1
|
Golpasandhagh L, Samie N, Sabiza S, Rezaie A. Histopathological evaluation of the effect of melatonin gel on bone regeneration in rat model. J Indian Soc Periodontol 2023; 27:368-373. [PMID: 37593555 PMCID: PMC10431222 DOI: 10.4103/jisp.jisp_169_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 08/19/2023] Open
Abstract
Background The purpose of this research was to investigate the effects of different doses of topical melatonin gel on bone regeneration in rat calvarial defects using histological analysis. Materials and Methods Fifteen adult female Wistar rats weighing approximately 200 g were used and 8 mm in diameter defects were created in their calvaria. The rats were divided into three groups: 1.2% melatonin gel, 5% melatonin gel, and the control group. The animals were sacrificed after 4 weeks. Hematoxylin and eosin staining were used to prepare histological sections. Statistical analysis was performed using the Analysis of variance and Tukey's post-hoc test. P < 0.05 was considered significant. Results The results showed a significant difference in rate of ossification (P < 0.001), area of new capillaries (P = 0.002), and mean degree of inflammation (P < 0.001) between the three groups. Comparing groups pairwise, degree of inflammation (P = 0.003) and area of new capillaries (P = 0.019) were significantly lower in the 5% melatonin gel group than the 1.2% melatonin gel group (P = 0.003). The percentage of ossification was substantially greater in the 5% melatonin gel group than in the control and 1.2% melatonin gel groups (P < 0.001). Conclusion Within the limitations of this animal study, our findings revealed that melatonin gel can be used as a stimulant of bone formation. Outcomes in this study show increased percentage of ossification in the melatonin groups when compared with the control, in a dose-dependent manner, as 5% melatonin gel has a greater effect on ossification.
Collapse
Affiliation(s)
- Leila Golpasandhagh
- Department of Periodontology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Samie
- Department of Periodontology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Soroush Sabiza
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Annahita Rezaie
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
2
|
de Almeida CD, Sartoretto SC, Alves ATNN, de Brito Resende RF, de Albuquerque Calasans-Maia J, Moraschini V, Rossi A, Granjeiro JM, Sacco R, Calasans-Maia MD. Does Melatonin Associated with Nanostructured Calcium Phosphate Improve Alveolar Bone Repair? MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1720. [PMID: 36556923 PMCID: PMC9783045 DOI: 10.3390/medicina58121720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Background and objectives: Calcium phosphates have been widely used as bone substitutes, but their properties are limited to osteoconduction. The association of calcium phosphates with osteoinductive bioactive molecules has been used as a strategy in regenerative medicine. Melatonin has been studied due to its cell protection and antioxidant functions, reducing osteoclastic activity and stimulating newly formed bone. This study aimed to evaluate the effect of topical application of melatonin associated with nanostructured carbonated hydroxyapatite microspheres in the alveolar bone repair of Wistar rats through histological and histomorphometric analysis. Materials and Methods: Thirty female Wistar rats (300 g) were used, divided randomly into three experimental groups (n = 10), G1: nanostructured carbonated hydroxyapatite microspheres associated with melatonin gel (CHA-M); G2: nanostructured carbonated hydroxyapatite (CHA); G3: blood clot (without alveolar filling). The animals were euthanized after 7 and 42 days of the postoperative period and processed for histological and histomorphometric evaluation. Kruskal-Wallis and Dunn's post-test were applied to investigate statistical differences between the groups at the same time point for new bone and connective tissue variables. Mann-Whitney was used to assess statistical differences between different time points and in the biomaterial variable. Results: Results showed a greater volume of residual biomaterial in the CHA-M than the CHA group (p = 0.007), and there were no significant differences in terms of newly formed bone and connective tissue between CHA and CHA-M after 42 days. Conclusions: This study concluded that both biomaterials improved alveolar bone repair from 7 to 42 days after surgery, and the association of CHA with melatonin gel reduced the biomaterial's biodegradation at the implanted site but did not improve the alveolar bone repair.
Collapse
Affiliation(s)
- Camila Diuana de Almeida
- Post-Graduation Program in Dentistry, Dentistry School, Federal Fluminense University, Niteroi 24020-140, Brazil
- Clinical Research in Dentistry Laboratory, School of Dentistry, Federal Fluminense University, Niteroi 24020-140, Brazil
| | - Suelen Cristina Sartoretto
- Clinical Research in Dentistry Laboratory, School of Dentistry, Federal Fluminense University, Niteroi 24020-140, Brazil
- Oral Surgery Department, Dentistry School, Federal Fluminense University, Niteroi 24020-140, Brazil
| | | | - Rodrigo Figueiredo de Brito Resende
- Clinical Research in Dentistry Laboratory, School of Dentistry, Federal Fluminense University, Niteroi 24020-140, Brazil
- Oral Surgery Department, Dentistry School, Federal Fluminense University, Niteroi 24020-140, Brazil
- Oral Surgery, Dentistry School, Iguaçu University, Nova Iguaçu 26260-045, Brazil
| | | | - Vittorio Moraschini
- Clinical Research in Dentistry Laboratory, School of Dentistry, Federal Fluminense University, Niteroi 24020-140, Brazil
- Oral Surgery Department, Dentistry School, Federal Fluminense University, Niteroi 24020-140, Brazil
| | - Alexandre Rossi
- Department of Condensed Matter, Applied Physics and Nanoscience, Brazilian Center for Research in Physics, Rio de Janeiro 22290-180, Brazil
| | - José Mauro Granjeiro
- Clinical Research in Dentistry Laboratory, School of Dentistry, Federal Fluminense University, Niteroi 24020-140, Brazil
| | - Roberto Sacco
- Oral Surgery Department, Division of Dentistry, School of Medical Science, The University of Manchester, Manchester M13 9PL, UK
| | - Mônica Diuana Calasans-Maia
- Clinical Research in Dentistry Laboratory, School of Dentistry, Federal Fluminense University, Niteroi 24020-140, Brazil
| |
Collapse
|
3
|
Gong Z, Da W, Tian Y, Zhao R, Qiu S, Wu Q, Wen K, Shen L, Zhou R, Tao L, Zhu Y. Exogenous melatonin prevents type 1 diabetes mellitus-induced bone loss, probably by inhibiting senescence. Osteoporos Int 2022; 33:453-466. [PMID: 34519833 PMCID: PMC8813725 DOI: 10.1007/s00198-021-06061-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
UNLABELLED Exogenous melatonin inhibited the senescence of preosteoblast cells in type 1 diabetic (T1D) mice and those cultured in high glucose (HG) by multiple regulations. Exogenous melatonin had a protective effect on diabetic osteoporosis, which may depend on the inhibition of senescence. INTRODUCTION Senescence is thought to play an important role in the pathophysiological mechanisms underlying diabetic bone loss. Increasing evidence has shown that melatonin exerts anti-senescence effects. In this study, we investigated whether melatonin can inhibit senescence and prevent diabetic bone loss. METHODS C57BL/6 mice received a single intraperitoneal injection of 160 mg/kg streptozotocin, followed by the oral administration of melatonin or vehicle for 2 months. Then, tissues were harvested and subsequently examined. MC3T3-E1 cells were cultured under HG conditions for 7 days and then treated with melatonin or not for 24 h. Sirt1-specific siRNAs and MT1- or MT2-specific shRNA plasmids were transfected into MC3T3-E1 cells for mechanistic study. RESULTS The total protein extracted from mouse femurs revealed that melatonin prevented senescence in T1D mice. The micro-CT results indicated that melatonin prevented bone loss in T1D mice. Cellular experiments indicated that melatonin administration prevented HG-induced senescence, whereas knockdown of the melatonin receptors MT1 or MT2 abolished these effects. Sirt1 expression was upregulated by melatonin administration but significantly reduced after MT1 or MT2 was knocked down. Knockdown of Sirt1 blocked the anti-senescence effects of melatonin. Additionally, melatonin promoted the expression of CDK2, CDK4, and CyclinD1, while knockdown of MT1 or MT2 abolished these effects. Furthermore, melatonin increased the expression of the polycomb repressive complex (PRC), but knockdown of MT1 or MT2 abolished these effects. Furthermore, melatonin increased the protein levels of Sirt1, PRC1/2 complex-, and cell cycle-related proteins. CONCLUSION This work shows that melatonin protects against T1D-induced bone loss, probably by inhibiting senescence. Targeting senescence in the investigation of diabetic osteoporosis may lead to novel discoveries.
