1
|
Gopaldass N, Chen KE, Collins B, Mayer A. Assembly and fission of tubular carriers mediating protein sorting in endosomes. Nat Rev Mol Cell Biol 2024; 25:765-783. [PMID: 38886588 DOI: 10.1038/s41580-024-00746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2024] [Indexed: 06/20/2024]
Abstract
Endosomes are central protein-sorting stations at the crossroads of numerous membrane trafficking pathways in all eukaryotes. They have a key role in protein homeostasis and cellular signalling and are involved in the pathogenesis of numerous diseases. Endosome-associated protein assemblies or coats collect transmembrane cargo proteins and concentrate them into retrieval domains. These domains can extend into tubular carriers, which then pinch off from the endosomal membrane and deliver the cargoes to appropriate subcellular compartments. Here we discuss novel insights into the structure of a number of tubular membrane coats that mediate the recruitment of cargoes into these carriers, focusing on sorting nexin-based coats such as Retromer, Commander and ESCPE-1. We summarize current and emerging views of how selective tubular endosomal carriers form and detach from endosomes by fission, highlighting structural aspects, conceptual challenges and open questions.
Collapse
Affiliation(s)
- Navin Gopaldass
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Brett Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Andreas Mayer
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
2
|
Lopez-Robles C, Scaramuzza S, Astorga-Simon EN, Ishida M, Williamson CD, Baños-Mateos S, Gil-Carton D, Romero-Durana M, Vidaurrazaga A, Fernandez-Recio J, Rojas AL, Bonifacino JS, Castaño-Díez D, Hierro A. Architecture of the ESCPE-1 membrane coat. Nat Struct Mol Biol 2023; 30:958-969. [PMID: 37322239 PMCID: PMC10352136 DOI: 10.1038/s41594-023-01014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/05/2023] [Indexed: 06/17/2023]
Abstract
Recycling of membrane proteins enables the reuse of receptors, ion channels and transporters. A key component of the recycling machinery is the endosomal sorting complex for promoting exit 1 (ESCPE-1), which rescues transmembrane proteins from the endolysosomal pathway for transport to the trans-Golgi network and the plasma membrane. This rescue entails the formation of recycling tubules through ESCPE-1 recruitment, cargo capture, coat assembly and membrane sculpting by mechanisms that remain largely unknown. Herein, we show that ESCPE-1 has a single-layer coat organization and suggest how synergistic interactions between ESCPE-1 protomers, phosphoinositides and cargo molecules result in a global arrangement of amphipathic helices to drive tubule formation. Our results thus define a key process of tubule-based endosomal sorting.
Collapse
Affiliation(s)
| | | | | | - Morié Ishida
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Chad D Williamson
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - David Gil-Carton
- CIC bioGUNE, Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- BREM Basque Resource for Electron Microscopy, Leioa, Spain
| | - Miguel Romero-Durana
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | | | - Juan Fernandez-Recio
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | | | - Juan S Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| | - Daniel Castaño-Díez
- BioEM Lab, Biozentrum, University of Basel, Basel, Switzerland.
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, Spain.
| | - Aitor Hierro
- CIC bioGUNE, Derio, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
3
|
Carosi JM, Denton D, Kumar S, Sargeant TJ. Receptor Recycling by Retromer. Mol Cell Biol 2023; 43:317-334. [PMID: 37350516 PMCID: PMC10348044 DOI: 10.1080/10985549.2023.2222053] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023] Open
Abstract
The highly conserved retromer complex controls the fate of hundreds of receptors that pass through the endolysosomal system and is a central regulatory node for diverse metabolic programs. More than 20 years ago, retromer was discovered as an essential regulator of endosome-to-Golgi transport in yeast; since then, significant progress has been made to characterize how metazoan retromer components assemble to enable its engagement with endosomal membranes, where it sorts cargo receptors from endosomes to the trans-Golgi network or plasma membrane through recognition of sorting motifs in their cytoplasmic tails. In this review, we examine retromer regulation by exploring its assembled structure with an emphasis on how a range of adaptor proteins shape the process of receptor trafficking. Specifically, we focus on how retromer is recruited to endosomes, selects cargoes, and generates tubulovesicular carriers that deliver cargoes to target membranes. We also examine how cells adapt to distinct metabolic states by coordinating retromer expression and function. We contrast similarities and differences between retromer and its related complexes: retriever and commander/CCC, as well as their interplay in receptor trafficking. We elucidate how loss of retromer regulation is central to the pathology of various neurogenerative and metabolic diseases, as well as microbial infections, and highlight both opportunities and cautions for therapeutics that target retromer. Finally, with a focus on understanding the mechanisms that govern retromer regulation, we outline new directions for the field moving forward.
Collapse
Affiliation(s)
- Julian M. Carosi
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- School of Biological Sciences, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, South Australia, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia (UniSA), Adelaide, South Australia, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Timothy J. Sargeant
- Lysosomal Health in Ageing, Lifelong Health, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, South Australia, Australia
| |
Collapse
|
4
|
Healy MD, McNally KE, Butkovič R, Chilton M, Kato K, Sacharz J, McConville C, Moody ERR, Shaw S, Planelles-Herrero VJ, Yadav SKN, Ross J, Borucu U, Palmer CS, Chen KE, Croll TI, Hall RJ, Caruana NJ, Ghai R, Nguyen THD, Heesom KJ, Saitoh S, Berger I, Schaffitzel C, Williams TA, Stroud DA, Derivery E, Collins BM, Cullen PJ. Structure of the endosomal Commander complex linked to Ritscher-Schinzel syndrome. Cell 2023; 186:2219-2237.e29. [PMID: 37172566 PMCID: PMC10187114 DOI: 10.1016/j.cell.2023.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
The Commander complex is required for endosomal recycling of diverse transmembrane cargos and is mutated in Ritscher-Schinzel syndrome. It comprises two sub-assemblies: Retriever composed of VPS35L, VPS26C, and VPS29; and the CCC complex which contains twelve subunits: COMMD1-COMMD10 and the coiled-coil domain-containing (CCDC) proteins CCDC22 and CCDC93. Combining X-ray crystallography, electron cryomicroscopy, and in silico predictions, we have assembled a complete structural model of Commander. Retriever is distantly related to the endosomal Retromer complex but has unique features preventing the shared VPS29 subunit from interacting with Retromer-associated factors. The COMMD proteins form a distinctive hetero-decameric ring stabilized by extensive interactions with CCDC22 and CCDC93. These adopt a coiled-coil structure that connects the CCC and Retriever assemblies and recruits a 16th subunit, DENND10, to form the complete Commander complex. The structure allows mapping of disease-causing mutations and reveals the molecular features required for the function of this evolutionarily conserved trafficking machinery.
Collapse
Affiliation(s)
- Michael D Healy
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kerrie E McNally
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK; MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.
| | - Rebeka Butkovič
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Molly Chilton
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Kohji Kato
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Joanna Sacharz
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Calum McConville
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Edmund R R Moody
- School of Biological Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - Shrestha Shaw
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | | | - Sathish K N Yadav
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Jennifer Ross
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Ufuk Borucu
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Catherine S Palmer
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia
| | - Kai-En Chen
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK
| | - Ryan J Hall
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; Institute of Health and Sport (iHeS), Victoria University, Melbourne, VIC Australia
| | - Rajesh Ghai
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Thi H D Nguyen
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences and Medical School, Nagoya, Japan
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK; Max Planck Bristol Centre for Minimal Biology, Department of Chemistry, University of Bristol, BS8 1TS Bristol, UK
| | - Christiane Schaffitzel
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, BS8 1TD Bristol, UK
| | - David A Stroud
- Department of Biochemistry and Pharmacology, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC Australia
| | | | - Brett M Collins
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, BS8 1TD Bristol, UK.
| |
Collapse
|
5
|
Liu N, Liu K, Yang C. WDR91 specifies the endosomal retrieval subdomain for retromer-dependent recycling. J Cell Biol 2022; 221:213515. [PMID: 36190447 PMCID: PMC9531996 DOI: 10.1083/jcb.202203013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/04/2022] [Accepted: 09/19/2022] [Indexed: 12/13/2022] Open
Abstract
Retromer-dependent endosomal recycling of membrane receptors requires Rab7, sorting nexin (SNX)-retromer, and factors that regulate endosomal actin organization. It is not fully understood how these factors cooperate to form endosomal subdomains for cargo retrieval and recycling. Here, we report that WDR91, a Rab7 effector, is the key factor that specifies the endosomal retrieval subdomain. Loss of WDR91 causes defective recycling of both intracellular and cell surface receptors. WDR91 interacts with SNXs through their PX domain, and with VPS35, thus promoting their interaction with Rab7. WDR91 also interacts with the WASH subunit FAM21. In WDR91-deficient cells, Rab7, SNX-retromer, and FAM21 fail to localize to endosomal subdomains, and endosomal actin organization is impaired. Re-expression of WDR91 enables Rab7, SNX-retromer, and FAM21 to concentrate at WDR91-specific endosomal subdomains, where retromer-mediated membrane tubulation and release occur. Thus, WDR91 coordinates Rab7 with SNX-retromer and WASH to establish the endosomal retrieval subdomains required for retromer-mediated endosomal recycling.
Collapse
Affiliation(s)
- Nan Liu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Kai Liu
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China,Correspondence to Chonglin Yang:
| |
Collapse
|
6
|
Kendall AK, Chandra M, Xie B, Wan W, Jackson LP. Improved mammalian retromer cryo-EM structures reveal a new assembly interface. J Biol Chem 2022; 298:102523. [PMID: 36174678 PMCID: PMC9636581 DOI: 10.1016/j.jbc.2022.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/30/2022] [Accepted: 09/03/2022] [Indexed: 12/05/2022] Open
Abstract
Retromer (VPS26/VPS35/VPS29 subunits) assembles with multiple sorting nexin proteins on membranes to mediate endosomal recycling of transmembrane protein cargoes. Retromer has been implicated in other cellular processes, including mitochondrial homeostasis, nutrient sensing, autophagy, and fission events. Mechanisms for mammalian retromer assembly remain undefined, and retromer engages multiple sorting nexin proteins to sort cargoes to different destinations. Published structures demonstrate mammalian retromer forms oligomers in vitro, but several structures were poorly resolved. We report here improved retromer oligomer structures using single-particle cryo-EM by combining data collected from tilted specimens with multiple advancements in data processing, including using a 3D starting model for enhanced automated particle picking in RELION. We used a retromer mutant (3KE retromer) that breaks VPS35-mediated interfaces to determine a structure of a new assembly interface formed by the VPS26A and VPS35 N-termini. The interface reveals how an N-terminal VPS26A arrestin saddle can link retromer chains by engaging a neighboring VPS35 N- terminus, on the opposite side from the well-characterized C-VPS26/N-VPS35 interaction observed within heterotrimers. The new interaction interface exhibits substantial buried surface area (∼7000 Å2) and further suggests that metazoan retromer may serve as an adaptable scaffold.
