1
|
Escobar H, Di Francescantonio S, Smirnova J, Graf R, Müthel S, Marg A, Zhogov A, Krishna S, Metzler E, Petkova M, Daumke O, Kühn R, Spuler S. Gene-editing in patient and humanized-mice primary muscle stem cells rescues dysferlin expression in dysferlin-deficient muscular dystrophy. Nat Commun 2025; 16:120. [PMID: 39747848 PMCID: PMC11695731 DOI: 10.1038/s41467-024-55086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/29/2024] [Indexed: 01/04/2025] Open
Abstract
Dystrophy-associated fer-1-like protein (dysferlin) conducts plasma membrane repair. Mutations in the DYSF gene cause a panoply of genetic muscular dystrophies. We targeted a frequent loss-of-function, DYSF exon 44, founder frameshift mutation with mRNA-mediated delivery of SpCas9 in combination with a mutation-specific sgRNA to primary muscle stem cells from two homozygous patients. We observed a consistent >60% exon 44 re-framing, rescuing a full-length and functional dysferlin protein. A new mouse model harboring a humanized Dysf exon 44 with the founder mutation, hEx44mut, recapitulates the patients' phenotype and an identical re-framing outcome in primary muscle stem cells. Finally, gene-edited murine primary muscle stem-cells are able to regenerate muscle and rescue dysferlin when transplanted back into hEx44mut hosts. These findings are the first to show that a CRISPR-mediated therapy can ameliorate dysferlin deficiency. We suggest that gene-edited primary muscle stem cells could exhibit utility, not only in treating dysferlin deficiency syndromes, but also perhaps other forms of muscular dystrophy.
Collapse
Affiliation(s)
- Helena Escobar
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany.
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
| | - Silvia Di Francescantonio
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Julia Smirnova
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Robin Graf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Stefanie Müthel
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Andreas Marg
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alexej Zhogov
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Supriya Krishna
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Eric Metzler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Oliver Daumke
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ralf Kühn
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Simone Spuler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité Campus Buch, Berlin, Germany.
- Muscle Research Unit, Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité-Universitätsmedizin Berlin and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Wu Y, Williams RM. The ATTO 565 Dye and Its Applications in Microscopy. Molecules 2024; 29:4243. [PMID: 39275091 PMCID: PMC11397231 DOI: 10.3390/molecules29174243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
ATTO 565, a Rhodamine-type dye, has garnered significant attention due to its remarkable optical properties, such as a high fluorescence quantum yield, and the fact that it is a relatively stable structure and has low biotoxicity. ATTO 565 has found extensive applications in combination with microscopy technology. In this review, the chemical and optical properties of ATTO 565 are introduced, along with the principles behind them. The functionality of ATTO 565 in confocal microscopy, stimulated emission depletion (STED) microscopy, single-molecule tracking (SMT) techniques, two-photon excitation-stimulated emission depletion microscopy (TPE-STED) and fluorescence correlation spectroscopy (FCS) is discussed. These studies demonstrate that ATTO 565 plays a crucial role in areas such as biological imaging and single-molecule localization, thus warranting further in-depth investigations. Finally, we present some prospects and concepts for the future applications of ATTO 565 in the fields of biocompatibility and metal ion detection. This review does not include theoretical calculations for the ATTO 565 molecule.
Collapse
Affiliation(s)
- Yuheng Wu
- Molecular Photonics Group, Van 't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - René M Williams
- Molecular Photonics Group, Van 't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
3
|
Luan H, Bielecki TA, Mohapatra BC, Islam N, Mushtaq I, Bhat AM, Mirza S, Chakraborty S, Raza M, Storck MD, Toss MS, Meza JL, Thoreson WB, Coulter DW, Rakha EA, Band V, Band H. EHD2 overexpression promotes tumorigenesis and metastasis in triple-negative breast cancer by regulating store-operated calcium entry. eLife 2023; 12:81288. [PMID: 36625722 PMCID: PMC9988264 DOI: 10.7554/elife.81288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/10/2023] [Indexed: 01/11/2023] Open
Abstract
With nearly all cancer deaths a result of metastasis, elucidating novel pro-metastatic cellular adaptations could provide new therapeutic targets. Here, we show that overexpression of the EPS15-Homology Domain-containing 2 (EHD2) protein in a large subset of breast cancers (BCs), especially the triple-negative (TNBC) and HER2+ subtypes, correlates with shorter patient survival. The mRNAs for EHD2 and Caveolin-1/2, structural components of caveolae, show co-overexpression across breast tumors, predicting shorter survival in basal-like BC. EHD2 shRNA knockdown and CRISPR-Cas9 knockout with mouse Ehd2 rescue, in TNBC cell line models demonstrate a major positive role of EHD2 in promoting tumorigenesis and metastasis. Mechanistically, we link these roles of EHD2 to store-operated calcium entry (SOCE), with EHD2-dependent stabilization of plasma membrane caveolae ensuring high cell surface expression of the SOCE-linked calcium channel Orai1. The novel EHD2-SOCE oncogenic axis represents a potential therapeutic target in EHD2- and CAV1/2-overexpressing BC.