Collapse
Affiliation(s)
- Z Gong
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - W Da
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Y Tian
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - R Zhao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - S Qiu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Q Wu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - K Wen
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - L Shen
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - R Zhou
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China
| | - L Tao
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Y Zhu
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
4
|
Retraction Note: Melatonin promotes angiogenesis during repair of bone defects: a radiological and histomorphometric study in rabbit tibiae. Clin Oral Investig 2022; 26:2207-2208. [PMID: 34978599 DOI: 10.1007/s00784-021-04350-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Wang X, He T, He L, Yang B, Liu Z, Pang M, Xie P, Zhang L, Rong L. Melatonin contributes to the hypertrophic differentiation of mesenchymal stem cell-derived chondrocytes via activation of the Wnt/β-catenin signaling pathway : Melatonin promotes MSC-derived chondrocytes hypertrophy. Stem Cell Res Ther 2021; 12:467. [PMID: 34419165 PMCID: PMC8379782 DOI: 10.1186/s13287-021-02536-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hypertrophy is a critical process for chondrocyte differentiation and maturation during endochondral ossification, which is responsible for the formation of long bone and postnatal longitudinal growth. Increasing evidence suggests that melatonin, an indole hormone, plays a pivotal role in chondrogenesis. However, little is known about the effects of melatonin on the terminal differentiation of chondrocytes. METHODS Mesenchymal stem cell (MSC)-derived chondrocytes generated by a high-density micromass culture system were induced to undergo hypertrophic differentiation. Melatonin-mediated hypertrophic differentiation was examined by reverse transcription polymerase chain reaction analysis (RT-PCR) analysis, histological staining and immunohistochemistry. Activation of the Wnt signaling pathway was evaluated by PCR array, RT-PCR, western blotting and immunofluorescence. XAV-939, a Wnt signaling pathway antagonist, was further used to determine whether the effect of melatonin on chondrocyte hypertrophic differentiation was mediated occurred by activation of Wnt signaling pathway. RESULTS Histological staining showed melatonin increased chondrocyte cell volume and the expression of type X collagen but decreased the expression of type II collagen compared with the control group. RT-PCR showed that melatonin significantly up-regulated the gene expressions of biomarkers of hypertrophic chondrocytes, including type X collagen, alkaline phosphatase, runt-related transcription factor 2, Indian hedgehog and parathyroid hormone-related protein receptor, and melatonin down-regulated the mRNA expression of hallmarks of chondrocytes, including parathyroid hormone-related protein. PCR array showed that the effect of melatonin on chondrocyte hypertrophic differentiation was accompanied by the up-regulation of multiple target genes of the canonical Wnt signaling pathway, and this effect was blocked by XAV-939. CONCLUSIONS The current findings demonstrate that melatonin enhances the hypertrophic differentiation of MSC-derived chondrocytes through the Wnt signaling pathway. Our findings add evidence to the role of melatonin in promoting bone development and highlight the positive effects of melatonin on terminal differentiation of chondrocytes.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Tianwei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Lei He
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Bu Yang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Zhongyu Liu
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Mao Pang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Peigen Xie
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China
| | - Liangming Zhang
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.
| | - Limin Rong
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China. .,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, People's Republic of China.
| |
Collapse
|
6
|
Bjørklund G, Dadar M, Aaseth J, Chirumbolo S. Thymosin β4: A Multi-Faceted Tissue Repair Stimulating Protein in Heart Injury. Curr Med Chem 2021; 27:6294-6305. [PMID: 31333080 DOI: 10.2174/0929867326666190716125456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/16/2022]
Abstract
Thymosin Beta-4 (Tβ4) is known as a major pleiotropic actin-sequestering protein that is involved in tumorigenesis. Tβ4 is a water-soluble protein that has different promising clinical applications in the remodeling and ulcerated tissues repair following myocardial infarction, stroke, plasticity and neurovascular remodeling of the Peripheral Nervous System (PNS) and the Central Nervous System (CNS). On the other hand, similar effects have been observed for Tβ4 in other kinds of tissues, including cardiac muscle tissue. In recent reports, as it activates resident epicardial progenitor cells and modulates inflammatory-caused injuries, Tβ4 has been suggested as a promoter of the survival of cardiomyocytes. Furthermore, Tβ4 may act in skeletal muscle and different organs in association/synergism with numerous other tissue repair stimulating factors, including melatonin and C-fiber-derived peptides. For these reasons, the present review highlights the promising role of Tβ4 in cardiac healing.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, Brumunddal, Norway,Inland Norway University of Applied Sciences, Elverum, Norway
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences,
University of Verona, Verona, Italy
| |
Collapse
|
7
|
Bio-structural monitoring of bone mineral alterations through electromechanical impedance measurements of a Piezo-device joined to a tooth. Biomed Eng Lett 2020; 10:603-617. [PMID: 33194251 DOI: 10.1007/s13534-020-00170-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/03/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022] Open
Abstract
Bone presents different systemic functionalities as calcium phosphate reservoir, organ protection, among others. For that reason, the bone health conditions are essential to keep in equilibrium the metabolism of several body systems. Different technologies exist to diagnose bone conditions with invasive methods based on ionizing radiation. Therefore, there is a challenge to develop new ways to evaluate bone alterations in a noninvasive form. This study shows the assessment of a piezo-actuated device acting on a human tooth for the bio-monitoring of bone alterations. The bone diagnosis is performed by applying the electromechanical impedance technique (EMI), commonly used in structural health monitoring. For the experimental tests, five bone samples were prepared, and one was chosen as the monitoring. All samples were put in a decalcifying substance (TBD1 acid-base) at different times to emulate localized bone mineral alterations. Bone reductions were computed by using X-ray micro-computed tomography analyzing the morphometry. Electrical resistance measurements (piezo-device) were taken for the monitoring specimen meanwhile it was partially decalcified during 8520 seconds. In the frequency spectrum, several observation windows showed that the bone alterations gradually changed the electrical resistance signals which were quantified statistically. Results evidenced that the bone density changes are correlated with the electrical resistance measurements; these changes presented an exponential behavior as much as in the calculated index, and bone mineral reduction. The results demonstrated that bone alterations exhibit linear dependence with the computed statistical indexes. This result confirms that it is possible to observe the bone changes from the teeth as a future application.
Collapse
|
8
|
Experimental Study on the Influence of Apigenin K and Melatonin in Socket Preservation as Bone Stimulators: An Experimental Study in Beagle Dogs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10093006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim is to evaluate whether apigenin K and melatonin M5250 were able to stimulate bone formation after tooth extraction at one, two, and three months follow-up. Six male beagle dogs were used. Apigenin K and melatonin M5250 immersed in hemostatic collagen sponges were placed in the third and fourth premolar and the first molar extracted sockets; the second premolar was used as control. At one, two, and three months, bone core biopsies were performed, and picrosirius–hematoxylin was used for the staining process. In the first month, a higher amount of calcified bone tissue was observed in the melatonin (77.87% ± 1.2%) and apigenin K (69.81% ± 1.8%) groups than the control group (57.27% ± 0.54%), with apparent discrepancies in values between the three groups (p < 0.04). In the second month, there was a considerable improvement in the results in the areas with melatonin (79.81% ± 0.11%) than in those of apigenin K (71.65% ± 0.52%) and control (64.77% ± 0.44%) (p < 0.04). In the third month, the number of mature bone was similar to all the groups. The creation of new bone was significant in the melatonin group (82.78% ± 0.87%), followed by the apigenin K group (78.76% ± 0.43%) and the control group (57.27% ± 0.11%). From this experimental study in dogs, it can be concluded that melatonin and apigenin K can accelerate the process of mineralization of the bone matrix, and thus the creation of laminae in the early stages of healing (1 month). Less reabsorption of the post-extraction sockets can be expected with the topical application of melatonin and apigenin K. It seems that the stimulatory effects of bone healing induced by the topical application of melatonin and apigenin K are defect-size-dependent, being more evident in small defects compared to larger defects.
Collapse
|
9
|
Ma Q, Reiter RJ, Chen Y. Role of melatonin in controlling angiogenesis under physiological and pathological conditions. Angiogenesis 2019; 23:91-104. [PMID: 31650428 DOI: 10.1007/s10456-019-09689-7] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/09/2019] [Indexed: 02/07/2023]
Abstract
Angiogenesis depends on proangiogenic and anti-angiogenic molecules that regulate endothelial cell proliferation and migration. Well-regulated angiogenesis plays a pivotal role in many physiological conditions such as reproduction and embryonic development, while abnormal angiogenesis is also the basis of a variety of pathological processes including tumor metastasis and atherosclerotic plaque formation. Melatonin has a variety of biological effects, including inhibition of tumor metastasis, stabilizing atherosclerotic plaques, and the regulation of seasonal reproductive rhythms, etc. During certain pathophysiological processes, melatonin exerts different functions depending on its ability to regulate angiogenesis. This review reveals that melatonin has different effects on neovascularization under different physiological and pathological conditions. In tumors, in age-related ocular diseases, and in a hypoxic environment, melatonin inhibits neovascularization in tissues, while in gastric ulcers, skin lesions, and some physiologic processes, it promotes angiogenesis. We also speculate that melatonin may inhibit the neovascularization in atherosclerotic plaques, thus preventing the initiation and development of atherosclerosis. Most studies suggest that these effects are related to the role of melatonin in regulating of vascular endothelial growth factor and its receptors, but the specific regulatory mechanisms remain disparate, which may lead to the differential effects of melatonin on angiogenesis under different conditions. In this review, we thus summarize some seemingly contradictory mechanisms by which melatonin controls angiogenesis under different pathological and physiological conditions, and urge that the regulatory mechanisms be further studied.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.,Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas, 78229, USA
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, Texas, 78229, USA.
