-dehydrocholesterol (7DHC)→22(OH)7DHC→20,22(OH)2-7DHC→7-dehydropregnenolone, which can be further metabolized to other 5,7- steroidal dienes. These 5,7-dienal intermediates are converted by ultraviolet radiation B (UVB) into secosteroids which show pro-differentiation and anti-cancer properties. Finally, the skin is the site of activation of vitamin D3 through two alternative pathways. The classical one involves sequential hydroxylation at positions 25 and 1 to produce active 1,25(OH)2D3, which is further inactivated through hydroxylation at C24. The novel pathway is initiated by CYP11A1 with predominant production of 20(OH)D3 which is further metabolized to biologically active but non-calcemic D3-hydroxyderivatives. Classical and non-classical (novel) vitamin D analogs show pro-differentiation, anti-proliferative and anticancer properties. In addition, melatonin is metabolized by local CYPs. In conclusion cutaneously expressed CYPs have significant effects on skin physiology and pathology trough regulation of its chemical milieu.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Robert C Tuckey
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, 930 Madison Avenue, RM525, Memphis, TN 38163, USA.
| |
Collapse
|
26
|
Perepechaeva ML, Stefanova NA, Grishanova AY. Expression of Genes for AhR and Nrf2 Signal Pathways in the Retina of OXYS Rats during the Development of Retinopathy and Melatonin-Induced Changes in This Process. Bull Exp Biol Med 2014; 157:424-9. [DOI: 10.1007/s10517-014-2582-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Indexed: 10/24/2022]
|
27
|
Cytochrome P450 family 1 inhibitors and structure-activity relationships. Molecules 2013; 18:14470-95. [PMID: 24287985 PMCID: PMC4216474 DOI: 10.3390/molecules181214470] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 12/28/2022] Open
Abstract
With the widespread use of O-alkoxyresorufin dealkylation assays since the 1990s, thousands of inhibitors of cytochrome P450 family 1 enzymes (P450s 1A1, 1A2, and 1B1) have been identified and studied. Generally, planar polycyclic molecules such as polycyclic aromatic hydrocarbons, stilbenoids, and flavonoids are considered to potentially be effective inhibitors of these enzymes, however, the details of the structure-activity relationships and selectivity of these inhibitors are still ambiguous. In this review, we thoroughly discuss the selectivity of many representative P450 family 1 inhibitors reported in the past 20 years through a meta-analysis.
Collapse
|
28
|
Liu J, Taylor SF, Dupart PS, Arnold CL, Sridhar J, Jiang Q, Wang Y, Skripnikova EV, Zhao M, Foroozesh M. Pyranoflavones: a group of small-molecule probes for exploring the active site cavities of cytochrome P450 enzymes 1A1, 1A2, and 1B1. J Med Chem 2013; 56:4082-92. [PMID: 23600958 DOI: 10.1021/jm4003654] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Selective inhibition of P450 enzymes is the key to block the conversion of environmental procarcinogens to their carcinogenic metabolites in both animals and humans. To discover highly potent and selective inhibitors of P450s 1A1, 1A2, and 1B1, as well as to investigate active site cavities of these enzymes, 14 novel flavone derivatives were prepared as chemical probes. Fluorimetric enzyme inhibition assays were used to determine the inhibitory activities of these probes toward P450s 1A1, 1A2, 1B1, 2A6, and 2B1. A highly selective P450 1B1 inhibitor 5-hydroxy-4'-propargyloxyflavone (5H4'FPE) was discovered. Some tested compounds also showed selectivity between P450s 1A1 and 1A2. α-Naphthoflavone-like and 5-hydroxyflavone derivatives preferentially inhibited P450 1A2, while β-naphthoflavone-like flavone derivatives showed selective inhibition of P450 1A1. On the basis of structural analysis, the active site cavity models of P450 enzymes 1A1 and 1A2 were generated, demonstrating a planar long strip cavity and a planar triangular cavity, respectively.