Collapse
Affiliation(s)
- Haitao Luan
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Timothy A Bielecki
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Bhopal C Mohapatra
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmahaUnited States
| | - Namista Islam
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
| | - Insha Mushtaq
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
- Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
| | - Aaqib M Bhat
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
| | - Sameer Mirza
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
| | - Sukanya Chakraborty
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
| | - Mohsin Raza
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
| | - Matthew D Storck
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
| | - Michael S Toss
- Department of Histopathology, Nottingham University Hospital NHS Trust, City Hospital CampusNottinghamUnited Kingdom
| | - Jane L Meza
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmahaUnited States
- Department of Biostatistics, College of Public Health, University of Nebraska Medical CenterOmahaUnited States
| | - Wallace B Thoreson
- Stanley M. Truhlsen Eye Institute, University of Nebraska Medical CenterOmahaUnited States
| | - Donald W Coulter
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmahaUnited States
- Department of Pediatrics, University of Nebraska Medical CenterOmahaUnited States
| | - Emad A Rakha
- Department of Histopathology, Nottingham University Hospital NHS Trust, City Hospital CampusNottinghamUnited Kingdom
| | - Vimla Band
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmahaUnited States
| | - Hamid Band
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical CenterOmahaUnited States
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical CenterOmahaUnited States
- Department of Pathology & Microbiology, College of Medicine, University of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
4
|
Activation of SIRT1 promotes membrane resealing via cortactin. Sci Rep 2022; 12:15328. [PMID: 36097021 PMCID: PMC9468153 DOI: 10.1038/s41598-022-19136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Muscular dystrophies are inherited myopathic disorders characterized by progressive muscle weakness. Recently, several gene therapies have been developed; however, the treatment options are still limited. Resveratrol, an activator of SIRT1, ameliorates muscular function in muscular dystrophy patients and dystrophin-deficient mdx mice, although its mechanism is still not fully elucidated. Here, we investigated the effects of resveratrol on membrane resealing. We found that resveratrol promoted membrane repair in C2C12 cells via the activation of SIRT1. To elucidate the mechanism by which resveratrol promotes membrane resealing, we focused on the reorganization of the cytoskeleton, which occurs in the early phase of membrane repair. Treatment with resveratrol promoted actin accumulation at the injured site. We also examined the role of cortactin in membrane resealing. Cortactin accumulated at the injury site, and cortactin knockdown suppressed membrane resealing and reorganization of the cytoskeleton. Additionally, SIRT1 deacetylated cortactin and promoted the interaction between cortactin and F-actin, thus possibly enhancing the accumulation of cortactin at the injury site. Finally, we performed a membrane repair assay using single fiber myotubes from control and resveratrol-fed mice, where the oral treatment with resveratrol promoted membrane repair ex vivo. These findings suggest that resveratrol promotes membrane repair via the SIRT1/cortactin axis.
Collapse
|
5
|
Hui J, Stjepić V, Nakamura M, Parkhurst SM. Wrangling Actin Assemblies: Actin Ring Dynamics during Cell Wound Repair. Cells 2022; 11:2777. [PMID: 36139352 PMCID: PMC9497110 DOI: 10.3390/cells11182777] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/18/2022] Open
Abstract
To cope with continuous physiological and environmental stresses, cells of all sizes require an effective wound repair process to seal breaches to their cortex. Once a wound is recognized, the cell must rapidly plug the injury site, reorganize the cytoskeleton and the membrane to pull the wound closed, and finally remodel the cortex to return to homeostasis. Complementary studies using various model organisms have demonstrated the importance and complexity behind the formation and translocation of an actin ring at the wound periphery during the repair process. Proteins such as actin nucleators, actin bundling factors, actin-plasma membrane anchors, and disassembly factors are needed to regulate actin ring dynamics spatially and temporally. Notably, Rho family GTPases have been implicated throughout the repair process, whereas other proteins are required during specific phases. Interestingly, although different models share a similar set of recruited proteins, the way in which they use them to pull the wound closed can differ. Here, we describe what is currently known about the formation, translocation, and remodeling of the actin ring during the cell wound repair process in model organisms, as well as the overall impact of cell wound repair on daily events and its importance to our understanding of certain diseases and the development of therapeutic delivery modalities.