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
10
|
Melatonin Increases Bone Mass around the Prostheses of OVX Rats by Ameliorating Mitochondrial Oxidative Stress via the SIRT3/SOD2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4019619. [PMID: 31110599 PMCID: PMC6487111 DOI: 10.1155/2019/4019619] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022]
Abstract
Bone mass loss around prostheses is a major cause of implant failure, especially in postmenopausal osteoporosis patients. In osteoporosis, excess oxidative stress largely contributed abnormal bone remodeling. Melatonin, which is synthesized from the pineal gland, promotes osteoblast differentiation and bone formation and has effectively been used to combat oxidative stress. Thus, we determined if melatonin can inhibit oxidative stress to promote osteogenesis and improve bone mass around prostheses in osteoporosis. In this study, we observed that received melatonin at 50 mg/kg body weight significantly increased periprosthetic bone mass as well as implant fixation intensity in ovariectomized (OVX) rats. Meanwhile, it decreased the expression of oxidative stress markers (NAPDH oxidase 2 and cytochrome c) and enhanced expressing level of the formation markers of bones (alkaline phosphatase, osteocalcin, and osterix) around prostheses compared to that in the control group. Additionally, melatonin decreased hydrogen peroxide- (H2O2-) induced oxidative stress and restored the osteogenesis potential of MC3T3-E1 cells. Mechanistically, melatonin clearly increased mitochondrial sirtuin 3 (SIRT3) expression and decreased the ratio of acetylated superoxide dismutase 2 (AC-SOD2)/SOD2 compared to the H2O2 group. SIRT3 inhibition counteracted the protective effects of melatonin on oxidative stress and bone formation. Together, the results showed that melatonin ameliorated oxidative stress in mitochondrial via the SIRT3/SOD2 signaling pathway, thereby promoting osteogenesis, improving bone mass around the prostheses, and increasing initial stability. Thus, melatonin might be a suitable candidate to decrease the rate of implant failure and lengthen the lifespan of prostheses after total joint arthroplasty.
Collapse
|
11
|
Gurler EB, Ergul NM, Ozbek B, Ekren N, Oktar FN, Haskoylu ME, Oner ET, Eroglu MS, Ozbeyli D, Korkut V, Temiz AF, Kocanalı N, Gungordu RJ, Kılıckan DB, Gunduz O. Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:798-808. [PMID: 30948117 DOI: 10.1016/j.msec.2019.03.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/15/2019] [Accepted: 03/15/2019] [Indexed: 10/27/2022]
Abstract
Electrospraying assures many advantages with taking less time and costing less relatively to the other conventional particle production methods. In this research, we investigated the encapsulation of melatonin (MEL) hormone in polycaprolactone (PCL) microparticles by using electrospraying method. Morphology analysis of the produced particles completed with Scanning Electron Microscopy (SEM). SEM images demonstrated that micro-particles of 3 wt% PCL solution has the most suitable particle diameter size (2.3 ± 0.64 μm) for melatonin encapsulation. According to the characterization of the particles, electrospraying parameters like optimal collecting distance, the flow rate of the solution and voltage of the system detected as 8 cm, 0.5 ml/h, and 10 kV respectively. For determining the chemical bonds of scaffold Fourier-Transform Infrared Spectroscopy (FTIR) were used and FTIR results showed that melatonin successfully loaded into PCL micro-particles. Drug release kinetics of the melatonin loaded particles indicated that melatonin released with a burst at the beginning and release behavior became sustainable over a period of 8 h with the encapsulation efficiency of about 73%. In addition, both in-vitro and in-vivo studies of the graft materials also completed. Primary human osteoblasts (HOB) cells and female Sprague Dawley rats were used in in-vitro and in-vivo studies. Test results demonstrate cell population, and bone volume of the rats grafted with composites has remarkably increased, this caused remodelling in bone structure. Overall, these findings indicate that encapsulation of melatonin in the PCL particles with electrospray method is optimum for new synthetic graft material.
Collapse
Affiliation(s)
- Esra Bihter Gurler
- Department of Physiology, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Necdet Mekki Ergul
- Department of Metallurgical and Materials Engineering, Institute of Pure and Applied Sciences, Marmara University, Istanbul 34722, Turkey; Center for Nanotechnology&Biomaterials Application and Research at Marmara University, 34722, Goztepe Campus Istanbul, Turkey
| | - Burak Ozbek
- Department of Metallurgical and Materials Engineering, Institute of Pure and Applied Sciences, Marmara University, Istanbul 34722, Turkey; Center for Nanotechnology&Biomaterials Application and Research at Marmara University, 34722, Goztepe Campus Istanbul, Turkey
| | - Nazmi Ekren
- Department of Electrical and Electronics Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey; Center for Nanotechnology&Biomaterials Application and Research at Marmara University, 34722, Goztepe Campus Istanbul, Turkey
| | - Faik Nuzhet Oktar
- Department of Bioengineering, Faculty of Engineering, Marmara University, 34722 Istanbul, Turkey; Center for Nanotechnology&Biomaterials Application and Research at Marmara University, 34722, Goztepe Campus Istanbul, Turkey
| | - Merve Erginer Haskoylu
- Department of Bioengineering, Faculty of Engineering, Marmara University, 34722 Istanbul, Turkey
| | - Ebru Toksoy Oner
- Department of Bioengineering, Faculty of Engineering, Marmara University, 34722 Istanbul, Turkey
| | - Mehmet Sayıp Eroglu
- Department of Chemical Engineering, Faculty of Engineering, Marmara University, 34722 Istanbul, Turkey
| | - Dilek Ozbeyli
- Department of Medical Pathological Techniques, Vocational School of Health Services, Marmara University, 34668 Istanbul, Turkey
| | - Veysel Korkut
- School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey
| | | | - Nil Kocanalı
- School of Medicine, Bahcesehir University, 34734 Istanbul, Turkey
| | | | | | - Oguzhan Gunduz
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, 34722 Istanbul, Turkey; Center for Nanotechnology&Biomaterials Application and Research at Marmara University, 34722, Goztepe Campus Istanbul, Turkey.
| |
Collapse
|
12
|
Melatonin supports alendronate in preserving bone matrix and prevents gastric inflammation in ovariectomized rats. Cell Biochem Funct 2019; 37:102-112. [DOI: 10.1002/cbf.3379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/29/2022]
|
13
|
Calvo-Guirado JL, López-López PJ, Domínguez MF, Gosálvez MM, Prados-Frutos JC, Gehrke SA. Retracted: Histologic evaluation of new bone in post-extraction sockets induced by melatonin and apigenin: an experimental study in American fox hound dogs. Clin Oral Implants Res 2018; 29:1176. [PMID: 27191920 DOI: 10.1111/clr.12866] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of topical applications of melatonin and apigenin (4',5,7-trihydroxyflavone) on new bone formation in post-extraction sockets after 30, 60 and 90 days. MATERIALS AND METHODS Six American fox hounds were used in the study, extracting mandibular premolars (P2, P3 and P4) and first molar (M1). Melatonin or apigenin impregnated in collagen sponges were applied at P3, P4 and M1 sites in both hemimandibles; P2 sites were used as control sites. Bone biopsies were taken at 30, 60 and 90 days and stained with hematoxylin-eosin. RESULTS At 30 days, a higher percentage of immature bone was observed in the control group (58.11 ± 1.76%) than in the apigenin (34.11 ± 1.02%) and melatonin groups (24.9 ± 0.14%) with significant differences between the three groups (P < 0.05). At 60 days, results were significantly better at melatonin sites (10.34 ± 1.09%) than apigenin (19.22 ± 0.35%) and control sites (36.7 ± 1.11%) (P < 0.05). At 90 days, immature bone percentages were similar for all groups. New bone formation was higher in melatonin group (79.56 ± 1.9%) than apigenin (68.89 ± 1.5%) and control group (58.87 ± 0.12%). CONCLUSIONS Topical applications of either melatonin or apigenin have a potential to accelerate bone tissue in early healing stages; melatonin was seen to have stimulated bone maturation to a greater extent at the 60 days of follow-up.
