1
|
Tao S, Yang Y, Fan Y, Chu K, Sun J, Wu Q, Wang A, Wan J, Tian H. Melatonin protects against nonylphenol caused pancreatic β-cells damage through MDM2-P53-P21 axis. Toxicol Res (Camb) 2022; 11:391-401. [PMID: 35782637 PMCID: PMC9244227 DOI: 10.1093/toxres/tfac016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/07/2022] [Accepted: 03/11/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
Nonylphenol (NP) is an endocrine disrupting chemical, which widely exists in environment and can result in multiple system dysfunction. Pancreas as one of the most important organs is sensitive to NP, while the detail toxic effect is still less studied. Previously, we unveiled nonylphenol causes pancreatic damage in rats, herein, we further explore the potential mechanism and seek protection strategy in vitro. Insulinoma (INS-1) cells exposed to NP were observed to suffer oxidative stress and mitochondrial dysfunction, as reflected by the abnormal levels of reactive oxygen species, malonic dialdehyde, superoxide dismutase, Ca2+, and mitochondrial membrane potential. Melatonin (MT) was found to alleviate NP-induced mitochondrial dysfunction and oxidative stress, further inhibit apoptosis and restore pancreas function. Mechanically, MT induced the MDM2-P53-P21 signaling, which upregulated the Nrf2 signaling pathway. In summary, our study clarified NP-induced INS-1 cells mitochondrial dysfunction and oxidative stress, which could be ameliorated by MT through MDM2-P53-P21 axis.
Collapse
Affiliation(s)
- Shasha Tao
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
- Department of Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Youjing Yang
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Yayun Fan
- Yancheng First People’s Hospital, Yancheng, P. R. China
| | - Kaimiao Chu
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jiaojiao Sun
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Qianqian Wu
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Aiqing Wang
- Department of Experimental Center, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Jianmei Wan
- Department of Experimental Center, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| | - Hailin Tian
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
- Department of Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, China
| |
Collapse
|
2
|
Zibolka J, Bähr I, Peschke E, Mühlbauer E, Bazwinsky-Wutschke I. Human and Rodent Cell Lines as Models of Functional Melatonin-Responsive Pancreatic Islet Cells. Methods Mol Biol 2022; 2550:329-352. [PMID: 36180704 DOI: 10.1007/978-1-0716-2593-4_35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cell culture of different pancreatic islet cell lines, like the murine α-cell line αTC1.9, the rat β-cell lines INS-1 and INS-1 832/13, and the human δ-cell line QGP-1, can serve as valuable cell models for the analysis of melatonin-dependent modulation of hormone secretion. The paper summarizes in detail the requirements of culture for each cell line and includes batch protocols to stimulate hormone secretion and to treat cells with several melatonin concentrations as previously published. We here describe the processing of collected cell pellets or cell culture supernatants as well as different methods to analyze cell experiments after melatonin treatment on the basis of our own experience. Finally, we outlined for each cell line under which conditions the melatonin treatment should be performed to gain reproducible results.
Collapse
Affiliation(s)
- Juliane Zibolka
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Elmar Peschke
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Eckhard Mühlbauer
- Saxon Academy of Sciences and Humanities in Leipzig, Leipzig, Germany
| | - Ivonne Bazwinsky-Wutschke
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
3
|
Mechanisms of Melatonin in Obesity: A Review. Int J Mol Sci 2021; 23:ijms23010218. [PMID: 35008644 PMCID: PMC8745381 DOI: 10.3390/ijms23010218] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Obesity and its complications have become a prominent global public health problem that severely threatens human health. Melatonin, originally known as an effective antioxidant, is an endogenous hormone found throughout the body that serves various physiological functions. In recent decades, increasing attention has been paid to its unique function in regulating energy metabolism, especially in glucose and lipid metabolism. Accumulating evidence has established the relationship between melatonin and obesity; nevertheless, not all preclinical and clinical evidence indicates the anti-obesity effect of melatonin, which makes it remain to conclude the clinical effect of melatonin in the fight against obesity. In this review, we have summarized the current knowledge of melatonin in regulating obesity-related symptoms, with emphasis on its underlying mechanisms. The role of melatonin in regulating the lipid profile, adipose tissue, oxidative stress, and inflammation, as well as the interactions of melatonin with the circadian rhythm, gut microbiota, sleep disorder, as well as the α7nAChR, the opioidergic system, and exosomes, make melatonin a promising agent to open new avenues in the intervention of obesity.
Collapse
|
4
|
Oladele CA, Akintayo CO, Badejogbin OC, Oniyide AA, Omoaghe AO, Agunbiade TB, Olaniyi KS. Melatonin ameliorates endocrine dysfunction and defective sperm integrity associated with high-fat diet-induced obesity in male Wistar rats. Andrologia 2021; 54:e14242. [PMID: 34490912 DOI: 10.1111/and.14242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/31/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity (OBS) has been established as a link to male hypogonadism with consequent infertility. Previous studies have shown that melatonin (MEL) modulates hypothalamic-pituitary-gonadal function. The present study therefore investigated the hypothesis that MEL supplementation would attenuate spermatogenic and steroidogenic dysfunctions associated with obesity induced by high-fat diet (HFD). Twenty-four adult male Wistar rats (n = 6/group) were used: control group received vehicle (normal saline), obese group received 40% high-fat diet and distilled water, MEL-treated group received MEL (4 mg/kg), and OBS + MEL group received MEL and 40% HFD and the treatment lasted for 12 weeks. HFD caused increased body weight, glucose intolerance, plasma triglyceride and low-density lipoprotein cholesterol/ very low-density lipoprotein cholesterol and malondialdehyde, as well as decreased antioxidant capacity, high-density lipoprotein cholesterol, gonadotrophin-releasing hormone, follicle-stimulating hormone and testosterone and altered sperm parameters. However, all these alterations were attenuated when supplemented with MEL. Taken together, these results indicate that HFD exposure causes endocrine dysfunction and disrupted sperm parameters in obese animals, which are accompanied by lipid peroxidation/defective antioxidant capacity. In addition, the present results suggest that melatonin supplementation restores endocrine function and sperm integrity in obese rat model by suppression of oxidative stress-dependent mechanism.
