1
|
Dawangpa A, Chitta P, Rodrigues GDS, Iadsee N, Noronha NY, Nonino CB, Bueno Júnior CR, Sae-Lee C. Impact of combined exercise on blood DNA methylation and physical health in older women with obesity. PLoS One 2024; 19:e0315250. [PMID: 39680552 DOI: 10.1371/journal.pone.0315250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
This study examined the effects of a 14-week combined exercise program on blood DNA methylation (DNAm) and its potential biological pathways in normal-weight, overweight, and obese older women. A total of 41 participants were assessed at baseline, 7 weeks, and 14 weeks into the training. Their whole-blood DNAm profiles were measured using the Infinitum MethylationEPIC BeadChip, alongside physical and biochemical health evaluations. The results showed notable health improvements, with decreases in blood pressure and cholesterol levels in the overweight and obese groups. Blood triglycerides were reduced only in the overweight group. Physical performance also improved across all groups. At 14 weeks, 1,043 differentially methylated positions (DMPs) were identified, affecting 744 genes. The genes were linked to biological processes, such as cellular metabolism, with significant pathway enrichment related to oxidative phosphorylation and chemical carcinogenesis. Additionally, the overweight group experienced significant reductions in methylation levels at eight lipogenesis-related genes. Protein EpiScore analysis revealed decreased levels of CCL11, VEGFA, and NTRK3 proteins at 14 weeks compared to baseline. Despite these significant molecular changes, there was no observable difference in DNAm age after the intervention. This study highlights how combined exercise can modify DNAm patterns in older women, particularly in lipogenesis-related genes, but suggests that further research is needed to understand the full implications for biological ageing.
Collapse
Affiliation(s)
- Atchara Dawangpa
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pitaksin Chitta
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Nutta Iadsee
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natália Y Noronha
- Department of Internal Medicine, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carla B Nonino
- Health Sciences Department, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Carlos R Bueno Júnior
- School of Physical Education and Sport of Ribeirão Preto, University of Sao Paulo, Sao Paulo, Brazil
| | - Chanachai Sae-Lee
- Research Division, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Clinical Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Sasso JP, Coates K, Stewart L, Gelinas J, Wright SP, Seiler S, Shave R, Eves ND. Examining the acute cardiovagal consequences of supine recovery during high-intensity interval exercise. Eur J Appl Physiol 2024:10.1007/s00421-024-05641-w. [PMID: 39441381 DOI: 10.1007/s00421-024-05641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
PURPOSE Exercise training requires the careful application of training dose to maximize adaptation while minimizing the risk of illness and injury. High-intensity interval training (HIIT) is a potent method for improving health and fitness but generates substantial autonomic imbalance. Assuming a supine posture between intervals is a novel strategy that could enhance physiological readiness and training adaptations. This study aimed to establish the safety and feasibility of supine recovery within a HIIT session and explore its acute effects. METHODS Fifteen healthy, active males (18-34 years) underwent assessment of cardiopulmonary fitness. Participants completed two identical HIIT treadmill sessions (4 x [3 min at 95% VO2max, 3 min recovery]) employing passive recovery in standing (STANDard) or supine (SUPER) posture between intervals. Heart rate variability (HRV), HRV recovery (HRVrec; lnRMSSD) and heart rate recovery at 1 min (HRrec) were assessed using submaximal constant speed running tests (CST) completed prior to, immediately after and 24 h following HIIT. RESULTS No severe adverse events occurred with SUPER, and compliance was similar between conditions (100 ± 0%). The change in HRVrec from the CST pre-to-post-HIIT was not different between conditions (p = 0.38); however, HRrec was faster following SUPER (39 ± 7 bpm) vs. STANDard (36 ± 5 bpm). HRV 24 h post-SUPER was also greater (3.56 ± 0.57 ms) compared to STANDard (3.37 ± 0.42 ms). Despite no differences in perceived exertion (p = 0.23) and blood lactate levels (p = 0.35) between SUPER and STANDard, average running HRs were lower (p = 0.04) with SUPER (174 ± 7 bpm) vs. STANDard (176 ± 7 bpm). CONCLUSIONS Supine recovery within HIIT attenuates acute cardioautonomic perturbation and accelerates post-exercise vagal reactivation. SUPER enhances recovery of vagal modulation, potentially improving physiological preparedness 24 h post-HIIT. Further research exploring the chronic effects of SUPER are now warranted.
Collapse
Affiliation(s)
- John P Sasso
- School of Health and Exercise Sciences, University of British Columbia, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Kyla Coates
- School of Health and Exercise Sciences, University of British Columbia, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Liam Stewart
- School of Health and Exercise Sciences, University of British Columbia, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Jinelle Gelinas
- School of Health and Exercise Sciences, University of British Columbia, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Stephen P Wright
- School of Health and Exercise Sciences, University of British Columbia, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Stephen Seiler
- Faculty of Health and Sport Sciences, University of Agder, Kristiansand, Norway
| | - Robert Shave
- School of Health and Exercise Sciences, University of British Columbia, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada
| | - Neil D Eves
- School of Health and Exercise Sciences, University of British Columbia, 1147 Research Road, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
3
|
Yang G, Hong J, Park SB. Wearable device for continuous sweat lactate monitoring in sports: a narrative review. Front Physiol 2024; 15:1376801. [PMID: 38638276 PMCID: PMC11025537 DOI: 10.3389/fphys.2024.1376801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024] Open
Abstract
In sports science, the use of wearable technology has facilitated the development of new approaches for tracking and assessing athletes' performance. This narrative review rigorously explores the evolution and contemporary state of wearable devices specifically engineered for continuously monitoring lactate levels in sweat, an essential biomarker for appraising endurance performance. Lactate threshold tests have traditionally been integral in tailoring training intensity for athletes, but these tests have relied on invasive blood tests that are impractical outside a laboratory setting. The transition to noninvasive, real-time monitoring through wearable technology introduces an innovative approach, facilitating continuous assessment without the constraints inherent in traditional methodologies. We selected 34 products from a pool of 246 articles found through a meticulous search of articles published up to January 2024 in renowned databases: PubMed, Web of Science, and ScienceDirect. We used keywords such as "sweat lactate monitoring," "continuous lactate monitoring," and "wearable devices." The findings underscore the capabilities of noninvasive sweat lactate monitoring technologies to conduct long-term assessments over a broad range of 0-100 mM, providing a safer alternative with minimal infection risks. By enabling real-time evaluations of the lactate threshold (LT) and maximal lactate steady state (MLSS), these technologies offer athletes various device options tailored to their specific sports and preferences. This review explores the mechanisms of currently available lactate monitoring technologies, focusing on electrochemical sensors that have undergone extensive research and show promise for commercialization. These sensors employ amperometric reactions to quantify lactate levels and detect changes resulting from enzymatic activities. In contrast, colorimetric sensors offer a more straightforward and user-friendly approach by displaying lactate concentrations through color alterations. Despite significant advancements, the relationship between sweat lactate and blood lactate levels remains intricate owing to various factors such as environmental conditions and the lag between exercise initiation and sweating. Furthermore, there is a marked gap in research on sweat lactate compared to blood lactate across various sports disciplines. This review highlights the need for further research to address these shortcomings and substantiate the performance of lactate sweat monitoring technologies in a broader spectrum of sports environments. The tremendous potential of these technologies to supplant invasive blood lactate tests and pioneer new avenues for athlete management and performance optimization in real-world settings heralds a promising future for integrating sports science and wearable technology.
Collapse
Affiliation(s)
| | - Junggi Hong
- *Correspondence: Seung-Bo Park, ; Junggi Hong,
| | | |
Collapse
|
4
|
Ma YL, Ke JF, Wang JW, Wang YJ, Xu MR, Li LX. Blood lactate levels are associated with an increased risk of metabolic dysfunction-associated fatty liver disease in type 2 diabetes: a real-world study. Front Endocrinol (Lausanne) 2023; 14:1133991. [PMID: 37223022 PMCID: PMC10200915 DOI: 10.3389/fendo.2023.1133991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Aim To investigate the association between blood lactate levels and metabolic dysfunction-associated fatty liver disease (MAFLD) in type 2 diabetes mellitus (T2DM). Methods 4628 Chinese T2DM patients were divided into quartiles according to blood lactate levels in this real-world study. Abdominal ultrasonography was used to diagnosis MAFLD. The associations of blood lactate levels and quartiles with MAFLD were analyzed by logistic regression. Results There were a significantly increased trend in both MAFLD prevalence (28.9%, 36.5%, 43.5%, and 54.7%) and HOMA2-IR value (1.31(0.80-2.03), 1.44(0.87-2.20), 1.59(0.99-2.36), 1.82(1.15-2.59)) across the blood lactate quartiles in T2DM patients after adjustment for age, sex, diabetic duration, and metformin use (all p<0.001 for trend). After correcting for other confounding factors, not only increased blood lactate levels were obviously associated with MAFLD presence in the patients with (OR=1.378, 95%CI: 1.210-1.569, p<0.001) and without taking metformin (OR=1.181, 95%CI: 1.010-1.381, p=0.037), but also blood lactate quartiles were independently correlated to the increased risk of MAFLD in T2DM patients (p<0.001 for trend). Compared with the subjects in the lowest blood lactate quartiles, the risk of MAFLD increased to 1.436-, 1.473-, and 2.055-fold, respectively, in those from the second to the highest lactate quartiles. Conclusions The blood lactate levels in T2DM subjects were independently associated with an increased risk of MAFLD, which was not affected by metformin-taking and might closely related to insulin resistance. Blood lactate levels might be used as a practical indicator for assessing the risk of MAFLD in T2DM patients.
Collapse
Affiliation(s)
- Yi-Lin Ma
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Jiang-Feng Ke
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Jun-Wei Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Yu-Jie Wang
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Man-Rong Xu
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| | - Lian-Xi Li
- Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai, China
| |
Collapse
|
5
|
Schierbauer J, Wolf A, Wachsmuth NB, Maassen N, Schmidt WFJ. Relationship between Blood Volume, Blood Lactate Quantity, and Lactate Concentrations during Exercise. Metabolites 2023; 13:metabo13050632. [PMID: 37233674 DOI: 10.3390/metabo13050632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
We wanted to determine the influence of total blood volume (BV) and blood lactate quantity on lactate concentrations during incremental exercise. Twenty-six healthy, nonsmoking, heterogeneously trained females (27.5 ± 5.9 ys) performed an incremental cardiopulmonary exercise test on a cycle ergometer during which maximum oxygen uptake (V·O2max), lactate concentrations ([La-]) and hemoglobin concentrations ([Hb]) were determined. Hemoglobin mass and blood volume (BV) were determined using an optimised carbon monoxide-rebreathing method. V·O2max and maximum power (Pmax) ranged between 32 and 62 mL·min-1·kg-1 and 2.3 and 5.5 W·kg-1, respectively. BV ranged between 81 and 121 mL·kg-1 of lean body mass and decreased by 280 ± 115 mL (5.7%, p = 0.001) until Pmax. At Pmax, the [La-] was significantly correlated to the systemic lactate quantity (La-, r = 0.84, p < 0.0001) but also significantly negatively correlated to the BV (r = -0.44, p < 0.05). We calculated that the exercise-induced BV shifts significantly reduced the lactate transport capacity by 10.8% (p < 0.0001). Our results demonstrate that both the total BV and La- have a major influence on the resulting [La-] during dynamic exercise. Moreover, the blood La- transport capacity might be significantly reduced by the shift in plasma volume. We conclude, that the total BV might be another relevant factor in the interpretation of [La-] during a cardio-pulmonary exercise test.