Collapse
Affiliation(s)
- José Luis Calvo-Guirado
- Dentistry, International Dentistry Research Cathedra, Faculty of Medicine and Dentistry, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - Patricia J López-López
- International Dentistry Research Cathedra, Faculty of Medicine and Dentistry, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | | | - Manuel Maiquez Gosálvez
- International Dentistry Research Cathedra, Faculty of Medicine and Dentistry, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | | | - Sergio Alexandre Gehrke
- Biotecnos, Santa Maria, Brazil
- Catholic University of Uruguay, Montevideo, Uruguay
- Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| |
Collapse
|
14
|
The multiple functions of melatonin in regenerative medicine. Ageing Res Rev 2018; 45:33-52. [PMID: 29630951 DOI: 10.1016/j.arr.2018.04.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 02/07/2023]
Abstract
Melatonin research has been experiencing hyper growth in the last two decades; this relates to its numerous physiological functions including anti-inflammation, oncostasis, circadian and endocrine rhythm regulation, and its potent antioxidant activity. Recently, a large number of studies have focused on the role of melatonin in the regeneration of cells or tissues after their partial loss. In this review, we discuss the recent findings on the molecular involvement of melatonin in the regeneration of various tissues including the nervous system, liver, bone, kidney, bladder, skin, and muscle, among others.
Collapse
|
15
|
Palin LP, Polo TOB, Batista FRDS, Gomes-Ferreira PHS, Garcia Junior IR, Rossi AC, Freire A, Faverani LP, Sumida DH, Okamoto R. Daily melatonin administration improves osseointegration in pinealectomized rats. J Appl Oral Sci 2018; 26:e20170470. [PMID: 29995145 PMCID: PMC6025886 DOI: 10.1590/1678-7757-2017-0470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/05/2017] [Indexed: 11/30/2022] Open
Abstract
The hypothesis of this study was that the peri-implant bone healing of the group of pinealectomized rats would differ from the control group. The samples were subjected to immunohistochemical, microtomographic (total porosity and connectivity density), and fluorochrome (mineralized surface) analyses.
Collapse
Affiliation(s)
- Letícia Pitol Palin
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | - Tarik Ocon Braga Polo
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Fábio Roberto de Souza Batista
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | | | - Idelmo Rangel Garcia Junior
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Ana Cláudia Rossi
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Anatomia, Piracicaba, São Paulo, Brasil
| | - Alexandre Freire
- Universidade Estadual de Campinas, Faculdade de Odontologia de Piracicaba, Área de Anatomia, Piracicaba, São Paulo, Brasil
| | - Leonardo Perez Faverani
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Cirurgia e Clínica Integrada, Araçatuba, São Paulo, Brasil
| | - Doris Hissako Sumida
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| | - Roberta Okamoto
- Univ. Estadual Paulista, Faculdade de Odontologia, Departamento de Ciências Básicas, Araçatuba, São Paulo, Brasil
| |
Collapse
|
16
|
Carpentieri AR, Peralta Lopez ME, Aguilar J, Solá VM. Melatonin and periodontal tissues: Molecular and clinical perspectives. Pharmacol Res 2017; 125:224-231. [PMID: 28918172 DOI: 10.1016/j.phrs.2017.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/26/2017] [Accepted: 09/06/2017] [Indexed: 12/29/2022]
Abstract
Periodontal disease is a frequent chronic inflammatory pathology that implies the destruction of the tissues supporting the teeth, which represents a high sanitary cost. It usually appears associated with other systemic conditions such as diabetes, metabolic syndrome, depression and Alzheimer disease among others. The presence of melatonin and its receptors in the oral cavity supports the hypothesis that this hormone could play a role in homeostasis of periodontal tissues. In the present review we will discuss the potential role of melatonin, a circadian synchronizing hormone, with proved antiinflammatory and antioxidant profile, in the pathogenesis and treatment of periodontitis. Particular emphasis will be placed on the role of the indolamine in the treatment of periodontal disease when this oral condition is comorbid with other pathologies that would also benefit from the therapeutic potential of melatonin and its analogs through diverse mechanisms.
Collapse
Affiliation(s)
- Agata Rita Carpentieri
- Cátedra "B" de Química Biológica, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina; INICSA/UNC-CONICET, Enrique Barros esquina Enfermera Gordillo, Ciudad Universitaria, Córdoba, Argentina.
| | - María Elena Peralta Lopez
- Cátedra "B" de Química Biológica, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina; Cátedra de Clínica Médica II, Hospital San Roque, Facultad de Ciencias Médicas,UNC, Córdoba, Argentina
| | - Javier Aguilar
- Instituto Dr. José M. Vanella, Facultad de Ciencias Médicas, UNC, Córdoba, Argentina; Cátedra "B" de Introducción a la Física y Química Biológica, Facultad de Odontología, UNC, Córdoba, Argentina
| | - Verónica Mariana Solá
- Cátedra "B" de Química Biológica, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
17
|
Abstract
BACKGROUND Due to its antioxidant properties and its ability to detoxify free radicals, melatonin may interfere in the function of osteoclasts and thereby inhibit bone resorption. This inhibition of bone resorption may be enhanced by a reaction of indolamine in osteoclastogenesis and this may contribute to certain benefits in implantology. OBJECTIVE This systematic literature review on the use of melatonin in implant dentistry aims to provide guidelines for clinicians. MATERIALS AND METHODS PubMed, Science Direct, ISI Web of Knowledge, and the Cochrane base databases were used to identify articles published between 1999 and 2013 on melatonin use in implant dentistry. Ten articles were selected consisting of 9 animal research studies and 1 review article, involving 60 Beagle dogs, 57 rats, and 30 rabbits and a total of 352 implants. RESULTS Melatonin, which is released into the saliva, has important implications in the oral cavity. To achieve dental implant stability, osseointegration involves a cascade of protein and cell apposition, vascular invasion, bone formation, and maturation. This process may be accelerated by local delivery of growth-promoting factors, as occurs with the topical application of melatonin over the implant surface. CONCLUSIONS The experimental evidence suggests that topical applications of melatonin may be useful in oral surgery and implant dentistry, increasing bone-to-implant contact values and new bone formation, and so improving the success and long-term survival of implant treatments.
Collapse
|
18
|
Najeeb S, Zafar MS, Khurshid Z, Zohaib S, Almas K. The Role of Nutrition in Periodontal Health: An Update. Nutrients 2016; 8:E530. [PMID: 27589794 PMCID: PMC5037517 DOI: 10.3390/nu8090530] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/21/2022] Open
Abstract
Periodontal health is influenced by a number of factors such as oral hygiene, genetic and epigenetic factors, systemic health, and nutrition. Many studies have observed that a balanced diet has an essential role in maintaining periodontal health. Additionally, the influences of nutritional supplements and dietary components have been known to affect healing after periodontal surgery. Studies have attempted to find a correlation between tooth loss, periodontal health, and nutrition. Moreover, bone formation and periodontal regeneration are also affected by numerous vitamins, minerals, and trace elements. The aim of this review is to critically appraise the currently available data on diet and maintenance of periodontal health and periodontal healing. The effects of nutritional intervention studies to improve the quality of life and well-being of patients with periodontal disease have been discussed.
Collapse
Affiliation(s)
- Shariq Najeeb
- Restorative Dental Sciences, Al-Farabi College, Riyadh 361724, Saudi Arabia.