Collapse
Affiliation(s)
- Comfort Abisola Oladele
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | | | | | - Adesola Adedotun Oniyide
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Adams Olalekan Omoaghe
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Toluwani Bosede Agunbiade
- Department of Medical Microbiology and Parasitology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Kehinde Samuel Olaniyi
- Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Nigeria
| |
Collapse
|
5
|
Radhakrishna U, Vishweswaraiah S, Uppala LV, Szymanska M, Macknis J, Kumar S, Saleem-Rasheed F, Aydas B, Forray A, Muvvala SB, Mishra NK, Guda C, Carey DJ, Metpally RP, Crist RC, Berrettini WH, Bahado-Singh RO. Placental DNA methylation profiles in opioid-exposed pregnancies and associations with the neonatal opioid withdrawal syndrome. Genomics 2021; 113:1127-1135. [PMID: 33711455 DOI: 10.1016/j.ygeno.2021.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/29/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022]
Abstract
Opioid abuse during pregnancy can result in Neonatal Opioid Withdrawal Syndrome (NOWS). We investigated genome-wide methylation analyses of 96 placental tissue samples, including 32 prenatally opioid-exposed infants with NOWS who needed therapy (+Opioids/+NOWS), 32 prenatally opioid-exposed infants with NOWS who did not require treatment (+Opioids/-NOWS), and 32 prenatally unexposed controls (-Opioids/-NOWS, control). Statistics, bioinformatics, Artificial Intelligence (AI), including Deep Learning (DL), and Ingenuity Pathway Analyses (IPA) were performed. We identified 17 dysregulated pathways thought to be important in the pathophysiology of NOWS and reported accurate AI prediction of NOWS diagnoses. The DL had an AUC (95% CI) =0.98 (0.95-1.0) with a sensitivity and specificity of 100% for distinguishing NOWS from the +Opioids/-NOWS group and AUCs (95% CI) =1.00 (1.0-1.0) with a sensitivity and specificity of 100% for distinguishing NOWS versus control and + Opioids/-NOWS group versus controls. This study provides strong evidence of methylation dysregulation of placental tissue in NOWS development.
Collapse
Affiliation(s)
- Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA.
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Lavanya V Uppala
- College of Information Science & Technology, University of Nebraska at Omaha, Peter Kiewit Institute, Omaha, NE, USA
| | - Marta Szymanska
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | | | - Sandeep Kumar
- Department of Pathology, Beaumont Health System, Royal Oak, MI, USA
| | - Fozia Saleem-Rasheed
- Department of Newborn Medicine, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Buket Aydas
- Department of Healthcare Analytics, Meridian Health Plans, Detroit, MI, USA
| | - Ariadna Forray
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | | | - Nitish K Mishra
- Department of Genetics, Cell Biology & Anatomy College of Medicine, University of Nebraska Medical Center Omaha, NE, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology & Anatomy College of Medicine, University of Nebraska Medical Center Omaha, NE, USA
| | - David J Carey
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Raghu P Metpally
- Department of Molecular and Functional Genomics, Geisinger, Danville, PA, USA
| | - Richard C Crist
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Wade H Berrettini
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Geisinger Clinic, Danville, PA, USA
| | - Ray O Bahado-Singh
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| |
Collapse
|
6
|
Bishehsari F, Voigt RM, Keshavarzian A. Circadian rhythms and the gut microbiota: from the metabolic syndrome to cancer. Nat Rev Endocrinol 2020; 16:731-739. [PMID: 33106657 PMCID: PMC8085809 DOI: 10.1038/s41574-020-00427-4] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 12/13/2022]
Abstract
The metabolic syndrome is prevalent in developed nations and accounts for the largest burden of non-communicable diseases worldwide. The metabolic syndrome has direct effects on health and increases the risk of developing cancer. Lifestyle factors that are known to promote the metabolic syndrome generally cause pro-inflammatory alterations in microbiota communities in the intestine. Indeed, alterations to the structure and function of intestinal microbiota are sufficient to promote the metabolic syndrome, inflammation and cancer. Among the lifestyle factors that are associated with the metabolic syndrome, disruption of the circadian system, known as circadian dysrhythmia, is increasingly common. Disruption of the circadian system can alter microbiome communities and can perturb host metabolism, energy homeostasis and inflammatory pathways, which leads to the metabolic syndrome. This Perspective discusses the role of intestinal microbiota and microbial metabolites in mediating the effects of disruption of circadian rhythms on human health.
Collapse
Affiliation(s)
- Faraz Bishehsari
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Robin M Voigt
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA
| | - Ali Keshavarzian
- Department of Internal Medicine, Division of Gastroenterology, Rush University Medical Center, Chicago, IL, USA.
- Department of Physiology, Rush University Medical Center, Chicago, IL, USA.