Collapse
Affiliation(s)
- Janis Schierbauer
- Division of Exercise Physiology & Metabolism, University of Bayreuth, 95447 Bayreuth, Germany
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Alina Wolf
- Division of Exercise Physiology & Metabolism, University of Bayreuth, 95447 Bayreuth, Germany
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Nadine B Wachsmuth
- Division of Exercise Physiology & Metabolism, University of Bayreuth, 95447 Bayreuth, Germany
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, 95447 Bayreuth, Germany
| | - Norbert Maassen
- Institute of Sports Medicine, Hannover Medical School, 30625 Hannover, Germany
| | - Walter F J Schmidt
- Department of Sports Medicine/Sports Physiology, University of Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
6
|
Dhiraj HS, Ishizuka F, Elshaer A, Zetterlund PB, Aldabbagh F. Lactate and glucose induced self‐assembly of hydrophobic boronic acid‐substituted polymers. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Harpal S. Dhiraj
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| | - Fumi Ishizuka
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales Australia
| | - Amr Elshaer
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales Australia
| | - Fawaz Aldabbagh
- Department of Pharmacy, School of Life Sciences, Pharmacy and Chemistry Kingston University Kingston upon Thames UK
| |
Collapse
|
7
|
Tadesse D, Patra AK, Puchala R, Goetsch AL. Effects of High Heat Load Conditions on Blood Constituent Concentrations in Dorper, Katahdin, and St. Croix Sheep from Different Regions of the USA. Animals (Basel) 2022; 12:ani12172273. [PMID: 36077993 PMCID: PMC9454635 DOI: 10.3390/ani12172273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Forty-six Dorper (DOR), 46 Katahdin (KAT), and 43 St. Croix (STC) female sheep (initial body weight of 58, 59, and 46 kg, respectively, SEM = 1.75; 3.3 ± 0.18 years of age, 2.6−3.7), derived from 45 commercial farms in four regions of the USA (Midwest, Northwest, Southeast, and central Texas), were used to evaluate responses in blood constituent concentrations to increasing heat load index (HLI) conditions. There were four sequential 2 weeks periods with target HLI during day/nighttime of 70/70 (thermoneutral zone conditions), 85/70, 90/77, and 95/81 in period 1, 2, 3 and 4, respectively. A 50% concentrate pelletized diet was fed at 53.3 g dry matter/kg body weight0.75. The analysis of most constituents was for samples collected on the last day of the second week of each period at 13:00 h; samples for cortisol, thyroxine, and heat shock protein were collected in week 2 and 8. Previously, it was noted that resilience to high HLI conditions was greatest for STC, lowest for DOR, and intermediate for KAT. There were few effects of region. Other than hemoglobin concentration, there were no interactions between breed and period. Blood oxygen concentration was greatest (p < 0.05) among breeds for STC (5.07, 5.20, and 5.53 mmol/L for DOR, KAT, and STC, respectively; SEM = 0.114) and differed among periods (4.92, 5.26, 5.36, and 5.52 mmol/L for period 1, 2, 3, and 4, respectively; SEM = 0.093). There were breed differences (i.e., main effects; p < 0.05) in glucose (50.0, 52.6, and 52.1 mg/dL; SEM = 0.76), urea nitrogen (17.2, 17.3, and 19.4 mg/dL; SEM = 0.33), creatinine (0.991, 0.862, and 0.802 mg/dL; SEM = 0.0151), total protein (6.50, 6.68, and 6.95 g/l; SEM = 0.017), triglycerides (28.4, 29.1, and 23.5 mg/dL; SEM = 0.87), and cortisol (6.30, 8.79, and 6.22 ng/mL for DOR, KAT, and STC, respectively; SEM = 0.596). Differences among periods (p < 0.05) were observed for lactate (27.9, 25.3, 27.8, and 24.0 mg/dL; SEM = 0.99), creatinine (0.839, 0.913, 0.871, and 0.917 mg/dL; SEM = 0.0128), total protein (6.94, 6.66, 6.60, and 6.65 g/l; SEM = 0.094), and cholesterol (60.2, 56.5, 58.3, and 57.6 mg/dL for period 1, 2, 3, and 4, respectively; SEM = 1.26). In addition, the concentration of cortisol (7.62 and 6.59 ng/mL; SEM = 0.404), thyroxine (5.83 and 5.00 µg/dL; SEM = 0.140), and heat shock protein (136 and 146 ng/mL for week 2 and 8, respectively; SEM = 4.0) differed between weeks (p < 0.05). In conclusion, the lack of interaction between breed and period with different HLI conditions suggests that levels of these blood constituents were not highly related to resilience to high HLI.
Collapse
Affiliation(s)
- Dereje Tadesse
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
- Department of Animal Sciences, Debre Berhan University, Debre Berhan P.O. Box 445, Ethiopia
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Ryszard Puchala
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
| | - Arthur Louis Goetsch
- American Institute for Goat Research, Langston University, Langston, OK 73050, USA
- Correspondence:
| |
Collapse
|
8
|
Rody T, De Amorim JA, De Felice FG. The emerging neuroprotective roles of exerkines in Alzheimer’s disease. Front Aging Neurosci 2022; 14:965190. [PMID: 36118704 PMCID: PMC9472554 DOI: 10.3389/fnagi.2022.965190] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022] Open
Abstract
Despite the extensive knowledge of the beneficial effects of physical exercise, a sedentary lifestyle is still a predominant harm in our society. Sedentarism is one of the major modifiable risk factors for metabolic diseases such as diabetes mellitus, obesity and neurological disorders, including Alzheimer’s disease (AD)–characterized by synaptic failure, amyloid protein deposition and memory loss. Physical exercise promotes neuroprotective effects through molecules released in circulation and mediates the physiological crosstalk between the periphery and the brain. This literature review summarizes the current understanding of the roles of exerkines, molecules released during physical exercise, as systemic and central factors that mediate the beneficial effects of physical exercise on cognition. We highlight the neuroprotective role of irisin—a myokine released from the proteolytic cleavage of fibronectin type III domain-containing protein 5 (FNDC5) transmembrane protein. Lastly, we review evidence pointing to physical exercise as a potential preventative and interventional strategy against cognitive decline in AD.
Collapse
Affiliation(s)
- Tayna Rody
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia A. De Amorim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G. De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON, Canada
- Department of Psychiatry, Queen’s University, Kingston, ON, Canada
- D’Or Institute for Research and Education, Rio de Janeiro, Brazil
- *Correspondence: Fernanda G. De Felice,
| |
Collapse
|
9
|
Effects of Acute Yohimbine Hydrochloride Supplementation on Repeated Supramaximal Sprint Performance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031316. [PMID: 35162339 PMCID: PMC8835515 DOI: 10.3390/ijerph19031316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to examine the effects of a single acute dose of yohimbine hydrochloride on repeated anaerobic sprint ability. Physically active females (n = 18) completed two separate repeated supramaximal sprint trials each with a different single-dose treatment: placebo (PL; gluten-free corn starch) or yohimbine hydrochloride (YHM; 2.5 mg). For each trial, participants consumed their respective treatment 20 min before exercise. Following a warm-up, participants completed 3 × 15 s Wingate anaerobic tests (WAnTs) separated by 2 min of active recovery. A capillary blood sample was obtained pre- and immediately post-exercise to measure blood concentrations of lactate (LA), epinephrine (EPI), and norepinephrine (NE). Heart rate (HR) and rate of perceived exertion (RPE) were measured following each WAnT. Findings showed that mean power (p < 0.001; η2 = 0.024), total work (p < 0.001; η2 = 0.061), and HR (p < 0.001; η2 = 0.046), were significantly higher with YHM supplementation versus PL. Fatigue index (p < 0.001; η2 = 0.054) and post-exercise LA (p < 0.001; d = 1.26) were significantly lower with YHM compared to PL. YHM resulted in significantly higher EPI concentrations versus PL (p < 0.001; η2 = 0.225) pre- and post-exercise while NE only increased as a function of time (p < 0.001; η2 = 0.227) and was unaffected by treatment. While RPE increased after each WAnT, no differences between treatments were observed (p = 0.539; η2 < 0.001). Together, these results suggest that acute YHM ingestion imparts ergogenic benefits which may be mediated by lower blood LA and fatigue concomitantly occurring with blood EPI increases. Thus, YHM may improve sprint performance although more mechanistic study is warranted to accentuate underlying processes mediating performance enhancement.
Collapse
|
10
|
Gomes Moreira D, José Brito C, de Almeida Ferreira JJ, Bouzas Marins JC, López Díaz de Durana A, Couceiro Canalejo J, Butragueño Revenga J, Sillero-Quintana M. Lactate Concentration Is Related to Skin Temperature Variation After a Specific Incremental Judo Test. J Strength Cond Res 2021; 35:2213-2221. [PMID: 30844982 DOI: 10.1519/jsc.0000000000003095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Gomes Moreira, D, José Brito, C, de Almeida Ferreira, JJ, Bouzas Marins, JC, López Díaz de Durana, A, Couceiro Canalejo, J, Butragueño Revenga, J, and Sillero-Quintana, M. Lactate concentration is related to skin temperature variation after a specific incremental judo test. J Strength Cond Res 35(8): 2213-2221, 2021-This study aimed to analyze the skin temperature (tsk) response in judokas after a specific incremental test and to determine whether anthropometric and physiological measures can be explained by the variation in mean tsk. A total of 23 male judo athletes (age: 20.1 ± 4.7 years; height: 173.1 ± 8.1 cm; and body mass: 71.7 ± 8.1 kg) performed a specific incremental judo test. Skin temperature evaluations were collected in 26 regions of interest (ROIs), and the mean tsk was calculated using an equation including 10 of them. The time points before the test (pre-test), immediately after (0 minutes), and after 5, 10, and 15 minutes of the test were established to measure the tsk, mean tsk, auricular temperature (tau), and blood lactate (LAC). The athletes completed a mean of 7.0 ± 1.0 stages of the test, 95% confidence interval (CI; 6.2-7.1). The V̇o2peak achieved was 48.7 ± 5.3 ml·kg-1·min-1, 95% CI (46.4-51.0). Compared with pre-test values, only the forehead significantly decreased 5 minutes after the test (p < 0.05). The posterior right arm and posterior left arm remained increased 10 minutes after the test (p < 0.05). After 15 minutes, 19 of the 26 ROIs analyzed were significantly decreased (p < 0.05). Among all tested models of linear regression, only 2 were significant, the difference of tsk 5 minutes compared with pre-test (F1, 21 = 16.49, p = 0.001) and the difference of tsk 10 minutes compared with pre-test, to predict LAC concentration at the end of the test (F1, 21 = 9.30, p = 0.006). We concluded that 5 minutes after the test, the judokas present a higher tau and a higher tsk in 7 ROIs, and the tsk decreases 15 minutes after the test in 19 of the considered ROIs. The variation of mean tsk 5 and 10 minutes after the test compared with pre-test values is associated with blood LAC at the end of the test.