Collapse
Affiliation(s)
| | | | | | - Susan M. Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
6
|
Grunwald SA, Haafke S, Grieben U, Kassner U, Steinhagen-Thiessen E, Spuler S. Statins Aggravate the Risk of Insulin Resistance in Human Muscle. Int J Mol Sci 2022; 23:2398. [PMID: 35216514 PMCID: PMC8876152 DOI: 10.3390/ijms23042398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 01/23/2023] Open
Abstract
Beside their beneficial effects on cardiovascular events, statins are thought to contribute to insulin resistance and type-2 diabetes. It is not known whether these effects are long-term events from statin-treatment or already triggered with the first statin-intake. Skeletal muscle is considered the main site for insulin-stimulated glucose uptake and therefore, a primary target for insulin resistance in the human body. We analyzed localization and expression of proteins related to GLUT4 mediated glucose uptake via AMPKα or AKT in human skeletal muscle tissue from patients with statin-intake >6 months and in primary human myotubes after 96 h statin treatment. The ratio for AMPKα activity significantly increased in human skeletal muscle cells treated with statins for long- and short-term. Furthermore, the insulin-stimulated counterpart, AKT, significantly decreased in activity and protein level, while GSK3ß and mTOR protein expression reduced in statin-treated primary human myotubes, only. However, GLUT4 was normally distributed whereas CAV3 was internalized from plasma membrane around the nucleus in statin-treated primary human myotubes. Statin-treatment activates AMPKα-dependent glucose uptake and remains active after long-term statin treatment. Permanent blocking of its insulin-dependent counterpart AKT activation may lead to metabolic inflexibility and insulin resistance in the long run and may be a direct consequence of statin-treatment.
Collapse
Affiliation(s)
- Stefanie A. Grunwald
- Muscle Research Unit, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125 Berlin, Germany; (S.H.); (U.G.)
| | - Stefanie Haafke
- Muscle Research Unit, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125 Berlin, Germany; (S.H.); (U.G.)
| | - Ulrike Grieben
- Muscle Research Unit, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125 Berlin, Germany; (S.H.); (U.G.)
| | - Ursula Kassner
- Interdisciplinary Lipid Metabolic Center, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (U.K.); (E.S.-T.)
| | - Elisabeth Steinhagen-Thiessen
- Interdisciplinary Lipid Metabolic Center, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany; (U.K.); (E.S.-T.)
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13125 Berlin, Germany; (S.H.); (U.G.)
| |
Collapse
|
7
|
Sommer A, Hoeftberger M, Foissner I. Fluid-phase and membrane markers reveal spatio-temporal dynamics of membrane traffic and repair in the green alga Chara australis. PROTOPLASMA 2021; 258:711-728. [PMID: 33704568 PMCID: PMC8211606 DOI: 10.1007/s00709-021-01627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
We investigated the mechanisms and the spatio-temporal dynamics of fluid-phase and membrane internalization in the green alga Chara australis using fluorescent hydrazides markers alone, or in conjunction with styryl dyes. Using live-cell imaging, immunofluorescence and inhibitor studies we revealed that both fluid-phase and membrane dyes were actively taken up into the cytoplasm by clathrin-mediated endocytosis and stained various classes of endosomes including brefeldin A- and wortmannin-sensitive organelles (trans-Golgi network and multivesicular bodies). Uptake of fluorescent hydrazides was poorly sensitive to cytochalasin D, suggesting that actin plays a minor role in constitutive endocytosis in Chara internodal cells. Sequential pulse-labelling experiments revealed novel aspects of the temporal progression of endosomes in Chara internodal cells. The internalized fluid-phase marker distributed to early compartments within 10 min from dye exposure and after about 30 min, it was found almost exclusively in late endocytic compartments. Notably, fluid cargo consecutively internalized at time intervals of more than 1h, was not targeted to the same vesicular structures, but was sorted into distinct late compartments. We further found that fluorescent hydrazide dyes distributed not only to rapidly recycling endosomes but also to long-lived compartments that participated in plasma membrane repair after local laser injury. Our approach highlights the benefits of combining different fluid-phase markers in conjunction with membrane dyes in simultaneous and sequential application modus for investigating vesicle traffic, especially in organisms, which are still refractory to genetic transformation like characean algae.
Collapse
Affiliation(s)
- Aniela Sommer
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| | - Margit Hoeftberger
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria
| | - Ilse Foissner
- Department of Biosciences, University of Salzburg, Hellbrunnerstr. 34, 5020, Salzburg, Austria.
| |
Collapse
|
8
|
Grunwald SA, Popp O, Haafke S, Jedraszczak N, Grieben U, Saar K, Patone G, Kress W, Steinhagen-Thiessen E, Dittmar G, Spuler S. Statin-induced myopathic changes in primary human muscle cells and reversal by a prostaglandin F2 alpha analogue. Sci Rep 2020; 10:2158. [PMID: 32034223 PMCID: PMC7005895 DOI: 10.1038/s41598-020-58668-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/17/2020] [Indexed: 12/18/2022] Open
Abstract
Statin-related muscle side effects are a constant healthcare problem since patient compliance is dependent on side effects. Statins reduce plasma cholesterol levels and can prevent secondary cardiovascular diseases. Although statin-induced muscle damage has been studied, preventive or curative therapies are yet to be reported. We exposed primary human muscle cell populations (n = 22) to a lipophilic (simvastatin) and a hydrophilic (rosuvastatin) statin and analyzed their expressome. Data and pathway analyses included GOrilla, Reactome and DAVID. We measured mevalonate intracellularly and analyzed eicosanoid profiles secreted by human muscle cells. Functional assays included proliferation and differentiation quantification. More than 1800 transcripts and 900 proteins were differentially expressed after exposure to statins. Simvastatin had a stronger effect on the expressome than rosuvastatin, but both statins influenced cholesterol biosynthesis, fatty acid metabolism, eicosanoid synthesis, proliferation, and differentiation of human muscle cells. Cultured human muscle cells secreted ω-3 and ω-6 derived eicosanoids and prostaglandins. The ω-6 derived metabolites were found at higher levels secreted from simvastatin-treated primary human muscle cells. Eicosanoids rescued muscle cell differentiation. Our data suggest a new aspect on the role of skeletal muscle in cholesterol metabolism. For clinical practice, the addition of omega-n fatty acids might be suitable to prevent or treat statin-myopathy.