Collapse
Affiliation(s)
- Amy K Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Mintu Chandra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA
| | - Boyang Xie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - William Wan
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Lauren P Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Xie S, Dierlam C, Smith E, Duran R, Williams A, Davis A, Mathew D, Naslavsky N, Iyer J, Caplan S. The retromer complex regulates C. elegans development and mammalian ciliogenesis. J Cell Sci 2022; 135:jcs259396. [PMID: 35510502 PMCID: PMC9189432 DOI: 10.1242/jcs.259396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
The mammalian retromer consists of subunits VPS26 (either VPS26A or VPS26B), VPS29 and VPS35, and a loosely associated sorting nexin (SNX) heterodimer or a variety of other SNX proteins. Despite involvement in yeast and mammalian cell trafficking, the role of retromer in development is poorly understood, and its impact on primary ciliogenesis remains unknown. Using CRISPR/Cas9 editing, we demonstrate that vps-26-knockout worms have reduced brood sizes, impaired vulval development and decreased body length, all of which have been linked to ciliogenesis defects. Although preliminary studies did not identify worm ciliary defects, and impaired development limited additional ciliogenesis studies, we turned to mammalian cells to investigate the role of retromer in ciliogenesis. VPS35 localized to the primary cilium of mammalian cells, and depletion of VPS26, VPS35, VPS29, SNX1, SNX2, SNX5 or SNX27 led to decreased ciliogenesis. Retromer also coimmunoprecipitated with the centriolar protein, CP110 (also known as CCP110), and was required for its removal from the mother centriole. Herein, we characterize new roles for retromer in C. elegans development and in the regulation of ciliogenesis in mammalian cells, suggesting a novel role for retromer in CP110 removal from the mother centriole.
Collapse
Affiliation(s)
- Shuwei Xie
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Carter Dierlam
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Ellie Smith
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Ramon Duran
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Allana Williams
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Angelina Davis
- School of Science and Mathematics, Tulsa Community College, Tulsa, OK 74115, USA
| | - Danita Mathew
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Naava Naslavsky
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jyoti Iyer
- Department of Chemistry and Biochemistry, University of Tulsa, Tulsa, OK 74104, USA
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Simonetti B, Guo Q, Giménez-Andrés M, Chen KE, Moody ERR, Evans AJ, Chandra M, Danson CM, Williams TA, Collins BM, Cullen PJ. SNX27-Retromer directly binds ESCPE-1 to transfer cargo proteins during endosomal recycling. PLoS Biol 2022; 20:e3001601. [PMID: 35417450 PMCID: PMC9038204 DOI: 10.1371/journal.pbio.3001601] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/25/2022] [Accepted: 03/11/2022] [Indexed: 12/14/2022] Open
Abstract
Coat complexes coordinate cargo recognition through cargo adaptors with biogenesis of transport carriers during integral membrane protein trafficking. Here, we combine biochemical, structural, and cellular analyses to establish the mechanistic basis through which SNX27-Retromer, a major endosomal cargo adaptor, couples to the membrane remodeling endosomal SNX-BAR sorting complex for promoting exit 1 (ESCPE-1). In showing that the SNX27 FERM (4.1/ezrin/radixin/moesin) domain directly binds acidic-Asp-Leu-Phe (aDLF) motifs in the SNX1/SNX2 subunits of ESCPE-1, we propose a handover model where SNX27-Retromer captured cargo proteins are transferred into ESCPE-1 transport carriers to promote endosome-to-plasma membrane recycling. By revealing that assembly of the SNX27:Retromer:ESCPE-1 coat evolved in a stepwise manner during early metazoan evolution, likely reflecting the increasing complexity of endosome-to-plasma membrane recycling from the ancestral opisthokont to modern animals, we provide further evidence of the functional diversification of yeast pentameric Retromer in the recycling of hundreds of integral membrane proteins in metazoans.
Collapse
Affiliation(s)
- Boris Simonetti
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Qian Guo
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Manuel Giménez-Andrés
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Edmund R. R. Moody
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Ashley J. Evans
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Mintu Chandra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Chris M. Danson
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Tom A. Williams
- School of Biological Sciences, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Peter J. Cullen
- School of Biochemistry, Faculty of Life Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
9
|
Vélez N, Monteoliva L, Sánchez-Quitian ZA, Amador-García A, García-Rodas R, Ceballos-Garzón A, Gil C, Escandón P, Zaragoza Ó, Parra-Giraldo CM. The Combination of Iron and Copper Increases Pathogenicity and Induces Proteins Related to the Main Virulence Factors in Clinical Isolates of Cryptococcus neoformans var. grubii. J Fungi (Basel) 2022; 8:jof8010057. [PMID: 35049997 PMCID: PMC8778102 DOI: 10.3390/jof8010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 01/09/2023] Open
Abstract
In fungi, metals are associated with the expression of virulence factors. However, it is unclear whether the uptake of metals affects their pathogenicity. This study aimed to evaluate the effect of iron/copper in modulating pathogenicity and proteomic response in two clinical isolates of C. neoformans with high and low pathogenicity. Methods: In both isolates, the effect of 50 µM iron and 500 µM copper on pathogenicity, capsule induction, and melanin production was evaluated. We then performed a quantitative proteomic analysis of cytoplasmic extracts exposed to that combination. Finally, the effect on pathogenicity by iron and copper was evaluated in eight additional isolates. Results: In both isolates, the combination of iron and copper increased pathogenicity, capsule size, and melanin production. Regarding proteomic data, proteins with increased levels after iron and copper exposure were related to biological processes such as cell stress, vesicular traffic (Ap1, Vps35), cell wall structure (Och1, Ccr4, Gsk3), melanin biosynthesis (Hem15, Mln2), DNA repair (Chk1), protein transport (Mms2), SUMOylation (Uba2), and mitochondrial transport (Atm1). Increased pathogenicity by exposure to metal combination was also confirmed in 90% of the eight isolates. Conclusions: The combination of these metals enhances pathogenicity and increases the abundance of proteins related to the main virulence factors.
Collapse
Affiliation(s)
- Nórida Vélez
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
| | - Lucía Monteoliva
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.M.); (A.A.-G.); (C.G.)
| | - Zilpa-Adriana Sánchez-Quitian
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
| | - Ahinara Amador-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.M.); (A.A.-G.); (C.G.)
| | - Rocío García-Rodas
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, 28013 Madrid, Spain; (R.G.-R.); (Ó.Z.)
| | - Andrés Ceballos-Garzón
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
- Department of Parasitology and Medical Mycology, Faculty of Pharmacy, University of Nantes, 44200 Nantes, France
| | - Concha Gil
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.M.); (A.A.-G.); (C.G.)
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá 111321, Colombia;
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, 28013 Madrid, Spain; (R.G.-R.); (Ó.Z.)
| | - Claudia-Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
- Correspondence:
| |
Collapse
|
10
|
Chen KE, Guo Q, Hill TA, Cui Y, Kendall AK, Yang Z, Hall RJ, Healy MD, Sacharz J, Norwood SJ, Fonseka S, Xie B, Reid RC, Leneva N, Parton RG, Ghai R, Stroud DA, Fairlie DP, Suga H, Jackson LP, Teasdale RD, Passioura T, Collins BM. De novo macrocyclic peptides for inhibiting, stabilizing, and probing the function of the retromer endosomal trafficking complex. SCIENCE ADVANCES 2021; 7:eabg4007. [PMID: 34851660 PMCID: PMC8635440 DOI: 10.1126/sciadv.abg4007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/14/2021] [Indexed: 05/27/2023]
Abstract
The retromer complex (Vps35-Vps26-Vps29) is essential for endosomal membrane trafficking and signaling. Mutation of the retromer subunit Vps35 causes late-onset Parkinson’s disease, while viral and bacterial pathogens can hijack the complex during cellular infection. To modulate and probe its function, we have created a novel series of macrocyclic peptides that bind retromer with high affinity and specificity. Crystal structures show that most of the cyclic peptides bind to Vps29 via a Pro-Leu–containing sequence, structurally mimicking known interactors such as TBC1D5 and blocking their interaction with retromer in vitro and in cells. By contrast, macrocyclic peptide RT-L4 binds retromer at the Vps35-Vps26 interface and is a more effective molecular chaperone than reported small molecules, suggesting a new therapeutic avenue for targeting retromer. Last, tagged peptides can be used to probe the cellular localization of retromer and its functional interactions in cells, providing novel tools for studying retromer function.
