1
|
Sun W, Wu W, Fang X, Ge X, Zhang Y, Han J, Guo X, Zhou L, Yang H. Disruption of pulmonary microvascular endothelial barrier by dysregulated claudin-8 and claudin-4: uncovered mechanisms in porcine reproductive and respiratory syndrome virus infection. Cell Mol Life Sci 2024; 81:240. [PMID: 38806818 PMCID: PMC11133251 DOI: 10.1007/s00018-024-05282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
The pulmonary endothelium is a dynamic and metabolically active monolayer of endothelial cells. Dysfunction of the pulmonary endothelial barrier plays a crucial role in the acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), frequently observed in the context of viral pneumonia. Dysregulation of tight junction proteins can lead to the disruption of the endothelial barrier and subsequent leakage. Here, the highly pathogenic porcine reproductive and respiratory syndrome virus (HP-PRRSV) served as an ideal model for studying ALI and ARDS. The alveolar lavage fluid of pigs infected with HP-PRRSV, and the supernatant of HP-PRRSV infected pulmonary alveolar macrophages were respectively collected to treat the pulmonary microvascular endothelial cells (PMVECs) in Transwell culture system to explore the mechanism of pulmonary microvascular endothelial barrier leakage caused by viral infection. Cytokine screening, addition and blocking experiments revealed that proinflammatory cytokines IL-1β and TNF-α, secreted by HP-PRRSV-infected macrophages, disrupt the pulmonary microvascular endothelial barrier by downregulating claudin-8 and upregulating claudin-4 synergistically. Additionally, three transcription factors interleukin enhancer binding factor 2 (ILF2), general transcription factor III C subunit 2 (GTF3C2), and thyroid hormone receptor-associated protein 3 (THRAP3), were identified to accumulate in the nucleus of PMVECs, regulating the transcription of claudin-8 and claudin-4. Meanwhile, the upregulation of ssc-miR-185 was found to suppress claudin-8 expression via post-transcriptional inhibition. This study not only reveals the molecular mechanisms by which HP-PRRSV infection causes endothelial barrier leakage in acute lung injury, but also provides novel insights into the function and regulation of tight junctions in vascular homeostasis.
Collapse
Affiliation(s)
- Weifeng Sun
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- China Institute of Veterinary Drug Control, Beijing, 100081, People's Republic of China
| | - Weixin Wu
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinyu Fang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
2
|
Shao M, Yan Y, Zhu F, Yang X, Qi Q, Yang F, Hao T, Lin Z, He P, Zhou Y, Tang W, He S, Zuo J. Artemisinin analog SM934 alleviates epithelial barrier dysfunction via inhibiting apoptosis and caspase-1-mediated pyroptosis in experimental colitis. Front Pharmacol 2022; 13:849014. [PMID: 36120344 PMCID: PMC9477143 DOI: 10.3389/fphar.2022.849014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Intestinal barrier disruption due to the intestinal epithelial cells’ (IECs) death is one of the critical pathological features of inflammatory bowel diseases (IBDs). SM934, an artemisinin analog, has previously been proven to ameliorate colitis induced by dextran sulfate sodium (DSS) in mice by suppressing inflammation response. In this study, we investigated the protective effects of SM934 on the epithelial barrier and the underlying mechanism in trinitrobenzene sulfonic acid (TNBS)-induced colitis mice. We demonstrated that SM934 restored the body weight and colon length, and improved the intestine pathology. Furthermore, SM934 treatment preserved the intestinal barrier function via decreasing the intestinal permeability, maintaining epithelial tight junction (TJ) protein expressions, and preventing apoptosis of epithelial cells, which were observed both in the colon tissue and the tumor necrosis factor-α (TNF-α)-induced human colonic epithelial cell line HT-29. Specifically, SM934 reduced the pyroptosis of IECs exposed to pathogenic signaling and inhibited pyroptosis-related factors such as NOD-like receptor family pyrin domain containing 3 (NLRP3), adapter apoptosis-associated speck-like protein (ASC), cysteine protease-1 (caspase-1), gasdermin (GSDMD), interleukin-18 (IL-18), and high-mobility group box 1 (HMGB1) both in colon tissue and lipopolysaccharide (LPS) and adenosine triphosphate (ATP) co-stimulated HT-29 cells in vitro. Moreover, SM934 interdicted pyroptosis via blocking the transduction of mitogen-activated protein kinase (MAPK) and nuclear factor-kB (NF-kB) signaling pathways. In conclusion, SM934 protected TNBS-induced colitis against intestinal barrier disruption by inhibiting the apoptosis and pyroptosis of epithelial cells via the NLRP3/NF-κB/MAPK signal axis, and intestinal barrier protection in company with an anti-inflammatory strategy might yield greater benefits in IBD treatment.