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
7
|
Wang X, Meng K, He Y, Wang H, Zhang Y, Quan F. Melatonin Stimulates STAR Expression and Progesterone Production via Activation of the PI3K/AKT Pathway in Bovine Theca Cells. Int J Biol Sci 2019; 15:404-415. [PMID: 30745830 PMCID: PMC6367557 DOI: 10.7150/ijbs.27912] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 12/03/2018] [Indexed: 02/06/2023] Open
Abstract
Melatonin is present in mammalian follicular fluid and plays an important role in regulating steroidogenesis in follicular cells. In this study, we report the effect of melatonin on steroidogenesis in the theca interna (TI) in small bovine follicles and theca cells (TCs) cultured in vitro. Treatment with melatonin significantly increased the expression of steroidogenic acute regulatory protein (STAR) and the production of progesterone in both TI and in TCs. Melatonin stimulated the phosphorylation of AKT but not ERK1/2, and the addition of luzindole (a nonspecific MT1 and MT2 inhibitor) or 4P-PDOT (specific MT2 inhibitor) reduced melatonin-induced STAR expression, progesterone secretion, and PI3K/AKT pathway activation. The effect of melatonin on the TI in follicles was more obvious than on the TCs in vitro. Results indicate that melatonin stimulates the steroidogenesis of TCs mainly via the activation of the PI3K/AKT pathway by MT1 and MT2.
Collapse
Affiliation(s)
- Xiaomei Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Kai Meng
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan He
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Hengqin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Animal Bio-Technology, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
8
|
Roohbakhsh A, Shamsizadeh A, Hayes A, Reiter RJ, Karimi G. Melatonin as an endogenous regulator of diseases: The role of autophagy. Pharmacol Res 2018; 133:265-276. [DOI: 10.1016/j.phrs.2018.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/17/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
|
9
|
Sung JY, Bae JH, Lee JH, Kim YN, Kim DK. The Melatonin Signaling Pathway in a Long-Term Memory In Vitro Study. Molecules 2018; 23:molecules23040737. [PMID: 29570621 PMCID: PMC6017053 DOI: 10.3390/molecules23040737] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/15/2018] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
The activation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) via phosphorylation in the hippocampus is an important signaling mechanism for enhancing memory processing. Although melatonin is known to increase CREB expression in various animal models, the signaling mechanism between melatonin and CREB has been unknown in vitro. Thus, we confirmed the signaling pathway between the melatonin receptor 1 (MT1) and CREB using melatonin in HT-22 cells. Melatonin increased MT1 and gradually induced signals associated with long-term memory processing through phosphorylation of Raf, ERK, p90RSK, CREB, and BDNF expression. We also confirmed that the calcium, JNK, and AKT pathways were not involved in this signaling pathway by melatonin in HT-22 cells. Furthermore, we investigated whether melatonin regulated the expressions of CREB-BDNF associated with long-term memory processing in aged HT-22 cells. In conclusion, melatonin mediated the MT1-ERK-p90RSK-CREB-BDNF signaling pathway in the in vitro long-term memory processing model and increased the levels of p-CREB and BDNF expression in melatonin-treated cells compared to untreated HT-22 cells in the cellular aged state. Therefore, this paper suggests that melatonin induces CREB signaling pathways associated with long-term memory processing in vitro.
Collapse
Affiliation(s)
- Jin-Young Sung
- Department of Medical Genetics, Hanvit Institutute for Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Ji-Hyun Bae
- Department of Medical Genetics, Hanvit Institutute for Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Jong-Ha Lee
- Department of Biomedical Engineering, School of Medicine, Keimyung University, Daegu 42601, Korea.
| | - Yoon-Nyun Kim
- Dongsan Medical Center, Department of Internal Medicine, Keimyung University, Daegu 42931, Korea.
| | - Dae-Kwang Kim
- Department of Medical Genetics, Hanvit Institutute for Medical Genetics, School of Medicine, Keimyung University, Daegu 42601, Korea.
| |
Collapse
|
10
|
Li Y, Wu H, Liu N, Cao X, Yang Z, Lu B, Hu R, Wang X, Wen J. Melatonin exerts an inhibitory effect on insulin gene transcription via MTNR1B and the downstream Raf‑1/ERK signaling pathway. Int J Mol Med 2017; 41:955-961. [PMID: 29207116 DOI: 10.3892/ijmm.2017.3305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/03/2017] [Indexed: 11/06/2022] Open
Abstract
The pineal hormone melatonin influences the secretion of insulin by pancreatic islets via the G‑protein‑coupled melatonin receptors 1 and 2 that are expressed in pancreatic β‑cells. Genome‑wide association studies indicate that melatonin receptor 1B (MTNR1B) single nucleotide polymorphisms are tightly associated with type 2 diabetes mellitus (T2DM). However, the underlying mechanism is unclear. Raf‑1 serves a critical role in the mitogen‑activated protein kinase (MAPK) pathways in β‑cell survival and proliferation and, therefore, may be involved in the mechanism by which melatonin impacts on T2DM through MTNR1B. In the present study, the mRNA expression of the two mouse insulin genes Ins1 and Ins2 was investigated in MIN6 cells treated with different concentrations of melatonin, and insulin secretion was detected under the same conditions. Following the overexpression or silencing of MTNR1B, the activities of components of the MAPK signaling pathway, including Raf‑1 and ERK, were evaluated. The impact of MTNR1B knockdown on the melatonin‑regulated insulin gene expression and insulin secretion were also investigated. The results demonstrated that exogenous melatonin inhibited the expression of insulin mRNA in the MIN6 cells. Insulin secretion by the MIN6 cells, however, was not affected by melatonin. The MAPK signaling pathway was inhibited in MIN6 cells by treatment with melatonin or the overexpression of MTNR1B. The knockdown of MTNR1B totally attenuated the regulating effect of melatonin on insulin gene expression. Additionally, the inductive effect of melatonin on the expression of insulin mRNA was attenuated when the activities of Raf‑1 or ERK were blocked using the chemical inhibitors GW5074 and U0126, respectively. It may be concluded that melatonin exerts an inhibitory effect on insulin transcription via MTNR1B and the downstream MAPK signaling pathway.