Collapse
Affiliation(s)
- Kai-En Chen
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Qian Guo
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Timothy A. Hill
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Yi Cui
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Amy K. Kendall
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Zhe Yang
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Ryan J. Hall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Michael D. Healy
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Joanna Sacharz
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Suzanne J. Norwood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Sachini Fonseka
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Boyang Xie
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert C. Reid
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Natalya Leneva
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Queensland, Australia
| | - Rajesh Ghai
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David A. Stroud
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3052, Australia
- Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Lauren P. Jackson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Rohan D. Teasdale
- School of Biomedical Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Toby Passioura
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
- Sydney Analytical, School of Life and Environmental Sciences and School of Chemistry, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
11
|
Markworth R, Dambeck V, Steinbeck LM, Koufali A, Bues B, Dankovich TM, Wichmann C, Burk K. Tubular microdomains of Rab7-positive endosomes retrieve TrkA, a mechanism disrupted in Charcot-Marie-Tooth disease 2B. J Cell Sci 2021; 134:272650. [PMID: 34486665 DOI: 10.1242/jcs.258559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/23/2021] [Indexed: 01/04/2023] Open
Abstract
Axonal survival and growth requires signalling from tropomyosin receptor kinases (Trks). To transmit their signals, receptor-ligand complexes are endocytosed and undergo retrograde trafficking to the soma, where downstream signalling occurs. Vesicles transporting neurotrophic receptors to the soma are reported to be Rab7-positive late endosomes and/or multivesicular bodies (MVBs), where receptors localize within so-called intraluminal vesicles (herein Rab7 corresponds to Rab7A unless specified otherwise). Therefore, one challenging question is how downstream signalling is possible given the insulating properties of intraluminal vesicles. In this study, we report that Rab7-positive endosomes and MVBs retrieve TrkA (also known as NTRK1) through tubular microdomains. Interestingly, this phenotype is absent for the EGF receptor. Furthermore, we found that endophilinA1, endophilinA2 and endophilinA3, together with WASH1 (also known as WASHC1), are involved in the tubulation process. In Charcot-Marie-Tooth disease 2B (CMT2B), a neuropathy of the peripheral nervous system, this tubulating mechanism is disrupted. In addition, the ability to tubulate correlates with the phosphorylation levels of TrkA as well as with neurite length in neuronal cultures from dorsal root ganglia. In all, we report a new retrieval mechanism of late Rab7-positive endosomes, which enables TrkA signalling and sheds new light onto how neurotrophic signalling is disrupted in CMT2B. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ronja Markworth
- Department of Neurology, University Medical Center Göttingen, Robert Koch Straße 40, 37075 Göttingen, Germany.,European Neuroscience Institute, Grisebachstraße 5, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany
| | - Vivian Dambeck
- Department of Neurology, University Medical Center Göttingen, Robert Koch Straße 40, 37075 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany
| | - Lars Malte Steinbeck
- Department of Neurology, University Medical Center Göttingen, Robert Koch Straße 40, 37075 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany
| | - Angeliki Koufali
- Department of Neurology, University Medical Center Göttingen, Robert Koch Straße 40, 37075 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany
| | - Bastian Bues
- Department of Neurology, University Medical Center Göttingen, Robert Koch Straße 40, 37075 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany
| | - Tal M Dankovich
- Institute for Neuro- and Sensory Physiology, Humboldtallee 23, 37073 Göttingen, Germany
| | - Carolin Wichmann
- Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany.,Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany.,Collaborative Research Centers 889 'Cellular Mechanisms of Sensory Processing' and 1286 'Quantitative Synaptology', 37099 Göttingen, Germany
| | - Katja Burk
- Department of Neurology, University Medical Center Göttingen, Robert Koch Straße 40, 37075 Göttingen, Germany.,European Neuroscience Institute, Grisebachstraße 5, 37077 Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Von-Siebold Straße 3A, 37075 Göttingen, Germany
| |
Collapse
|
12
|
Unveiling the cryo-EM structure of retromer. Biochem Soc Trans 2021; 48:2261-2272. [PMID: 33125482 DOI: 10.1042/bst20200552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/29/2022]
Abstract
Retromer (VPS26/VPS35/VPS29) is a highly conserved eukaryotic protein complex that localizes to endosomes to sort transmembrane protein cargoes into vesicles and elongated tubules. Retromer mediates retrieval pathways from endosomes to the trans-Golgi network in all eukaryotes and further facilitates recycling pathways to the plasma membrane in metazoans. In cells, retromer engages multiple partners to orchestrate the formation of tubulovesicular structures, including sorting nexin (SNX) proteins, cargo adaptors, GTPases, regulators, and actin remodeling proteins. Retromer-mediated pathways are especially important for sorting cargoes required for neuronal maintenance, which links retromer loss or mutations to multiple human brain diseases and disorders. Structural and biochemical studies have long contributed to the understanding of retromer biology, but recent advances in cryo-electron microscopy and cryo-electron tomography have further uncovered exciting new snapshots of reconstituted retromer structures. These new structures reveal retromer assembles into an arch-shaped scaffold and suggest the scaffold may be flexible and adaptable in cells. Interactions with cargo adaptors, particularly SNXs, likely orient the scaffold with respect to phosphatidylinositol-3-phosphate (PtdIns3P)-enriched membranes. Pharmacological small molecule chaperones have further been shown to stabilize retromer in cultured cell and mouse models, but mechanisms by which these molecules bind remain unknown. This review will emphasize recent structural and biophysical advances in understanding retromer structure as the field moves towards a molecular view of retromer assembly and regulation on membranes.
Collapse
|
13
|
Song J, Wang C. Transcriptomic and metabonomic analyses reveal roles of VPS 29 in carotenoid accumulation in adductor muscles of QN Orange scallops. Genomics 2021; 113:2839-2846. [PMID: 34119599 DOI: 10.1016/j.ygeno.2021.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/05/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND In our previous studies, we demonstrated that the accumulation of carotenoids in QN Orange scallops might be regulated by the vacuolar protein sorting 29 (VPS29) gene. VPS genes are involved in pigments accumulation (including carotenoids) in some species and VPS29 is known as the core component of the membrane transport complex Retromer. However, the possible mechanism of carotenoids accumulation underlying the VPS29 remains unexplored. This study aimed to further elucidate the roles of VPS29 in the carotenoid deposition. RESULTS Transcriptomic analyses revealed four differentially expressed genes related to carotenoid accumulation, including three down-regulated genes, low-density lipoprotein receptor domain class, scavenger receptor, Niemann Pick C1-like 1, and one up-regulated gene, ATP binding cassette transporter in RNAi group. Results from metabonomic analyses indicated increased profiles of retinol and decreased fatty acids between the RNAi and the control group. CONCLUSIONS It thus speculated that VPS may be related to the accumulation of carotenoids as RNAi of VPS 29 seemed to result in a reduction in pectenolone through the blockage in the absorption of carotenoids and an accelerated cleavage of carotenoids into retinol.
Collapse
Affiliation(s)
- Junlin Song
- Qingdao Agricultural University, Qingdao 266109, China
| | - Chunde Wang
- Qingdao Agricultural University, Qingdao 266109, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
14
|
Peleg Y, Vincentelli R, Collins BM, Chen KE, Livingstone EK, Weeratunga S, Leneva N, Guo Q, Remans K, Perez K, Bjerga GEK, Larsen Ø, Vaněk O, Skořepa O, Jacquemin S, Poterszman A, Kjær S, Christodoulou E, Albeck S, Dym O, Ainbinder E, Unger T, Schuetz A, Matthes S, Bader M, de Marco A, Storici P, Semrau MS, Stolt-Bergner P, Aigner C, Suppmann S, Goldenzweig A, Fleishman SJ. Community-Wide Experimental Evaluation of the PROSS Stability-Design Method. J Mol Biol 2021; 433:166964. [PMID: 33781758 DOI: 10.1016/j.jmb.2021.166964] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Recent years have seen a dramatic improvement in protein-design methodology. Nevertheless, most methods demand expert intervention, limiting their widespread adoption. By contrast, the PROSS algorithm for improving protein stability and heterologous expression levels has been successfully applied to a range of challenging enzymes and binding proteins. Here, we benchmark the application of PROSS as a stand-alone tool for protein scientists with no or limited experience in modeling. Twelve laboratories from the Protein Production and Purification Partnership in Europe (P4EU) challenged the PROSS algorithm with 14 unrelated protein targets without support from the PROSS developers. For each target, up to six designs were evaluated for expression levels and in some cases, for thermal stability and activity. In nine targets, designs exhibited increased heterologous expression levels either in prokaryotic and/or eukaryotic expression systems under experimental conditions that were tailored for each target protein. Furthermore, we observed increased thermal stability in nine of ten tested targets. In two prime examples, the human Stem Cell Factor (hSCF) and human Cadherin-Like Domain (CLD12) from the RET receptor, the wild type proteins were not expressible as soluble proteins in E. coli, yet the PROSS designs exhibited high expression levels in E. coli and HEK293 cells, respectively, and improved thermal stability. We conclude that PROSS may improve stability and expressibility in diverse cases, and that improvement typically requires target-specific expression conditions. This study demonstrates the strengths of community-wide efforts to probe the generality of new methods and recommends areas for future research to advance practically useful algorithms for protein science.
Collapse
Affiliation(s)
- Yoav Peleg
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Renaud Vincentelli
- Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Kai-En Chen
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Emma K Livingstone
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Saroja Weeratunga
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Natalya Leneva
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Qian Guo
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kathryn Perez
- European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Gro E K Bjerga
- NORCE Norwegian Research Centre, Postboks 22 Nygårdstangen, 5038 Bergen, Norway
| | - Øivind Larsen
- NORCE Norwegian Research Centre, Postboks 22 Nygårdstangen, 5038 Bergen, Norway
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Ondřej Skořepa
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
| | - Sophie Jacquemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, France
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Evangelos Christodoulou
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Shira Albeck
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orly Dym
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elena Ainbinder
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Unger
- Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Anja Schuetz
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Susann Matthes
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
| | - Michael Bader
- Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany; University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany; Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Slovenia
| | - Paola Storici
- Elettra Sincrotrone Trieste - SS 14 - km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Marta S Semrau
- Elettra Sincrotrone Trieste - SS 14 - km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Peggy Stolt-Bergner
- Vienna Biocenter Core Facilities GmbH, Dr. Bohr-gasse 3, 1030 Vienna, Austria
| | - Christian Aigner
- Vienna Biocenter Core Facilities GmbH, Dr. Bohr-gasse 3, 1030 Vienna, Austria
| | - Sabine Suppmann
- Max-Planck Institute of Biochemistry, Biochemistry Core Facility, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Adi Goldenzweig
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sarel J Fleishman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
15
|
Zhu Y, Feng F, Hu G, Wang Y, Yu Y, Zhu Y, Xu W, Cai X, Sun Z, Han W, Ye R, Qu D, Ding Q, Huang X, Chen H, Xu W, Xie Y, Cai Q, Yuan Z, Zhang R. A genome-wide CRISPR screen identifies host factors that regulate SARS-CoV-2 entry. Nat Commun 2021; 12:961. [PMID: 33574281 PMCID: PMC7878750 DOI: 10.1038/s41467-021-21213-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
The global spread of SARS-CoV-2 is posing major public health challenges. One feature of SARS-CoV-2 spike protein is the insertion of multi-basic residues at the S1/S2 subunit cleavage site. Here, we find that the virus with intact spike (Sfull) preferentially enters cells via fusion at the plasma membrane, whereas a clone (Sdel) with deletion disrupting the multi-basic S1/S2 site utilizes an endosomal entry pathway. Using Sdel as model, we perform a genome-wide CRISPR screen and identify several endosomal entry-specific regulators. Experimental validation of hits from the CRISPR screen shows that host factors regulating the surface expression of angiotensin-converting enzyme 2 (ACE2) affect entry of Sfull virus. Animal-to-animal transmission with the Sdel virus is reduced compared to Sfull in the hamster model. These findings highlight the critical role of the S1/S2 boundary of SARS-CoV-2 spike protein in modulating virus entry and transmission and provide insights into entry of coronaviruses.