Collapse
Affiliation(s)
- Stefanie Anke Grunwald
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany.
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany.
| | - Oliver Popp
- Mass Spectrometry Core Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
- Mass Spectrometry Facility, Berlin Institute of Health, Berlin, 13125, Germany
| | - Stefanie Haafke
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany
| | - Nicole Jedraszczak
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany
| | - Ulrike Grieben
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany
| | - Kathrin Saar
- Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
| | - Giannino Patone
- Genetics and Genomics of Cardiovascular Diseases, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
| | - Wolfram Kress
- Institute for Human Genetics, Julius-Maximilians-University of Würzburg, Würzburg, 97074, Germany
| | | | - Gunnar Dittmar
- Mass Spectrometry Core Facility, Max Delbrück Center for Molecular Medicine in the Helmholtz Society, Berlin, 13125, Germany
- Mass Spectrometry Facility, Berlin Institute of Health, Berlin, 13125, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Universitätsmedizin and the Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany.
- Charité Universitätsmedizin Berlin, Berlin, 13125, Germany.
| |
Collapse
|
9
|
Echarri A, Pavón DM, Sánchez S, García-García M, Calvo E, Huerta-López C, Velázquez-Carreras D, Viaris de Lesegno C, Ariotti N, Lázaro-Carrillo A, Strippoli R, De Sancho D, Alegre-Cebollada J, Lamaze C, Parton RG, Del Pozo MA. An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nat Commun 2019; 10:5828. [PMID: 31862885 PMCID: PMC6925243 DOI: 10.1038/s41467-019-13782-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Cells remodel their structure in response to mechanical strain. However, how mechanical forces are translated into biochemical signals that coordinate the structural changes observed at the plasma membrane (PM) and the underlying cytoskeleton during mechanoadaptation is unclear. Here, we show that PM mechanoadaptation is controlled by a tension-sensing pathway composed of c-Abl tyrosine kinase and membrane curvature regulator FBP17. FBP17 is recruited to caveolae to induce the formation of caveolar rosettes. FBP17 deficient cells have reduced rosette density, lack PM tension buffering capacity under osmotic shock, and cannot adapt to mechanical strain. Mechanistically, tension is transduced to the FBP17 F-BAR domain by direct phosphorylation mediated by c-Abl, a mechanosensitive molecule. This modification inhibits FBP17 membrane bending activity and releases FBP17-controlled inhibition of mDia1-dependent stress fibers, favoring membrane adaptation to increased tension. This mechanoprotective mechanism adapts the cell to changes in mechanical tension by coupling PM and actin cytoskeleton remodeling. Mechanical forces are sensed by cells and can alter plasma membrane properties, but biochemical changes underlying this are not clear. Here the authors show tension is sensed by c-Abl and FBP17, which couples changes in mechanical tension to remodelling of the plasma membrane and actin cytoskeleton.
Collapse
Affiliation(s)
- Asier Echarri
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| | - Dácil M Pavón
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Sara Sánchez
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - María García-García
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Enrique Calvo
- Proteomics Unit, Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Carla Huerta-López
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Diana Velázquez-Carreras
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Christine Viaris de Lesegno
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS UMR3666, INSERM U1143, 75248, Paris, France
| | - Nicholas Ariotti
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ana Lázaro-Carrillo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | | - David De Sancho
- Departamento de Ciencia y Tecnología de Polímeros, Euskal Herriko Unibertsitatea, 20018, Donostia-San Sebastián, Spain.,Donostia International Physics Center, Manuel Lardizabal Ibilbidea, 4, 20018, Donostia-San Sebastián, Spain
| | - Jorge Alegre-Cebollada
- Molecular Mechanics of the Cardiovascular System Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Christophe Lamaze
- Membrane Mechanics and Dynamics of Intracellular Signaling Laboratory, Institut Curie - Centre de Recherche, PSL Research University, CNRS UMR3666, INSERM U1143, 75248, Paris, France
| | - Robert G Parton
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.,The Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Miguel A Del Pozo
- Mechanoadaptation and Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029, Madrid, Spain.