Collapse
Affiliation(s)
- Yanliang Li
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Huihui Wu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Naijia Liu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xinyi Cao
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Zhen Yang
- Department of Endocrinology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, P.R. China
| | - Bin Lu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Renming Hu
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Xuanchun Wang
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Jie Wen
- Department of Endocrinology and Metabolism, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
11
|
Forrestel AC, Miedlich SU, Yurcheshen M, Wittlin SD, Sellix MT. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia 2017; 60:808-822. [PMID: 27981356 DOI: 10.1007/s00125-016-4175-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/18/2016] [Indexed: 12/19/2022]
Abstract
In mammals, the circadian timing system drives rhythms of physiology and behaviour, including the daily rhythms of feeding and activity. The timing system coordinates temporal variation in the biochemical landscape with changes in nutrient intake in order to optimise energy balance and maintain metabolic homeostasis. Circadian disruption (e.g. as a result of shift work or jet lag) can disturb this continuity and increase the risk of cardiometabolic disease. Obesity and metabolic disease can also disturb the timing and amplitude of the clock in multiple organ systems, further exacerbating disease progression. As our understanding of the synergy between the timing system and metabolism has grown, an interest has emerged in the development of novel clock-targeting pharmaceuticals or nutraceuticals for the treatment of metabolic dysfunction. Recently, the pineal hormone melatonin has received some attention as a potential chronotherapeutic drug for metabolic disease. Melatonin is well known for its sleep-promoting effects and putative activity as a chronobiotic drug, stimulating coordination of biochemical oscillations through targeting the internal timing system. Melatonin affects the insulin secretory activity of the pancreatic beta cell, hepatic glucose metabolism and insulin sensitivity. Individuals with type 2 diabetes mellitus have lower night-time serum melatonin levels and increased risk of comorbid sleep disturbances compared with healthy individuals. Further, reduced melatonin levels, and mutations and/or genetic polymorphisms of the melatonin receptors are associated with an increased risk of developing type 2 diabetes. Herein we review our understanding of molecular clock control of glucose homeostasis, detail the influence of circadian disruption on glucose metabolism in critical peripheral tissues, explore the contribution of melatonin signalling to the aetiology of type 2 diabetes, and discuss the pros and cons of melatonin chronopharmacotherapy in disease management.
Collapse
Affiliation(s)
- Andrew C Forrestel
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, NY, 14642, USA
| | - Susanne U Miedlich
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, NY, 14642, USA
| | - Michael Yurcheshen
- UR Medicine Sleep Center, Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Steven D Wittlin
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, NY, 14642, USA
| | - Michael T Sellix
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Box 693, Rochester, NY, 14642, USA.
| |
Collapse
|
12
|
Simões D, Riva P, Peliciari-Garcia RA, Cruzat VF, Graciano MF, Munhoz AC, Taneda M, Cipolla-Neto J, Carpinelli AR. Melatonin modifies basal and stimulated insulin secretion via NADPH oxidase. J Endocrinol 2016; 231:235-244. [PMID: 27803236 DOI: 10.1530/joe-16-0259] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 10/04/2016] [Indexed: 01/10/2023]
Abstract
Melatonin is a hormone synthesized in the pineal gland, which modulates several functions within the organism, including the synchronization of glucose metabolism and glucose-stimulated insulin secretion (GSIS). Melatonin can mediate different signaling pathways in pancreatic islets through two membrane receptors and via antioxidant or pro-oxidant enzymes modulation. NADPH oxidase (NOX) is a pro-oxidant enzyme responsible for the production of the reactive oxygen specie (ROS) superoxide, generated from molecular oxygen. In pancreatic islets, NOX-derived ROS can modulate glucose metabolism and regulate insulin secretion. Considering the roles of both melatonin and NOX in islets, the aim of this study was to evaluate the association of NOX and ROS production on glucose metabolism, basal and GSIS in pinealectomized rats (PINX) and in melatonin-treated isolated pancreatic islets. Our results showed that ROS content derived from NOX activity was increased in PINX at baseline (2.8 mM glucose), which was followed by a reduction in glucose metabolism and basal insulin secretion in this group. Under 16.7 mM glucose, an increase in both glucose metabolism and GSIS was observed in PINX islets, without changes in ROS content. In isolated pancreatic islets from control animals incubated with 2.8 mM glucose, melatonin treatment reduced ROS content, whereas in 16.7 mM glucose, melatonin reduced ROS and GSIS. In conclusion, our results demonstrate that both basal and stimulated insulin secretion can be regulated by melatonin through the maintenance of ROS homeostasis in pancreatic islets.