Collapse
Affiliation(s)
- Danilo Gomes Moreira
- Federal Institute for Education, Science and Technology of Minas Gerais, Campus Governador Valadares, Governador Valadares, Brazil
- Faculty of Physical Activity and Sport Science, Technical University of Madrid, Madrid, Spain
| | - Ciro José Brito
- Department of Physical Education, Federal University of Juiz de Fora, Governador Valadares, Brazil
| | | | - João Carlos Bouzas Marins
- Department of Physical Education, Human Performance Laboratory, Federal University of Viçosa, Viçosa, Brazil
| | | | - Jorge Couceiro Canalejo
- Faculty of Physical Activity and Sport Science, Technical University of Madrid, Madrid, Spain
| | | | - Manuel Sillero-Quintana
- Faculty of Physical Activity and Sport Science, Technical University of Madrid, Madrid, Spain
| |
Collapse
|
11
|
Lee JH, Samsuzzaman M, Park MG, Park SJ, Kim SY. Methylglyoxal-derived hemoglobin advanced glycation end products induce apoptosis and oxidative stress in human umbilical vein endothelial cells. Int J Biol Macromol 2021; 187:409-421. [PMID: 34271050 DOI: 10.1016/j.ijbiomac.2021.07.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/30/2022]
Abstract
The presence of excess glucose promotes hemoglobin glycation via the biochemical modification of hemoglobin by dicarbonyl products. However, the precise effects of Hb-AGEs in human umbilical vein endothelial cells (HUVECs) are not known to date. Therefore, we investigated the tentative effects of Hb-AGEs in HUVECs. Initially, we used the AGE formation assay to examine the selectivity of MGO toward various proteins. Among all proteins, MGO-Hb-AGEs formation was higher compared to the formation of other dicarbonyl-mediated AGEs. Our next data demonstrated that treatment with 0.5 mg/mL of Hb-AGEs-4w significantly reduced cell viability in HUVECs. Further, we evaluated the role of MGO in conformational and structural changes in Hb. The results showed that Hb demonstrated a highly altered conformation upon incubation with MGO. Moreover, Hb-AGEs-4w treatment strongly increased ROS production, and decreased mitochondrial membrane potential in HUVECs, and moderately reduced the expression of phosphorylated forms of p-38 and JNK. We observed that Hb-AGEs-4w treatment increased the number of apoptotic cells and the Bax/Bcl-2 ratio and cleaved the nuclear enzyme PARP in HUVECs. Finally, Hb-AGEs also inhibited migration and proliferation of HUVECs, thus be physiologically significant in endothelial dysfunction. Taken together, our data suggest that Hb-AGEs may play a critical role in inducing vascular endothelial cell damage. Therefore, this study may provide a plausible explanation for the potential Hb-AGEs in human endothelial cell dysfunction of diabetic patients.
Collapse
Affiliation(s)
- Jae Hyuk Lee
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Md Samsuzzaman
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Myoung Gyu Park
- MetaCen Therapeutics Company, # Changnyong-daero 256 beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do 16229, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Science, Gachon University, #191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Republic of Korea; Gachon Institute of Pharmaceutical Science, Gachon University, #191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea.
| |
Collapse
|
12
|
Hostrup M, Cairns SP, Bangsbo J. Muscle Ionic Shifts During Exercise: Implications for Fatigue and Exercise Performance. Compr Physiol 2021; 11:1895-1959. [PMID: 34190344 DOI: 10.1002/cphy.c190024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exercise causes major shifts in multiple ions (e.g., K+ , Na+ , H+ , lactate- , Ca2+ , and Cl- ) during muscle activity that contributes to development of muscle fatigue. Sarcolemmal processes can be impaired by the trans-sarcolemmal rundown of ion gradients for K+ , Na+ , and Ca2+ during fatiguing exercise, while changes in gradients for Cl- and Cl- conductance may exert either protective or detrimental effects on fatigue. Myocellular H+ accumulation may also contribute to fatigue development by lowering glycolytic rate and has been shown to act synergistically with inorganic phosphate (Pi) to compromise cross-bridge function. In addition, sarcoplasmic reticulum Ca2+ release function is severely affected by fatiguing exercise. Skeletal muscle has a multitude of ion transport systems that counter exercise-related ionic shifts of which the Na+ /K+ -ATPase is of major importance. Metabolic perturbations occurring during exercise can exacerbate trans-sarcolemmal ionic shifts, in particular for K+ and Cl- , respectively via metabolic regulation of the ATP-sensitive K+ channel (KATP ) and the chloride channel isoform 1 (ClC-1). Ion transport systems are highly adaptable to exercise training resulting in an enhanced ability to counter ionic disturbances to delay fatigue and improve exercise performance. In this article, we discuss (i) the ionic shifts occurring during exercise, (ii) the role of ion transport systems in skeletal muscle for ionic regulation, (iii) how ionic disturbances affect sarcolemmal processes and muscle fatigue, (iv) how metabolic perturbations exacerbate ionic shifts during exercise, and (v) how pharmacological manipulation and exercise training regulate ion transport systems to influence exercise performance in humans. © 2021 American Physiological Society. Compr Physiol 11:1895-1959, 2021.
Collapse
Affiliation(s)
- Morten Hostrup
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Simeon Peter Cairns
- SPRINZ, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.,Health and Rehabilitation Research Institute, Auckland University of Technology, Auckland, New Zealand
| | - Jens Bangsbo
- Section of Integrative Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Imaging Ultrasound Assessment of Exercise-Induced Endothelial Shear Stress of the Brachial and Carotid Arteries. Cardiopulm Phys Ther J 2021. [DOI: 10.1097/cpt.0000000000000167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Mongin D, Chabert C, Uribe Caparros A, Guzmán JFV, Hue O, Alvero-Cruz JR, Courvoisier DS. The complex relationship between effort and heart rate: a hint from dynamic analysis. Physiol Meas 2020; 41:105003. [PMID: 33164909 DOI: 10.1088/1361-6579/abbb6e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Dynamic analysis can be used to study the changes of self-regulated biological processes driven by external stimuli. Recently, the changes of heart rate during effort tests has successfully been adjusted using a simple first-order differential equation model driven by body power expenditure. Although this approach produces valid estimates and yields pertinent indices for the analysis of such measurements, it suffers from an inability to model the saturation of the heart-rate increase at high power expenditures and the change of heart-rate equilibrium following effort. APPROACH We propose a new analysis allowing the estimation of changes of the heart rate in response to effort (gain) as a function of the power expenditure value. MAIN RESULTS When applied to the measured heart rates of 30 amateur athletes performing a maximum graded-effort treadmill test, the proposed model was able to predict 99% of the heart rate change measured during exercise. The estimated gains decreased with a power increase above the first ventilatory threshold. This trend was stronger above the second ventilatory threshold and was strongly correlated with the maximum oxygen consumption. SIGNIFICANCE The proposed approach yields a highly precise model of heart rate dynamics during variable effort that reflects the changes of metabolic energy systems at play during exercise.
Collapse
Affiliation(s)
- Denis Mongin
- Quality of Care Unit, University Hospitals of Geneva, Geneva, Switzerland. Author to whom any correspondence should be addressed
| | | | | | | | | | | | | |
Collapse
|
15
|
Manfredini F, Straudi S, Lamberti N, Patergnani S, Tisato V, Secchiero P, Bernardi F, Ziliotto N, Marchetti G, Basaglia N, Bonora M, Pinton P. Rehabilitation Improves Mitochondrial Energetics in Progressive Multiple Sclerosis: The Significant Role of Robot-Assisted Gait Training and of the Personalized Intensity. Diagnostics (Basel) 2020; 10:diagnostics10100834. [PMID: 33080806 PMCID: PMC7602995 DOI: 10.3390/diagnostics10100834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Abnormal levels of pyruvate and lactate were reported in multiple sclerosis (MS). We studied the response of markers of mitochondrial function to rehabilitation in relation to type, intensity and endurance performance in severely disabled MS patients. Forty-six progressive MS patients were randomized to receive 12 walking sessions of robot-assisted gait training (RAGT, n = 23) or conventional overground therapy (CT, n = 23). Ten healthy subjects were also studied. Blood samples were collected to determine lactate, pyruvate, and glutathione levels and lactate/pyruvate ratio pre–post rehabilitation. In vivo muscle metabolism and endurance walking capacity were assessed by resting muscle oxygen consumption (rmVO2) using near-infrared spectroscopy and by six-minute walking distance (6MWD), respectively. The levels of mitochondrial biomarkers and rmVO2, altered at baseline with respect to healthy subjects, improved after rehabilitation in the whole population. In the two groups, an enhanced response was observed after RAGT compared to CT for lactate (p = 0.012), glutathione (<0.001), lactate/pyruvate ratio (p = 0.08) and rmVO2 (p = 0.07). Metabolic biomarkers and 6MWD improvements were exclusively correlated with a training speed markedly below individual gait speed. In severely disabled MS patients, rehabilitation rebalanced altered serum metabolic and muscle parameters, with RAGT being more effective than CT. A determinable slow training speed was associated with better metabolic and functional recovery. Trial Registration: ClinicalTrials.gov NCT02421731.
Collapse
Affiliation(s)
- Fabio Manfredini
- Department of Neuroscience and rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (G.M.)
- Department of Neuroscience/Rehabilitation, Unit of Rehabilitation Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (S.S.); (N.B.)
| | - Sofia Straudi
- Department of Neuroscience/Rehabilitation, Unit of Rehabilitation Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (S.S.); (N.B.)
| | - Nicola Lamberti
- Department of Neuroscience and rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (G.M.)
- Correspondence: ; Tel.: +39-0532-236187
| | - Simone Patergnani
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (M.B.); (P.P.)
| | - Veronica Tisato
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (V.T.); (P.S.)
| | - Paola Secchiero
- Department of Morphology, Surgery and Experimental Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy; (V.T.); (P.S.)
| | - Francesco Bernardi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy;
| | - Nicole Ziliotto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Giovanna Marchetti
- Department of Neuroscience and rehabilitation, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (G.M.)
| | - Nino Basaglia
- Department of Neuroscience/Rehabilitation, Unit of Rehabilitation Medicine, University Hospital of Ferrara, 44124 Ferrara, Italy; (S.S.); (N.B.)
| | - Massimo Bonora
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (M.B.); (P.P.)
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; (S.P.); (M.B.); (P.P.)
| |
Collapse
|
16
|
Willwacher S, Sleboda DA, Mählich D, Brüggemann G, Roberts TJ, Bratke G. The time course of calf muscle fluid volume during prolonged running. Physiol Rep 2020; 8:e14414. [PMID: 32378332 PMCID: PMC7202985 DOI: 10.14814/phy2.14414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 03/16/2020] [Indexed: 01/30/2023] Open
Abstract
Muscle fluid is essential for the biochemistry and the biomechanics of muscle contraction. Here, we provide evidence that muscle fluid volumes undergo significant changes during 75 min of moderate intensity (2.7 ± 0.4 m/s) running. Using MRI measurements at baseline and after 2.5, 5, 10, 15, 45 and 75 min, we found that the volumes of calf muscles (quantified through average cross-sectional area) in 18 young recreational runners increase (up to 9% in the gastrocnemii) at the beginning and decrease (below baseline levels) at later stages of running. However, the intensity of changes varied between analyzed muscles. We speculate that these changes are induced by muscle activity and dehydration-related changes in osmotic pressure gradients between intramuscular and extramuscular spaces. These findings highlight the complex nature of muscle fluid shifts during prolonged running exercise.