| |
Collapse
|
10
|
Kitmitto A, Baudoin F, Cartwright EJ. Cardiomyocyte damage control in heart failure and the role of the sarcolemma. J Muscle Res Cell Motil 2019; 40:319-333. [PMID: 31520263 PMCID: PMC6831538 DOI: 10.1007/s10974-019-09539-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 01/07/2023]
Abstract
The cardiomyocyte plasma membrane, termed the sarcolemma, is fundamental for regulating a myriad of cellular processes. For example, the structural integrity of the cardiomyocyte sarcolemma is essential for mediating cardiac contraction by forming microdomains such as the t-tubular network, caveolae and the intercalated disc. Significantly, remodelling of these sarcolemma microdomains is a key feature in the development and progression of heart failure (HF). However, despite extensive characterisation of the associated molecular and ultrastructural events there is a lack of clarity surrounding the mechanisms driving adverse morphological rearrangements. The sarcolemma also provides protection, and is the cell's first line of defence, against external stresses such as oxygen and nutrient deprivation, inflammation and oxidative stress with a loss of sarcolemma viability shown to be a key step in cell death via necrosis. Significantly, cumulative cell death is also a feature of HF, and is linked to disease progression and loss of cardiac function. Herein, we will review the link between structural and molecular remodelling of the sarcolemma associated with the progression of HF, specifically considering the evidence for: (i) Whether intrinsic, evolutionary conserved, plasma membrane injury-repair mechanisms are in operation in the heart, and (ii) if deficits in key 'wound-healing' proteins (annexins, dysferlin, EHD2 and MG53) may play a yet to be fully appreciated role in triggering sarcolemma microdomain remodelling and/or necrosis. Cardiomyocytes are terminally differentiated with very limited regenerative capability and therefore preserving cell viability and cardiac function is crucially important. This review presents a novel perspective on sarcolemma remodelling by considering whether targeting proteins that regulate sarcolemma injury-repair may hold promise for developing new strategies to attenuate HF progression.
Collapse
Affiliation(s)
- Ashraf Kitmitto
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK.
| | - Florence Baudoin
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK
| | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, AV Hill, Dover Street, Manchester, M13 9PL, UK
| |
Collapse
|
11
|
Horn A, Jaiswal JK. Structural and signaling role of lipids in plasma membrane repair. CURRENT TOPICS IN MEMBRANES 2019; 84:67-98. [PMID: 31610866 PMCID: PMC7182362 DOI: 10.1016/bs.ctm.2019.07.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The plasma membrane forms the physical barrier between the cytoplasm and extracellular space, allowing for biochemical reactions necessary for life to occur. Plasma membrane damage needs to be rapidly repaired to avoid cell death. This relies upon the coordinated action of the machinery that polarizes the repair response to the site of injury, resulting in resealing of the damaged membrane and subsequent remodeling to return the injured plasma membrane to its pre-injury state. As lipids comprise the bulk of the plasma membrane, the acts of injury, resealing, and remodeling all directly impinge upon the plasma membrane lipids. In addition to their structural role in shaping the physical properties of the plasma membrane, lipids also play an important signaling role in maintaining plasma membrane integrity. While much attention has been paid to the involvement of proteins in the membrane repair pathway, the role of lipids in facilitating plasma membrane repair remains poorly studied. Here we will discuss the current knowledge of how lipids facilitate plasma membrane repair by regulating membrane structure and signaling to coordinate the repair response, and will briefly note how lipid involvement extends beyond plasma membrane repair to the tissue repair response.
Collapse
Affiliation(s)
- Adam Horn
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States
| | - Jyoti K Jaiswal
- Children's National Health System, Center for Genetic Medicine Research, Washington, DC, United States; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.