Collapse
Affiliation(s)
- Daniel Simões
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences-I, University of São Paulo, São Paulo, Brazil
| | - Patrícia Riva
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences-I, University of São Paulo, São Paulo, Brazil
| | - Rodrigo Antonio Peliciari-Garcia
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences-I, University of São Paulo, São Paulo, Brazil
- Department of Biological SciencesLaboratory of Biosystems, Federal University of São Paulo, Diadema, São Paulo, Brazil
| | - Vinicius Fernandes Cruzat
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences-I, University of São Paulo, São Paulo, Brazil
| | - Maria Fernanda Graciano
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences-I, University of São Paulo, São Paulo, Brazil
| | - Ana Claudia Munhoz
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences-I, University of São Paulo, São Paulo, Brazil
| | - Marco Taneda
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences-I, University of São Paulo, São Paulo, Brazil
| | - José Cipolla-Neto
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences-I, University of São Paulo, São Paulo, Brazil
| | - Angelo Rafael Carpinelli
- Department of Physiology and BiophysicsInstitute of Biomedical Sciences-I, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Melatonin-Mediated Intracellular Insulin during 2-Deoxy-d-glucose Treatment Is Reduced through Autophagy and EDC3 Protein in Insulinoma INS-1E Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2594703. [PMID: 27493704 PMCID: PMC4967467 DOI: 10.1155/2016/2594703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022]
Abstract
2-DG triggers glucose deprivation without altering other nutrients or metabolic pathways and then activates autophagy via activation of AMPK and endoplasmic reticulum (ER) stress. We investigated whether 2-DG reduced intracellular insulin increased by melatonin via autophagy/EDC3 in insulinoma INS-1E cells. p-AMPK and GRP78/BiP level were significantly increased by 2-DG in the presence/absence of melatonin, but IRE1α level was reduced in 2-DG treatment. Levels of p85α, p110, p-Akt (Ser473, Thr308), and p-mTOR (Ser2481) were also significantly reduced by 2-DG in the presence/absence of melatonin. Mn-SOD increased with 2-DG plus melatonin compared to groups treated with/without melatonin alone. Bcl-2 was decreased and Bax increased with 2-DG plus melatonin. LC3II level increased with 2-DG treatment in the presence/absence of melatonin. Intracellular insulin production increased in melatonin plus 2-DG but reduced in treatment with 2-DG with/without melatonin. EDC3 was increased by 2-DG in the presence/absence of melatonin. Rapamycin, an mTOR inhibitor, increased GRP78/BiP and EDC3 levels in a dose-dependent manner and subsequently resulted in a decrease in intracellular production of insulin. These results suggest that melatonin-mediated insulin synthesis during 2-DG treatment involves autophagy and EDC3 protein in rat insulinoma INS-1E cells and subsequently results in a decrease in intracellular production of insulin.
Collapse
|
14
|
Salivary Melatonin in Relation to Depressive Symptom Severity in Young Adults. PLoS One 2016; 11:e0152814. [PMID: 27042858 PMCID: PMC4820122 DOI: 10.1371/journal.pone.0152814] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 03/19/2016] [Indexed: 12/24/2022] Open
Abstract
Reduced levels of melatonin have been associated with severe depression. The aim was to investigate the correlation between salivary melatonin and dimensional measures of depressive symptom severity in young adult psychiatric patients. Levels of melatonin were analyzed in six saliva samples during waking hours from 119 young adult patients under outpatient psychiatric care. Melatonin levels were tested for association with the severity of depressive symptoms using the self-rating version of the Montgomery Åsberg Depression Rating Scale (MADRS-S). Where possible, depressive symptoms were assessed again after 6±2 months of treatment. Response was defined as decrease in MADRS-S by ≥50% between baseline and follow-up. Patients with levels of melatonin in the lowest quartile at bedtime had an increased probability of a high MADRS-S score compared to those with the highest levels of melatonin (odds ratio 1.39, 95% CI 1.15-1.69, p<0.01). A post hoc regression analysis found that bedtime melatonin levels predicted response (odds ratio 4.4, 95% CI 1.06-18.43, p<0.05). A negative relationship between salivary melatonin and dimensional measures of depressive symptom severity was found in young patients under outpatient psychiatric care. Bedtime salivary melatonin levels may have prognostic implications.
Collapse
|
15
|
Peschke E, Bähr I, Mühlbauer E. Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res 2015; 59:1-23. [PMID: 25904189 DOI: 10.1111/jpi.12240] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/20/2015] [Indexed: 12/15/2022]
Abstract
The pineal hormone melatonin influences insulin secretion, as well as glucagon and somatostatin secretion, both in vivo and in vitro. These effects are mediated by two specific, high-affinity, seven transmembrane, pertussis toxin-sensitive, Gi-protein-coupled melatonin receptors, MT1 and MT2. Both isoforms are expressed in the β-cells, α-cells as well as δ-cells of the pancreatic islets of Langerhans and are involved in the modulation of insulin secretion, leading to inhibition of the adenylate cyclase-dependent cyclic adenosine monophosphate as well as cyclic guanosine monophosphate formation in pancreatic β-cells by inhibiting the soluble guanylate cyclase, probably via MT2 receptors. In this way, melatonin also likely inhibits insulin secretion, whereas using the inositol triphosphate pathway after previous blocking of Gi-proteins by pertussis toxin, melatonin increases insulin secretion. Desynchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genomewide association studies pinpointing variances of the MT2 receptor as a risk factor for this rapidly spreading metabolic disturbance. As melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. Observations of the circadian expression of clock genes (Clock, Bmal1, Per1,2,3, and Cry1,2) in pancreatic islets, as well as in INS1 rat insulinoma cells, may indicate that circadian rhythms are generated in the β-cells themselves. The circadian secretion of insulin from pancreatic islets is clock-driven. Disruption of circadian rhythms and clock function leads to metabolic disturbances, for example, type 2 diabetes. The study of melatonin-insulin interactions in diabetic rat models has revealed an inverse relationship between these two hormones. Both type 2 diabetic rats and patients exhibit decreased melatonin levels and slightly increased insulin levels, whereas type 1 diabetic rats show extremely reduced levels or the absence of insulin, but statistically significant increases in melatonin levels. Briefly, an increase in melatonin levels leads to a decrease in stimulated insulin secretion and vice versa. Melatonin levels in blood plasma, as well as the activity of the key enzyme of melatonin synthesis, AA-NAT (arylalkylamine-N-acetyltransferase) in pineal, are lower in type 2 diabetic rats compared to controls. In contrast, melatonin and pineal AA-NAT mRNA are increased and insulin receptor mRNA is decreased in type 1 diabetic rats, which also indicates a close relationship between insulin and melatonin. As an explanation, it was hypothesized that catecholamines, which reduce insulin levels and stimulate melatonin synthesis, control insulin-melatonin interactions. This conviction stems from the observation that catecholamines are increased in type 1 but are diminished in type 2 diabetes. In this context, another important line of inquiry involves the fact that melatonin protects β-cells against functional overcharge and, consequently, hinders the development of type 2 diabetes.