Collapse
Affiliation(s)
- Yunkai Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Fei Feng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Gaowei Hu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yuyan Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yin Yu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Yuanfei Zhu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Xia Cai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Zhiping Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Wendong Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Rong Ye
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Xinxin Huang
- Technical Center For Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, CAAS, Shanghai, China
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Qiliang Cai
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
| |
Collapse
|
16
|
Crawley-Snowdon H, Yang JC, Zaccai NR, Davis LJ, Wartosch L, Herman EK, Bright NA, Swarbrick JS, Collins BM, Jackson LP, Seaman MNJ, Luzio JP, Dacks JB, Neuhaus D, Owen DJ. Mechanism and evolution of the Zn-fingernail required for interaction of VARP with VPS29. Nat Commun 2020; 11:5031. [PMID: 33024112 PMCID: PMC7539009 DOI: 10.1038/s41467-020-18773-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 09/08/2020] [Indexed: 01/13/2023] Open
Abstract
VARP and TBC1D5 are accessory/regulatory proteins of retromer-mediated retrograde trafficking from endosomes. Using an NMR/X-ray approach, we determined the structure of the complex between retromer subunit VPS29 and a 12 residue, four-cysteine/Zn++ microdomain, which we term a Zn-fingernail, two of which are present in VARP. Mutations that abolish VPS29:VARP binding inhibit trafficking from endosomes to the cell surface. We show that VARP and TBC1D5 bind the same site on VPS29 and can compete for binding VPS29 in vivo. The relative disposition of VPS29s in hetero-hexameric, membrane-attached, retromer arches indicates that VARP will prefer binding to assembled retromer coats through simultaneous binding of two VPS29s. The TBC1D5:VPS29 interaction is over one billion years old but the Zn-fingernail appears only in VARP homologues in the lineage directly giving rise to animals at which point the retromer/VARP/TBC1D5 regulatory network became fully established.
Collapse
Affiliation(s)
- Harriet Crawley-Snowdon
- MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Nathan R Zaccai
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
| | - Luther J Davis
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
| | - Lena Wartosch
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
| | - Emily K Herman
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada, T6G 2G3
| | | | - James S Swarbrick
- Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St Lucia, QLD, 4072, Australia
| | - Lauren P Jackson
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | | | - J Paul Luzio
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Canada, T6G 2G3.
| | - David Neuhaus
- MRC Laboratory of Molecular Biology Cambridge Biomedical Campus, Francis Crick Ave, Cambridge, CB2 0QH, UK.
| | - David J Owen
- CIMR, The Keith Peters Building, Hills Road, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
17
|
Deatherage CL, Nikolaus J, Karatekin E, Burd CG. Retromer forms low order oligomers on supported lipid bilayers. J Biol Chem 2020; 295:12305-12316. [PMID: 32651229 PMCID: PMC7443500 DOI: 10.1074/jbc.ra120.013672] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Retromer orchestrates the selection and export of integral membrane proteins from the endosome via retrograde and plasma membrane recycling pathways. Long-standing hypotheses regarding the retromer sorting mechanism posit that oligomeric interactions between retromer and associated accessory factors on the endosome membrane drives clustering of retromer-bound integral membrane cargo prior to its packaging into a nascent transport carrier. To test this idea, we examined interactions between components of the sorting nexin 3 (SNX3)-retromer sorting pathway using quantitative single particle fluorescence microscopy in a reconstituted system. This system includes a supported lipid bilayer, fluorescently labeled retromer, SNX3, and two model cargo proteins, RAB7, and retromer-binding segments of the WASHC2C subunit of the WASH complex. We found that the distribution of membrane-associated retromer is predominantly comprised of monomer (∼18%), dimer (∼35%), trimer (∼24%), and tetramer (∼13%). Unexpectedly, neither the presence of membrane-associated cargo nor accessory factors substantially affected this distribution. The results indicate that retromer has an intrinsic propensity to form low order oligomers on a supported lipid bilayer and that neither membrane association nor accessory factors potentiate oligomerization. The results support a model whereby SNX3-retromer is a minimally concentrative coat protein complex adapted to bulk membrane trafficking from the endosomal system.
Collapse
Affiliation(s)
| | - Joerg Nikolaus
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut, USA; Nanobiology Institute, Yale University, West Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut, USA; Saints-Pères Paris Institute for the Neurosciences (SPPIN), CNRS, Université de Paris, Paris, France.
| | - Christopher G Burd
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
18
|
Evans AJ, Daly JL, Anuar ANK, Simonetti B, Cullen PJ. Acute inactivation of retromer and ESCPE-1 leads to time-resolved defects in endosomal cargo sorting. J Cell Sci 2020; 133:133/15/jcs246033. [PMID: 32747499 PMCID: PMC7420817 DOI: 10.1242/jcs.246033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/05/2020] [Indexed: 01/16/2023] Open
Abstract
Human retromer, a heterotrimer of VPS26 (VPS26A or VPS26B), VPS35 and VPS29, orchestrates the endosomal retrieval of internalised cargo and promotes their cell surface recycling, a prototypical cargo being the glucose transporter GLUT1 (also known as SLC2A1). The role of retromer in the retrograde sorting of the cation-independent mannose 6-phosphate receptor (CI-MPR, also known as IGF2R) from endosomes back to the trans-Golgi network remains controversial. Here, by applying knocksideways technology, we develop a method for acute retromer inactivation. While retromer knocksideways in HeLa and H4 human neuroglioma cells resulted in time-resolved defects in cell surface sorting of GLUT1, we failed to observe a quantifiable defect in CI-MPR sorting. In contrast, knocksideways of the ESCPE-1 complex – a key regulator of retrograde CI-MPR sorting – revealed time-resolved defects in CI-MPR sorting. Together, these data are consistent with a comparatively limited role for retromer in ESCPE-1-mediated CI-MPR retrograde sorting, and establish a methodology for acute retromer and ESCPE-1 inactivation that will aid the time-resolved dissection of their functional roles in endosomal cargo sorting. Summary: Retromer, a master controller of endosomal cargo sorting, is deregulated in neurodegenerative disease. Here, we develop and apply a retromer knocksideways methodology to quantify endosomal cargo sorting upon acute perturbation.
Collapse
Affiliation(s)
- Ashley J Evans
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - James L Daly
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Anis N K Anuar
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Boris Simonetti
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
19
|
Abstract
In this issue of Structure, Kendall et al. (2020) reveal the cryo-EM structure of the mammalian retromer complex, which is essential in sorting membrane proteins in endosomes. The retromer heterotrimer can oligomerize in multiple conformations; this versatility is promoted by a flexible interface of electrostatic residues on the VPS35 subunit.
Collapse
Affiliation(s)
- Leonora Martínez-Núñez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
20
|
Mammalian Retromer Is an Adaptable Scaffold for Cargo Sorting from Endosomes. Structure 2020; 28:393-405.e4. [PMID: 32027819 PMCID: PMC7145723 DOI: 10.1016/j.str.2020.01.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/25/2019] [Accepted: 01/16/2020] [Indexed: 01/21/2023]
Abstract
Metazoan retromer (VPS26/VPS35/VPS29) associates with sorting nexins on endosomal tubules to sort proteins to the trans-Golgi network or plasma membrane. Mechanisms of metazoan retromer assembly remain undefined. We combine single-particle cryoelectron microscopy with biophysical methods to uncover multiple oligomer structures. 2D class averages reveal mammalian heterotrimers; dimers of trimers; tetramers of trimers; and flat chains. These species are further supported by biophysical solution studies. We provide reconstructions of all species, including key sub-structures (∼5 Å resolution). Local resolution variation suggests that heterotrimers and dimers adopt multiple conformations. Our structures identify a flexible, highly conserved electrostatic dimeric interface formed by VPS35 subunits. We generate structure-based mutants to disrupt this interface in vitro. Equivalent mutations in yeast demonstrate a mild cargo-sorting defect. Our data suggest the metazoan retromer is an adaptable and plastic scaffold that accommodates interactions with different sorting nexins to sort multiple cargoes from endosomes their final destinations.
Collapse
|
21
|
Weeratunga S, Paul B, Collins BM. Recognising the signals for endosomal trafficking. Curr Opin Cell Biol 2020; 65:17-27. [PMID: 32155566 DOI: 10.1016/j.ceb.2020.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/08/2020] [Indexed: 12/11/2022]
Abstract
The endosomal compartment is a major sorting station controlling the balance between endocytic recycling and lysosomal degradation, and its homeostasis is emerging as a central factor in various neurodegenerative diseases such as Alzheimer's and Parkinson's. Membrane trafficking is generally coordinated by the recognition of specific signals in transmembrane protein cargos by different transport machineries. A number of different protein trafficking complexes are essential for sequence-specific recognition and retrieval of endosomal cargos, recycling them to other compartments and acting to counter-balance the default endosomal sorting complex required for transport-mediated degradation pathway. In this review, we provide a summary of the key endosomal transport machineries, and the molecular mechanisms by which different cargo sequences are specifically recognised.
Collapse
Affiliation(s)
- Saroja Weeratunga
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
| | - Blessy Paul
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia; University of Texas Southwestern Medical Center, Department of Cell Biology, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Brett M Collins
- The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia.
| |
Collapse
|
22
|
Chen K, Healy MD, Collins BM. Towards a molecular understanding of endosomal trafficking by Retromer and Retriever. Traffic 2019; 20:465-478. [DOI: 10.1111/tra.12649] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kai‐En Chen
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| | - Michael D. Healy
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| | - Brett M. Collins
- Institute for Molecular Bioscience University of Queensland St. Lucia Queensland Australia
| |
Collapse
|
23
|
Baños-Mateos S, Rojas AL, Hierro A. VPS29, a tweak tool of endosomal recycling. Curr Opin Cell Biol 2019; 59:81-87. [PMID: 31051431 DOI: 10.1016/j.ceb.2019.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/09/2019] [Accepted: 03/19/2019] [Indexed: 10/26/2022]
Abstract
The endolysosomal system is a highly dynamic network of membranes for degradation and recycling. During endosomal maturation, cargo molecules destined for lysosomal degradation are progressively concentrated through continuous rounds of fusion and fission reactions concomitant with inbound and outbound membrane fluxes. Of the cargo molecules delivered to endosomes, about two-thirds are rescued from degradation and recycled for reuse. This balance between degradation and recycling is essential to preserve the proteostatic plasticity of the cell under variable physiological demands. Cargo retrieval from endosomes involves several sorting complexes with stable core compositions that associate with multidomain regulatory proteins, consequently displaying complex interaction networks. The vacuolar protein sorting 29 (VPS29) has emerged as a central scaffold that coordinates the physical assembly of retrieval complexes with regulatory components in what appears to be an elegant solution for regulating distinct retrieval stations. This review summarizes the VPS29-binding partners and its integration into retrieval complexes for endosomal sorting and trafficking.