Collapse
Affiliation(s)
- Steffen Willwacher
- Institute of Biomechanics and OrthopaedicsGerman Sport University CologneCologneGermany
- School of Human Movement and Nutrition SciencesThe University of QueenslandSt LuciaQueenslandAustralia
| | - David A. Sleboda
- Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceRIUSA
| | - Daniela Mählich
- Institute of Biomechanics and OrthopaedicsGerman Sport University CologneCologneGermany
| | - Gert‐Peter Brüggemann
- Institute of Biomechanics and OrthopaedicsGerman Sport University CologneCologneGermany
| | - Thomas J. Roberts
- Department of Ecology and Evolutionary BiologyBrown UniversityProvidenceRIUSA
| | - Grischa Bratke
- Department of Diagnostic and Interventional RadiologyUniversity of CologneCologneGermany
| |
Collapse
|
17
|
Huang WC, Hsu YJ, Huang CC, Liu HC, Lee MC. Exercise Training Combined with Bifidobacterium longum OLP-01 Supplementation Improves Exercise Physiological Adaption and Performance. Nutrients 2020; 12:nu12041145. [PMID: 32325851 PMCID: PMC7231274 DOI: 10.3390/nu12041145] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022] Open
Abstract
Probiotics exert multiple health benefits, including gastrointestinal health, immunoregulation, and metabolic disease improvement, by modulating microbiota to maintain eubiosis via the hypothalamic–pituitary–adrenal (HPA) and brain–gut–microbiome axes. Physiological fatigue, mental stress, and gastrointestinal discomfort under the demands of athletic performance as well as immunosuppression are common during endurance training and competition. Limited studies investigated the functional effects of probiotic supplementation on endurance training. Bifidobacterium longum subsp. Longum OLP-01 (OLP-01), isolated from an elite Olympic athlete, was combined with a six-week exercise training program with gradually increasing intensity. In this study, Institute of Cancer Research (ICR) mice were assigned to sedentary, exercise, OLP-01, or exercise + OLP-01 groups and administered probiotic and/or treadmill exercise training for six weeks to assess exercise performance, physiological adaption, and related metabolites. The exercise + OLP-01 group demonstrated higher performance in terms of endurance and grip strength, as well as improved fatigue-associated indexes (lactate, ammonia, creatine kinase (CK), lactate dehydrogenase (LDH), and glycogen content), compared with the other groups. OLP-01 supplementation significantly ameliorated inflammation and injury indexes (platelet/lymphocyte ratio (PLR), aminotransferase (AST), and CK) caused by prolonged endurance exercise test. Moreover, acetate, propionate, and butyrate levels were significantly higher in the exercise + OLP-01 group than in the sedentary and OLP-01 groups. Athletes often experience psychological and physiological stress caused by programed intensive exercise, competition, and off-site training, often leading to poor exercise performance and gastrointestinal issues. Functional OLP-01 probiotics are considered to be a nutritional strategy for improving physiological adaption, oxidative stress, inflammation, and energy balance to ensure high physical performance. Based on these results, probiotics combined with exercise training is a potential strategy for ensuring high physical performance of athletes, which should be further investigated through microbiota validation.
Collapse
Affiliation(s)
- Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11219, Taiwan
- Correspondence: (W.-C.H.); (M.-C.L.); Tel.: +886-2-2822-7101 (W.-C.H.); +886-3-328-3201 (M.-C.L.)
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Hsuan-Chen Liu
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
| | - Mon-Chien Lee
- Graduate Institute of Sports Science, National Taiwan Sport University, Taoyuan 33301, Taiwan
- Correspondence: (W.-C.H.); (M.-C.L.); Tel.: +886-2-2822-7101 (W.-C.H.); +886-3-328-3201 (M.-C.L.)
| |
Collapse
|
18
|
Fernández-Landa J, Fernández-Lázaro D, Calleja-González J, Caballero-García A, Córdova A, León-Guereño P, Mielgo-Ayuso J. Long-Term Effect of Combination of Creatine Monohydrate Plus β-Hydroxy β-Methylbutyrate (HMB) on Exercise-Induced Muscle Damage and Anabolic/Catabolic Hormones in Elite Male Endurance Athletes. Biomolecules 2020; 10:E140. [PMID: 31952174 PMCID: PMC7022312 DOI: 10.3390/biom10010140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Creatine monohydrate (CrM) and β-hydroxy β-methylbutyrate (HMB) are widely studied ergogenic aids. However, both supplements are usually studied in an isolated manner. The few studies that have investigated the effect of combining both supplements on exercise-induced muscle damage (EIMD) and hormone status have reported controversial results. Therefore, the main purpose of this study was to determine the effect and degree of potentiation of 10 weeks of CrM plus HMB supplementation on EIMD and anabolic/catabolic hormones. This study was a double-blind, placebo-controlled trial where participants (n = 28) were randomized into four different groups: placebo group (PLG; n = 7), CrM group (CrMG; 0.04 g/kg/day of CrM; n = 7), HMB group (HMBG; 3 g/day of HMB; n = 7), and CrM-HMB group (CrM-HMBG; 0.04 g/kg/day of CrM plus 3 g/day of HMB; n = 7). Before (baseline, T1) and after 10 weeks of supplementation (T2), blood samples were collected from all rowers. There were no significant differences in the EIMD markers (aspartate aminotransferase, lactate dehydrogenase, and creatine kinase) among groups. However, we observed significant differences in CrM-HMBG with respect to PLG, CrMG, and HMBG on testosterone (p = 0.006; η2p = 0.454) and the testosterone/cortisol ratio (T/C; p = 0.032; η2p = 0.349). Moreover, we found a synergistic effect of combined supplementation on testosterone (CrM-HMBG = -63.85% vs. CrMG + HMBG = -37.89%) and T/C (CrM-HMBG = 680% vs. CrMG + HMBG = 57.68%) and an antagonistic effect on cortisol (CrM-HMBG = 131.55% vs. CrMG + HMBG = 389.99%). In summary, the combination of CrM plus HMB showed an increase in testosterone and T/C compared with the other groups after 10 weeks of supplementation. Moreover, this combination presented a synergistic effect on testosterone and T/C and an antagonistic effect on cortisol compared with the sum of individual or isolated supplementation.
Collapse
Affiliation(s)
- Julen Fernández-Landa
- Laboratory of Human Performance, Department of Physical Education and Sport, Faculty of Education, Sport Section, University of the Basque Country, 01007 Vitoria, Spain; (J.F.-L.); (J.C.-G.)
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology. Faculty of Health Sciences, University of Valladolid. Campus de Soria, 42003 Soria, Spain;
| | - Julio Calleja-González
- Laboratory of Human Performance, Department of Physical Education and Sport, Faculty of Education, Sport Section, University of the Basque Country, 01007 Vitoria, Spain; (J.F.-L.); (J.C.-G.)
| | - Alberto Caballero-García
- Department of Anatomy and Radiology. Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
| | - Alfredo Córdova
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, Campus de Soria, University of Valladolid, 42003 Soria, Spain;
| | - Patxi León-Guereño
- Faculty of Psychology and Education, University of Deusto, Campus of Donostia-San Sebastián, 20012 San Sebastián, Guipúzcoa, Spain;
| | - Juan Mielgo-Ayuso
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, Campus de Soria, University of Valladolid, 42003 Soria, Spain;
| |
Collapse
|
19
|
Fernández-Landa J, Fernández-Lázaro D, Calleja-González J, Caballero-García A, Córdova Martínez A, León-Guereño P, Mielgo-Ayuso J. Effect of Ten Weeks of Creatine Monohydrate Plus HMB Supplementation on Athletic Performance Tests in Elite Male Endurance Athletes. Nutrients 2020; 12:nu12010193. [PMID: 31936727 PMCID: PMC7019716 DOI: 10.3390/nu12010193] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 01/09/2023] Open
Abstract
Creatine monohydrate (CrM) and β-hydroxy β-methylbutyrate (HMB) are common ergogenic aids in the field of sports and are frequently used in an isolated way. However, there are a few studies that have investigated the effect of combining both supplements on different variables related to performance, with controversial results. Therefore, the main purpose of this study was to determine the efficacy and the degree of potentiation of 10 weeks of CrM plus HMB supplementation on sports performance, which was measured by an incremental test to exhaustion in elite male traditional rowers. In this placebo-controlled, double-blind trial, 10-week study, participants (n = 28) were randomized to a placebo group (PLG; n = 7), CrM group (0.04 g/kg/day of CrM; n = 7), HMB group (3 g/day of HMB; n = 7) and CrM-HMB group (0.04 g/kg/day of CrM plus 3 g/day of HMB; n = 7). Before and after 10 weeks of different treatments, an incremental test was performed on a rowing ergometer to calculate the power that each rower obtained at the anaerobic threshold (WAT), and at 4 mmol (W4) and 8 mmol (W8) of blood lactate concentration. There were no significant differences in WAT and W4 among groups or in body composition. However, it was observed that the aerobic power achieved at W8 was significantly higher in the CrM-HMB group than in the PLG, CrM and HMB groups (p < 0.001; η2p = 0.766). Likewise, a synergistic effect of combined supplementation was found for the sum of the two supplements separately at WAT (CrM-HMBG = 403.19% vs. CrMG+HMBG = 337.52%), W4 (CrM-HMBG = 2736.17% vs. CrMG+HMBG = 1705.32%) and W8 (CrM-HMBG = 1293.4% vs. CrMG+HMBG = 877.56%). In summary, CrM plus HMB supplementation over 10 weeks showed a synergistic effect on aerobic power (measured as WAT, W4, and W8) during an incremental test but had no influence muscle mass.
Collapse
Affiliation(s)
- Julen Fernández-Landa
- Laboratory of Human Performance, Department of Physical Education and Sport, Faculty of Education, Sport Section, University of the Basque Country, 01007 Vitoria, Spain; (J.F.-L.); (J.C.-G.)
| | - Diego Fernández-Lázaro
- Department of Cellular Biology, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
| | - Julio Calleja-González
- Laboratory of Human Performance, Department of Physical Education and Sport, Faculty of Education, Sport Section, University of the Basque Country, 01007 Vitoria, Spain; (J.F.-L.); (J.C.-G.)
| | - Alberto Caballero-García
- Department of Anatomy and Radiology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
| | - Alfredo Córdova Martínez
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
| | - Patxi León-Guereño
- Faculty of Psychology and Education, University of Deusto, Campus of Donostia-San Sebastián, 20012 San Sebastián, Guipúzcoa, Spain;
| | - Juan Mielgo-Ayuso
- Department of Biochemistry, Molecular Biology and Physiology, Faculty of Health Sciences, University of Valladolid, Campus de Soria, 42003 Soria, Spain;
- Correspondence: ; Tel.: +34-975-129-187
| |
Collapse
|
20
|
Yulinda ST, Tinduh D, Wardhani L, Laswati H, Wibisono S, Soenarnatalina M. Brain Derived Neurotropic Factors in Speed vs. Inclined Treadmill in Young Adult Healthy Male With Occult Balance Disorder. Front Integr Neurosci 2019; 13:33. [PMID: 31440145 PMCID: PMC6691687 DOI: 10.3389/fnint.2019.00033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
Background: There is an increase in fall risk among elders and young adults consecutively due to various causes. Occult balance disorder may be among the abnormal causes of falling in young adults as well as elders. The One Leg Stance (OLS) test is used to diagnose this balance performance; it's a proven test to measure static balance function which would lead to dynamic balance function. It has been proven that aside from cardiopulmonary exercises, treadmill workout can be used as a dynamic balance exercise. The Brain Derived Neurotropic Factor (BDNF) increases balance function through the treadmill exercise (the inclination and speed). This hormone is one of the tropical hormones generated in neurons, muscles, hematopoietic tissue and it is characterized by neurons morphology regulation and neuroplasticity. Materials and Methods: We divided 20 healthy young adult men to work out on inclination and speed groups treadmill exercise. The workout lasted for 2 weeks. We immediately observed the effect of exercise on serum BDNF as two tests were taken on before and 30 min after the workout. Result: There were significant increases of pre-exercise serum BDNF level in speed group between the first and the last exercise (p = 0.001), post-exercise between the first day and the last exercise (p = 0.001). No significant increase of serum BDNF in speed group pre- and post-exercise on the first exercise (p = 0.159), pre- and post-exercise on the last exercise (p = 0.892). There was no significant increase in serum BDNF in inclination group on all parameters (p > 0.05). The serum BDNF is actually a neurotropic factor that affects not just the neuronal system, but also molecular energy and metabolism regulation. This serum is dependent on the aerobic capacity, lactate production, muscle calcium uptake, and muscle fiber type used in exercises. Furthermore, the serum BDNF is increased by treadmill exercises in escalated speed. Conclusion: Treadmill exercises with average speed escalation increase the serum BDNF.