Collapse
Affiliation(s)
- Meijuan Shao
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuxi Yan
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fenghua Zhu
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoqian Yang
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Qing Qi
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fangming Yang
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tingting Hao
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zemin Lin
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Peilan He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhou
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shijun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Shijun He, ; Jianping Zuo,
| | - Jianping Zuo
- Laboratory of Immunology and Virology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Shijun He, ; Jianping Zuo,
| |
Collapse
|
3
|
Bowman DM, Kaji I, Goldenring JR. Altered MYO5B Function Underlies Microvillus Inclusion Disease: Opportunities for Intervention at a Cellular Level. Cell Mol Gastroenterol Hepatol 2022; 14:553-565. [PMID: 35660026 PMCID: PMC9304615 DOI: 10.1016/j.jcmgh.2022.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Accepted: 04/29/2022] [Indexed: 12/10/2022]
Abstract
Microvillus inclusion disease (MVID) is a congenital diarrheal disorder resulting in life-threatening secretory diarrhea in newborns. Inactivating and nonsense mutations in myosin Vb (MYO5B) have been identified in MVID patients. Work using patient tissues, cell lines, mice, and pigs has led to critical insights into the pathology of MVID and a better understanding of both apical trafficking in intestinal enterocytes and intestinal stem cell differentiation. These studies have demonstrated that loss of MYO5B or inactivating mutations lead to loss of apical sodium and water transporters, without loss of apical CFTR, accounting for the major pathology of the disease. In addition, loss of MYO5B expression induces the formation of microvillus inclusions through apical bulk endocytosis that utilizes dynamin and PACSIN2 and recruits tight junction proteins to the sites of bulk endosome formation. Importantly, formation of microvillus inclusions is not required for the induction of diarrhea. Recent investigations have demonstrated that administration of lysophosphatidic acid (LPA) can partially reestablish apical ion transporters in enterocytes of MYO5B KO mice. In addition, further studies have shown that MYO5B loss induces an imbalance in Wnt/Notch signaling pathways that can lead to alterations in enterocyte maturation and tuft cell lineage differentiation. Inhibition of Notch signaling leads to improvements in those cell differentiation deficits. These studies demonstrate that directed strategies through LPA receptor activation and Notch inhibition can bypass the inhibitory effects of MYO5B loss. Thus, effective strategies may be successful in MVID patients and other congenital diarrhea syndromes to reestablish proper apical membrane absorption of sodium and water in enterocytes and ameliorate life-threatening congenital diarrhea.
Collapse
Affiliation(s)
- Deanna M Bowman
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Izumi Kaji
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - James R Goldenring
- Section of Surgical Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee; Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee; Nashville VA Medical Center, Nashville, Tennessee.
| |
Collapse
|
4
|
Wu MH, Padilla-Rodriguez M, Blum I, Camenisch A, Figliuolo da Paz V, Ollerton M, Muller J, Momtaz S, Mitchell SAT, Kiela P, Thorne C, Wilson JM, Cox CM. Proliferation in the developing intestine is regulated by the endosomal protein Endotubin. Dev Biol 2021; 480:50-61. [PMID: 34411593 DOI: 10.1016/j.ydbio.2021.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 11/19/2022]
Abstract
During postnatal intestinal development, the intestinal epithelium is highly proliferative, and this proliferation is regulated by signaling in the intervillous and crypt regions. This signaling is primarily mediated by Wnt, and requires membrane trafficking. However, the mechanisms by which membrane trafficking regulates signaling during this developmental phase are largely unknown. Endotubin (EDTB, MAMDC4) is an endosomal protein that is highly expressed in the apical endocytic complex (AEC) of villus enterocytes during fetal and postnatal development, and knockout of EDTB results in defective formation of the AEC and giant lysosome. Further, knockout of EDTB in cell lines results in decreased proliferation. However, the role of EDTB in proliferation during the development of the intestine is unknown. Using Villin-CreERT2 in EDTBfl/fl mice, we deleted EDTB in the intestine in the early postnatal period, or in enteroids in vitro after isolation of intervillous cells. Loss of EDTB results in decreased proliferation in the developing intestinal epithelium and decreased ability to form enteroids. EDTB is present in cells that contain the stem cell markers LGR5 and OLFM4, indicating that it is expressed in the proliferative compartment. Further, using immunoblot analysis and TCF/LEF-GFP mice as a reporter of Wnt activity, we find that knockout of EDTB results in decreased Wnt signaling. Our results show that EDTB is essential for normal proliferation during the early stages of intestinal development and suggest that this effect is through modulation of Wnt signaling.
Collapse
Affiliation(s)
- Meng-Han Wu
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | | | - Isabella Blum
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | - Abigail Camenisch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | | | | | - John Muller
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | - Samina Momtaz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | - Stefanie A T Mitchell
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| | - Pawel Kiela
- Departments of Pediatrics and Immunobiology, University of Arizona, Tucson, AZ, USA; Steele Children's Research Center, University of Arizona, Tucson, AZ, USA.
| | - Curtis Thorne
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Bio5 Institute, University of Arizona, Tucson, AZ, USA; Steele Children's Research Center, University of Arizona, Tucson, AZ, USA.
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA; The University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA; Bio5 Institute, University of Arizona, Tucson, AZ, USA.
| | - Christopher M Cox
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
5
|
Recruitment of Polarity Complexes and Tight Junction Proteins to the Site of Apical Bulk Endocytosis. Cell Mol Gastroenterol Hepatol 2021; 12:59-80. [PMID: 33548596 PMCID: PMC8082271 DOI: 10.1016/j.jcmgh.2021.01.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS The molecular motor, Myosin Vb (MYO5B), is well documented for its role in trafficking cargo to the apical membrane of epithelial cells. Despite its involvement in regulating apical proteins, the role of MYO5B in cell polarity is less clear. Inactivating mutations in MYO5B result in microvillus inclusion disease (MVID), a disorder characterized by loss of key apical transporters and the presence of intracellular inclusions in enterocytes. We previously identified that inclusions in Myo5b knockout (KO) mice form from invagination of the apical brush border via apical bulk endocytosis. Herein, we sought to elucidate the role of polarity complexes and tight junction proteins during the formation of inclusions. METHODS Intestinal tissue from neonatal control and Myo5b KO littermates was analyzed by immunofluorescence to determine the localization of polarity complexes and tight junction proteins. RESULTS Proteins that make up the apical polarity complexes-Crumbs3 and Pars complexes-were associated with inclusions in Myo5b KO mice. In addition, tight junction proteins were observed to be concentrated over inclusions that were present at the apical membrane of Myo5b-deficient enterocytes in vivo and in vitro. Our mouse findings are complemented by immunostaining in a large animal swine model of MVID genetically engineered to express a human MVID-associated mutation that shows an accumulation of Claudin-2 over forming inclusions. The findings from our swine model of MVID suggest that a similar mechanism of tight junction accumulation occurs in patients with MVID. CONCLUSIONS These data show that apical bulk endocytosis involves the altered localization of apical polarity proteins and tight junction proteins after loss of Myo5b.