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia.
| | - Zohaib Khurshid
- College of Dentistry, King Faisal University, P.O. Box 380, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia.
| | - Sana Zohaib
- Department of Biomedical Engineering, School of Engineering, King Faisal University, P.O. Box 380, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia.
| | - Khalid Almas
- Division of Periodontology, University of Dammam, College of Dentistry, Dammam 31441, Saudi Arabia.
| |
Collapse
|
19
|
Arora H, Ivanovski S. Melatonin as a pro-osteogenic agent in oral implantology: a systematic review of histomorphometric outcomes in animals and quality evaluation using ARRIVE guidelines. J Periodontal Res 2016; 52:151-161. [DOI: 10.1111/jre.12386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2016] [Indexed: 12/26/2022]
Affiliation(s)
- H. Arora
- School of Dentistry and Oral Health; Griffith University; Gold Coast Qld Australia
| | - S. Ivanovski
- School of Dentistry and Oral Health; Griffith University; Gold Coast Qld Australia
| |
Collapse
|
20
|
E. Klontzas M, I. Kenanidis E, J. MacFarlane R, Michail T, E. Potoupnis M, Heliotis M, Mantalaris A, Tsiridis E. Investigational drugs for fracture healing: preclinical & clinical data. Expert Opin Investig Drugs 2016; 25:585-96. [DOI: 10.1517/13543784.2016.1161757] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Salomó-Coll O, de Maté-Sánchez JEV, Ramírez-Fernandez MP, Hernández-Alfaro F, Gargallo-Albiol J, Calvo-Guirado JL. Osseoinductive elements around immediate implants for better osteointegration: a pilot study in foxhound dogs. Clin Oral Implants Res 2016; 29:1061-1069. [PMID: 26923181 DOI: 10.1111/clr.12809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2016] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the effects on osseointegration of topical applications of melatonin vs. vitamin D over surfaces of immediate implants. MATERIALS AND METHODS Mandibular premolar distal roots (P2 , P3 , P4 ) were extracted bilaterally from six American Foxhound dogs. Three conical immediate implants were randomly placed bilaterally in each mandible. Three randomized groups were created: melatonin 5% test group (MI), vitamin D 10% test group (DI), and Control group implants (CI). Block sections were obtained after 12 weeks and processed for mineralized ground sectioning. Bone-to-implant contact (total BIC), new bone formation (NBF), inter-thread bone (ITB), and histological linear measurements (HLM) were assessed. RESULTS At 12 weeks, all implants were clinically stable and histologically osseointegrated. Total BIC values were 49.20 ± 3.26 for the MI group, 49.86 ± 1.89 for DI group and 45.78 ± 4.21 for the CI group (P < 0.018) with statistically significant difference between the three groups. BIC percentage were 42.44 ± 2.18 for MI, 44.56 ± 1.08 for DI, and 41.95 ± 3.34 for CI groups respectively (P > 0.05). Inter-thread bone formation values were MI 17.56 ± 2.01, for DI 19.87 ± 0.92, and CI 14.56 ± 1.24 (P > 0.05). Statistically significant differences in peri-implant new bone formation were found between the three groups: MI 28.76 ± 1.98, DI 32.56 ± 1.11 and CI 25.43 ± 4.67, respectively (P < 0.045). Linear measurements showed that the MI group showed significantly less lingual crestal bone loss (CBL) (MI 0.59 ± 0.71), compared to DI (0.91 ± 1.21) and CI (0.93 ± 1.21) (P < 0.042), and less lingual peri-implant mucosa (PIM) (MI 3.11 ± 1.34),(DI 3.25 ± 0.18 compared with CI 3.54 ± 1.81 (P = 0.429). Linear measurements of buccal CBL showed significantly less buccal bone loss in test DI (0.36 ± 0.12) than CI (1.34 ± 1.23) and MI (1.11 ± 1.38) (P = 0.078). CONCLUSIONS Within the limitations of this animal study, topical applications of 5% Melatonin or 10% vitamin D improved bone formation around implants placed immediately after extraction and helped to reduce CBL after 12 weeks osseointegration.
Collapse
Affiliation(s)
- O Salomó-Coll
- Department of Oral and Maxillofacial Surgery, International University of Catalonia (UIC), Barcelona, Spain
| | - J E Val de Maté-Sánchez
- Facultad de Medicina y Odontología, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - M P Ramírez-Fernandez
- Facultad de Medicina y Odontología, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| | - F Hernández-Alfaro
- Department of Oral and Maxillofacial Surgery, International University of Catalonia (UIC), Barcelona, Spain
| | - J Gargallo-Albiol
- Department of Oral and Maxillofacial Surgery, International University of Catalonia (UIC), Barcelona, Spain
| | - J L Calvo-Guirado
- Facultad de Medicina y Odontología, Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
| |
Collapse
|
22
|
Shino H, Hasuike A, Arai Y, Honda M, Isokawa K, Sato S. Melatonin enhances vertical bone augmentation in rat calvaria secluded spaces. Med Oral Patol Oral Cir Bucal 2016; 21:e122-6. [PMID: 26595835 PMCID: PMC4765744 DOI: 10.4317/medoral.20904] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/24/2015] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Melatonin has many roles, including bone remodeling and osseointegration of dental implants. The topical application of melatonin facilitated bone regeneration in bone defects. We evaluated the effects of topical application of melatonin on vertical bone augmentation in rat calvaria secluded spaces. MATERIAL AND METHODS In total, 12 male Fischer rats were used and two plastic caps were fixed in the calvarium. One plastic cap was filled with melatonin powder and the other was left empty. RESULTS Newly generated bone at bone defects and within the plastic caps was evaluated using micro-CT and histological sections. New bone regeneration within the plastic cap was increased significantly in the melatonin versus the control group. CONCLUSIONS Melatonin promoted vertical bone regeneration in rat calvaria in the secluded space within the plastic cap.
Collapse
Affiliation(s)
- Hiromichi Shino
- Department of Periodontology, Nihon University School of Dentistry, 1-8-13, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan,
| | | | | | | | | | | |
Collapse
|
23
|
Salomó-Coll O, Maté-Sánchez de Val JE, Ramírez-Fernandez MP, Hernández-Alfaro F, Gargallo-Albiol J, Calvo-Guirado JL. Topical applications of vitamin D on implant surface for bone-to-implant contact enhance: a pilot study in dogs part II. Clin Oral Implants Res 2015; 27:896-903. [DOI: 10.1111/clr.12707] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Oscar Salomó-Coll
- Department of Oral and Maxillofacial Surgery; International University of Catalonia; Barcelona Spain
| | | | - María P. Ramírez-Fernandez
- International Dentistry Research Cathedra; Universidad Católica San Antonio de Murcia (UCAM); Murcia Spain
| | - Federico Hernández-Alfaro
- Department of Oral and Maxillofacial Surgery; International University of Catalonia; Barcelona Spain
| | - Jordi Gargallo-Albiol
- Department of Oral and Maxillofacial Surgery; International University of Catalonia; Barcelona Spain
| | - José L. Calvo-Guirado
- International Dentistry Research Cathedra; Universidad Católica San Antonio de Murcia (UCAM); Murcia Spain
| |
Collapse
|
24
|
Salomó-Coll O, Maté-Sánchez de Val JE, Ramírez-Fernández MP, Satorres-Nieto M, Gargallo-Albiol J, Calvo-Guirado JL. Osseoinductive elements for promoting osseointegration around immediate implants: a pilot study in the foxhound dog. Clin Oral Implants Res 2015; 27:e167-e175. [DOI: 10.1111/clr.12596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2015] [Indexed: 02/01/2023]
Affiliation(s)
- O. Salomó-Coll
- Department of Oral and Maxillofacial Surgery; International University of Catalonia; Barcelona Spain
| | | | | | - M. Satorres-Nieto
- Department of Oral and Maxillofacial Surgery; International University of Catalonia; Barcelona Spain
| | - J. Gargallo-Albiol
- Department of Oral and Maxillofacial Surgery; International University of Catalonia; Barcelona Spain
| | | |
Collapse
|
25
|
Arabacı T, Kermen E, Özkanlar S, Köse O, Kara A, Kızıldağ A, Duman ŞB, Ibişoğlu E. Therapeutic Effects of Melatonin on Alveolar Bone Resorption After Experimental Periodontitis in Rats: A Biochemical and Immunohistochemical Study. J Periodontol 2015; 86:874-81. [PMID: 25812911 DOI: 10.1902/jop.2015.140599] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The present study aims to investigate the effects of systemic melatonin administration on alveolar bone resorption in experimental periodontitis in rats. METHODS Twenty-four male Sprague-Dawley rats were divided into three groups (control, experimental periodontitis [Ped], and experimental periodontitis treated with melatonin [Mel-Ped]). For periodontitis induction, first molars were ligatured submarginally for 4 weeks. After ligature removal, rats in the Mel-Ped group were treated with a daily single dose of 10 mg/kg body weight melatonin for 15 consecutive days. At the end of the study, intracardiac blood samples and mandible tissues were obtained for histologic, biochemical, and radiographic analysis. Serum markers related to bone turnover, calcium, phosphorus, bone alkaline phosphatase (b-ALP), and terminal C telopeptide of collagen Type I (CTX) were analyzed. Myeloperoxidase levels were determined in gingival tissue homogenates, and receptor activator of nuclear factor-kappa B ligand (RANKL) activation was analyzed in the mandible samples stereologically. Alveolar bone loss was also evaluated radiographically in the mandible samples of each group. RESULTS Melatonin treatment decreased serum CTX levels and increased b-ALP levels. Serum calcium and phosphorus levels were not statistically different among groups (P >0.05). Alveolar bone resorption and myeloperoxidase activity were statistically higher in the Ped group compared to the Mel-Ped group (P <0.05). Immunohistochemical staining of RANKL and osteoclast activity were significantly lower in the Mel-Ped group compared to the Ped group (P <0.05). CONCLUSION This study reveals that melatonin treatment significantly inhibits regional alveolar bone resorption and contributes to periodontal healing in an experimental periodontitis rat model.