Collapse
Affiliation(s)
- Stephanie T Yulinda
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Damayanti Tinduh
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Lukitra Wardhani
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Hening Laswati
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Sony Wibisono
- Department of Internal Medicine, Faculty of Medicine, Dr. Soetomo General Academic Hospital, Universitas Airlangga, Surabaya, Indonesia
| | - Melaniani Soenarnatalina
- Department of Biostatistics and Population Studies, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
21
|
Kim HT, van Deventer G, Dinallo G, Frye C, Zanghi B, Wakshlag J. The effects of maltodextrin and protein supplementation on serum metabolites in exercising competitive weight-pulling dogs. COMPARATIVE EXERCISE PHYSIOLOGY 2019. [DOI: 10.3920/cep180031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Post-exercise carbohydrate repletion of skeletal muscle glycogen utilising maltodextrin, with or without highly digestible protein, can improve performance in humans which has been extrapolated to dogs. There is limited metabolic evidence regarding substrate utilisation during exercise with and without supplementation other than serum hormone status and serum amino acid responses. The objectives of this study were 2-fold; (1) to examine the metabolomic changes associated with a weight-pulling exercise; and (2) to examine the effects of maltodextrin/protein supplementation on serum metabolomics during recovery. Serum was collected from 12 dogs (6 control and 6 treatment) at different time points (pre-exercise, 0 min post-exercise, 30 min post, 3 h post) and liquid chromatography-mass spectrometry (LC-MS) was performed identifying 242 metabolites. A two-way analysis of variance for time and treatment with false discovery rate correction was performed using MetaboAnalyst 3.0. There were 9 metabolites found to be significantly increased or decreased immediately after exercise from baseline representing primarily citric acid cycle metabolites. Treatment differences at 30 min post-exercise showed increases in 8 metabolites including amino acids and carbohydrate intermediates with supplementation. Thirty-seven metabolites were significantly different at 3 h post-exercise, with most metabolites being related to amino acid increases, as well as decreases in fatty acid metabolites with supplementation. Definite alterations in metabolites suggesting that post-exercise supplementation with maltodextrin and protein supports glucose metabolism and alters fatty acid metabolism or clearance during recovery from a weight-pulling exercise.
Collapse
Affiliation(s)
- H.-T. Kim
- Cornell University College of Veterinary Medicine, Vet Medical Center 1-120, P.O. Box 34, Ithaca, 14853 NY, USA
| | - G.M. van Deventer
- Cornell University College of Veterinary Medicine, Vet Medical Center 1-120, P.O. Box 34, Ithaca, 14853 NY, USA
| | - G.K. Dinallo
- Cornell University College of Veterinary Medicine, Vet Medical Center 1-120, P.O. Box 34, Ithaca, 14853 NY, USA
| | - C.W. Frye
- Cornell University College of Veterinary Medicine, Vet Medical Center 1-120, P.O. Box 34, Ithaca, 14853 NY, USA
| | - B.M. Zanghi
- Nestlé Purina Research, St. Louis, MO 36102, USA
| | - J.J. Wakshlag
- Cornell University College of Veterinary Medicine, Vet Medical Center 1-120, P.O. Box 34, Ithaca, 14853 NY, USA
| |
Collapse
|
22
|
Clinical Markers of Exercise Intensity as a Surrogate for Blood Lactate Levels Only During Low-Intensity Exercise in Patients With Coronary Artery Disease. Cardiopulm Phys Ther J 2018. [DOI: 10.1097/cpt.0000000000000082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Oliveira PFD, Iunes DH, Alves RS, Carvalho JMD, Menezes FDS, Carvalho LC. Effects of Exergaming in Cancer Related Fatigue in the Quality of Life and Electromyography of the Middle Deltoid of People with Cancer in Treatment: A Controlled Trial. Asian Pac J Cancer Prev 2018; 19:2591-2597. [PMID: 30256065 PMCID: PMC6249443 DOI: 10.22034/apjcp.2018.19.9.2591] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Objective: In the present study, we aimed to evaluate the effects an exergaming protocol for cancer patients who undergo or have already undergone cancer treatment. We sought to evaluate changes in cancer-related fatigue, function, and ability to perform daily activities, in addition to changes in the electromyographic pattern of the middle deltoid muscle. Methods: We conducted a controlled trial. Nineteen volunteers in the cancer group (aged 61 ± 9 years; body mass index28 ± 5) and 19 in the control group (aged 58 ± 8 years); body mass index 28 ± 4) participated in the study. They were evaluated by means of a sociodemographic and clinical questionnaire, the Functional Assessment of Chronic Therapy-Fatigue (FACIT-F) questionnaire, and surface electromyography in the deltoid muscle at three moments: before the beginning of the exergaming protocol, after 10 training sessions, and after 20 sessions. The protocol consisted of practicing exergaming using Xbox 360® (Microsoft, Redmond, USA) with Kinect®. The game “Your Shape Fitness Evolved” (Ubisoft, Rennes, France) was used. Results: Total FACIT-F scores, fatigue subscale scores, and median frequency values observed in the cancer group were lower than those in the control group. These values improved in relation to the initial evaluation in the cancer group after the practice of the exergaming protocol. Conclusion: The exergaming protocol used in this study was effective for reducing reported symptoms of fatigue, increasing perceived quality of life, and improving the pattern of deltoid muscle contraction in cancer patients.
Collapse
Affiliation(s)
- Paulo Furtado de Oliveira
- Motricity Science Institute, Federal University of Alfenas, 2600 Jovino Fernandes Sales Ave, Alfenas, Minas Gerais, Brazil.,Bioscience Program, Federal University of Alfenas, 2600 Jovino Fernandes Sales Ave, Alfenas, Minas Gerais, Brazil.
| | | | | | | | | | | |
Collapse
|
24
|
Villareal MO, Matsukawa T, Isoda H. l-Citrulline Supplementation-Increased Skeletal Muscle PGC-1α Expression Is Associated with Exercise Performance and Increased Skeletal Muscle Weight. Mol Nutr Food Res 2018; 62:e1701043. [PMID: 29797700 PMCID: PMC6099278 DOI: 10.1002/mnfr.201701043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Abstract
SCOPE l-citrulline has recently been reported as a more effective supplement for promoting intracellular nitric oxide (NO) production compared to l-arginine. Here, the effect of l-citrulline on skeletal muscle and its influence on exercise performance were investigated. The underlying mechanism of its effect, specifically on the expression of skeletal muscle peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α), was also elucidated. METHODS AND RESULTS Six-week-old ICR mice were orally supplemented with l-citrulline (250 mg kg-1 ) daily, and their performance in weight-loaded swimming exercise every other day for 15 days, was evaluated. In addition, mice muscles were weighed and evaluated for the expression of PGC-1α and PGC-1α-regulated genes. Mice orally supplemented with l-citrulline had significantly higher gastrocnemius and biceps femoris muscle mass. Although not statistically significant, l-citrulline prolonged the swimming time to exhaustion. PGC-1α upregulation was associated with vascular endothelial growth factor α (VEGFα) and insulin-like growth factor 1 (IGF-1) upregulation. VEGFα and IGF-1 are important for angiogenesis and muscle growth, respectively, and are regulated by PGC-1α. Treatment with NG-nitro-l-arginine methyl ester hydrochloride (l-NAME), a nitric oxide synthesis inhibitor, suppressed the l-citrulline-induced PGC-1α upregulation in vitro. CONCLUSION Supplementation with l-citrulline upregulates skeletal muscle PGC-1α levels resulting in higher skeletal muscle weight that improves time to exhaustion during exercise.
Collapse
Affiliation(s)
- Myra O. Villareal
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukuba City305‐8572Japan
- Alliance for Research on Mediterranean and North AfricaUniversity of TsukubaTsukuba City305‐8572Japan
| | - Toshiya Matsukawa
- Graduate School of Life and Environmental SciencesUniversity of TsukubaTsukuba City305‐8572Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukuba City305‐8572Japan
- Alliance for Research on Mediterranean and North AfricaUniversity of TsukubaTsukuba City305‐8572Japan
| |
Collapse
|
25
|
Tappy L, Rosset R. Fructose Metabolism from a Functional Perspective: Implications for Athletes. Sports Med 2018; 47:23-32. [PMID: 28332117 DOI: 10.1007/s40279-017-0692-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Substantial amounts of fructose are present in our diet. Unlike glucose, this hexose cannot be metabolized by most cells and has first to be converted into glucose, lactate or fatty acids by enterocytes, hepatocytes and kidney proximal tubule cells, which all express specific fructose-metabolizing enzymes. This particular metabolism may then be detrimental in resting, sedentary subjects; however, this may also present some advantages for athletes. First, since fructose and glucose are absorbed through distinct, saturable gut transporters, co-ingestion of glucose and fructose may increase total carbohydrate absorption and oxidation. Second, fructose is largely metabolized into glucose and lactate, resulting in a net local lactate release from splanchnic organs (mostly the liver). This 'reverse Cori cycle' may be advantageous by providing lactate as an additional energy substrate to the working muscle. Following exercise, co-ingestion of glucose and fructose mutually enhance their own absorption and storage.
Collapse
Affiliation(s)
- Luc Tappy
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland. .,Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital, Lausanne, Switzerland. .,Cardio-Metabolic Center, Broye Hospital, Estavayer-le-lac, Switzerland.
| | - Robin Rosset
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Rue du Bugnon 7, 1005, Lausanne, Switzerland
| |
Collapse
|
26
|
Takahashi H, Kotani K, Tanaka K, Egucih Y, Anzai K. Therapeutic Approaches to Nonalcoholic Fatty Liver Disease: Exercise Intervention and Related Mechanisms. Front Endocrinol (Lausanne) 2018; 9:588. [PMID: 30374329 PMCID: PMC6196235 DOI: 10.3389/fendo.2018.00588] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
Exercise training ameliorates nonalcoholic fatty liver disease (NAFLD) as well as obesity and metabolic syndrome. Although it is difficult to eliminate the effects of body weight reduction and increased energy expenditure-some pleiotropic effects of exercise training-a number of studies involving either aerobic exercise training or resistance training programs showed ameliorations in NAFLD that are independent of the improvements in obesity and insulin resistance. In vivo studies have identified effects of exercise training on the liver, which may help to explain the "direct" or "independent" effect of exercise training on NAFLD. Exercise training increases peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) expression, improves mitochondrial function and leads to reduced hepatic steatosis, inflammation, fibrosis, and tumor genesis. Crosstalk between the liver and adipose tissue, skeletal muscle and the microbiome is also a possible mechanism for the effect of exercise training on NAFLD. Although numerous studies have reported benefits of exercise training on NAFLD, the optimal duration and intensity of exercise for the prevention or treatment of NAFLD have not been established. Maintaining adherence of patients with NAFLD to exercise training regimes is another issue to be resolved. The use of comprehensive analytical approaches to identify biomarkers such as hepatokines that specifically reflect the effect of exercise training on liver functions might help to monitor the effect of exercise on NAFLD, and thereby improve adherence of these patients to exercise training. Exercise training is a robust approach for alleviating the pathogenesis of NAFLD, although further clinical and experimental studies are required.