Collapse
|
6
|
Verghese S, Moberg K. Roles of Membrane and Vesicular Traffic in Regulation of the Hippo Pathway. Front Cell Dev Biol 2020; 7:384. [PMID: 32010696 PMCID: PMC6971369 DOI: 10.3389/fcell.2019.00384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
The Hippo pathway is a well conserved signaling cascade that modulates cell proliferation and survival in response to external cues such as cell:cell contact, injury, and nutritional status. Models of the Hippo pathway have evolved from a series of genetic interactions defined in the fruit fly Drosophila melanogaster into a complex series of biochemical mechanisms in which transmembrane and cytoskeletal proteins modulate cytoplasmic phosphatase and kinase activities that converge on the serine/threonine kinase Warts (Wts) to regulate nuclear entry of the co-activator protein Yorkie (Yki; vertebrate Yap1). This pathway is well conserved in human cells and broadly implicated in cancer. Progress in understanding biochemical events within the Hippo pathway highlights a need for improved understanding of the cell biological contexts in which these molecular interactions occur. A significant body of data linking Hippo signaling to membranes and proteins involved in intracellular membrane trafficking raise the possibility that some molecular regulatory events occur on the cytoplasmic face of vesicles. In Drosophila, a Yki-vesicle link was solidified by discoveries that cytoplasmic Yki concentrates at late-endosomes and physically interacts with two endosomal adaptor proteins, Myopic (Mop) and Leash. These two proteins are required for Yki to transit the endolysosomal pathway and be turned over in lysosomes. Molecules involved in recruiting and tethering Yki along this endosomal route are not defined but are predicted to play key roles in regulating Yki levels and thus Hippo-responsiveness of cells. As Wts is recruited to the apical membrane by upstream Hippo components, endosomal internalization could also affect complexes involved in Yki phosphorylation events that alter nucleocytoplasmic shuttling. Recent work has revealed an unexpected, non-transcriptional role of membrane-associated Yki in triggering actinomyosin contractility via the myosin-regulatory light chain Spaghetti squash (Sqh). How Yki interacts with the membrane and controls Sqh is unclear, but this mechanism represents a novel regulatory mechanism based on induced localization of Yki to a specific membrane compartment. These and other data will be discussed as we review data linking Yki to membrane and vesicular traffic in development and homeostasis and speculate on missing elements of these membrane-linked Yki regulatory mechanisms.
Collapse
Affiliation(s)
- Shilpi Verghese
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Ken Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
7
|
Abstract
The term blood-bile barrier (BBlB) refers to the physical structure within a hepatic lobule that compartmentalizes and hence segregates sinusoidal blood from canalicular bile. Thus, this barrier provides physiological protection in the liver, shielding the hepatocytes from bile toxicity and restricting the mixing of blood and bile. BBlB is primarily composed of tight junctions; however, adherens junction, desmosomes, gap junctions, and hepatocyte bile transporters also contribute to the barrier function of the BBlB. Recent findings also suggest that disruption of BBlB is associated with major hepatic diseases characterized by cholestasis and aberrations in BBlB thus may be a hallmark of many chronic liver diseases. Several molecular signaling pathways have now been shown to play a role in regulating the structure and function and eventually contribute to regulation of the BBlB function within the liver. In this review, we will discuss the structure and function of the BBlB, summarize the methods to assess the integrity and function of BBlB, discuss the role of BBlB in liver pathophysiology, and finally, discuss the mechanisms of BBlB regulation. Collectively, this review will demonstrate the significance of the BBlB in both liver homeostasis and hepatic dysfunction.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan Pal Monga
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
8
|
Skrzypek T, Szymańczyk S, Ferenc K, Kazimierczak W, Szczepaniak K, Zabielski R. The contribution of vacuolated foetal-type enterocytes in the process of maturation of the small intestine in piglets. Invited review. JOURNAL OF ANIMAL AND FEED SCIENCES 2018. [DOI: 10.22358/jafs/94167/2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Zhang X, Gao N. Formation of Giant Lysosome in Neonatal Ileal Enterocytes Requires Endotubin. Cell Mol Gastroenterol Hepatol 2017; 5:167-168. [PMID: 29693046 PMCID: PMC5904043 DOI: 10.1016/j.jcmgh.2017.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
| | - Nan Gao
- Correspondence Address correspondence to: Nan Gao, PhD, Department of Biological Sciences, Rutgers University, 195 University Avenue, Boyden Hall, Suite 206, Newark, New Jersey 07102.
| |
Collapse
|
10
|
Cox CM, Lu R, Salcin K, Wilson JM. The Endosomal Protein Endotubin Is Required for Enterocyte Differentiation. Cell Mol Gastroenterol Hepatol 2017; 5:145-156. [PMID: 29322087 PMCID: PMC5756061 DOI: 10.1016/j.jcmgh.2017.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS During late embryonic development and through weaning, enterocytes of the ileum are highly endocytic. Defects in endocytosis and trafficking are implicated in neonatal disease, however, the mechanisms regulating trafficking during the developmental period are incompletely understood. The apical endosomal protein endotubin (EDTB) is highly expressed in the late embryonic and neonatal ileum. In epithelial cells in vitro, EDTB regulates both trafficking of tight junction proteins and proliferation through modulation of YAP activity. However, EDTB function during the endocytic stage of development of the intestine is unknown. METHODS By using Villin-CreERT2, we induced knockout of EDTB during late gestation and analyzed the impact on endocytic compartments and enterocyte structure in neonates using immunofluorescence, immunocytochemistry, and transmission electron microscopy. RESULTS Deletion of the apical endosomal protein EDTB in the small intestine during development impairs enterocyte morphogenesis, including loss of the apical endocytic complex, defective formation of the lysosomal compartment, and some cells had large microvillus-rich inclusions similar to those observed in microvillus inclusion disease. There also was a decrease in apical endocytosis and mislocalization of proteins involved in apical trafficking. CONCLUSIONS Our results show that EDTB-mediated trafficking within the epithelial cells of the developing ileum is important for maintenance of endocytic compartments and enterocyte integrity during early stages of gut development.