Collapse
Affiliation(s)
- Taner Arabacı
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Eda Kermen
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Seçkin Özkanlar
- Department of Biochemistry, Faculty of Veterinary Medicine, Atatürk University
| | - Oğuz Köse
- Department of Periodontology, Faculty of Dentistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adem Kara
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Atatürk University
| | - Alper Kızıldağ
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Şuayip Burak Duman
- Department of Oral Diagnosis and Radiology, Faculty of Dentistry, Atatürk University
| | - Ebru Ibişoğlu
- Department of Nuclear Medicine, Faculty of Medicine, Atatürk University
| |
Collapse
|
26
|
Kyllönen L, D’Este M, Alini M, Eglin D. Local drug delivery for enhancing fracture healing in osteoporotic bone. Acta Biomater 2015; 11:412-34. [PMID: 25218339 DOI: 10.1016/j.actbio.2014.09.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/30/2014] [Accepted: 09/04/2014] [Indexed: 01/08/2023]
Abstract
Fragility fractures can cause significant morbidity and mortality in patients with osteoporosis and inflict a considerable medical and socioeconomic burden. Moreover, treatment of an osteoporotic fracture is challenging due to the decreased strength of the surrounding bone and suboptimal healing capacity, predisposing both to fixation failure and non-union. Whereas a systemic osteoporosis treatment acts slowly, local release of osteogenic agents in osteoporotic fracture would act rapidly to increase bone strength and quality, as well as to reduce the bone healing period and prevent development of a problematic non-union. The identification of agents with potential to stimulate bone formation and improve implant fixation strength in osteoporotic bone has raised hope for the fast augmentation of osteoporotic fractures. Stimulation of bone formation by local delivery of growth factors is an approach already in clinical use for the treatment of non-unions, and could be utilized for osteoporotic fractures as well. Small molecules have also gained ground as stable and inexpensive compounds to enhance bone formation and tackle osteoporosis. The aim of this paper is to present the state of the art on local drug delivery in osteoporotic fractures. Advantages, disadvantages and underlying molecular mechanisms of different active species for local bone healing in osteoporotic bone are discussed. This review also identifies promising new candidate molecules and innovative approaches for the local drug delivery in osteoporotic bone.
Collapse
|
27
|
Cobo-Vázquez C, Fernández-Tresguerres I, Ortega-Aranegui R, López-Quiles J. Effects of local melatonin application on post-extraction sockets after third molar surgery. A pilot study. Med Oral Patol Oral Cir Bucal 2014; 19:e628-33. [PMID: 25350595 PMCID: PMC4259382 DOI: 10.4317/medoral.19851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/28/2014] [Indexed: 11/13/2022] Open
Abstract
Objectives: The purpose of this study was to assess the anti-inflammatory, analgesic and osteogenic early effects of melatonin on post-extraction sockets ofpatients requiring third molars extraction.
Study Design: A randomized, triple-blind clinical trial was made using a split-mouth design. Both lower third molars of 10 patients were extracted and 3 mg of local melatonin or placebo were applied. Concentrations of interleukin-6 and nitrotyrosine were determined on samples of the clot from the socket by independent ELISA tests. Radiographic bone density was evaluated by measuring Hounsfield Units in panoramic and cross sections obtained by digital scanner. Statistycal analysis by Kolmogorov-Smirnov test was performed for ELISA data. Bone density was analyzed by Shapiro-Wilk test. Subsequently t test was applied. P<0.05 was considered to be significant.
Results: The concentration of interleukin-6 increased with the application of melatonin without statistically significance (361.32 ± 235.22 pg/ml vs 262.58 ± 233.92 pg/ml). Nitrotyrosine concentrations showed values below to the detectability pattern (<0.001 nM) in Optic Density curve. Bone density in panoramic sections at socket after melatonin application showed no significant difference (561.98 ± 105.92 HU vs 598.82 ± 209.03 HU). In cross sections, bone density in the alveolar region showed no significant difference(377.42 ± 125.67 HU vs 347.56 ± 97.02 HU).
Conclusions: Within the limitations of this pilot study, no differences with the application of melatonin were found in terms of the concentration of interleukin-6 and bone density in post-extraction socket of retained mandibular third molars.
Key words:Melatonin, inflammation, pain, bone density, third molar surgery.
Collapse
Affiliation(s)
- Carlos Cobo-Vázquez
- Department of Medicine and Oral Surgery, Faculty of Odontology, Complutense University of Madrid, Plaza de Ramón y Cajal, 3, 28040, Madrid, Spain,
| | | | | | | |
Collapse
|
28
|
Calvo-Guirado JL, Aguilar Salvatierra A, Gargallo-Albiol J, Delgado-Ruiz RA, Maté Sanchez JE, Satorres-Nieto M. Zirconia with laser-modified microgrooved surface vs. titanium implants covered with melatonin stimulates bone formation. Experimental study in tibia rabbits. Clin Oral Implants Res 2014; 26:1421-9. [DOI: 10.1111/clr.12472] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2014] [Indexed: 11/30/2022]
Affiliation(s)
- José Luis Calvo-Guirado
- Department of General Dentistry & Implantology; Faculty of Medicine and Dentistry; University of Murcia; Murcia Spain
| | - Antonio Aguilar Salvatierra
- Department of General Dentistry & Implantology; Faculty of Medicine and Dentistry; University of Murcia; Murcia Spain
| | | | - Rafael Arcesio Delgado-Ruiz
- Department of Prosthodontics and Digital Technology; School of Dental Medicine; Stony Brook University; Stony Brook NY USA
| | - Jose Eduardo Maté Sanchez
- Department of Restorative Dentistry; Faculty of Medicine and Dentistry; University of Murcia; Murcia Spain
| | - Marta Satorres-Nieto
- Department of Implantology; Faculty of Medicine and Dentistry; International University of Catalunya; Barcelona Spain
| |
Collapse
|
29
|
Calvo-Guirado JL, Gómez-Moreno G, Maté-Sánchez JE, López-Marí L, Delgado-Ruiz R, Romanos GE. Retracted:
New bone formation in bone defects after melatonin and porcine bone grafts: experimental study in rabbits. Clin Oral Implants Res 2014; 26:399-406. [DOI: 10.1111/clr.12364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2014] [Indexed: 01/22/2023]
Affiliation(s)
| | - Gerardo Gómez-Moreno
- Pharmacological Interactions in Dentistry and Special Care in Dentistry; Faculty of Dentistry; University of Granada; Granada Spain
| | | | | | - Rafael Delgado-Ruiz
- Prosthodontics and Digital Technology; Stony Brook University; Stony Brook NY USA
| | | |
Collapse
|
30
|
Viña JA, El-Alami M, Gambini J, Borras C, Viña J, Peñarrocha MA. Application of mesenchymal stem cells in bone regenerative procedures in oral implantology. A literature review. J Clin Exp Dent 2014; 6:e60-5. [PMID: 24596637 PMCID: PMC3935907 DOI: 10.4317/jced.51186] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 09/26/2013] [Indexed: 01/14/2023] Open
Abstract
OBJECTIVE The aim of this work was to review de literature about the role of mesenchymal stem cells in bone regenerative procedures in oral implantology, specifically, in the time require to promote bone regeneration. STUDY DESIGN [corrected] A bibliographic search was carried out in PUBMED with a combination of different key words. Animal and human studies that assessed histomorphometrically the influence of mesenchymal stem cells on bone regeneration procedures in oral implantology surgeries were examined. Reults: - Alveolar regeneration: Different controlled histomorphometric animal studies showed that bone regeneration is faster using stem cells seeded in scaffolds than using scaffolds or platelet rich plasma alone. Human studies revealed that stem cells increase bone regeneration. - Maxillary sinus lift: Controlled studies in animals and in humans showed higher bone regeneration applying stem cells compared with controls. - Periimplantary bone regeneration and alveolar distraction: Studies in animals showed higher regeneration when stem cells are used. In humans, no evidence of applying mesenchymal stem cells in these regeneration procedures was found. CONCLUSION Stem cells may promote bone regeneration and be useful in bone regenerative procedures in oral implantology, but no firm conclusions can be drawn from the rather limited clinical studies so far performed. Key words:Mesenchymal stem cells, bone regeneration, dental implants, oral surgery, tissue engineering.