Collapse
Affiliation(s)
| | | | - Aitor Hierro
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
24
|
|
25
|
Structure of the membrane-assembled retromer coat determined by cryo-electron tomography. Nature 2018; 561:561-564. [PMID: 30224749 PMCID: PMC6173284 DOI: 10.1038/s41586-018-0526-z] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 08/08/2018] [Indexed: 02/02/2023]
Abstract
Eukaryotic cells traffic proteins and lipids between different compartments using protein-coated vesicles and tubules. The retromer complex is required to generate cargo-selective tubulovesicular carriers from endosomal membranes1-3. Conserved in eukaryotes, retromer controls the cellular localization and homeostasis of hundreds of transmembrane proteins, and its disruption is associated with major neurodegenerative disorders4-7. How retromer is assembled and how it is recruited to form coated tubules is not known. Here we describe the structure of the retromer complex (Vps26-Vps29-Vps35) assembled on membrane tubules with the bin/amphiphysin/rvs-domain-containing sorting nexin protein Vps5, using cryo-electron tomography and subtomogram averaging. This reveals a membrane-associated Vps5 array, from which arches of retromer extend away from the membrane surface. Vps35 forms the 'legs' of these arches, and Vps29 resides at the apex where it is free to interact with regulatory factors. The bases of the arches connect to each other and to Vps5 through Vps26, and the presence of the same arches on coated tubules within cells confirms their functional importance. Vps5 binds to Vps26 at a position analogous to the previously described cargo- and Snx3-binding site, which suggests the existence of distinct retromer-sorting nexin assemblies. The structure provides insight into the architecture of the coat and its mechanism of assembly, and suggests that retromer promotes tubule formation by directing the distribution of sorting nexin proteins on the membrane surface while providing a scaffold for regulatory-protein interactions.
Collapse
|
26
|
Wang J, Fedoseienko A, Chen B, Burstein E, Jia D, Billadeau DD. Endosomal receptor trafficking: Retromer and beyond. Traffic 2018; 19:578-590. [PMID: 29667289 PMCID: PMC6043395 DOI: 10.1111/tra.12574] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/17/2022]
Abstract
The tubular endolysosomal network is a quality control system that ensures the proper delivery of internalized receptors to specific subcellular destinations in order to maintain cellular homeostasis. Although retromer was originally described in yeast as a regulator of endosome-to-Golgi receptor recycling, mammalian retromer has emerged as a central player in endosome-to-plasma membrane recycling of a variety of receptors. Over the past decade, information regarding the mechanism by which retromer facilitates receptor trafficking has emerged, as has the identification of numerous retromer-associated molecules including the WASH complex, sorting nexins (SNXs) and TBC1d5. Moreover, the recent demonstration that several SNXs can directly interact with retromer cargo to facilitate endosome-to-Golgi retrieval has provided new insight into how these receptors are trafficked in cells. The mechanism by which SNX17 cargoes are recycled out of the endosomal system was demonstrated to involve a retromer-like complex termed the retriever, which is recruited to WASH positive endosomes through an interaction with the COMMD/CCDC22/CCDC93 (CCC) complex. Lastly, the mechanisms by which bacterial and viral pathogens highjack this complex sorting machinery in order to escape the endolysosomal system or remain hidden within the cells are beginning to emerge. In this review, we will highlight recent studies that have begun to unravel the intricacies by which the retromer and associated molecules contribute to receptor trafficking and how deregulation at this sorting domain can contribute to disease or facilitate pathogen infection.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Alina Fedoseienko
- Division of Oncology Research, Department of Biochemistry and Molecular Biology, and Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Bayou Chen
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Ezra Burstein
- Department of Internal Medicine, and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Daniel D. Billadeau
- Division of Oncology Research, Department of Biochemistry and Molecular Biology, and Department of Immunology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Endosomal Retrieval of Cargo: Retromer Is Not Alone. Trends Cell Biol 2018; 28:807-822. [PMID: 30072228 DOI: 10.1016/j.tcb.2018.06.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/15/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022]
Abstract
Endosomes are major protein sorting stations in cells. Endosomally localised multi-protein complexes sort integral proteins, including signaling receptors, nutrient transporters, adhesion molecules, and lysosomal hydrolase receptors, for lysosomal degradation or conversely for retrieval and subsequent recycling to various membrane compartments. Correct endosomal sorting of these proteins is essential for maintaining cellular homeostasis, with defects in endosomal sorting implicated in various human pathologies including neurodegenerative disorders. Retromer, an ancient multi-protein complex, is essential for the retrieval and recycling of hundreds of transmembrane proteins. While retromer is a major player in endosomal retrieval and recycling, several studies have recently identified retrieval mechanisms that are independent of retromer. Here, we review endosomal retrieval complexes, with a focus on recently discovered retromer-independent mechanisms.
Collapse
|
28
|
VPS35 depletion does not impair presynaptic structure and function. Sci Rep 2018; 8:2996. [PMID: 29445238 PMCID: PMC5812998 DOI: 10.1038/s41598-018-20448-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/18/2018] [Indexed: 12/03/2022] Open
Abstract
The endosomal system is proposed as a mediator of synaptic vesicle recycling, but the molecular recycling mechanism remains largely unknown. Retromer is a key protein complex which mediates endosomal recycling in eukaryotic cells, including neurons. Retromer is important for brain function and mutations in retromer genes are linked to neurodegenerative diseases. In this study, we aimed to determine the role of retromer in presynaptic structure and function. We assessed the role of retromer by knocking down VPS35, the core subunit of retromer, in primary hippocampal mouse neurons. VPS35 depletion led to retromer dysfunction, measured as a decrease in GluA1 at the plasma membrane, and bypassed morphological defects previously described in chronic retromer depletion models. We found that retromer is localized at the mammalian presynaptic terminal. However, VPS35 depletion did not alter the presynaptic ultrastructure, synaptic vesicle release or retrieval. Hence, we conclude that retromer is present in the presynaptic terminal but it is not essential for the synaptic vesicle cycle. Nonetheless, the presynaptic localization of VPS35 suggests that retromer-dependent endosome sorting could take place for other presynaptic cargo.
Collapse
|
29
|
Molecular mechanism for the subversion of the retromer coat by the Legionella effector RidL. Proc Natl Acad Sci U S A 2017; 114:E11151-E11160. [PMID: 29229824 PMCID: PMC5748213 DOI: 10.1073/pnas.1715361115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Deciphering microbial virulence mechanisms is of fundamental importance for the treatment of infectious diseases. Legionella pneumophila, the causative agent of Legionnaires’ pneumonia, hijacks a variety of host cell factors during intracellular growth. Herein, we uncovered the molecular mechanism by which the L. pneumophila effector RidL targets the host VPS29, a scaffolding protein of endosome-associated sorting machineries. Using X-ray crystallography, we determined the structure of RidL, both alone and in complex with retromer. We found that RidL uses a hairpin loop similar to that present in cellular ligands to interact with retromer. This sophisticated molecular mimicry allows RidL to outcompete cellular ligands for retromer binding, explaining how L. pneumophila utilizes the endosomal sorting machinery to facilitate targeting of effector proteins. Microbial pathogens employ sophisticated virulence strategies to cause infections in humans. The intracellular pathogen Legionella pneumophila encodes RidL to hijack the host scaffold protein VPS29, a component of retromer and retriever complexes critical for endosomal cargo recycling. Here, we determined the crystal structure of L. pneumophila RidL in complex with the human VPS29–VPS35 retromer subcomplex. A hairpin loop protruding from RidL inserts into a conserved pocket on VPS29 that is also used by cellular ligands, such as Tre-2/Bub2/Cdc16 domain family member 5 (TBC1D5) and VPS9-ankyrin repeat protein for VPS29 binding. Consistent with the idea of molecular mimicry in protein interactions, RidL outcompeted TBC1D5 for binding to VPS29. Furthermore, the interaction of RidL with retromer did not interfere with retromer dimerization but was essential for association of RidL with retromer-coated vacuolar and tubular endosomes. Our work thus provides structural and mechanistic evidence into how RidL is targeted to endosomal membranes.
Collapse
|
30
|
Simonetti B, Danson CM, Heesom KJ, Cullen PJ. Sequence-dependent cargo recognition by SNX-BARs mediates retromer-independent transport of CI-MPR. J Cell Biol 2017; 216:3695-3712. [PMID: 28935633 PMCID: PMC5674890 DOI: 10.1083/jcb.201703015] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 07/19/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022] Open
Abstract
Endosomal recycling of transmembrane proteins requires sequence-dependent recognition of motifs present within their intracellular cytosolic domains. In this study, we have reexamined the role of retromer in the sequence-dependent endosome-to-trans-Golgi network (TGN) transport of the cation-independent mannose 6-phosphate receptor (CI-MPR). Although the knockdown or knockout of retromer does not perturb CI-MPR transport, the targeting of the retromer-linked sorting nexin (SNX)-Bin, Amphiphysin, and Rvs (BAR) proteins leads to a pronounced defect in CI-MPR endosome-to-TGN transport. The retromer-linked SNX-BAR proteins comprise heterodimeric combinations of SNX1 or SNX2 with SNX5 or SNX6 and serve to regulate the biogenesis of tubular endosomal sorting profiles. We establish that SNX5 and SNX6 associate with the CI-MPR through recognition of a specific WLM endosome-to-TGN sorting motif. From validating the CI-MPR dependency of SNX1/2-SNX5/6 tubular profile formation, we provide a mechanism for coupling sequence-dependent cargo recognition with the biogenesis of tubular profiles required for endosome-to-TGN transport. Therefore, the data presented in this study reappraise retromer's role in CI-MPR transport.
Collapse
Affiliation(s)
- Boris Simonetti
- School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Chris M Danson
- School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol, England, UK
| | - Peter J Cullen
- School of Biochemistry, University of Bristol, Bristol, England, UK
| |
Collapse
|
31
|
McNally KE, Faulkner R, Steinberg F, Gallon M, Ghai R, Pim D, Langton P, Pearson N, Danson CM, Nägele H, Morris LL, Singla A, Overlee BL, Heesom KJ, Sessions R, Banks L, Collins BM, Berger I, Billadeau DD, Burstein E, Cullen PJ. Retriever is a multiprotein complex for retromer-independent endosomal cargo recycling. Nat Cell Biol 2017; 19:1214-1225. [PMID: 28892079 PMCID: PMC5790113 DOI: 10.1038/ncb3610] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 08/10/2017] [Indexed: 02/08/2023]
Abstract
Following endocytosis into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multiprotein complex that orchestrates cargo retrieval and recycling and, importantly, is biochemically and functionally distinct from the established retromer pathway. We have called this complex 'retriever'; it is a heterotrimer composed of DSCR3, C16orf62 and VPS29, and bears striking similarity to retromer. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to CCC (CCDC93, CCDC22, COMMD) and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5β1 integrin. Through quantitative proteomic analysis, we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, that require SNX17-retriever to maintain their surface levels. Our identification of retriever establishes a major endosomal retrieval and recycling pathway.