Collapse
Key Words
- AEC, apical endocytic complex
- AP, alkaline phosphatase
- CRISPR/Cas9, clustered regularly interspaced short palindromic repeats/cas9 endonuclease
- EDTB, endotubin
- EEA1, early endosomal antigen 1
- Endosomes
- Endotubin
- G, guide
- GFP, green fluorescent protein
- GTPase, guanosine triphosphatase
- KO, knockout
- LAMP1, lysosome-associated membrane protein 1
- MAMDC4, MAM domain containing 4
- MVID, microvillus inclusion disease
- P, postnatal day
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- Rab
- SDS, sodium dodecyl sulfate
- TBST, tris-buffered saline with 0.1% tween-20
- TEM, transmission electron microscopic
- TJ, tight junction
- Tight Junction
- Trafficking
Collapse
Affiliation(s)
- Christopher M. Cox
- Department of Cell and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Ruifeng Lu
- Department of Cell and Molecular Medicine, University of Arizona, Tucson, Arizona,Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida
| | - Kaan Salcin
- Department of Cell and Molecular Medicine, University of Arizona, Tucson, Arizona,McGill University, Montreal, Canada
| | - Jean M. Wilson
- Department of Cell and Molecular Medicine, University of Arizona, Tucson, Arizona,Correspondence Address correspondence to: Jean M. Wilson, PhD, Cell Biology and Anatomy, University of Arizona, PO Box 245044, Tucson, Arizona 85724. fax: (520) 626-2097.
| |
Collapse
|
11
|
Pasternak AJ, Hamonic GM, Van Kessel A, Wilson HL. Postnatal regulation of MAMDC4 in the porcine intestinal epithelium is influenced by bacterial colonization. Physiol Rep 2017; 4:4/21/e13018. [PMID: 27821716 PMCID: PMC5112496 DOI: 10.14814/phy2.13018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022] Open
Abstract
The MAM domain‐containing 4 (MAMDC4) protein is associated with the unique endocytotic mechanism observed in the intestine of mammals during the immediate postnatal period. Transcriptional expression of MAMDC4 was substantially upregulated at birth in both the piglet jejunum and ileum and its expression decreases after birth. The protein was found localized specifically to the apical region of the luminal epithelium, however, MAMDC4 protein expression was lost at day 10 and 15 in the jejunum and ileum, respectively, and was not associated with “fetal” enterocyte replacement. Although spatial variation in the subcellular localization of Claudin 1 (CLDN1) was noted at day 3, the loss of MAMDC4 at later stages of development did not appear to have any effect on the tight junction structure. Germ‐free (GF) piglets and piglets whose gastrointestinal flora consists exclusively of Escherichia coli (EC) or Lactobacillus fermentum (LF) maintained MAMDC4 protein expression to 14 days of age in distal regions of the small intestine whereas those with conventionalized intestinal flora (CV) showed no MAMDC4 protein at this age. MAMDC4 protein expression was most pronounced in the LF and GF colonized piglets which showed staining in the epithelial cells at 75% and 95% of the length of the small intestine, respectively, which matched that of the newborn. In contrast, EC animals showed only a low abundance at these regions as well as a discontinuous staining pattern. Collectively these results suggest that maturation of MAMDC4 expression in the porcine epithelium occurs more rapidly than what is reported in previously studied rodent species. Furthermore, intestinal bacterial colonization is a major regulator of MAMDC4 in a manner specific to bacterial species and independent of enterocyte turnover.
Collapse
Affiliation(s)
- Alex J Pasternak
- Vaccine and Infectious Disease Organization, International Vaccine Centre (VIDO-InterVac) University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Glenn M Hamonic
- Vaccine and Infectious Disease Organization, International Vaccine Centre (VIDO-InterVac) University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Andrew Van Kessel
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Heather L Wilson
- Vaccine and Infectious Disease Organization, International Vaccine Centre (VIDO-InterVac) University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
12
|
Abstract
Cells lining the proximal tubule (PT) of the kidney are highly specialized for apical endocytosis of filtered proteins and small bioactive molecules from the glomerular ultrafiltrate to maintain essentially protein-free urine. Compromise of this pathway results in low molecular weight (LMW) proteinuria that can progress to end-stage kidney disease. This review describes our current understanding of the endocytic pathway and the multiligand receptors that mediate LMW protein uptake in PT cells, how these are regulated in response to physiologic cues, and the molecular basis of inherited diseases characterized by LMW proteinuria.