Collapse
Affiliation(s)
- Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana , 1 Drexel Drive, New Orleans, Louisiana 70125, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zheng W, Tong T, Lee J, Liu X, Marcus C, Jefcoate CR. Stimulation of mouse Cyp1b1 during adipogenesis: characterization of promoter activation by the transcription factor Pax6. Arch Biochem Biophys 2013; 532:1-14. [PMID: 23376040 PMCID: PMC3596501 DOI: 10.1016/j.abb.2013.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/28/2012] [Accepted: 01/18/2013] [Indexed: 01/19/2023]
Abstract
Cytochrome P4501B1 (Cyp1b1) is expressed specifically in certain neural crest (NC) cells during embryogenesis. Mesenchymal progenitor cells that develop from NC cells are modeled here by mouse C3H10T1/2 and 3T3-L1 cells. Dexamethasone in combination with methylisobutylxanthine (DM) induces Cyp1b1 and a 6.7 kb mouse Cyp1b1 promoter-luciferase reporter in each cell type prior to adipogenesis. An 18 base sequence (at -6.11 kb) (PaxE) which was essential for this reporter stimulation in 3T3-L1 cells bound the transcription factor Pax6. This is shown by gel mobility shifts and sequence mutations. Heterologous vector expression of Pax6 in 3T3-L1 cells enhanced DM stimulated Cyp1b1 promoter activity through cooperation with two Sp1 sites in the proximal promoter region. Chromatin immunoprecipitation showed that DM stimulated binding of Pax6 adjacent to Sp1 in the proximal promoter more than in the PaxE region. The Cyp1b1 induction by DM in C3H10T1/2 cells was more rapid but independent of Pax6. The far upstream enhancer region (FUER) found in rat Cyp1b1 responded to DM but was inactive in the mouse promoter due to key sequence changes. The expression patterns of Pax6 and Cyp1b1 frequently overlap during mouse embryogenesis. The relationship between Pax6 and Cyp1b1 expression warrants further investigation, particularly in the NC.
Collapse
Affiliation(s)
- Wenchao Zheng
- Department of Pharmacology, University of Wisconsin, Madison, WI 53706, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Anderson G, Beischlag TV, Vinciguerra M, Mazzoccoli G. The circadian clock circuitry and the AHR signaling pathway in physiology and pathology. Biochem Pharmacol 2013; 85:1405-16. [PMID: 23438471 DOI: 10.1016/j.bcp.2013.02.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/14/2022]
Abstract
Life forms populating the Earth must face environmental challenges to assure individual and species survival. The strategies predisposed to maintain organismal homeostasis and grant selective advantage rely on anticipatory phenomena facing periodic modifications, and compensatory phenomena facing unpredictable changes. Biological processes bringing about these responses are respectively driven by the circadian timing system, a complex of biological oscillators entrained to the environmental light/dark cycle, and by regulatory and metabolic networks that precisely direct the body's adjustments to variations of external conditions and internal milieu. A critical role in organismal homeostatic functions is played by the aryl hydrocarbon receptor (AHR) complex, which senses environmental and endogenous compounds, influences metabolic responses controlling phase I/II gene expression, and modulates vital phenomena such as development, inflammation and adaptive immunity. A physiological cross-talk between circadian and AHR signaling pathways has been evidenced. The alteration of AHR signaling pathway deriving from genetic damage with polymorphisms or mutations, or produced by exogenous or endogenous AHR activation, and chronodisruption caused by mismatch between the body's internal clock and geophysical time/social schedules, are capable of triggering pathological mechanisms involved in metabolic, immune-related and neoplastic diseases. On the other hand, the molecular components of the circadian clock circuitry and AHR signaling pathway may represent useful tools for preventive interventions and valuable targets of therapeutic approaches.
Collapse
Affiliation(s)
- George Anderson
- Clinical Research Centre/Communications, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
31
|
Liu J, Nguyen TT, Dupart PS, Sridhar J, Zhang X, Zhu N, Stevens CLK, Foroozesh M. 7-Ethynylcoumarins: selective inhibitors of human cytochrome P450s 1A1 and 1A2. Chem Res Toxicol 2012; 25:1047-57. [PMID: 22443586 DOI: 10.1021/tx300023p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To discover new selective mechanism-based P450 inhibitors, eight 7-ethynylcoumarin derivatives were prepared through a facile two-step synthetic route. Cytochrome P450 activity assays indicated that introduction of functional groups in the backbone of coumarin could enhance the inhibition activities toward P450s 1A1 and 1A2, providing good selectivity against P450s 2A6 and 2B1. The most potent product 7-ethynyl-3,4,8-trimethylcoumarin (7ETMC) showed IC(50) values of 0.46 μM and 0.50 μM for P450s 1A1 and 1A2 in the first six minutes, respectively, and did not show any inhibition activity for P450s 2A6 and 2B1 even at the dose of 50 μM. All of the inhibitors except 7-ethynyl-3-methyl-4-phenylcoumarin (7E3M4PC) showed mechanism-based inhibition of P450s 1A1 and 1A2. In order to explain this mechanistic difference in inhibitory activities, X-ray crystallography data were used to study the difference in conformation between 7E3M4PC and the other compounds studied. Docking simulations indicated that the binding orientations and affinities resulted in different behaviors of the inhibitors on P450 1A2. Specifically, 7E3M4PC with its two-plane structure fits into the P450 1A2's active site cavity with an orientation leading to no reactive binding, causing it to act as a competitive inhibitor.
Collapse
Affiliation(s)
- Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, United States
| | | | | | | | | | | | | | | |
Collapse
|