Collapse
Affiliation(s)
- Kerrie E McNally
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Rebecca Faulkner
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Florian Steinberg
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, 79104 Freiburg, Germany
| | - Matthew Gallon
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Rajesh Ghai
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - David Pim
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Paul Langton
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Neil Pearson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Chris M Danson
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Heike Nägele
- Center for Biological Systems Analysis, Albert Ludwigs Universitaet Freiburg, 79104 Freiburg, Germany
| | - Lindsey L Morris
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amika Singla
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Brittany L Overlee
- Department of Biochemistry and Molecular Biology, and Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Kate J Heesom
- Proteomics Facility, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Richard Sessions
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | - Brett M Collins
- Institute for Molecular Bioscience, the University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| | - Daniel D Billadeau
- Department of Biochemistry and Molecular Biology, and Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ezra Burstein
- Department of Internal Medicine and Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Peter J Cullen
- School of Biochemistry, Biomedical Sciences Building, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
32
|
Cui TZ, Peterson TA, Burd CG. A CDC25 family protein phosphatase gates cargo recognition by the Vps26 retromer subunit. eLife 2017; 6. [PMID: 28362258 PMCID: PMC5409824 DOI: 10.7554/elife.24126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/30/2017] [Indexed: 01/14/2023] Open
Abstract
We describe a regulatory mechanism that controls the activity of retromer, an evolutionarily conserved sorting device that orchestrates cargo export from the endosome. A spontaneously arising mutation that activates the yeast (Saccharomyces cerevisiae) CDC25 family phosphatase, Mih1, results in accelerated turnover of a subset of endocytosed plasma membrane proteins due to deficient sorting into a retromer-mediated recycling pathway. Mih1 directly modulates the phosphorylation state of the Vps26 retromer subunit; mutations engineered to mimic these states modulate the binding affinities of Vps26 for a retromer cargo, resulting in corresponding changes in cargo sorting at the endosome. The results suggest that a phosphorylation-based gating mechanism controls cargo selection by yeast retromer, and they establish a functional precedent for CDC25 protein phosphatases that lies outside of their canonical role in regulating cell cycle progression.
Collapse
Affiliation(s)
- Tie-Zhong Cui
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| | - Tabitha A Peterson
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, United States
| | - Christopher G Burd
- Department of Cell Biology, Yale School of Medicine, New Haven, United States
| |
Collapse
|
33
|
Lucas M, Gershlick DC, Vidaurrazaga A, Rojas AL, Bonifacino JS, Hierro A. Structural Mechanism for Cargo Recognition by the Retromer Complex. Cell 2016; 167:1623-1635.e14. [PMID: 27889239 PMCID: PMC5147500 DOI: 10.1016/j.cell.2016.10.056] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/03/2016] [Accepted: 10/28/2016] [Indexed: 01/08/2023]
Abstract
Retromer is a multi-protein complex that recycles transmembrane cargo from endosomes to the trans-Golgi network and the plasma membrane. Defects in retromer impair various cellular processes and underlie some forms of Alzheimer's disease and Parkinson's disease. Although retromer was discovered over 15 years ago, the mechanisms for cargo recognition and recruitment to endosomes have remained elusive. Here, we present an X-ray crystallographic analysis of a four-component complex comprising the VPS26 and VPS35 subunits of retromer, the sorting nexin SNX3, and a recycling signal from the divalent cation transporter DMT1-II. This analysis identifies a binding site for canonical recycling signals at the interface between VPS26 and SNX3. In addition, the structure highlights a network of cooperative interactions among the VPS subunits, SNX3, and cargo that couple signal-recognition to membrane recruitment.
Collapse
Affiliation(s)
- María Lucas
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - David C Gershlick
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ander Vidaurrazaga
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Adriana L Rojas
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain
| | - Juan S Bonifacino
- Cell Biology and Neurobiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Aitor Hierro
- Structural Biology Unit, CIC bioGUNE, Bizkaia Technology Park, 48160 Derio, Spain; IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain.
| |
Collapse
|
34
|
Jia D, Zhang JS, Li F, Wang J, Deng Z, White MA, Osborne DG, Phillips-Krawczak C, Gomez TS, Li H, Singla A, Burstein E, Billadeau DD, Rosen MK. Structural and mechanistic insights into regulation of the retromer coat by TBC1d5. Nat Commun 2016; 7:13305. [PMID: 27827364 PMCID: PMC5105194 DOI: 10.1038/ncomms13305] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/19/2016] [Indexed: 01/09/2023] Open
Abstract
Retromer is a membrane coat complex that is recruited to endosomes by the small GTPase Rab7 and sorting nexin 3. The timing of this interaction and consequent endosomal dynamics are thought to be regulated by the guanine nucleotide cycle of Rab7. Here we demonstrate that TBC1d5, a GTPase-activating protein (GAP) for Rab7, is a high-affinity ligand of the retromer cargo selective complex VPS26/VPS29/VPS35. The crystal structure of the TBC1d5 GAP domain bound to VPS29 and complementary biochemical and cellular data show that a loop from TBC1d5 binds to a conserved hydrophobic pocket on VPS29 opposite the VPS29-VPS35 interface. Additional data suggest that a distinct loop of the GAP domain may contact VPS35. Loss of TBC1d5 causes defective retromer-dependent trafficking of receptors. Our findings illustrate how retromer recruits a GAP, which is likely to be involved in the timing of Rab7 inactivation leading to membrane uncoating, with important consequences for receptor trafficking.
Collapse
Affiliation(s)
- Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Paediatrics, West China Second University Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
- Department of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Jin-San Zhang
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Key Laboratory of Biotechnology and Pharmaceutical Engineering, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fang Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Paediatrics, West China Second University Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), Department of Paediatrics, West China Second University Hospital and State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhihui Deng
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Pathophysiology, Qiqihar Medical University, Qiqihar 161006, China
| | - Mark A. White
- Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Douglas G. Osborne
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Christine Phillips-Krawczak
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Timothy S. Gomez
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Haiying Li
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Amika Singla
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ezra Burstein
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Daniel D. Billadeau
- Departments of Immunology, Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Michael K. Rosen
- Department of Biophysics, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
35
|
Follett J, Bugarcic A, Yang Z, Ariotti N, Norwood SJ, Collins BM, Parton RG, Teasdale RD. Parkinson Disease-linked Vps35 R524W Mutation Impairs the Endosomal Association of Retromer and Induces α-Synuclein Aggregation. J Biol Chem 2016; 291:18283-98. [PMID: 27385586 DOI: 10.1074/jbc.m115.703157] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Indexed: 12/20/2022] Open
Abstract
Endosomal sorting is a highly orchestrated cellular process. Retromer is a heterotrimeric complex that associates with endosomal membranes and facilitates the retrograde sorting of multiple receptors, including the cation-independent mannose 6-phosphate receptor for lysosomal enzymes. The cycling of retromer on and off the endosomal membrane is regulated by a network of retromer-interacting proteins. Here, we find that Parkinson disease-associated Vps35 variant, R524W, but not P316S, is a loss-of-function mutation as marked by a reduced association with this regulatory network and dysregulation of endosomal receptor sorting. Expression of Vps35 R524W-containing retromer results in the accumulation of intracellular α-synuclein-positive aggregates, a hallmark of Parkinson disease. Overall, the Vps35 R524W-containing retromer has a decreased endosomal association, which can be partially rescued by R55, a small molecule previously shown to stabilize the retromer complex, supporting the potential for future targeting of the retromer complex in the treatment of Parkinson disease.
Collapse
Affiliation(s)
- Jordan Follett
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Andrea Bugarcic
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Zhe Yang
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Nicholas Ariotti
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Suzanne J Norwood
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Brett M Collins
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| | - Robert G Parton
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and the Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rohan D Teasdale
- From the Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia and
| |
Collapse
|
36
|
Zheng W, Zheng H, Zhao X, Zhang Y, Xie Q, Lin X, Chen A, Yu W, Lu G, Shim WB, Zhou J, Wang Z. Retrograde trafficking from the endosome to the trans-Golgi network mediated by the retromer is required for fungal development and pathogenicity in Fusarium graminearum. THE NEW PHYTOLOGIST 2016; 210:1327-1343. [PMID: 26875543 DOI: 10.1111/nph.13867] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/16/2015] [Indexed: 06/05/2023]
Abstract
In eukaryotes, the retromer is an endosome-localized complex involved in protein retrograde transport. However, the role of such intracellular trafficking events in pathogenic fungal development and pathogenicity remains unclear. The role of the retromer complex in Fusarium graminearum was investigated using cell biological and genetic methods. We observed the retromer core component FgVps35 (Vacuolar Protein Sorting 35) in the cytoplasm as fast-moving puncta. FgVps35-GFP co-localized with both early and late endosomes, and associated with the trans-Golgi network (TGN), suggesting that FgVps35 functions at the donor endosome membrane to mediate TGN trafficking. Disruption of microtubules with nocodazole significantly restricted the transportation of FgVps35-GFP and resulted in severe germination and growth defects. Mutation of FgVPS35 not only mimicked growth defects induced by pharmacological treatment, but also affected conidiation, ascospore formation and pathogenicity. Using yeast two-hybrid assays, we determined the interactions among FgVps35, FgVps26, FgVps29, FgVps17 and FgVps5 which are analogous to the yeast retromer complex components. Deletion of any one of these genes resulted in similar phenotypic defects to those of the ΔFgvps35 mutant and disrupted the stability of the complex. Overall, our results provide the first clear evidence of linkage between the retrograde transport mediated by the retromer complex and virulence in F. graminearum.