Collapse
Affiliation(s)
- Hirokazu Takahashi
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
- Liver Center, Saga University Hospital, Saga University, Saga, Japan
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Center for Community Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Kenichi Tanaka
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
| | - Yuichiro Egucih
- Liver Center, Saga University Hospital, Saga University, Saga, Japan
| | - Keizo Anzai
- Division of Metabolism and Endocrinology, Faculty of Medicine, Saga University, Saga, Japan
- *Correspondence: Keizo Anzai
| |
Collapse
|
27
|
Jackson TC, Zhang YV, Sime PJ, Phipps RP, Kottmann RM. Development of an accurate and sensitive method for lactate analysis in exhaled breath condensate by LC MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:468-473. [DOI: 10.1016/j.jchromb.2017.07.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 01/10/2023]
|
28
|
Matsukawa T, Motojima H, Sato Y, Takahashi S, Villareal MO, Isoda H. Upregulation of skeletal muscle PGC-1α through the elevation of cyclic AMP levels by Cyanidin-3-glucoside enhances exercise performance. Sci Rep 2017; 7:44799. [PMID: 28317895 PMCID: PMC5357948 DOI: 10.1038/srep44799] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/14/2017] [Indexed: 02/06/2023] Open
Abstract
Regular exercise and physical training enhance physiological capacity and improve metabolic diseases. Skeletal muscles require peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) in the process of their adaptation to exercise owing to PGC-1α's ability to regulate mitochondrial biogenesis, angiogenesis, and oxidative metabolism. Cyanidin-3-glucoside (Cy3G) is a natural polyphenol and a nutraceutical factor, which has several beneficial effects on human health. Here, the effect of Cy3G on exercise performance and the underlying mechanisms involved were investigated. ICR mice were given Cy3G (1 mg/kg, orally) everyday and made to perform weight-loaded swimming exercise for 15 days. The endurance of mice orally administered with Cy3G was improved, enabling them to swim longer (time) and while the levels of exercise-induced lactate and fatigue markers (urea nitrogen, creatinine and total ketone bodies) were reduced. Additionally, the expression of lactate metabolism-related genes (lactate dehydrogenase B and monocarboxylate transporter 1) in gastrocnemius and biceps femoris muscles was increased in response to Cy3G-induced PGC-1α upregulation. In vitro, using C2C12 myotubes, Cy3G-induced elevation of intracellular cyclic AMP levels increased PGC-1α expression via the Ca2+/calmodulin-dependent protein kinase kinase pathway. This study demonstrates that Cy3G enhances exercise performance by activating lactate metabolism through skeletal muscle PGC-1α upregulation.
Collapse
Affiliation(s)
- Toshiya Matsukawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan
| | - Hideko Motojima
- Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan
| | - Yuki Sato
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan
| | - Shinya Takahashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan
| | - Myra O Villareal
- Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan
| | - Hiroko Isoda
- Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City, Ibaraki 305-8572, Japan
| |
Collapse
|
29
|
Annaheim S, Jacob M, Krafft A, Breymann C, Rehm M, Boutellier U. RhEPO improves time to exhaustion by non-hematopoietic factors in humans. Eur J Appl Physiol 2016; 116:623-33. [PMID: 26729211 DOI: 10.1007/s00421-015-3322-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023]
Abstract
PURPOSE Erythropoietin (EPO) controls red cell volume (RCV) and plasma volume (PV). Therefore, injecting recombinant human EPO (rhEPO) increases RCV and most likely reduces PV. RhEPO-induced endurance improvements are explained by an increase in blood oxygen (O2) transport capacity, which increases maximum O2 uptake ([Formula: see text]O2max). However, it is debatable whether increased RCV or [Formula: see text]O2max are the main reasons for the prolongation of the time to exhaustion (t lim) at submaximal intensity. We hypothesized that high rhEPO doses in particular contracts PV such that the improvement in t lim is not as strong as at lower doses while [Formula: see text]O2max increases in a dose-dependent manner. METHODS We investigated the effects of different doses of rhEPO given during 4 weeks [placebo (P), low (L), medium (M), and high (H) dosage] on RCV, PV, [Formula: see text]O2max and t lim in 40 subjects. RESULTS While RCV increased in a dose-dependent manner, PV decreased independent of the rhEPO dose. The improvements in t lim (P +21.4 ± 23.8%; L +16.7 ± 29.8%; M +44.8 ± 62.7%; H +69.7 ± 73.4%) depended on the applied doses (R (2) = 0.89) and clearly exceeded the dose-independent [Formula: see text]O2max increases (P -1.7 ± 3.2%; L +2.6 ± 6.8%; M +5.7 ± 5.1 %; H +5.6 ± 4.3 %) after 4 weeks of rhEPO administration. Furthermore, the absolute t lim was not related (R (2) ≈ 0) to RCV or to [Formula: see text]O2max. CONCLUSIONS We conclude that a contraction in PV does not negatively affect t lim and that rhEPO improves t lim by additional, non-hematopoietic factors.
Collapse
Affiliation(s)
- Simon Annaheim
- Exercise Physiology, Institute of Human Movement Sciences, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.,Laboratory for Protection and Physiology, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.,Exercise Physiology, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Jacob
- Department of Anaesthesiology, University Hospital, Nussbaumstrasse 20, 80336, Munich, Germany
| | - Alexander Krafft
- Division of Obstetrics, Department of Obstetrics and Gynaecology, University Hospital, 8000, Zurich, Switzerland
| | - Christian Breymann
- Division of Obstetrics, Department of Obstetrics and Gynaecology, University Hospital, 8000, Zurich, Switzerland
| | - Markus Rehm
- Department of Anaesthesiology, University Hospital, Nussbaumstrasse 20, 80336, Munich, Germany
| | - Urs Boutellier
- Exercise Physiology, Institute of Human Movement Sciences, ETH Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Exercise Physiology, Institute of Physiology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland. .,Exercise Physiology, ETH Zurich, Rychenbergstr. 49a, 8400, Winterthur, Switzerland.
| |
Collapse
|
30
|
Vergara F, Tadich TA. Effect of the Work Performed by Tourism Carriage Horses on Physiological and Blood Parameters. J Equine Vet Sci 2015. [DOI: 10.1016/j.jevs.2014.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Acute exercise improves motor memory: Exploring potential biomarkers. Neurobiol Learn Mem 2014; 116:46-58. [DOI: 10.1016/j.nlm.2014.08.004] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 07/24/2014] [Accepted: 08/06/2014] [Indexed: 02/08/2023]
|
32
|
Warm-up strategy and high-intensity endurance performance in trained cyclists. Int J Sports Physiol Perform 2014; 10:353-60. [PMID: 25229657 DOI: 10.1123/ijspp.2014-0228] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE To evaluate the influence of warm-up exercise intensity and subsequent recovery on intense endurance performance, selected blood variables, and the oxygen-uptake (VO2) response. METHODS Twelve highly trained male cyclists (VO2max 72.4 ± 8.0 mL · min-1 · kg-1, incremental-test peak power output (iPPO) 432 ± 31 W; mean ± SD) performed 3 warm-up strategies lasting 20 min before a 4-min maximal-performance test (PT). Strategies consisted of moderate-intensity exercise (50%iPPO) followed by 6 min of recovery (MOD6) or progressive high-intensity exercise (10-100%iPPO and 2 × 20-s sprints) followed by recovery for 6 min (HI6) or 20 min (HI20). RESULTS Before PT venous pH was lower (P < .001) in HI6 (7.27 ± 0.05) than in HI20 (7.34 ± 0.04) and MOD6 (7.35 ± 0.03). At the same time, differences (P < .001) existed for venous lactate in HI6 (8.2 ± 2.0 mmol/L), HI20 (5.1 ± 1.7 mmol/L), and MOD6 (1.4 ± 0.4 mmol/L), as well as for venous bicarbonate in HI6 (19.3 ± 2.6 mmol/L), HI20 (22.6 ± 2.3 mmol/L), and MOD6 (26.0 ± 1.4 mmol/L). Mean power in PT in HI6 (402 ± 38 W) tended to be lower (P = .11) than in HI20 (409 ± 34 W) and was lower (P = .007) than in MOD6 (416 ± 32 W). Total VO2 (15-120 s in PT) was higher in HI6 (8.18 ± 0.86 L) than in HI20 (7.85 ± 0.82 L, P = .008) and MOD6 (7.90 ± 0.74 L, P = .012). CONCLUSIONS Warm-up exercise including race-pace and sprint intervals combined with short recovery can reduce subsequent performance in a 4-min maximal test in highly trained cyclists. Thus, a reduced time at high exercise intensity, a reduced intensity in the warm-up, or an extension of the recovery period after an intense warm-up is advocated.
Collapse
|
33
|
Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J. Comprehensive review on lactate metabolism in human health. Mitochondrion 2014; 17:76-100. [PMID: 24929216 DOI: 10.1016/j.mito.2014.05.007] [Citation(s) in RCA: 371] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/19/2014] [Accepted: 05/05/2014] [Indexed: 02/07/2023]
Abstract
Metabolic pathways involved in lactate metabolism are important to understand the physiological response to exercise and the pathogenesis of prevalent diseases such as diabetes and cancer. Monocarboxylate transporters are being investigated as potential targets for diagnosis and therapy of these and other disorders. Glucose and alanine produce pyruvate which is reduced to lactate by lactate dehydrogenase in the cytoplasm without oxygen consumption. Lactate removal takes place via its oxidation to pyruvate by lactate dehydrogenase. Pyruvate may be either oxidized to carbon dioxide producing energy or transformed into glucose. Pyruvate oxidation requires oxygen supply and the cooperation of pyruvate dehydrogenase, the tricarboxylic acid cycle, and the mitochondrial respiratory chain. Enzymes of the gluconeogenesis pathway sequentially convert pyruvate into glucose. Congenital or acquired deficiency on gluconeogenesis or pyruvate oxidation, including tissue hypoxia, may induce lactate accumulation. Both obese individuals and patients with diabetes show elevated plasma lactate concentration compared to healthy subjects, but there is no conclusive evidence of hyperlactatemia causing insulin resistance. Available evidence suggests an association between defective mitochondrial oxidative capacity in the pancreatic β-cells and diminished insulin secretion that may trigger the development of diabetes in patients already affected with insulin resistance. Several mutations in the mitochondrial DNA are associated with diabetes mellitus, although the pathogenesis remains unsettled. Mitochondrial DNA mutations have been detected in a number of human cancers. d-lactate is a lactate enantiomer normally formed during glycolysis. Excess d-lactate is generated in diabetes, particularly during diabetic ketoacidosis. d-lactic acidosis is typically associated with small bowel resection.