Collapse
Affiliation(s)
| | - Ina Bähr
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
16
|
Söderquist F, Hellström PM, Cunningham JL. Human gastroenteropancreatic expression of melatonin and its receptors MT1 and MT2. PLoS One 2015; 10:e0120195. [PMID: 25822611 PMCID: PMC4378860 DOI: 10.1371/journal.pone.0120195] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/05/2015] [Indexed: 12/29/2022] Open
Abstract
Background and Aim The largest source of melatonin, according to animal studies, is the gastrointestinal (GI) tract but this is not yet thoroughly characterized in humans. This study aims to map the expression of melatonin and its two receptors in human GI tract and pancreas using microarray analysis and immunohistochemistry. Method Gene expression data from normal intestine and pancreas and inflamed colon tissue due to ulcerative colitis were analyzed for expression of enzymes relevant for serotonin and melatonin production and their receptors. Sections from paraffin-embedded normal tissue from 42 individuals, representing the different parts of the GI tract (n=39) and pancreas (n=3) were studied with immunohistochemistry using antibodies with specificity for melatonin, MT1 and MT2 receptors and serotonin. Results Enzymes needed for production of melatonin are expressed in both GI tract and pancreas tissue. Strong melatonin immunoreactivity (IR) was seen in enterochromaffin (EC) cells partially co-localized with serotonin IR. Melatonin IR was also seen in pancreas islets. MT1 and MT2 IR were both found in the intestinal epithelium, in the submucosal and myenteric plexus, and in vessels in the GI tract as well as in pancreatic islets. MT1 and MT2 IR was strongest in the epithelium of the large intestine. In the other cell types, both MT2 gene expression and IR were generally elevated compared to MT1. Strong MT2, IR was noted in EC cells but not MT1 IR. Changes in gene expression that may result in reduced levels of melatonin were seen in relation to inflammation. Conclusion Widespread gastroenteropancreatic expression of melatonin and its receptors in the GI tract and pancreas is in agreement with the multiple roles ascribed to melatonin, which include regulation of gastrointestinal motility, epithelial permeability as well as enteropancreatic cross-talk with plausible impact on metabolic control.
Collapse
MESH Headings
- Adult
- Case-Control Studies
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/pathology
- Enterochromaffin Cells/metabolism
- Gastrointestinal Tract/anatomy & histology
- Gastrointestinal Tract/metabolism
- Gene Expression
- Humans
- Immunohistochemistry
- Melatonin/metabolism
- Pancreas/anatomy & histology
- Pancreas/metabolism
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Serotonin/metabolism
- Tissue Distribution
Collapse
Affiliation(s)
- Fanny Söderquist
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Per M. Hellström
- Department of Medical Sciences, Gastroenterology/Hepatology, Uppsala University, Uppsala, Sweden
| | - Janet L. Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
17
|
Santofimia-Castaño P, Garcia-Sanchez L, Ruy DC, Sanchez-Correa B, Fernandez-Bermejo M, Tarazona R, Salido GM, Gonzalez A. Melatonin induces calcium mobilization and influences cell proliferation independently of MT1/MT2 receptor activation in rat pancreatic stellate cells. Cell Biol Toxicol 2015; 31:95-110. [PMID: 25764371 DOI: 10.1007/s10565-015-9297-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
|
18
|
Pharmacological dose of melatonin reduces cytosolic calcium load in response to cholecystokinin in mouse pancreatic acinar cells. Mol Cell Biochem 2014; 397:75-86. [PMID: 25084987 DOI: 10.1007/s11010-014-2174-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/24/2014] [Indexed: 12/14/2022]
Abstract
Intracellular Ca(2+) overload has been considered a common pathological precursor of pancreatic injury. In this study, the effects of melatonin on Ca(2+) mobilization induced by cholecystokinin octapeptide (CCK-8) in freshly isolated mouse pancreatic acinar cells have been examined. Changes in intracellular free Ca(2+) concentration were followed by single cell fluorimetry. For this purpose, cells were loaded with the Ca(2+)-sensitive fluorescent dye fura-2-acetoxymethyl ester. In order to evaluate the contribution of Ca(2+) transport at the plasma membrane, at the endoplasmic reticulum (ER) or at the mitochondria, cells were incubated with CCK-8 alone or in combination with LaCl3, thapsigargin (Tps), or FCCP to, respectively, uncouple Ca(2+) transport at these localizations. The experiments were performed in the absence or in the presence of melatonin in combination with the stimuli mentioned. Our results show that the total Ca(2+) mobilization evoked by CCK-8 was attenuated by a 30% in the presence of 100 µM melatonin compared with the responses induced by CCK-8 alone. Upon inhibition of Ca(2+) transport into the ER by Tps, Ca(2+) mobilization was also reduced in the presence of melatonin. In the presence of LaCl3 plus melatonin, the total Ca(2+) mobilization induced by CCK-8 was significantly decreased, compared with the response obtained without melatonin but in the presence of LaCl3. No major differences were found when the cells were incubated with CCK-8 or Tps alone or in combination with LaCl3 plus melatonin and FCCP, compared with the responses obtained in the absence of FCCP. The initial Ca(2+) release from intracellular stores evoked by CCK-8 or Tps was not significantly reduced in the presence of melatonin. The effect of melatonin could be explained on the basis of a stimulated Ca(2+) transport out of the cell through the plasma membrane and by a stimulation of Ca(2+) reuptake into the ER. Accumulation of Ca(2+) into mitochondria might not be a major mechanism stimulated by melatonin. We conclude that melatonin alleviates intracellular Ca(2+) accumulation, a situation potentially leading to cell damage in the exocrine pancreas.