| |
Collapse
|
12
|
Dekraker C, Boucher E, Mandato CA. Regulation and Assembly of Actomyosin Contractile Rings in Cytokinesis and Cell Repair. Anat Rec (Hoboken) 2018; 301:2051-2066. [PMID: 30312008 DOI: 10.1002/ar.23962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/17/2023]
Abstract
Cytokinesis and single-cell wound repair both involve contractile assemblies of filamentous actin (F-actin) and myosin II organized into characteristic ring-like arrays. The assembly of these actomyosin contractile rings (CRs) is specified spatially and temporally by small Rho GTPases, which trigger local actin polymerization and myosin II contractility via a variety of downstream effectors. We now have a much clearer view of the Rho GTPase signaling cascade that leads to the formation of CRs, but some factors involved in CR positioning, assembly, and function remain poorly understood. Recent studies show that this regulation is multifactorial and goes beyond the long-established Ca2+ -dependent processes. There is substantial evidence that the Ca2+ -independent changes in cell shape, tension, and plasma membrane composition that characterize cytokinesis and single-cell wound repair also regulate CR formation. Elucidating the regulation and mechanistic properties of CRs is important to our understanding of basic cell biology and holds potential for therapeutic applications in human disease. In this review, we present a primer on the factors influencing and regulating CR positioning, assembly, and contraction as they occur in a variety of cytokinetic and single-cell wound repair models. Anat Rec, 301:2051-2066, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Corina Dekraker
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Eric Boucher
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Craig A Mandato
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Nakamura M, Dominguez ANM, Decker JR, Hull AJ, Verboon JM, Parkhurst SM. Into the breach: how cells cope with wounds. Open Biol 2018; 8:rsob.180135. [PMID: 30282661 PMCID: PMC6223217 DOI: 10.1098/rsob.180135] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Repair of wounds to individual cells is crucial for organisms to survive daily physiological or environmental stresses, as well as pathogen assaults, which disrupt the plasma membrane. Sensing wounds, resealing membranes, closing wounds and remodelling plasma membrane/cortical cytoskeleton are four major steps that are essential to return cells to their pre-wounded states. This process relies on dynamic changes of the membrane/cytoskeleton that are indispensable for carrying out the repairs within tens of minutes. Studies from different cell wound repair models over the last two decades have revealed that the molecular mechanisms of single cell wound repair are very diverse and dependent on wound type, size, and/or species. Interestingly, different repair models have been shown to use similar proteins to achieve the same end result, albeit sometimes by distinctive mechanisms. Recent studies using cutting edge microscopy and molecular techniques are shedding new light on the molecular mechanisms during cellular wound repair. Here, we describe what is currently known about the mechanisms underlying this repair process. In addition, we discuss how the study of cellular wound repair—a powerful and inducible model—can contribute to our understanding of other fundamental biological processes such as cytokinesis, cell migration, cancer metastasis and human diseases.
Collapse
Affiliation(s)
- Mitsutoshi Nakamura
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Andrew N M Dominguez
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jacob R Decker
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Alexander J Hull
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jeffrey M Verboon
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
14
|
Effect of Branched-Chain Amino Acid Supplementation on Recovery Following Acute Eccentric Exercise. Nutrients 2018; 10:nu10101389. [PMID: 30275356 PMCID: PMC6212987 DOI: 10.3390/nu10101389] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/19/2018] [Accepted: 09/26/2018] [Indexed: 01/10/2023] Open
Abstract
This study investigated the effect of branched-chain amino acid (BCAA) supplementation on recovery from eccentric exercise. Twenty males ingested either a BCAA supplement or placebo (PLCB) prior to and following eccentric exercise. Creatine kinase (CK), vertical jump (VJ), maximal voluntary isometric contraction (MVIC), jump squat (JS) and perceived soreness were assessed. No significant (p > 0.05) group by time interaction effects were observed for CK, soreness, MVIC, VJ, or JS. CK concentrations were elevated above baseline (p < 0.001) in both groups at 4, 24, 48 and 72 hr, while CK was lower (p = 0.02) in the BCAA group at 48 hr compared to PLCB. Soreness increased significantly from baseline (p < 0.01) in both groups at all time-points; however, BCAA supplemented individuals reported less soreness (p < 0.01) at the 48 and 72 hr time-points. MVIC force output returned to baseline levels (p > 0.05) at 24, 48 and 72 hr for BCAA individuals. No significant difference between groups (p > 0.05) was detected for VJ or JS. BCAA supplementation may mitigate muscle soreness following muscle-damaging exercise. However, when consumed with a diet consisting of ~1.2 g/kg/day protein, the attenuation of muscular performance decrements or corresponding plasma CK levels are likely negligible.
Collapse
|
15
|
Exon Skipping in a Dysf-Missense Mutant Mouse Model. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 13:198-207. [PMID: 30292141 PMCID: PMC6172476 DOI: 10.1016/j.omtn.2018.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/16/2018] [Accepted: 08/16/2018] [Indexed: 01/14/2023]
Abstract
Limb girdle muscular dystrophy 2B (LGMD2B) is without treatment and caused by mutations in the dysferlin gene (DYSF). One-third is missense mutations leading to dysferlin aggregation and amyloid formation, in addition to defects in sarcolemmal repair and progressive muscle wasting. Dysferlin-null mouse models do not allow study of the consequences of missense mutations. We generated a new mouse model (MMex38) carrying a missense mutation in exon 38 in analogy to a clinically relevant human DYSF variant (DYSF p.Leu1341Pro). The targeted mutation induces all characteristics of missense mutant dysferlinopathy, including a progressive dystrophic pattern, amyloid formation, and defects in membrane repair. We chose U7 small nuclear RNA (snRNA)-based splice switching to demonstrate a possible exon-skipping strategy in this new animal model. We show that Dysf exons 37 and 38 can successfully be skipped in vivo. Overall, the MMex38 mouse model provides an ideal tool for preclinical development of treatment strategies for dysferlinopathy.