Collapse
Affiliation(s)
- Megan L Eshbach
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| | - Ora A Weisz
- Renal-Electrolyte Division, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261; ,
| |
Collapse
|
13
|
Guo X, Wang M, Zhao Y, Wang X, Shen M, Zhu F, Shi C, Xu M, Li X, Peng F, Zhang H, Feng Y, Xie Y, Xu X, Jia W, He R, Jiang J, Hu J, Tian R, Qin R. Par3 regulates invasion of pancreatic cancer cells via interaction with Tiam1. Clin Exp Med 2015; 16:357-65. [PMID: 26084985 DOI: 10.1007/s10238-015-0365-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 06/03/2015] [Indexed: 12/16/2022]
Abstract
The conserved polarity complex, which comprises partitioning-defective proteins Par3, Par6, and the atypical protein kinase C, affects various cell-polarization events, including assembly of tight junctions. Control of tight junction assembly is closely related to invasion and migration potential. However, as the importance of conserved polarity complexes in regulating pancreatic cancer invasion and metastasis is unclear, we investigated their role and mechanism in pancreatic cancers. We first detect that the key protein of the conserved polarity complex finds that only Par3 is down-regulated in pancreatic cancer tissues while Par6 and aPKC show no difference. What is more, Par3 tissues level was significantly and positively associated with patient overall survival. Knocking-down Par3 promotes pancreatic cancer cells invasion and migration. And Par3 requires interaction with Tiam1 to affect tight junction assembly, and then affect invasion and migration of pancreatic cancer cells. Then, we find that tight junction marker protein ZO-1 and claudin-1 are down-regulated in pancreatic cancer tissues. And the relationship of the expression of Par3 and ZO-1 in pancreatic cancer tissue is linear correlation. We establish liver metastasis model of human pancreatic cancer cells in Balb/c nude mice and find that knocking down Par3 promotes invasion and metastasis and disturbs tight junction assembly in vivo. Taken together, these results suggest that the Par3 regulates invasion and metastasis in pancreatic cancers by controlling tight junction assembly.
Collapse
Affiliation(s)
- Xingjun Guo
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Min Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Yan Zhao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Xin Wang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Ming Shen
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Feng Zhu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Chengjian Shi
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Meng Xu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Xu Li
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Feng Peng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Hang Zhang
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Yechen Feng
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Yu Xie
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Xiaodong Xu
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Wei Jia
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Ruizhi He
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China
| | - Jianxin Jiang
- Department of Hepatic-Biliary-Pancreatic Surgery, Hubei Cancer Hospital, Wuhan City, People's Republic of China
| | - Jun Hu
- Department of Colon Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Rui Tian
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China.
| | - Renyi Qin
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan City, 430030, Hubei Province, People's Republic of China.
| |
Collapse
|
14
|
Cox CM, Mandell EK, Stewart L, Lu R, Johnson DL, McCarter SD, Tavares A, Runyan R, Ghosh S, Wilson JM. Endosomal regulation of contact inhibition through the AMOT:YAP pathway. Mol Biol Cell 2015; 26:2673-84. [PMID: 25995376 PMCID: PMC4501364 DOI: 10.1091/mbc.e15-04-0224] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/11/2015] [Indexed: 11/15/2022] Open
Abstract
It was shown previously that endotubin, an integral membrane protein of endosomes, regulates the trafficking of tight junction proteins between endosomes and the tight junctions. Here it is shown that endotubin regulates YAP localization on endosomes through its interaction with AMOT and thus may play a role in contact inhibition. Contact-mediated inhibition of cell proliferation is an essential part of organ growth control; the transcription coactivator Yes-associated protein (YAP) plays a pivotal role in this process. In addition to phosphorylation-dependent regulation of YAP, the integral membrane protein angiomotin (AMOT) and AMOT family members control YAP through direct binding. Here we report that regulation of YAP activity occurs at the endosomal membrane through a dynamic interaction of AMOT with an endosomal integral membrane protein, endotubin (EDTB). EDTB interacts with both AMOT and occludin and preferentially associates with occludin in confluent cells but with AMOT family members in subconfluent cells. EDTB competes with YAP for binding to AMOT proteins in subconfluent cells. Overexpression of the cytoplasmic domain or full-length EDTB induces translocation of YAP to the nucleus, an overgrowth phenotype, and growth in soft agar. This increase in proliferation is dependent upon YAP activity and is complemented by overexpression of p130-AMOT. Furthermore, overexpression of EDTB inhibits the AMOT:YAP interaction. EDTB and AMOT have a greater association in subconfluent cells compared with confluent cells, and this association is regulated at the endosomal membrane. These data provide a link between the trafficking of tight junction proteins through endosomes and contact-inhibition-regulated cell growth.
Collapse
Affiliation(s)
- Christopher M Cox
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| | - Edward K Mandell
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| | - Lorraine Stewart
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| | - Ruifeng Lu
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| | - Debra L Johnson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| | - Sarah D McCarter
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| | - Andre Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ray Runyan
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| | - Sourav Ghosh
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06511
| | - Jean M Wilson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724
| |
Collapse
|
15
|
O'Rielly DD, Uddin M, Codner D, Hayley M, Zhou J, Pena-Castillo L, Mostafa AA, Hasan SMM, Liu W, Haroon N, Inman R, Rahman P. Private rare deletions in SEC16A and MAMDC4 may represent novel pathogenic variants in familial axial spondyloarthritis. Ann Rheum Dis 2015; 75:772-9. [PMID: 25956157 PMCID: PMC4819618 DOI: 10.1136/annrheumdis-2014-206484] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 03/07/2015] [Indexed: 01/10/2023]
Abstract
Objective Axial spondyloarthritis (AxSpA) represents a group of inflammatory axial diseases that share common clinical and histopathological manifestations. Ankylosing spondylitis (AS) is the best characterised subset of AxSpA, and its genetic basis has been extensively investigated. Given that genome-wide association studies account for only 25% of AS heritability, the objective of this study was to discover rare, highly penetrant genetic variants in AxSpA pathogenesis using a well-characterised, multigenerational family. Methods HLA-B*27 genotyping and exome sequencing was performed on DNA collected from available family members. Variant frequency was assessed by mining publically available datasets and using fragment analysis of unrelated AxSpA cases and unaffected controls. Gene expression was performed by qPCR, and protein expression was assessed by western blot analysis and immunofluorescence microscopy using patient-derived B-cell lines. Circular dichroism spectroscopy was performed to assess the impact of discovered variants on secondary structure. Results This is the first report identifying two rare private familial variants in a multigenerational AxSpA family, an in-frame SEC16A deletion and an out-of-frame MAMDC4 deletion. Evidence suggests the causative mechanism for SEC16A appears to be a conformational change induced by deletion of three highly conserved amino acids from the intrinsically disordered Sec16A N-terminus and RNA-mediated decay for MAMDC4. Conclusions The results suggest that it is the presence of rare syntenic SEC16A and MAMDC4 deletions that increases susceptibility to AxSpA in family members who carry the HLA-B*27 allele.