Collapse
Affiliation(s)
- Jose A Viña
- Master of Oral Surgery and Implantology. Valencia University Medical and Dental School. Valencia, Spain
| | - Marya El-Alami
- Department of physiology. Valencia University Medical School. Valencia, Spain
| | - Juan Gambini
- Department of physiology. Valencia University Medical School. Valencia, Spain
| | - Consuelo Borras
- Department of physiology. Valencia University Medical School. Valencia, Spain
| | - Jose Viña
- Department of physiology. Valencia University Medical School. Valencia, Spain
| | - María A Peñarrocha
- Assistant professor of Oral Surgery. University Medical and Dental School. Professor of Master of Oral Surgery and Implantology. Valencia University Medical and Dental School. Valencia, Spain
| |
Collapse
|
31
|
Gao W, Lin M, Liang A, Zhang L, Chen C, Liang G, Xu C, Peng Y, Chen C, Huang D, Su P. Melatonin enhances chondrogenic differentiation of human mesenchymal stem cells. J Pineal Res 2014; 56:62-70. [PMID: 24117903 DOI: 10.1111/jpi.12098] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 09/20/2013] [Indexed: 01/30/2023]
Abstract
Intramembranous ossification and endochondral ossification are two ways through which bone formation and fracture healing occur. Accumulating amounts of evidence suggests that melatonin affects osteoblast differentiation, but little is known about the effects of melatonin on the process of chondrogenic differentiation. In this study, the effects of melatonin on human mesenchymal stem cells (MSCs) undergoing chondrogenic differentiation were investigated. Cells were induced along chondrogenic differentiation via high-density micromass culture in chondrogenic medium containing vehicle or 50 nm melatonin. Histological study and quantitative analysis of glycosaminoglycan (GAG) showed induced cartilage tissues to be larger and richer in GAG, collagen type II and collagen type X in the melatonin group than in the untreated controls. Real-time RT-PCR analysis demonstrated that melatonin treatment significantly up-regulated the expression of the genes involved in chondrogenic differentiation, including aggrecan (ACAN), collagen type II (COL2A1), collagen type X (COL10A1), SRY (sex-determining region Y)-box 9 (SOX9), runt-related transcription factor 2 (RUNX2) and the potent inducer of chondrogenic differentiation, bone morphogenetic protein 2 (BMP2). And the expression of melatonin membrane receptors (MT) MT1 and MT2 were detected in the chondrogenic-induced-MSCs by immunofluorescence staining. Luzindole, a melatonin receptor antagonist, was found to partially block the ability of melatonin to increase the size and GAG synthesis of the induced cartilage tissues, as well as to completely reverse the effect of melatonin on the gene expression of ACAN, COL2A1, COL10A1, SOX9 and BMP2 after 7 days of differentiation. These findings demonstrate that melatonin enhances chondrogenic differentiation of human MSCs at least partially through melatonin receptors.
Collapse
Affiliation(s)
- Wenjie Gao
- Department of Spine Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Melatonin effects on hard tissues: bone and tooth. Int J Mol Sci 2013; 14:10063-74. [PMID: 23665905 PMCID: PMC3676828 DOI: 10.3390/ijms140510063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 11/16/2022] Open
Abstract
Melatonin is an endogenous hormone rhythmically produced in the pineal gland under the control of the suprachiasmatic nucleus (SCN) and the light/dark cycle. This indole plays an important role in many physiological processes including circadian entrainment, blood pressure regulation, seasonal reproduction, ovarian physiology, immune function, etc. Recently, the investigation and applications of melatonin in the hard tissues bone and tooth have received great attention. Melatonin has been investigated relative to bone remolding, osteoporosis, osseointegration of dental implants and dentine formation. In the present review, we discuss the large body of published evidence and review data of melatonin effects on hard tissues, specifically, bone and tooth.
Collapse
|
33
|
Liu J, Zhou H, Fan W, Dong W, Fu S, He H, Huang F. Melatonin influences proliferation and differentiation of rat dental papilla cells in vitro and dentine formation in vivo by altering mitochondrial activity. J Pineal Res 2013; 54:170-8. [PMID: 22946647 PMCID: PMC3597977 DOI: 10.1111/jpi.12002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 07/27/2012] [Indexed: 12/15/2022]
Abstract
Melatonin mediates a variety of biological processes ranging from the control of circadian rhythms to immune regulation. Melatonin also influences bone formation and osteointegration of dental implants. However, the effects of melatonin on dentine formation have not been examined. This study investigated the effects of melatonin on the proliferation and differentiation of rat dental papilla cells (rDPCs) in vitro and dentine formation in vivo. We found that melatonin (0, 10(-12) , 10(-10) ,10(-8) m) induced a dose-dependent reduction in rDPCs proliferation, increased alkaline phosphatase (ALP) activity, the expression of dentine sialoprotein (DSP), and mineralized matrix formation in vitro. In vivo melatonin (50 mg/kg, BW, i.p.) inhibited dentine formation. Melatonin (10(-8 ) m) suppressed the activity of complex I and IV in the basal medium (OS-) and enhanced the activity of complex I and complex IV in osteogenic medium (OS+). These results demonstrate that melatonin suppresses the proliferation and promotes differentiation of rDPCs, the mechanisms of which may be related to activity of mitochondrial complex I and complex IV.
Collapse
Affiliation(s)
- Jie Liu
- Department of pediatric dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China
| | - Hongyu Zhou
- Department of pediatric dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China
| | - Wenguo Fan
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou, China
| | - Weiguo Dong
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou, China
| | - Shenli Fu
- Department of pediatric dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China
| | - Hongwen He
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China
- Guangdong Provincial Key Laboratory of StomatologyGuangzhou, China
| | - Fang Huang
- Department of pediatric dentistry, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China
- Department of Oral Anatomy and Physiology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
34
|
Zhang L, Zhang J, Ling Y, Chen C, Liang A, Peng Y, Chang H, Su P, Huang D. Sustained release of melatonin from poly (lactic-co-glycolic acid) (PLGA) microspheres to induce osteogenesis of human mesenchymal stem cells in vitro. J Pineal Res 2013; 54:24-32. [PMID: 22712496 DOI: 10.1111/j.1600-079x.2012.01016.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Melatonin promotes bone formation and prevents bone degradation via receptor-dependent or receptor-independent actions. The aim of this study is to encapsulate melatonin into poly (lactic-co-glycolic acid) (PLGA) microspheres (PLGA-MEL-MS) and create a melatonin sustained release system, then to evaluate its effect on the osteogenesis of human mesenchymal stem cells (hMSCs) in vitro. PLGA-MEL-MS were prepared by single emulsion solvent evaporation technique. Scanning electron microscopy demonstrated the incorporation of melatonin did not disturb the conventional generation of PLGA microspheres in size and morphology. In vitro drug release assay showed that PLGA-MEL-MS exhibited a biphasic drug release pattern: a low initial burst release effect with approximately 40% drug release at the first 3 days and a relatively retarded and continuous release with about 85% drug release over the 25 days. Cell proliferation assay demonstrated that PLGA-MEL-MS had no apparent effect on proliferation of human MSCs. In an osteogenesis assay, PLGA-MEL-MS obviously enhanced alkaline phosphatase (ALP) mRNA expression and increased ALP activity compared to that in the control group. Meanwhile, several markers of osteoblast differentiation were also significantly upregulated, including runx2, osteopontin, and osteocalcin. Furthermore, quantificational alizarin red-based assay demonstrated that PLGA-MEL-MS significantly enhanced calcium deposit of hMSCs compared to the controls. Therefore, this simple melatonin sustained release system can control released melatonin to generate a microenvironment with a relatively stable concentration of melatonin for a period of time to support osteogenic differentiation of hMSCs in vitro. This suggests that this system may be used as bone growth stimulator in bone healing in vivo.