Collapse
Affiliation(s)
- M Adeva-Andany
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain.
| | - M López-Ojén
- Internal Medicine Division, Policlínica Assistens, c/Federico García, 4-planta baja, 15009 La Coruña, Spain
| | - R Funcasta-Calderón
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - E Ameneiros-Rodríguez
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - C Donapetry-García
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - M Vila-Altesor
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| | - J Rodríguez-Seijas
- Nephrology Division, Hospital General Juan Cardona, Ave. Pardo Bazán, s/n, 15406 Ferrol, La Coruña, Spain
| |
Collapse
|
34
|
Comparison of the Observed Heart Rate during Blood Lactate-based Exercise Intensity vs. Three Heart Rate-based Methods in Cardiovascular Rehabilitation. Cardiopulm Phys Ther J 2014. [DOI: 10.1097/01823246-201406000-00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Adeva M, González-Lucán M, Seco M, Donapetry C. Enzymes involved in l-lactate metabolism in humans. Mitochondrion 2013; 13:615-29. [DOI: 10.1016/j.mito.2013.08.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/29/2013] [Accepted: 08/30/2013] [Indexed: 12/20/2022]
|
36
|
Özdemir Ö, Özdem S, Özkaya YG. Melatonin administration does not alter muscle glycogen concentration during recovery from exhaustive exercise in rats. Eur J Sport Sci 2013. [DOI: 10.1080/17461391.2011.589475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
37
|
Emhoff CAW, Messonnier LA, Horning MA, Fattor JA, Carlson TJ, Brooks GA. Gluconeogenesis and hepatic glycogenolysis during exercise at the lactate threshold. J Appl Physiol (1985) 2012; 114:297-306. [PMID: 23239870 DOI: 10.1152/japplphysiol.01202.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Because the maintenance of glycemia is essential during prolonged exercise, we examined the effects of endurance training, exercise intensity, and plasma lactate concentration ([lactate]) on gluconeogenesis (GNG) and hepatic glycogenolysis (GLY) in fasted men exercising at, and just below, the lactate threshold (LT), where GNG precursor lactate availability is high. Twelve healthy men (6 untrained, 6 trained) completed 60 min of constant-load exercise at power outputs corresponding to their individual LT. Trained subjects completed two additional 60-min sessions of constant-load exercise: one at 10% below the LT workload (LT-10%), and the other with a lactate clamp (LT-10%+LC) to match the [lactate] of the LT trial. Flux rates were determined by primed continuous infusion of [6,6-(2)H(2)]glucose, [3-(13)C]lactate, and [(13)C]bicarbonate tracers during 90 min of rest and 60 min of cycling. Exercise at LT corresponded to 67.6 ± 1.3 and 74.8 ± 1.7% peak O(2) consumption in the untrained and trained subjects, respectively (P < 0.05). Relative exercise intensity was matched between the untrained group at LT and the trained group at LT-10%, and [lactate] during exercise was matched in the LT and LT-10%+LC trials via exogenous lactate infusion. Glucose kinetics (rate of appearance, rate of disposal, and metabolic clearance rate) were augmented with the lactate clamp. GNG was decreased in the trained subjects exercising at LT and LT-10% compared with the untrained subjects, but increasing [lactate] in the LT-10%+LC trial significantly increased GNG (4.4 ± 0.9 mg·kg(-1)·min(-1)) compared with its corresponding control (1.7 ± 0.4 mg·kg(-1)·min(-1), P < 0.05). Hepatic GLY was higher in the trained than untrained subjects, but not significantly different across conditions. We conclude that GNG plays an essential role in maintaining total glucose production during exercise in fasted men, regardless of training state. However, endurance training increases the ability to achieve a higher relative exercise intensity and absolute power output at the LT without a significant decrease in GNG. Furthermore, raising systemic precursor substrate availability increases GNG during exercise, but not at rest.
Collapse
Affiliation(s)
- Chi-An W Emhoff
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720-3140, USA
| | | | | | | | | | | |
Collapse
|
38
|
Baker JS, Thomas N, Cooper SM, Davies B, Robergs RA. Exercise duration and blood lactate concentrations following high intensity cycle ergometry. Res Sports Med 2012; 20:129-41. [PMID: 22458829 DOI: 10.1080/15438627.2012.634723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The aim of this study was to investigate differences in blood lactate accumulation following 10 and 20 sec of maximal cycle ergometer exercise. Body mass, stature, and age of the group was determined prior to testing (82.57 ± 5.94 kg 177 ± 5.94 cm and 21.42 ± 1.61 yrs, respectively). Eight male rugby union players performed two maximal sprints in a random fashion of 10 and 20 sec duration on a cycle ergometer. During the 10 and 20 sec trial, blood lactate levels measured were as follows 1.58 ± 0.78, 4.43 ± 1.4, and 3.5 ± 1.2 mmol.l⁻¹ vs. 1.72 ± 0.65, 6.14 ± 2, and 5.68 ± 2.22 mmol.l⁻¹, respectively. Differences were found (P < 0.01) from rest to 5 and 10 min postexercise in both groups. Differences in concentration also were found between groups at both postexercise stages (P < 0.01). The reduction in blood lactate concentrations observed between the 5 to 10 min recovery stages were 0.91 ± 0.58 mmol.l⁻¹ vs. 0.46 ± 0.48 mmol.l⁻¹ following 10 and 20 sec of maximal exercise, respectively (P > 0.05). The concentrations observed are interesting and may influence recovery time and subsequent exercise performance.
Collapse
Affiliation(s)
- Julien S Baker
- Exercise and Health Sciences, School of Science, University of the West of Scotland, Hamilton, Scotland.
| | | | | | | | | |
Collapse
|
39
|
Caruso J, Charles J, Unruh K, Giebel R, Learmonth L, Potter W. Ergogenic effects of β-alanine and carnosine: proposed future research to quantify their efficacy. Nutrients 2012; 4:585-601. [PMID: 22852051 PMCID: PMC3407982 DOI: 10.3390/nu4070585] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022] Open
Abstract
β-alanine is an amino acid that, when combined with histidine, forms the dipeptide carnosine within skeletal muscle. Carnosine and β-alanine each have multiple purposes within the human body; this review focuses on their roles as ergogenic aids to exercise performance and suggests how to best quantify the former’s merits as a buffer. Carnosine normally makes a small contribution to a cell’s total buffer capacity; yet β-alanine supplementation raises intracellular carnosine concentrations that in turn improve a muscle’s ability to buffer protons. Numerous studies assessed the impact of oral β-alanine intake on muscle carnosine levels and exercise performance. β-alanine may best act as an ergogenic aid when metabolic acidosis is the primary factor for compromised exercise performance. Blood lactate kinetics, whereby the concentration of the metabolite is measured as it enters and leaves the vasculature over time, affords the best opportunity to assess the merits of β-alanine supplementation’s ergogenic effect. Optimal β-alanine dosages have not been determined for persons of different ages, genders and nutritional/health conditions. Doses as high as 6.4 g day−1, for ten weeks have been administered to healthy subjects. Paraesthesia is to date the only side effect from oral β-alanine ingestion. The severity and duration of paraesthesia episodes are dose-dependent. It may be unwise for persons with a history of paraesthesia to ingest β-alanine. As for any supplement, caution should be exercised with β-alanine supplementation.
Collapse
Affiliation(s)
- John Caruso
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
- Author to whom correspondence should be addressed; ; Tel.: +1-918-631-2924; Fax: +1-918-631-2068
| | - Jessica Charles
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Kayla Unruh
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Rachel Giebel
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Lexis Learmonth
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - William Potter
- Department of Chemistry & Biochemistry, The University of Tulsa, Tulsa, OK 74104, USA;
| |
Collapse
|
40
|
L(+) and D(-) lactate are increased in plasma and urine samples of type 2 diabetes as measured by a simultaneous quantification of L(+) and D(-) lactate by reversed-phase liquid chromatography tandem mass spectrometry. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:234812. [PMID: 22474418 PMCID: PMC3310144 DOI: 10.1155/2012/234812] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 12/22/2022]
Abstract
BACKGROUND Plasma and urinary levels of D-lactate have been linked to the presence of diabetes. Previously developed techniques have shown several limitations to further evaluate D-lactate as a biomarker for this condition. METHODS D- and L-lactate were quantified using ultraperformance liquid chromatography tandem mass spectrometry with labelled internal standard. Samples were derivatized with diacetyl-L-tartaric anhydride and separated on a C(18)-reversed phase column. D- and L-lactate were analysed in plasma and urine of controls, patients with inflammatory bowel disease (IBD), and patients with type 2 diabetes (T2DM). RESULTS Quantitative analysis of D- and L-lactate was achieved successfully. Calibration curves were linear (r(2) > 0.99) over the physiological and pathophysiological ranges. Recoveries for urine and plasma were between 96% and 113%. Inter- and intra-assay variations were between 2% and 9%. The limits of detection of D-lactate and L-lactate in plasma were 0.7 μmol/L and 0.2 μmol/L, respectively. The limits of detection of D-lactate and L-lactate in urine were 8.1 nmol/mmol creatinine and 4.4 nmol/mmol creatinine, respectively. Plasma and urinary levels of D- and L-lactate were increased in patients with IBD and T2DM as compared with controls. CONCLUSION The presented method proved to be suitable for the quantification of D- and L-lactate and opens the possibility to explore the use of D-lactate as a biomarker.