Collapse
|
19
|
Nishiyama K, Hirai K. The melatonin agonist ramelteon induces duration-dependent clock gene expression through cAMP signaling in pancreatic INS-1 β-cells. PLoS One 2014; 9:e102073. [PMID: 25013953 PMCID: PMC4094524 DOI: 10.1371/journal.pone.0102073] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
Prolonged exposure to melatonin improves glycemic control in animals. Although glucose metabolism is controlled by circadian clock genes, little is known about the role of melatonin signaling and its duration in the regulation of clock gene expression in pancreatic β-cells. Activation of MT1 and MT2 melatonin receptors inhibits cAMP signaling, which mediates clock gene expression. Therefore, this study investigated exposure duration-dependent alterations in cAMP element-binding protein (CREB) phosphorylation and clock gene expression that occur during and after exposure to ramelteon, a selective melatonin agonist used to treat insomnia. In rat INS-1 cells, a pancreatic β-cell line endogenously expressing melatonin receptors, ramelteon persistently decreased CREB phosphorylation during the treatment period (2-14 h), whereas the subsequent washout induced an enhancement of forskolin-stimulated CREB phosphorylation in a duration- and concentration-dependent manner. This augmentation was blocked by forskolin or the melatonin receptor antagonist luzindole. Similarly, gene expression analyses of 7 clock genes revealed the duration dependency of the effects of ramelteon on Rev-erbα and Bmal1 expression through melatonin receptor-mediated cAMP signaling; longer exposure times (14 h) resulted in greater increases in the expression and signaling of Rev-erbα, which is related to β-cell functions. Interestingly, this led to amplified oscillatory Rev-erbα and Bmal1 expression after agonist washout and forskolin stimulation. These results provide new insights into the duration-dependent effects of ramelteon on clock gene expression in INS-1 cells and may improve the understanding of its effect in vivo. The applicability of these results to pancreatic islets awaits further investigation.
Collapse
Affiliation(s)
- Keiji Nishiyama
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| | - Keisuke Hirai
- CNS Drug Discovery Unit, Pharmaceutical Research Division, Takeda Pharmaceutical Company Ltd., Fujisawa, Kanagawa, Japan
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Accumulating evidence supports a role for the circadian clock in the development of metabolic disease. We discuss the influence of the circadian clock on glucose homeostasis, intermediary factors in this relationship, and potential therapies for the prevention or attenuation of metabolic disease associated with circadian misalignment. RECENT FINDINGS Murine studies with tissue-specific deletion of core clock genes in key metabolic tissues confirm a mechanistic relationship between the circadian clock and the development of metabolic disease. Circadian misalignment increases insulin resistance and decreases pancreatic function. Clock gene polymorphisms or altered expression of clock genes induced by circadian misalignment appear to play a role in the development of obesity and diabetes in humans. Circadian disruption caused by exposure to light at night is associated with lower nocturnal melatonin, which in turn seems to affect glucose metabolism. Potential therapies for circadian misalignment include entraining the central pacemaker with timed light exposure and/or melatonin and restricting food intake to the biological day. SUMMARY Completing the understanding of how genetic and environmental factors influence the circadian clock and the effect these have on human circadian metabolic physiology and disease will allow us to develop therapies for treating and preventing associated metabolic disease.
Collapse
Affiliation(s)
- Eberta Tan
- aDepartment of Diabetes and Endocrinology, Manny Cussins Centre, St James University Hospital, Beckett Wing bDivision of Cardiovascular and Diabetes Research, The Leeds Institute of Genetics Health and Therapeutics, Clarendon Way, University of Leeds, Leeds, UK
| | | |
Collapse
|
21
|
Bazwinsky-Wutschke I, Mühlbauer E, Albrecht E, Peschke E. Calcium-signaling components in rat insulinoma β-cells (INS-1) and pancreatic islets are differentially influenced by melatonin. J Pineal Res 2014; 56:439-49. [PMID: 24650091 DOI: 10.1111/jpi.12135] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/14/2014] [Indexed: 11/28/2022]
Abstract
The pineal secretory product melatonin exerts its influence on the insulin secretion of pancreatic islets by different signaling pathways. The purpose of this study was to analyze the impact of melatonin on calcium-signaling components under different conditions. In a transfected INS-1 cell line overexpressing the human MT2 receptor (hMT2-INS-1), melatonin treatment induced even stronger depressive effects on calcium/calmodulin-dependent kinase 2d and IV (Camk2d, CamkIV) transcripts during 3-isobutyl-1-methylxanthine (IBMX) treatment than in normal INS-1 cells, indicating a crucial influence of melatonin receptor density on transcript-level regulation. In addition, melatonin induced a significant downregulation of calmodulin (Calm1) in IBMX-treated hMT2-INS-1 cells. Long-term administration of melatonin alone reduced CamkIV transcript levels in INS-1 cells; however, transcript levels of Camk2d remained unchanged. The release of insulin was diminished under long-term melatonin treatment. The impact of melatonin also involved reductions in CAMK2D protein during IBMX or forskolin treatments in INS-1 cells, as measured by an enzyme-linked immunosorbent assay, indicating a functional significance of transcriptional changes in pancreatic islets. Furthermore, analysis of melatonin receptor knockout mice showed that the transcript levels of Camk2d, CamkIV, and Calm1 were differentially influenced according to the melatonin receptor subtype deleted. In conclusion, this study provides evidence that melatonin has different impacts on the regulation of Calm1 and Camk. These calcium-signaling components are known as participants in the calcium/calmodulin pathway, which plays an important functional role in the modulation of the β-cell signaling pathways leading to insulin secretion.