Collapse
Affiliation(s)
- Liangming Zhang
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China School of Life Science, Sun Yat-Sen University, Guangzhou, China School of Materials Science and Engineering, South China University of Technology, Guangzhou, China Department of Orthopedics, First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Laliena A, San Miguel B, Crespo I, Alvarez M, González-Gallego J, Tuñón MJ. Melatonin attenuates inflammation and promotes regeneration in rabbits with fulminant hepatitis of viral origin. J Pineal Res 2012; 53:270-8. [PMID: 22506987 DOI: 10.1111/j.1600-079x.2012.00995.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The objective of the present study was to investigate the effect of melatonin on the liver inflammatory and regenerative response in an animal model of fulminant hepatic failure (FHF) of viral origin. Rabbits were experimentally infected with 2×10(4) hemagglutination units of a rabbit hemorrhagic disease virus (RHDV) isolate and received melatonin at two concentrations of 10 or 20mg/kg at 0, 12 and 24hr postinfection. RHDV infection induced an inflammatory response, with increased expression of toll-like receptor 4, high-mobility group box (HMGB)1, interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and C-reactive protein, and decreased expression of decay accelerating factor (DAF/CD55). These effects were significantly reduced by melatonin. Matrix metalloproteinase-9 expression was also lowered in melatonin-treated rabbits. RHDV infection inhibited the hepatic regenerative/proliferative response, with a reduced expression of hepatocyte growth factor (HGF), epidermal growth factor, platelet-derived growth factor (PDGF)-B and vascular endothelial growth factor and their receptors; these responses were prevented by melatonin administration. Melatonin treatment also resulted in reduced expression of phosphorylated Janus kinase and enhanced expression of extracellular mitogen-activated protein kinase (ERK) and signal transducer and activator of transcription (STAT) 3. Our findings show that anti-inflammatory effects and stimulation of regenerative mechanisms contribute to the beneficial effects of melatonin in rabbits with experimental infection by RHDV and support a potential hepatoprotective role of melatonin in FHF.
Collapse
|
36
|
Clafshenkel WP, Rutkowski JL, Palchesko RN, Romeo JD, McGowan KA, Gawalt ES, Witt-Enderby PA. A novel calcium aluminate-melatonin scaffold enhances bone regeneration within a calvarial defect. J Pineal Res 2012; 53:206-18. [PMID: 22462771 DOI: 10.1111/j.1600-079x.2012.00989.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Over 500,000 bone graft or bio-implant procedures are performed annually in the United States. It has been reported that osseous autograft procurement may result in donor site complications and bio-implant allografts have been associated with disease transmission. Ceramic scaffolds are only osteoconductive, limiting their clinical use. The objective of this study was to create a bone filler substitute with regenerating properties similar to natural bone. Therefore, melatonin and platelet-rich plasma (PRP) were utilized for their known osteoinductive properties. It was hypothesized that melatonin and/or PRP would enhance the osteoinductive and osteoconductive properties of calcium aluminate (CA) scaffolds to promote bone regeneration in a model of calvarial defects. The biocompatibility of CA and CA-Mel scaffolds was tested in vitro and in vivo. Data show that CA-Mel scaffolds, in comparison with CA scaffolds, enhanced the adhesion, viability, and proliferation of normal human osteoblasts cells but not that of NIH3T3 fibroblasts. Data also showed that human adult mesenchymal stem cells grown on CA or CA-Mel scaffolds showed a time-dependent induction into osteoblasts over 14days revealed through scanning electron microscopy and by alkaline phosphatase analyses. Implantation of CA-Mel scaffolds into critical size calvarial defects in female, ovariectomized rats showed that the CA-Mel scaffolds were biocompatible, allowed for tissue infiltration, and showed evidence of scaffold biodegradation by 3 and 6months. Bone regeneration, assessed using fluorochrome labeling at 3 and 6months, was greatest in animals implanted with the CA-Mel scaffold. Overall, results from this study show that CA-Mel scaffolds were osteoconductive and osteoinductive.
Collapse
Affiliation(s)
- William P Clafshenkel
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Duquesne University, Pittsburgh, PA 15282, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Melatonin: a novel indolamine in oral health and disease. Int J Dent 2012; 2012:720185. [PMID: 22899929 PMCID: PMC3415143 DOI: 10.1155/2012/720185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 05/31/2012] [Indexed: 12/15/2022] Open
Abstract
This paper attempts to summarise the findings accumulated within the last few years concerning the hormone of darkness “melatonin.” Based on its origin, from the pineal gland until recently it was portrayed exclusively as a hormone. Due to its lipophilic nature, it is accessible to every cell. Thus, in the classic sense it is a cell protector rather than a hormone. Recent studies, by Claustrat et al. (2005), detected few extrapineal sources of melatonin like retina, gastrointestinal tract, and salivary glands. Due to these sources, research by Cutando et al. (2007), is trying to explore the implications of melatonin in the oral cavity, in addition to its physiologic anti-oxidant, immunomodulatory and oncostatic functions at systemic level that may be receptor dependent or independent. Recently, certain in vivo studies by Shimozuma et al. (2011), detected the secretion of melatonin from salivary glands further emphasising its local activity. Thus, within our confines the effects of melatonin in the mouth are reviewed, adding a note on therapeutic potentials of melatonin both systemically and orally.
Collapse
|
38
|
Melatonin promotes angiogenesis during repair of bone defects: a radiological and histomorphometric study in rabbit tibiae. Clin Oral Investig 2012; 17:147-58. [DOI: 10.1007/s00784-012-0684-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
|
39
|
Calvo-Guirado JL, Aguilar-Salvatierra A, Guardia J, Delgado-Ruiz R, Ramírez-Fernández MP, Pérez Sánchez C, Gómez-Moreno G. Evaluation of periimplant bone neoformation using different scanning electron microscope methods for measuring BIC. A dog study. J Clin Exp Dent 2012; 4:e8-e13. [PMID: 24558531 PMCID: PMC3908816 DOI: 10.4317/jced.50624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 11/17/2011] [Indexed: 11/17/2022] Open
Abstract
Objetives: The aim of this study was to determine which of three methods for measuring BIC (bone-to-implant contact), using vestibular and lingual scanning electron microscopy (SEM) for different implant systems at 15, 30 and 90 days post-surgery was the most precise. An elemental analysis with SEM was used to evaluate neoformed bone composition for three implant systems at the same study times.
Material and Methods: 36 implants were placed in eighteen Beagle dogs mandible about one year old and weighing approximately 12-13 kg in order to evaluate bone apposition to three different implant surfaces. It was used the third and fourth premolar and first molar distal sockets in both quadrants of the mandible (3P3, 4P4 and 1M1). Teeth were hemi-sected and the distal roots were removed. The specimens were prepared for histological examination and each section surface was stained using Masson’s trichrome and hematoxylin and eosin stains. BIC evaluations were performed by the three methods, BIC I (the quantity of mineralized bone in direct contact with the implant’s titanium surface across the entire threaded area); BIC II (along a line that passes from apex to apex of the implant threads); BIC III (both in areas around and above the threads and in between threads).
Results: Both BIC and bone content were analyzed for all implants placed in P3, P4 y M1 alveoli on both, the buccal and palatine sides (elemental analysis quantified Ca, P, O and C). It was seen it was only at the ninety-day mark that high percentages of calcium were present.
Conclusions: This study suggest that BIC III evaluation is the most certain method for establishing the quantity of bone formed as the BIC area.
Key words:Bone-to-impant contact, dogs, extraction socket, implants.
Collapse
Affiliation(s)
- José L Calvo-Guirado
- Department of Implant Dentistry, School of Medicine and Dentistry, University of Murcia, Spain
| | | | - Javier Guardia
- Department of Pharmacological Interactions in Dentistry, Dental School, University of Granada, Spain
| | - Rafael Delgado-Ruiz
- Department of Implant Dentistry, School of Medicine and Dentistry, University of Murcia, Spain
| | | | | | - Gerardo Gómez-Moreno
- Department of Pharmacological Interactions in Dentistry, Dental School, University of Granada, Spain
| |
Collapse
|
40
|
Blasiak J, Kasznicki J, Drzewoski J, Pawlowska E, Szczepanska J, Reiter RJ. Perspectives on the use of melatonin to reduce cytotoxic and genotoxic effects of methacrylate-based dental materials. J Pineal Res 2011; 51:157-62. [PMID: 21470304 DOI: 10.1111/j.1600-079x.2011.00877.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melatonin (5-methoxy-N-acetyltryptamine), an indoleamine produced in the pineal gland and many other organs, displays a wide spectrum of protective effects against cell injury of various origins. Contemporary dental restorative materials mainly consist of methacrylate polymers with some additives. However, because of the incompleteness of polymerization process in situ as well as mechanical shearing and enzymatic degradation, methacrylate monomers are released from the restoration into the oral cavity and the pulp, from where they gain access to other tissues and organs. Such monomers have displayed toxic properties in many in vivo and in vitro studies, including cytotoxicity and genotoxicity and a considerable portion of these effects is underlined by the oxidative action of these compounds. As melatonin shows biocompatibility with the oral cavity and displays antioxidative properties, it may be considered as a protective agent against harmful effects of methacrylate monomers derived from dental restorations. Melatonin decreases cytotoxic and genotoxic effects of methacrylate monomers used in dentistry, and it does not influence the bond strength of dental composites. This opens a new possible application of melatonin to improve properties of biomaterials used in dentistry.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland.
| | | | | | | | | | | |
Collapse
|