Collapse
Affiliation(s)
- Wenhui Zheng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huawei Zheng
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xu Zhao
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Zhang
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiurong Xie
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaolian Lin
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ahai Chen
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenying Yu
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843-2132, USA
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian University Key Laboratory for Functional Genomics of Plant Fungal Pathogens, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
37
|
Falconer RJ. Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015. J Mol Recognit 2016; 29:504-15. [PMID: 27221459 DOI: 10.1002/jmr.2550] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or dissociation of molecular complexes. Over the last 5 years, much work has been published on the interpretation of isothermal titration calorimetry (ITC) data for single binding and multiple binding sites. As over 80% of ITC papers are on macromolecules of biological origin, this interpretation is challenging. Some researchers have attempted to link the thermodynamics constants to events at the molecular level. This review highlights work carried out using binding sites characterized using x-ray crystallography techniques that allow speculation about individual bond formation and the displacement of individual water molecules during ligand binding and link these events to the thermodynamic constants for binding. The review also considers research conducted with synthetic binding partners where specific binding events like anion-π and π-π interactions were studied. The revival of assays that enable both thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly, published criticism of ITC research from a physical chemistry perspective is appraised and practical advice provided for researchers unfamiliar with thermodynamics and its interpretation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Robert J Falconer
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
38
|
Dynein Dysfunction Reproduces Age-Dependent Retromer Deficiency: Concomitant Disruption of Retrograde Trafficking Is Required for Alteration in β-Amyloid Precursor Protein Metabolism. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1952-1966. [PMID: 27179390 DOI: 10.1016/j.ajpath.2016.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 11/21/2022]
Abstract
It is widely accepted that β-amyloid (Aβ) protein plays a pivotal role in Alzheimer disease pathogenesis, and accumulating evidence suggests that endocytic dysfunction is involved in Aβ pathology. Retromer, a conserved multisubunit complex, mediates the retrograde transport of numerous kinds of cargo from endosomes to the trans-Golgi network. Several studies have found that retromer deficiency enhances Aβ pathology both in vitro and in vivo. Cytoplasmic dynein, a microtubule-based motor protein, mediates minus-end-directed vesicle transport via interactions with dynactin, another microtubule-associated protein that also interacts with retromer. Aging attenuates the dynein-dynactin interaction, and dynein dysfunction reproduces age-dependent endocytic disturbance, resulting in the intracellular accumulation of beta-amyloid precursor protein (APP) and its β-cleavage products, including Aβ. Here, we report that aging itself affects retromer trafficking in cynomolgus monkey brains. In addition, dynein dysfunction reproduces this type of age-dependent retromer deficiency (ie, the endosomal accumulation of retromer-related proteins and APP. Moreover, we found that knockdown of Rab7, Rab9, or Rab11 did not alter endogenous APP metabolism, such as that observed in aged monkey brains and in dynein-depleted cells. These findings suggest that dynein dysfunction can cause retromer deficiency and that concomitant disruption of retrograde trafficking may be the key factor underlying age-dependent Aβ pathology.
Collapse
|
39
|
Sangaré LO, Alayi TD, Westermann B, Hovasse A, Sindikubwabo F, Callebaut I, Werkmeister E, Lafont F, Slomianny C, Hakimi MA, Van Dorsselaer A, Schaeffer-Reiss C, Tomavo S. Unconventional endosome-like compartment and retromer complex in Toxoplasma gondii govern parasite integrity and host infection. Nat Commun 2016; 7:11191. [PMID: 27064065 PMCID: PMC4831018 DOI: 10.1038/ncomms11191] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/26/2016] [Indexed: 12/31/2022] Open
Abstract
Membrane trafficking pathways play critical roles in Apicomplexa, a phylum of protozoan parasites that cause life-threatening diseases worldwide. Here we report the first retromer-trafficking interactome in Toxoplasma gondii. This retromer complex includes a trimer Vps35-Vps26-Vps29 core complex that serves as a hub for the endosome-like compartment and parasite-specific proteins. Conditional ablation of TgVps35 reveals that the retromer complex is crucial for the biogenesis of secretory organelles and for maintaining parasite morphology. We identify TgHP12 as a parasite-specific and retromer-associated protein with functions unrelated to secretory organelle formation. Furthermore, the major facilitator superfamily homologue named TgHP03, which is a multiple spanning and ligand transmembrane transporter, is maintained at the parasite membrane by retromer-mediated endocytic recycling. Thus, our findings highlight that both evolutionarily conserved and unconventional proteins act in concert in T. gondii by controlling retrograde transport that is essential for parasite integrity and host infection.
Collapse
Affiliation(s)
- Lamba Omar Sangaré
- Center for Infection and Immunity of Lille, INSERM U 1019, CNRS UMR 8204, Institut Pasteur de Lille, Université de Lille, 59000 Lille, France
| | - Tchilabalo Dilezitoko Alayi
- Laboratory of Bio-Organic Mass Spectrometry, IPHC, CNRS UMR 7178, Université de Strasbourg, 67087 Strasbourg, France
- Plateforme de Protéomique et des Peptides Modifiés (P3M), Institut Pasteur de Lille, CNRS, Université de Lille, 59000 Lille, France
| | - Benoit Westermann
- Laboratory of Bio-Organic Mass Spectrometry, IPHC, CNRS UMR 7178, Université de Strasbourg, 67087 Strasbourg, France
| | - Agnes Hovasse
- Laboratory of Bio-Organic Mass Spectrometry, IPHC, CNRS UMR 7178, Université de Strasbourg, 67087 Strasbourg, France
| | | | - Isabelle Callebaut
- CNRS UMR7590, Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, MNHN, IRD-IUC, Paris 75005, France
| | | | - Frank Lafont
- Bioimaging Platform, IBL, CNRS, Université de Lille, 59000 Lille, France
| | - Christian Slomianny
- Laboratory of Cell Physiology, INSERM U 1003, Université de Lille, 59655 Villeneuve d'Ascq, France
| | | | - Alain Van Dorsselaer
- Laboratory of Bio-Organic Mass Spectrometry, IPHC, CNRS UMR 7178, Université de Strasbourg, 67087 Strasbourg, France
| | - Christine Schaeffer-Reiss
- Laboratory of Bio-Organic Mass Spectrometry, IPHC, CNRS UMR 7178, Université de Strasbourg, 67087 Strasbourg, France
| | - Stanislas Tomavo
- Center for Infection and Immunity of Lille, INSERM U 1019, CNRS UMR 8204, Institut Pasteur de Lille, Université de Lille, 59000 Lille, France
- Plateforme de Protéomique et des Peptides Modifiés (P3M), Institut Pasteur de Lille, CNRS, Université de Lille, 59000 Lille, France
| |
Collapse
|
40
|
Liu JJ. Retromer-Mediated Protein Sorting and Vesicular Trafficking. J Genet Genomics 2016; 43:165-77. [PMID: 27157806 DOI: 10.1016/j.jgg.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 12/25/2022]
Abstract
Retromer is an evolutionarily conserved multimeric protein complex that mediates intracellular transport of various vesicular cargoes and functions in a wide variety of cellular processes including polarized trafficking, developmental signaling and lysosome biogenesis. Through its interaction with the Rab GTPases and their effectors, membrane lipids, molecular motors, the endocytic machinery and actin nucleation promoting factors, retromer regulates sorting and trafficking of transmembrane proteins from endosomes to the trans-Golgi network (TGN) and the plasma membrane. In this review, I highlight recent progress in the understanding of retromer-mediated protein sorting and vesicle trafficking and discuss how retromer contributes to a diverse set of developmental, physiological and pathological processes.
Collapse
Affiliation(s)
- Jia-Jia Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
41
|
Ueda N, Tomita T, Yanagisawa K, Kimura N. Retromer and Rab2-dependent trafficking mediate PS1 degradation by proteasomes in endocytic disturbance. J Neurochem 2016; 137:647-58. [PMID: 26896628 DOI: 10.1111/jnc.13586] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/21/2016] [Accepted: 02/09/2016] [Indexed: 12/21/2022]
Abstract
Accumulating evidence suggests that endocytic pathway deficits are involved in Alzheimer's disease pathogenesis. Several reports show that endocytic disturbance affects β-amyloid peptide (Aβ) cleavage from β-amyloid precursor protein (APP). Presenilin-1 (PS1) is the catalytic core of the γ-secretase complex required for Aβ generation. Previously, we showed that aging induces endocytic disturbance, resulting in the accumulation of Aβ and APP in enlarged endosomes. It remains unclear, however, whether PS1 localization and function are affected with endocytic disturbance. Here, we report that in endocytic disturbance, PS1 is transported from endosomes to ER/Golgi compartments via retromer trafficking, and that PS1 interacts with vacuolar protein sorting-associated protein 35 both in vitro and in vivo. Moreover, PS1 is degraded by proteasomes via a Rab2-dependent trafficking pathway, only during endocytic disturbance. These findings suggest that PS1 levels and localization in endosomes are regulated by retromer trafficking and ER-associated degradation system, even if endocytic disturbance significantly induces the endosomal accumulation of APP and β-site APP-cleaving enzyme 1. Results of this study also suggest that retromer deficiency can affect PS1 localization in endosomes, where Aβ cleavage mainly occurs, possibly leading to enhanced Aβ pathology. We proposed the following mechanism for intracellular transport of presenilin-1 (PS1). When endosome/lysosome trafficking is disturbed, PS1 is transported from endosome to endoplasmic reticulum (ER)/Golgi compartments via retromer and Rab2-mediated trafficking, and then degraded by endoplasmic reticulum-associated degradation (ERAD). Perturbations in this trafficking can cause abnormal endosomal accumulation of PS1, and then may lead to exacerbated Aβ pathology. Cover Image for this issue: doi: 10.1111/jnc.13318.