Collapse
|
16
|
Barthélémy F, Defour A, Lévy N, Krahn M, Bartoli M. Muscle Cells Fix Breaches by Orchestrating a Membrane Repair Ballet. J Neuromuscul Dis 2018; 5:21-28. [PMID: 29480214 PMCID: PMC5836414 DOI: 10.3233/jnd-170251] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Skeletal muscle undergoes many micro-membrane lesions at physiological state. Based on their sizes and magnitude these lesions are repaired via different complexes on a specific spatio-temporal manner. One of the major repair complex is a dysferlin-dependent mechanism. Accordingly, mutations in the DYSF gene encoding dysferlin results in the development of several muscle pathologies called dysferlinopathies, where abnormalities of the membrane repair process have been characterized in patients and animal models. Recent efforts have been deployed to decipher the function of dysferlin, they shed light on its direct implication in sarcolemma resealing after injuries. These discoveries served as a strong ground to design therapeutic approaches for dysferlin-deficient patients. This review detailed the different partners and function of dysferlin and positions the sarcolemma repair in normal and pathological conditions.
Collapse
Affiliation(s)
- Florian Barthélémy
- Microbiology Immunology and Molecular Genetics, University of California, Los Angeles, CA, USA.,Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, CA, USA
| | - Aurélia Defour
- Aix Marseille University, MMG, INSERM, Marseille, France
| | - Nicolas Lévy
- Aix Marseille University, MMG, INSERM, Marseille, France
| | - Martin Krahn
- Aix Marseille University, MMG, INSERM, Marseille, France
| | - Marc Bartoli
- Aix Marseille University, MMG, INSERM, Marseille, France
| |
Collapse
|
17
|
Chiang TS, Wu HF, Lee FJS. ADP-ribosylation factor-like 4C binding to filamin-A modulates filopodium formation and cell migration. Mol Biol Cell 2017; 28:3013-3028. [PMID: 28855378 PMCID: PMC5662259 DOI: 10.1091/mbc.e17-01-0059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/17/2017] [Accepted: 08/25/2017] [Indexed: 11/30/2022] Open
Abstract
Filamin-A plays a key role in tumorigenesis as well as the metastatic progression of prostate cancer, ovarian cancer, and gastric carcinoma. In this study, we identified filamin-A as a novel effector of Arl4C and showed that binding between Arl4C and FLNa modulates the formation of filopodia and cell migration by promoting activation of Cdc42. Changes in cell morphology and the physical forces that occur during migration are generated by a dynamic filamentous actin cytoskeleton. The ADP-ribosylation factor–like 4C (Arl4C) small GTPase acts as a molecular switch to regulate morphological changes and cell migration, although the mechanism by which this occurs remains unclear. Here we report that Arl4C functions with the actin regulator filamin-A (FLNa) to modulate filopodium formation and cell migration. We found that Arl4C interacted with FLNa in a GTP-dependent manner and that FLNa IgG repeat 22 is both required and sufficient for this interaction. We also show that interaction between FLNa and Arl4C is essential for Arl4C-induced filopodium formation and increases the association of FLNa with Cdc42-GEF FGD6, promoting cell division cycle 42 (Cdc42) GTPase activation. Thus our study revealed a novel mechanism, whereby filopodium formation and cell migration are regulated through the Arl4C-FLNa–mediated activation of Cdc42.
Collapse
Affiliation(s)
- Tsai-Shin Chiang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 100 Taipei, Taiwan
| | - Hsu-Feng Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 100 Taipei, Taiwan
| | - Fang-Jen S Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, 100 Taipei, Taiwan .,Department of Medical Research, National Taiwan University Hospital, 100 Taipei, Taiwan
| |
Collapse
|
18
|
Plasma membrane repair: the adaptable cell life-insurance. Curr Opin Cell Biol 2017; 47:99-107. [DOI: 10.1016/j.ceb.2017.03.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/16/2017] [Indexed: 12/17/2022]
|
19
|
Blazek AD, Paleo BJ, Weisleder N. Plasma Membrane Repair: A Central Process for Maintaining Cellular Homeostasis. Physiology (Bethesda) 2016; 30:438-48. [PMID: 26525343 DOI: 10.1152/physiol.00019.2015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Plasma membrane repair is a conserved cellular response mediating active resealing of membrane disruptions to maintain homeostasis and prevent cell death and progression of multiple diseases. Cell membrane repair repurposes mechanisms from various cellular functions, including vesicle trafficking, exocytosis, and endocytosis, to mend the broken membrane. Recent studies increased our understanding of membrane repair by establishing the molecular machinery contributing to membrane resealing. Here, we review some of the key proteins linked to cell membrane repair.
Collapse
Affiliation(s)
- Alisa D Blazek
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Brian J Paleo
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Noah Weisleder
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
20
|
Boye TL, Nylandsted J. Annexins in plasma membrane repair. Biol Chem 2016; 397:961-9. [DOI: 10.1515/hsz-2016-0171] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/14/2016] [Indexed: 01/01/2023]
Abstract
Abstract
Disruption of the plasma membrane poses deadly threat to eukaryotic cells and survival requires a rapid membrane repair system. Recent evidence reveal various plasma membrane repair mechanisms, which are required for cells to cope with membrane lesions including membrane fusion and replacement strategies, remodeling of cortical actin cytoskeleton and vesicle wound patching. Members of the annexin protein family, which are Ca2+-triggered phospholipid-binding proteins emerge as important components of the plasma membrane repair system. Here, we discuss the mechanisms of plasma membrane repair involving annexins spanning from yeast to human cancer cells.