Collapse
Affiliation(s)
- Darren D O'Rielly
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Mohammed Uddin
- Program in Genetics and Genome Biology, The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dianne Codner
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Michael Hayley
- Biochemistry Department, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Jiayi Zhou
- Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Lourdes Pena-Castillo
- Department of Computer Science, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ahmed A Mostafa
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - S M Mahmudul Hasan
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - William Liu
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Nigil Haroon
- Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Robert Inman
- Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Proton Rahman
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW This review focuses on the latest understanding of the molecular mechanisms underlying the complex interactions between intestine and liver bile acid signaling, gut microbiota, and their impact on whole-body lipid, glucose and energy metabolism. RECENT FINDINGS Hepatic bile acid synthesis is tightly regulated by the bile acid negative feedback mechanisms. Modulating the enterohepatic bile acid signaling greatly impacts the whole-body metabolic homeostasis. Recently, a positive feedback mechanism through intestine farnesoid X receptor (FXR) antagonism has been proposed to link gut microbiota to the regulation of bile acid composition and pool size. Two studies identified intestine Diet1 and hepatic SHP-2 as novel regulators of CYP7A1 and bile acid synthesis through the gut-liver FXR-fibroblast growth factor 15/19-FGF receptor four signaling axis. New evidence suggests that enhancing bile acid signaling in the distal ileum and colon contributes to the metabolic benefits of bile acid sequestrants and bariatric surgery. SUMMARY Small-molecule ligands that target TGR5 and FXR have shown promise in treating various metabolic and inflammation-related human diseases. New insights into the mechanisms underlying the bariatric surgery and bile acid sequestrant treatment suggest that targeting the enterohepatic circulation to modulate gut-liver bile acid signaling, incretin production and microbiota represents a new strategy to treat obesity and type 2 diabetes.
Collapse
|
17
|
Reue K, Lee JM, Vergnes L. Diet1 is a regulator of fibroblast growth factor 15/19-dependent bile acid synthesis. Dig Dis 2015; 33:307-13. [PMID: 26045262 PMCID: PMC4809532 DOI: 10.1159/000371649] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND A fascinating aspect of bile acid homeostasis is the coordination between bile acid uptake in intestine and hepatic bile acid synthesis. In response to bile acid uptake in enterocytes, farnesoid X receptor is activated and induces transcription of fibroblast growth factor (FGF)15 in mice, or FGF19 in humans. FGF15/19 is secreted into the enterohepatic circulation, and through activation of hepatic receptors, leads to repression of Cyp7a1, a rate-limiting enzyme for bile acid synthesis. Using a genetic approach, we identified a novel protein, Diet1, as a control point for FGF15/19 production. KEY MESSAGES Mice with a Diet1-null mutation have reduced FGF15 secretion, causing impaired feedback repression of hepatic bile acid synthesis, and increased fecal bile acid excretion. As a result, Diet1-deficient mice constitutively convert cholesterol to bile acids and are resistant to diet-induced hypercholesterolemia and atherosclerosis. Diet1 affects FGF15/19 production at the posttranscriptional level, and the proteins appear to have overlapping subcellular localization in enterocytes. Diet1 appears to be a control point for the production of FGF15/19 in enterocytes, and thus a regulator of bile acid and lipid homeostasis. Studies to evaluate the role of common and rare DIET1 genetic variants in human health and disease are warranted. CONCLUSIONS Further elucidation of the Diet1-FGF15/19 interaction will provide new insights into the intricate regulatory mechanisms underlying bile acid metabolism.
Collapse
Affiliation(s)
- Karen Reue
- Department of Human Genetics, University of California, Los Angeles, California 90095,Department of Molecular Biology Institute, University of California, Los Angeles, California 90095
| | - Jessica M. Lee
- Department of Human Genetics, University of California, Los Angeles, California 90095
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, California 90095
| |
Collapse
|
18
|
Chen D, Li L, Yan J, Yang X, You Y, Zhou Y, Ling X. The loss of αSNAP downregulates the expression of occludin in the intestinal epithelial cell of acute pancreatitis model. Pancreatology 2014; 14:347-55. [PMID: 25278303 DOI: 10.1016/j.pan.2014.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 06/11/2014] [Accepted: 06/23/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND OBJECTIVE Intestinal barrier damage is an important event during the occurrence and progression of severe acute pancreatitis. The expression of occludin, one of the main components of the intestinal barrier proteins, is regulated by various factors related to intestinal barrier formation and the remodeling process. The αSNAP, as a novel membrane protein, is ubiquitously expressed in intestinal epithelial cells. This study aimed to investigate the role of αSNAP in acute pancreatitis and the relationship between occludin and αSNAP. METHODS Mild and severe acute pancreatitis models were established by retrograde injections of 0.5% and 3.8% sodium taurocholate solutions, respectively, into rat pancreaticobiliary ducts. The animals were killed at 1, 2, and 3 days after the injection, and the pathological changes of the pancreas and intestinal mucosa, the changes in intestinal permeability, and the protein expression of occludin and αSNAP were assessed. Cultured epithelial IEC-6 cells were further infected with lentiviral αSNAP shRNA, cell apoptosis was determined with flow cytometry (FCM), and any changes in occludin expression were detected by Western blotting and immunofluorescent staining. RESULTS This pathologic study of a rat acute pancreatitis model indicated pancreatic tissue necrosis and inflammatory cell infiltration; the intestinal villi in the severe acute pancreatitis (SAP) group demonstrated edema, lodging, atrophy, and intestinal epithelial cell necrosis, and shedding. The intestinal permeability in rats with pancreatitis increased significantly. The SAP group showed significantly increased levels of serum TNF-α and endotoxins. The results of immunofluorescent staining and Western blotting revealed that compared with the SO (sham operation) and MAP (mild acute pancreatitis) groups, the SAP group displayed significantly downregulated protein expressions of αSNAP and occludin in the intestinal epithelial cells. After the lentiviral transduction of αSNAP shRNA, apoptosis in IEC-6 cells was drastically increased, whereas the expression of occludin was decreased significantly. CONCLUSION The downregulated expression of αSNAP in intestinal epithelial cells leads to reduced occludin expression and enhanced apoptosis of intestinal epithelial cells. Hence, the permeability of the intestinal barrier may be increased in a severe acute pancreatitis model.