Collapse
|
41
|
Broich H, Sperlich B, Buitrago S, Mathes S, Mester J. Performance assessment in elite football players: field level test versus spiroergometry. JOURNAL OF HUMAN SPORT AND EXERCISE 2012. [DOI: 10.4100/jhse.2012.71.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
42
|
Saxena S, Shukla D, Saxena S, Khan YA, Singh M, Bansal A, Sairam M, Jain SK. Hypoxia preconditioning by cobalt chloride enhances endurance performance and protects skeletal muscles from exercise-induced oxidative damage in rats. Acta Physiol (Oxf) 2010; 200:249-63. [PMID: 20384596 DOI: 10.1111/j.1748-1716.2010.02136.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM Training under hypoxia has several advantages over normoxic training in terms of enhancing the physical performance. Therefore, we tested the protective effect of hypoxia preconditioning by hypoxia mimetic cobalt chloride against exercise-induced oxidative damage in the skeletal muscles and improvement of physical performance. METHOD Male Sprague-Dawley rats were randomly divided into four groups (n=8), namely control, cobalt-supplemented, training and cobalt with training. The red gastrocnemius muscle was examined for all measurements, viz. free radical generation, lipid peroxidation, muscle damage and antioxidative capacity. RESULTS Hypoxic preconditioning with cobalt along with training significantly increased physical performance (33%, P<0.01) in rats compared with training-only rats. Cobalt supplementation activated cellular oxygen sensing system in rat skeletal muscle. It also protected against training-induced oxidative damage as observed by an increase in the GSH/GSSG ratio (36%, P<0.001; 28%, P<0.01 respectively) and reduced lipid peroxidation (15%, P<0.01; 31%, P<0.01 respectively) in both trained and untrained rats compared with their respective controls. Cobalt supplementation along with training enhanced the expression of antioxidant proteins haem oxygenase-1 (HO-1; 1.2-fold, P<0.05) and metallothionein (MT; 4.8-fold, P<0.001) compared with training only. A marked reduction was observed in exercise-induced muscle fibre damage as indicated by decreased necrotic muscle fibre, decreased lipofuscin content of muscle and plasma creatine kinase level (16%, P<0.01) in rats preconditioned with cobalt. CONCLUSION Our study provides strong evidence that hypoxic preconditioning with cobalt chloride enhances physical performance and protects muscle from exercise-induced oxidative damage via GSH, HO-1 and MT-mediated antioxidative capacity.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Cell Hypoxia
- Cobalt/pharmacology
- Creatine Kinase, MM Form/blood
- Cytoprotection
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Glutathione/metabolism
- Heme Oxygenase (Decyclizing)/metabolism
- Lactic Acid/blood
- Lipid Peroxidation/drug effects
- Lipofuscin/metabolism
- Male
- Metallothionein/metabolism
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/metabolism
- Mitochondrial Proteins/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Diseases/etiology
- Muscular Diseases/metabolism
- Muscular Diseases/pathology
- Muscular Diseases/physiopathology
- Muscular Diseases/prevention & control
- Necrosis
- Oxidative Stress/drug effects
- Physical Endurance/drug effects
- Physical Exertion
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- S Saxena
- Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Performance and physiological responses to repeated-sprint exercise: a novel multiple-set approach. Eur J Appl Physiol 2010; 111:669-78. [DOI: 10.1007/s00421-010-1687-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2010] [Indexed: 10/18/2022]
|
44
|
Tolfrey K, Hansen SA, Dutton K, McKee T, Jones AM. Physiological correlates of 2-mile run performance as determined using a novel on-demand treadmill. Appl Physiol Nutr Metab 2009; 34:763-72. [PMID: 19767813 DOI: 10.1139/h09-069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The purpose of this study was to assess the reproducibility of an on-demand motorised treadmill to measure 2-mile (3.2 km) race performance and to examine the physiological variables that best predict this free-running performance in active men. Twelve men (mean (SD): age, 28 (9) years; stature, 1.79 (0.05) m; body mass, 72 (9) kg) completed the study in which maximum oxygen uptake (VO2 max), running economy, and running speedin the abstract section. They appear in the rest of the paper.), running economy, and running speed at VO2 max (vVO2 max), lactate threshold (vLT), and 4 mmol.L-1 fixed blood lactate concentration (v4) were measured. Subsequently, the maximal lactate steady state (MLSS) was identified using a series of 30-min treadmill runs. Finally, each participant completed a 2-mile running performance trial on 2 separate occasions, using an on-demand treadmill that adjusts belt speed according to the participant's position on the moving belt. The average 2-mile run speed was 15.7 (SD, 1.9) km.h-1, with small individual differences between repeat-performance trials (intraclass correlation coefficient = 0.99, 95% CI 0.953 to 0.996; standard error of measurement as coefficient of variation = 1.5%, 95% CI 1.0% to 2.5%). Bivariate regression analyses identified VO2 max, vVO2 max, VO2 (mL.kg-1.min-1) at MLSS, vLT, v4, and velocity at MLSS (vMLSS) as the strongest individual predictor variables (r2 = 0.69 to 0.87; standard error of the estimate = 1.08 to 0.72 km.h-1) for 2-mile running performance. The vLT and vMLSS explained 85% and 87% of the variance in running performance, respectively, suggesting that there is considerable shared variance between these parameters. In conclusion, the on-demand treadmill system provided a reliable measure of distance running performance. Both vLT and vMLSS were strong predictors of 2-mile running performance, with vMLSS explaining marginally more of the variance.
Collapse
Affiliation(s)
- Keith Tolfrey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| | | | | | | | | |
Collapse
|
45
|
Wells GD, Norris SR. Assessment of physiological capacities of elite athletes & respiratory limitations to exercise performance. Paediatr Respir Rev 2009; 10:91-8. [PMID: 19651378 DOI: 10.1016/j.prrv.2009.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Physiological assessment of athletes is an important process for the characterization of the athlete, monitoring progress and the trained state or 'level of preparedness' of an athlete, as well as aiding the process of training program design. Interestingly, the majority of physiological assessments performed on athletes can also be performed on children with disease, and therefore clinicians can learn a great deal about physiology and assessment of patient populations through the examination of the physiological responses of elite athletes. This review describes typical physiological responses of elite athletes to tests of aerobic and anaerobic metabolism and provides a specific focus upon respiratory limitations to exercise performance. Typical responses of elite athletes are described to provide the scientist and clinician with a perspective of the upper range of physiological capacities of elite athletes.
Collapse
Affiliation(s)
- Greg D Wells
- Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8.
| | | |
Collapse
|
46
|
Rainoldi A, Gazzoni M, Merletti R, Minetto MA. Mechanical and EMG responses of the vastus lateralis and changes in biochemical variables to isokinetic exercise in endurance and power athletes. J Sports Sci 2008; 26:321-31. [PMID: 18074299 DOI: 10.1080/02640410701474499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Twelve endurance athletes and six power athletes performed fatiguing isokinetic knee flexions/extensions. Isokinetic torque was recorded during the exercise. Isometric torque, cortisol and lactate responses, electromyographic (EMG) mean power frequency, average rectified value, and conduction velocity were analysed before and after the isokinetic exercise to determine correlations between electrophysiological variables and mechanical performances and/or blood concentrations of biomarkers in the two groups of athletes. The EMG variables were estimated from signals recorded from the vastus lateralis in both voluntary and electrically elicited isometric contractions. Power athletes recorded higher values than endurance athletes for the following variables: pre-exercise isometric maximal voluntary contraction (MVC), isokinetic MVC, rate of mechanical fatigue during isokinetic contractions, pre - post exercise variations and recovery times of conduction velocity and mean power frequency, and lactate concentrations. Moreover, conduction velocity overshooting was observed in endurance athletes during the recovery phase after exercise. The correlation analyses showed that the higher the rate of mechanical fatigue, the higher the lactate production and the reduction in conduction velocity due to the exercise.
Collapse
Affiliation(s)
- Alberto Rainoldi
- Motor Science Research Centre, SUISM, University of Turin, Turin, Italy.
| | | | | | | |
Collapse
|
47
|
Mazzeo RS. Comments on point:counterpoint: "the lactate paradox does/does not occur during exercise at high altitude". J Appl Physiol (1985) 2007; 102:2403; author reply 2409-10. [PMID: 17551107 DOI: 10.1152/japplphysiol.00222.2007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Abstract
The metabolic response to resistance exercise, in particular lactic acid or lactate, has a marked influence upon the muscular environment, which may enhance the training stimulus (e.g. motor unit activation, hormones or muscle damage) and thereby contribute to strength and power adaptation. Hypertrophy schemes have resulted in greater lactate responses (%) than neuronal and dynamic power schemes, suggesting possible metabolic-mediated changes in muscle growth. Factors such as age, sex, training experience and nutrition may also influence the lactate responses to resistance exercise and thereafter, muscular adaptation. Although the importance of the mechanical and hormonal stimulus to strength and power adaptation is well recognised, the contribution of the metabolic stimulus is largely unknown. Relatively few studies for example, have examined metabolic change across neuronal and dynamic power schemes, and not withstanding the fact that those mechanisms underpinning muscular adaptation, in relation to the metabolic stimulus, remain highly speculative. Inconsistent findings and methodological limitations within research (e.g. programme design, sampling period, number of samples) make interpretation further difficult. We contend that strength and power research needs to investigate those metabolic mechanisms likely to contribute to weight-training adaptation. Further research is also needed to examine the metabolic responses to different loading schemes, as well as interactions across age, sex and training status, so our understanding of how to optimise strength and power development is improved.
Collapse
Affiliation(s)
- Blair Crewther
- Institute of Sport and Recreation Research New Zealand, Division of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand.
| | | | | |
Collapse
|
49
|
Green JM, McLester JR, Crews TR, Wickwire PJ, Pritchett RC, Redden A. RPE-lactate dissociation during extended cycling. Eur J Appl Physiol 2005; 94:145-50. [PMID: 15702340 DOI: 10.1007/s00421-004-1311-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 12/10/2004] [Indexed: 10/25/2022]
Abstract
This study examined the association of blood lactate concentration [La] and heart rate (HR) with ratings of perceived exertion (RPE) during 60 min of steady workload cycling. Physically active college-aged subjects (n = 14) completed an exhaustive cycling test to determine VO(2) (peak) and lactate threshold (2.5 mmol l(-1)). Subjects then cycled for 60 min at the power output associated with 2.5 mmol l(-1) [LA]. HR, [LA], RPE-overall, RPE-legs and RPE-chest were recorded at 5, 10, 20, 30, 40, 50 and 60 min. The 60-min trials were below maximal lactate steady state, with peak lactate concentration occurring at 20 min after which [LA] declined. The 20-min point was therefore considered pivotal, and data at other points were compared to this time point. Repeated measures ANOVA with simple contrasts (alpha = 0.05) showed (a) [LA] at 40, 50 and 60 min was significantly lower than at 20 min, (b) RPE-O and RPE-L were significantly greater at 30, 40, 50 and 60 min than at 20 min, (c) RPE-C was significantly greater at 40, 50 and 60 min than at 20 min, and (d) HR was significantly greater at 30, 40, 50 and 60 min than at 20 min. Significant (P < 0.05) positive correlations were found between HR and RPE-O (r = 0.43), RPE-L (r = 0.48) and RPE-C (r = 0.41) while correlations for [LA]-HR (r = 0.13) and [LA]-RPE (RPE-O: r = -0.11, RPE-L: r = 0.01, RPE-C: r = -0.06) were weak and non-significant. There is a dissociation of RPE and [LA] owing to RPE drift and lactate kinetics in longer duration sub-maximal exercise. Apparently, [LA] is not a strong RPE mediator during extended cycling.
Collapse
Affiliation(s)
- J M Green
- Department of Kinesiology, University of Alabama, Tuscaloosa, 35487-0312, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Binzoni T. Saturation of the Lactate Clearance Mechanisms Different from the “Lactate Shuttle” Determines the Anaerobic Threshold: Prediction from the Bioenergetic Model. ACTA ACUST UNITED AC 2005; 24:175-82. [PMID: 15840950 DOI: 10.2114/jpa.24.175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
It is demonstrated, that the bioenergetic model combined with the mathematical constraints determined by the experimental knowledge of the aerobic metabolism and the Lohmann reaction dictates the exact lactate (La)-time relationship during exercise. The theory predicts that La is necessarily produced (above the resting baseline), even during extremely low work loads, where the metabolism was usually considered in the past to be "pure" aerobic. The La rate of production increases linearly as a function of the work load. The anaerobic threshold is strictly determined by the saturation of the La clearance mechanisms of the body different from the "La shuttle" and not by the involvement of a sudden increased La production at the cellular level. These results imply that the half time of the PCr breakdown kinetics at the onset of a constant load exercise can be expressed as a function of the onset speed of the aerobic and of the anaerobic metabolism, even in the case of a very low mechanical power. The PCr half-time does not depend on the workload and represents a physiological invariant. The bioenergetic model was created during a long historical period, when it was believed that the La production was not present at all for very low exercise levels but, actually, the bioenergetic model predicts exactly the opposite result!
Collapse
Affiliation(s)
- Tiziano Binzoni
- Department of Radiology, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|