Collapse
|
22
|
Bazwinsky-Wutschke I, Bieseke L, Mühlbauer E, Peschke E. Influence of melatonin receptor signalling on parameters involved in blood glucose regulation. J Pineal Res 2014; 56:82-96. [PMID: 24117965 DOI: 10.1111/jpi.12100] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/20/2013] [Indexed: 12/18/2022]
Abstract
The pineal hormone melatonin is known to influence insulin secretion via the G-protein-coupled receptor isoforms MT1 and MT2. The present study was aimed to further elucide the impact of melatonin on blood glucose regulation. To this end, mouse lines were used, in which one of the two or both melatonin receptors were deleted. In comparison with wild-type mice of the same age (8-12 months old), increased plasma insulin and melatonin levels and decreased blood glucose levels and body weights were detected in the MT1- and double-knockout lines. The elimination of melatonin receptor signalling also altered blood glucose concentrations, body weight and melatonin and insulin levels when comparing wild-type and receptor knockout mice of different ages (6 wk and 8-12 months old); such changes, however, were dependent on the type of receptor deleted. Furthermore, reverse transcription polymerase chain reaction results provided evidence that melatonin receptor deficiency has an impact on transcript levels of pancreatic islet hormones as well as on pancreatic and hepatic glucose transporters (Glut1 and 2). Under stimulated insulin secretion in the presence of melatonin in the rat insulinoma β-cells INS-1, the Glut1 transcript level was decreased. In conclusion, the present findings demonstrate that melatonin receptor knockout types affect blood glucose levels, body weight, plasma levels of melatonin and insulin, as well as pancreatic hormone and Glut1 expression in significantly different manners.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Blood Glucose/genetics
- Blood Glucose/metabolism
- Body Weight/genetics
- Cell Line, Tumor
- Female
- Glucagon/analysis
- Glucagon/genetics
- Glucagon/metabolism
- Glucose Transporter Type 1/analysis
- Glucose Transporter Type 1/genetics
- Glucose Transporter Type 1/metabolism
- Insulin/blood
- Male
- Melatonin/blood
- Mice
- Mice, Knockout
- Organ Specificity
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Receptor, Melatonin, MT1/genetics
- Receptor, Melatonin, MT1/metabolism
- Receptor, Melatonin, MT2/genetics
- Receptor, Melatonin, MT2/metabolism
- Somatostatin/analysis
- Somatostatin/genetics
- Somatostatin/metabolism
Collapse
|
23
|
Yoo YM. Melatonin-mediated insulin synthesis during endoplasmic reticulum stress involves HuD expression in rat insulinoma INS-1E cells. J Pineal Res 2013; 55:207-20. [PMID: 23711134 DOI: 10.1111/jpi.12064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 04/26/2013] [Indexed: 01/12/2023]
Abstract
In this study, we investigated how melatonin mediates insulin synthesis through endoplasmic reticulum (ER) via HuD expression in rat insulinoma INS-1E cells. Under ER stress condition (thapsigargin with/without melatonin, tunicamycin with/without melatonin), phosphorylation of AMP-activated protein kinase (p-AMPK) was significantly increased when compared with only with/without melatonin (control/melatonin). Insulin receptor substrate (IRS) two protein was significantly reduced under conditions of ER stress when compared with control/melatonin, but no expression of IRS1 protein was observed. In thapsigargin treatment, melatonin (10, 50 μm) increased IRS2 protein expression in a dose-dependent manner. p-Akt (Ser473) expression significantly decreased under ER stress condition prior to control/melatonin. Melatonin (10, 50 μm) significantly reduced nuclear and cellular p85α expressions in a dose-dependent manner when compared with only thapsigargin or tunicamycin. These results indicate the activation of the aforementioned expressions under regulation of the pathway, AMPK → IRS2 → Akt/PKB → PI3K (p85α). However, mammalian target of rapamycin and raptor protein, mTORC1, was found to be independent of the ER stress response. In thapsigargin treatment, melatonin increased nuclear mammalian RNA-binding protein (HuD) expression and reduced cellular HuD expression and subsequently resulted in a decrease in cellular insulin level and rise in insulin secretion in a dose-dependent manner. In tunicamycin treatment, HuD and insulin proteins showed similar expression tendencies. These results indicate that ER stress/melatonin, especially thapsigargin/melatonin, increased nuclear HuD expression and subsequently resulted in a decrease in intracellular biosynthesis; it is hypothesized that extracellular secretion of insulin may be regulated by melatonin.
Collapse
Affiliation(s)
- Yeong-Min Yoo
- Department of Biomedical Engineering, College of Health Science, Yonsei University, Wonju, Gangwon-do 220-710, Korea.
| |
Collapse
|
24
|
Melatonin and pancreatic islets: interrelationships between melatonin, insulin and glucagon. Int J Mol Sci 2013; 14:6981-7015. [PMID: 23535335 PMCID: PMC3645673 DOI: 10.3390/ijms14046981] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 03/07/2013] [Accepted: 03/11/2013] [Indexed: 12/15/2022] Open
Abstract
The pineal hormone melatonin exerts its influence in the periphery through activation of two specific trans-membrane receptors: MT1 and MT2. Both isoforms are expressed in the islet of Langerhans and are involved in the modulation of insulin secretion from β-cells and in glucagon secretion from α-cells. De-synchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genome-wide association studies identifying particularly the MT2 as a risk factor for this rapidly spreading metabolic disturbance. Since melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. This factor has hitherto been underestimated; the disruption of diurnal signaling within the islet may be one of the most important mechanisms leading to metabolic disturbances. The study of melatonin–insulin interactions in diabetic rat models has revealed an inverse relationship: an increase in melatonin levels leads to a down-regulation of insulin secretion and vice versa. Elucidation of the possible inverse interrelationship in man may open new avenues in the therapy of diabetes.
Collapse
|