Collapse
Affiliation(s)
- Daixing Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Lili Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jing Yan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yang You
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Yuan Zhou
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| | - Xianlong Ling
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China.
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Hepatic bile acid synthesis is controlled, in part, by a complex enterohepatic feedback regulatory mechanism. In this review, we focus on the role of the intestinal FGF15/19 hormone in modulating bile acid levels, and additional metabolic effects on glucose metabolism, nonalcoholic liver disease (NAFLD), and liver regeneration. We also highlight the newly identified intestinal protein, Diet1, which is a modulator of FGF15/19 levels. RECENT FINDINGS Low FGF19 levels are associated with bile acid diarrhea and NAFLD. In contrast, high FGF19 levels are associated with diabetes remission following Roux-en-Y gastric bypass surgery, suggesting new therapeutic approaches against type 2 diabetes. The effect of FGF15/19 on liver plasticity is a double-edged sword: whereas elevated FGF15/19 levels improve survival of mice after partial hepatectomy, FGF19 mitogenic activity is associated with liver carcinoma. Finally, a recent study has identified Diet1, an intestinal factor that influences FGF15/19 levels in mouse intestine and human enterocytes. Diet1 represents the first factor shown to influence FGF15/19 levels at a post-transcriptional level. SUMMARY The biological effects of FGF15/19 make it an attractive target for treating metabolic dysregulation underlying conditions such as fatty liver and type 2 diabetes. Further elucidation of the role of Diet1 in FGF15/19 secretion may provide a control point for the pharmacological modulation of FGF15/19 levels.
Collapse
Affiliation(s)
- Karen Reue
- David Geffen School of Medicine at UCLA, Department of Human Genetics, Los Angeles, CA 90095
- David Geffen School of Medicine at UCLA, Department of Medicine, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, CA 90095
- To whom correspondence should be addressed: Department of Human Genetics, Gonda 6506A, 695 Charles E. Young Drive South, Los Angeles, CA 90095. Tel: (310) 794-5631; Fax: (310) 794-5446;
| | - Jessica M. Lee
- David Geffen School of Medicine at UCLA, Department of Human Genetics, Los Angeles, CA 90095
| | - Laurent Vergnes
- David Geffen School of Medicine at UCLA, Department of Human Genetics, Los Angeles, CA 90095
| |
Collapse
|
20
|
Abstract
Hypercholesterolemia is a major cause of cardiovascular disease and can be treated by targeting bile acid and cholesterol metabolism. Vergnes et al. (2013) now identify Diet1 as a novel regulator of fibroblast growth factor 15/19 production and bile acid biosynthesis.
Collapse
Affiliation(s)
- Paul A Dawson
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
21
|
Diet1 functions in the FGF15/19 enterohepatic signaling axis to modulate bile acid and lipid levels. Cell Metab 2013; 17:916-928. [PMID: 23747249 PMCID: PMC3956443 DOI: 10.1016/j.cmet.2013.04.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/06/2013] [Accepted: 04/02/2013] [Indexed: 12/19/2022]
Abstract
We identified a mutation in the Diet1 gene in a mouse strain that is resistant to hyperlipidemia and atherosclerosis. Diet1 encodes a 236 kD protein consisting of tandem low-density lipoprotein receptor and MAM (meprin-A5-protein tyrosine phosphatase mu) domains and is expressed in the enterocytes of the small intestine. Diet1-deficient mice exhibited an elevated bile acid pool size and impaired feedback regulation of hepatic Cyp7a1, which encodes the rate-limiting enzyme in bile acid synthesis. In mouse intestine and in cultured human intestinal cells, Diet1 expression levels influenced the production of fibroblast growth factor 15/19 (FGF15/19), a hormone that signals from the intestine to liver to regulate Cyp7a1. Transgenic expression of Diet1, or adenoviral-mediated Fgf15 expression, restored normal Cyp7a1 regulation in Diet-1-deficient mice. Diet1 and FGF19 proteins exhibited overlapping subcellular localization in cultured intestinal cells. These results establish Diet1 as a control point in enterohepatic bile acid signaling and lipid homeostasis.