Collapse
Affiliation(s)
- Naoya Ueda
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Aichi, Japan
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Katsuhiko Yanagisawa
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Aichi, Japan
| | - Nobuyuki Kimura
- Section of Cell Biology and Pathology, Department of Alzheimer's Disease Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology (NCGG), Aichi, Japan
| |
Collapse
|
42
|
Li C, Shah SZA, Zhao D, Yang L. Role of the Retromer Complex in Neurodegenerative Diseases. Front Aging Neurosci 2016; 8:42. [PMID: 26973516 PMCID: PMC4772447 DOI: 10.3389/fnagi.2016.00042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
The retromer complex is a protein complex that plays a central role in endosomal trafficking. Retromer dysfunction has been linked to a growing number of neurological disorders. The process of intracellular trafficking and recycling is crucial for maintaining normal intracellular homeostasis, which is partly achieved through the activity of the retromer complex. The retromer complex plays a primary role in sorting endosomal cargo back to the cell surface for reuse, to the trans-Golgi network (TGN), or alternatively to specialized endomembrane compartments, in which the cargo is not subjected to lysosomal-mediated degradation. In most cases, the retromer acts as a core that interacts with associated proteins, including sorting nexin family member 27 (SNX27), members of the vacuolar protein sorting 10 (VPS10) receptor family, the major endosomal actin polymerization-promoting complex known as Wiskott-Aldrich syndrome protein and scar homolog (WASH), and other proteins. Some of the molecules carried by the retromer complex are risk factors for neurodegenerative diseases. Defects such as haplo-insufficiency or mutations in one or several units of the retromer complex lead to various pathologies. Here, we summarize the molecular architecture of the retromer complex and the roles of this system in intracellular trafficking related the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Chaosi Li
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University Beijing, China
| | - Syed Zahid Ali Shah
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University Beijing, China
| | - Deming Zhao
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University Beijing, China
| | - Lifeng Yang
- National Animal Transmissible Spongiform Encephalopathy Laboratory, Key Laboratory of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine and State Key Laboratory of Agrobiotechnology, China Agricultural University Beijing, China
| |
Collapse
|
43
|
Hwang J, Suh HW, Jeon YH, Hwang E, Nguyen LT, Yeom J, Lee SG, Lee C, Kim KJ, Kang BS, Jeong JO, Oh TK, Choi I, Lee JO, Kim MH. The structural basis for the negative regulation of thioredoxin by thioredoxin-interacting protein. Nat Commun 2015; 5:2958. [PMID: 24389582 PMCID: PMC3941024 DOI: 10.1038/ncomms3958] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/19/2013] [Indexed: 12/20/2022] Open
Abstract
The redox-dependent inhibition of thioredoxin (TRX) by thioredoxin-interacting protein (TXNIP) plays a pivotal role in various cancers and metabolic syndromes. However, the molecular mechanism of this regulation is largely unknown. Here, we present the crystal structure of the TRX-TXNIP complex and demonstrate that the inhibition of TRX by TXNIP is mediated by an intermolecular disulphide interaction resulting from a novel disulphide bond-switching mechanism. Upon binding to TRX, TXNIP undergoes a structural rearrangement that involves switching of a head-to-tail interprotomer Cys63-Cys247 disulphide between TXNIP molecules to an interdomain Cys63-Cys190 disulphide, and the formation of a de novo intermolecular TXNIP Cys247-TRX Cys32 disulphide. This disulphide-switching event unexpectedly results in a domain arrangement of TXNIP that is entirely different from those of other arrestin family proteins. We further show that the intermolecular disulphide bond between TRX and TXNIP dissociates in the presence of high concentrations of reactive oxygen species. This study provides insight into TRX and TXNIP-dependent cellular regulation.
Collapse
Affiliation(s)
- Jungwon Hwang
- 1] Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea [2] Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Hyun-Woo Suh
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Young Ho Jeon
- College of Pharmacy, Korea University, Sejong 339-700, Korea
| | - Eunha Hwang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Chungbuk 363-883, Korea
| | - Loi T Nguyen
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Jeonghun Yeom
- 1] BRI, Korea Institute of Science and Technology, Seoul 136-791, Korea [2] Department of Biological Chemistry, University of Science and Technology, Daejeon 305-333, Korea
| | - Seung-Goo Lee
- Biochemicals and Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Cheolju Lee
- 1] BRI, Korea Institute of Science and Technology, Seoul 136-791, Korea [2] Department of Biological Chemistry, University of Science and Technology, Daejeon 305-333, Korea
| | - Kyung Jin Kim
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | - Beom Sik Kang
- School of Life Science and Biotechnology, Kyungpook National University, Daegu 702-701, Korea
| | - Jin-Ok Jeong
- Division of Cardiology, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon 301-721, Korea
| | - Tae-Kwang Oh
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Inpyo Choi
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea
| | - Jie-Oh Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | - Myung Hee Kim
- 1] Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea [2] Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-333, Korea
| |
Collapse
|
44
|
Sadigh-Eteghad S, Askari-Nejad MS, Mahmoudi J, Majdi A. Cargo trafficking in Alzheimer’s disease: the possible role of retromer. Neurol Sci 2015; 37:17-22. [DOI: 10.1007/s10072-015-2399-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/08/2015] [Indexed: 01/25/2023]
|
45
|
Abstract
The evolutionarily conserved endosomal retromer complex rescues transmembrane proteins from the lysosomal degradative pathway and facilitates their recycling to other cellular compartments. Retromer functions in conjunction with numerous associated proteins, including select members of the sorting nexin (SNX) family. In the present article, we review the molecular architecture and cellular roles of retromer and its various functional partners. The endosomal network is a crucial hub in the trafficking of proteins through the cellular endomembrane system. Transmembrane proteins, here termed cargos, enter endosomes by endocytosis from the plasma membrane or by trafficking from the trans-Golgi network (TGN). Endosomal cargo proteins face one of the two fates: retention in the endosome, leading ultimately to lysosomal degradation or export from the endosome for reuse ('recycling'). The balance of protein degradation and recycling is crucial to cellular homoeostasis; inappropriate sorting of proteins to either fate leads to cellular dysfunction. Retromer is an endosome-membrane-associated protein complex central to the recycling of many cargo proteins from endosomes, both to the TGN and the plasma membrane (and other specialized compartments, e.g. lysosome-related organelles). Retromer function is reliant on a number of proteins from the SNX family. In the present article, we discuss this inter-relationship and how defects in retromer function are increasingly being linked with human disease.
Collapse
|
46
|
Abstract
The retromer complex is an important component of the endosomal protein sorting machinery and mediates protein cargoes from endosomes to the trans-Golgi network (TGN) by retrograde pathway or to the cell surface through recycling pathway. Studies show that retromer and its receptors can make amyloid precursor protein (APP)/β-site APP-cleaving enzyme 1 (BACE1) away endosomes that reduces the production of amyloid β (Aβ). And, tetramer is also found to regulate phagocytic receptors to the plasma membrane of microglia, where some phagocytic receptors take part in Aβ clearance. Therefore, disruption of retromer will increase the production of Aβ. Recently, a plausible relationship between disturbance of retromer and tauopathies is raised. Retromer dysfunction may result in decreasing the clearance of extracellular tau and the level of cathepsin D, which enables tau-induced neurotoxicity. This review article summarizes the structure and function of retromer and its role in pathogenesis of AD. In the end, retromer may provide a potential therapeutic strategy for the treatment of AD.
Collapse
|
47
|
Abstract
Retrograde transport from the endosome to the Golgi is mediated by a 5 protein complex known as the retromer. These five proteins (Vps5, Vps17, Vps26, Vps29, and Vps35 in yeast and SNX1/2, SNX5/6, Vps26, Vps29, and Vps35 in mammalian cells) act as a coat for vesicles budding off of the endosome, as well as perform cargo sorting at the endosome. The retromer is well conserved between yeast and mammalian systems, though variations exist within the mammalian retromer. Functionally, the retromer has been linked to prominent neurodegenerative diseases such as Alzheimer's and Parkinson's in human models as well as diabetes mellitus. However, the retromer also plays a role in the virulence of several microbial pathogens. Despite the current understanding of the retromer complex, there are still many questions to be answered in regards to its overall role in cell homeostasis.
Collapse
Affiliation(s)
- Christopher Trousdale
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65807, United States
| | - Kyoungtae Kim
- Department of Biology, Missouri State University, 901 S National, Springfield, MO 65807, United States.
| |
Collapse
|
48
|
Klinger SC, Siupka P, Nielsen MS. Retromer-Mediated Trafficking of Transmembrane Receptors and Transporters. MEMBRANES 2015; 5:288-306. [PMID: 26154780 PMCID: PMC4584283 DOI: 10.3390/membranes5030288] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 06/29/2015] [Indexed: 12/21/2022]
Abstract
Transport between the endoplasmatic reticulum, the Golgi-network, the endo-lysosomal system and the cell surface can be categorized as anterograde or retrograde, describing traffic that goes forward or backward, respectively. Traffic going from the plasma membrane to endosomes and lysosomes or the trans-Golgi network (TGN) constitutes the major retrograde transport routes. Several transmembrane proteins undergo retrograde transport as part of a recycling mechanism that contributes to reutilization and maintenance of a steady-state protein localization. In addition, some receptors are hijacked by exotoxins and used for entry and intracellular transport. The physiological relevance of retrograde transport cannot be overstated. Retrograde trafficking of the amyloid precursor protein determines the distribution between organelles, and hence the possibility of cleavage by γ-secretase. Right balancing of the pathways is critical for protection against Alzheimer’s disease. During embryonic development, retrograde transport of Wntless to the TGN is essential for the following release of Wnt from the plasma membrane. Furthermore, overexpression of Wntless has been linked to oncogenesis. Here, we review relevant aspects of the retrograde trafficking of mammalian transmembrane receptors and transporters, with focus on the retromer-mediated transport between endosomes and the TGN.
Collapse
Affiliation(s)
- Stine C Klinger
- The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Piotr Siupka
- The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| | - Morten S Nielsen
- The Lundbeck Foundation Initiative on Brain Barriers and Drug Delivery, Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
49
|
Molecular dynamics at the endocytic portal and regulations of endocytic and recycling traffics. Eur J Cell Biol 2015; 94:235-48. [DOI: 10.1016/j.ejcb.2015.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 02/01/2023] Open
|
50
|
Chi RJ, Harrison MS, Burd CG. Biogenesis of endosome-derived transport carriers. Cell Mol Life Sci 2015; 72:3441-3455. [PMID: 26022064 DOI: 10.1007/s00018-015-1935-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 05/18/2015] [Accepted: 05/21/2015] [Indexed: 01/29/2023]
Abstract
Sorting of macromolecules within the endosomal system is vital for physiological control of nutrient homeostasis, cell motility, and proteostasis. Trafficking routes that export macromolecules from the endosome via vesicle and tubule transport carriers constitute plasma membrane recycling and retrograde endosome-to-Golgi pathways. Proteins of the sorting nexin family have been discovered to function at nearly every step of endosomal transport carrier biogenesis and it is becoming increasingly clear that they form the core machineries of cargo-specific transport pathways that are closely integrated with cellular physiology. Here, we summarize recent progress in elucidating the pathways that mediate the biogenesis of endosome-derived transport carriers.
Collapse
Affiliation(s)
- Richard J Chi
- Department of Cell Biology, Yale School of Medicine, SHM C425B, 333 Cedar Street, New Haven, CT 06520, USA
| | - Megan S Harrison
- Department of Cell Biology, Yale School of Medicine, SHM C425B, 333 Cedar Street, New Haven, CT 06520, USA
| | - Christopher G Burd
- Department of Cell Biology, Yale School of Medicine, SHM C425B, 333 Cedar Street, New Haven, CT 06520, USA
| |
Collapse
|