Collapse
|
22
|
Naydenov NG, Brown B, Harris G, Dohn MR, Morales VM, Baranwal S, Reynolds AB, Ivanov AI. A membrane fusion protein αSNAP is a novel regulator of epithelial apical junctions. PLoS One 2012; 7:e34320. [PMID: 22485163 PMCID: PMC3317505 DOI: 10.1371/journal.pone.0034320] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 02/28/2012] [Indexed: 12/31/2022] Open
Abstract
Tight junctions (TJs) and adherens junctions (AJs) are key determinants of the structure and permeability of epithelial barriers. Although exocytic delivery to the cell surface is crucial for junctional assembly, little is known about the mechanisms controlling TJ and AJ exocytosis. This study was aimed at investigating whether a key mediator of exocytosis, soluble N-ethylmaleimide sensitive factor (NSF) attachment protein alpha (αSNAP), regulates epithelial junctions. αSNAP was enriched at apical junctions in SK-CO15 and T84 colonic epithelial cells and in normal human intestinal mucosa. siRNA-mediated knockdown of αSNAP inhibited AJ/TJ assembly and establishment of the paracellular barrier in SK-CO15 cells, which was accompanied by a significant down-regulation of p120-catenin and E-cadherin expression. A selective depletion of p120 catenin effectively disrupted AJ and TJ structure and compromised the epithelial barrier. However, overexpression of p120 catenin did not rescue the defects of junctional structure and permeability caused by αSNAP knockdown thereby suggesting the involvement of additional mechanisms. Such mechanisms did not depend on NSF functions or induction of cell death, but were associated with disruption of the Golgi complex and down-regulation of a Golgi-associated guanidine nucleotide exchange factor, GBF1. These findings suggest novel roles for αSNAP in promoting the formation of epithelial AJs and TJs by controlling Golgi-dependent expression and trafficking of junctional proteins.
Collapse
Affiliation(s)
- Nayden G. Naydenov
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Bryan Brown
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Gianni Harris
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Michael R. Dohn
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Victor M. Morales
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Somesh Baranwal
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
| | - Albert B. Reynolds
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Andrei I. Ivanov
- Department of Medicine, University of Rochester, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
23
|
Nighot PK, Blikslager AT. Chloride channel ClC-2 modulates tight junction barrier function via intracellular trafficking of occludin. Am J Physiol Cell Physiol 2012; 302:C178-87. [DOI: 10.1152/ajpcell.00072.2011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Previously, we have demonstrated that the chloride channel ClC-2 modulates intestinal mucosal barrier function. In the present study, we investigated the role of ClC-2 in epithelial barrier development and maintenance in Caco-2 cells. During early monolayer formation, silencing of ClC-2 with small interfering (si)RNA led to a significant delay in the development of transepithelial resistance (TER) and disruption of occludin localization. Proteomic analysis employing liquid chromatography-mass spectrometry /mass spectrometry revealed association of ClC-2 with key proteins involved in intracellular trafficking, including caveolin-1 and Rab5. In ClC-2 siRNA-treated cells, occludin colocalization with caveolin-1 was diffuse and in the subapical region. Subapically distributed occludin in ClC-2 siRNA-treated cells showed marked colocalization with Rab5. To study the link between ClC-2 and trafficking of occludin in confluent epithelial monolayers, a Caco-2 cell clone expressing ClC-2 short hairpin (sh)RNA was established. Disruption of caveolae with methyl-β-cyclodextrin (MβCD) caused a marked drop in TER and profound redistribution of caveolin-1-occludin coimmunofluorescence in ClC-2 shRNA cells. In ClC-2 shRNA cells, focal aggregations of Rab5-occludin coimmunofluorescence were present within the cytoplasm. Wortmannin caused an acute fall in TER in ClC-2 shRNA cells and subapical, diffuse redistribution of Rab5-occludin coimmunofluorescence in ClC-2 shRNA cells. An endocytosis and recycling assay for occludin revealed higher basal rate of endocytosis of occludin in ClC-2 shRNA cells. Wortmannin significantly reduced the rate of recycling of occludin in ClC-2 shRNA cells. These data clearly indicate that ClC-2 plays an important role in the modulation of tight junctions by influencing caveolar trafficking of the tight junction protein occludin.
Collapse
Affiliation(s)
- Prashant K. Nighot
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina
| | - Anthony T. Blikslager
- Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
24
|
Hansson J, Panchaud A, Favre L, Bosco N, Mansourian R, Benyacoub J, Blum S, Jensen ON, Kussmann M. Time-resolved quantitative proteome analysis of in vivo intestinal development. Mol Cell Proteomics 2010; 10:M110.005231. [PMID: 21191033 DOI: 10.1074/mcp.m110.005231] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Postnatal intestinal development is a very dynamic process characterized by substantial morphological changes that coincide with functional adaption to the nutritional change from a diet rich in fat (milk) to a diet rich in carbohydrates on from weaning. Time-resolved studies of intestinal development have so far been limited to investigation at the transcription level or to single or few proteins at a time. In the present study, we elucidate proteomic changes of primary intestinal epithelial cells from jejunum during early suckling (1-7 days of age), middle suckling (7-14 days), and weaning period (14-35 days) in mice, using a label-free proteomics approach. We show differential expression of 520 proteins during intestinal development and a pronounced change of the proteome during the middle suckling period and weaning. Proteins involved in several metabolic processes were found differentially expressed along the development. The temporal expression profiles of enzymes of the glycolysis were found to correlate with the increase in carbohydrate uptake at weaning, whereas the abundance changes of proteins involved in fatty acid metabolism as well as lactose metabolism indicated a nondiet driven preparation for the nutritional change at weaning. Further, we report the developmental abundance changes of proteins playing a vital role in the neonatal acquisition of passive immunity. In addition, different isoforms of several proteins were quantified, which may contribute to a better understanding of the roles of the specific isoforms in the small intestine. In summary, we provide a first, time-resolved proteome profile of intestinal epithelial cells along postnatal intestinal development.
Collapse
Affiliation(s)
- Jenny Hansson
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|