Collapse
|
21
|
Liu J, Ni W, Qu L, Cui X, Lin Z, Liu Q, Zhou H, Ni R. Decreased Expression of EHD2 Promotes Tumor Metastasis and Indicates Poor Prognosis in Hepatocellular Carcinoma. Dig Dis Sci 2016; 61:2554-2567. [PMID: 27221498 DOI: 10.1007/s10620-016-4202-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/12/2016] [Indexed: 12/25/2022]
Abstract
BACKGROUND Metastasis remains the most common cause of lethal outcomes in hepatocellular carcinoma (HCC) after curative resection. Understanding molecular mechanisms that regulate metastasis process is crucial for improving treatment of hepatocellular carcinoma. AIMS In this article, we examined whether Eps15 homology domain-containing 2 (EHD2) played a critical role in hepatocellular carcinoma metastasis and explored the possible mechanism. METHODS EHD2 and E-cadherin expression levels in hepatocellular carcinoma patients were examined using Western blotting and immunohistochemistry. The cell migration and invasion were evaluated by wound-healing assay and trans-well assay. Epithelial-mesenchymal transition was analyzed by immunofluorescence, and the vital markers were detected by Western blotting. The correlation of EHD2 and E-cadherin was confirmed by co-immunoprecipitation. RESULTS EHD2 expression, along with the epithelial marker E-cadherin, was markedly reduced in tumor tissues than in adjacent noncancerous tissues. Moreover, EHD2 was positively correlated with E-cadherin, histological grade, tumor metastasis, and microvascular invasion. Kaplan-Meier survival analysis showed that hepatocellular carcinoma patients with decreased EHD2 expression had shorter overall survival times than those with higher EHD2 expression. Knockdown of EHD2 induced an increase in cell invasion and changes characteristic of epithelial-mesenchymal transition, while overexpression of EHD2 inhibited these processes. CONCLUSIONS Molecular data indicated that EHD2 inhibited migration and invasion of hepatocellular carcinoma probably by interacting with E-cadherin and it might be an independent, significant risk factor for survival after curative resection.
Collapse
Affiliation(s)
- Jinxia Liu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20# Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20# Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Lishuai Qu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20# Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaopeng Cui
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Zhipeng Lin
- Grade 14, Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Qingqing Liu
- Grade 14, Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Huiling Zhou
- Grade 14, Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Runzhou Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 20# Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
22
|
Nakakido M, Tamura K, Chung S, Ueda K, Fujii R, Kiyotani K, Nakamura Y. Phosphatidylinositol glycan anchor biosynthesis, class X containing complex promotes cancer cell proliferation through suppression of EHD2 and ZIC1, putative tumor suppressors. Int J Oncol 2016; 49:868-76. [PMID: 27572108 PMCID: PMC4948962 DOI: 10.3892/ijo.2016.3607] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 06/21/2016] [Indexed: 12/26/2022] Open
Abstract
We identified phosphatidylinositol glycan anchor biosynthesis, class X (PIGX), which plays a critical role in the biosynthetic pathway of glycosylphosphatidylinositol (GPI)-anchor motif, to be upregulated highly and frequently in breast cancer cells. Knockdown of PIGX as well as reticulocalbin 1 (RCN1) and reticulocalbin 2 (RCN2), which we found to interact with PIGX and was indicated to regulate calcium-dependent activities, significantly suppressed the growth of breast cancer cells. We also identified PIGX to be a core protein in an RCN1/PIGX/RCN2 complex. Microarray analysis revealed that the expression of two putative tumor suppressor genes, Zic family member 1 (ZIC1) and EH-domain containing 2 (EHD2), were upregulated commonly in cells in which PIGX, RCN1, or RCN2 was knocked down, suggesting that this RCN1/PIGX/RCN2 complex could negatively regulate the expression of these two genes and thereby contribute to human breast carcinogenesis. Our results imply that PIGX may be a good candidate molecule for development of novel anticancer drugs for breast cancer.
Collapse
Affiliation(s)
- Makoto Nakakido
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Kenji Tamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Suyoun Chung
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Koji Ueda
- Project for Realization of Personalized Cancer Medicine, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Risa Fujii
- Project for Realization of Personalized Cancer Medicine, Genome Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kazuma Kiyotani
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yusuke Nakamura
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
23
|
Cárdenas AM, González-Jamett AM, Cea LA, Bevilacqua JA, Caviedes P. Dysferlin function in skeletal muscle: Possible pathological mechanisms and therapeutical targets in dysferlinopathies. Exp Neurol 2016; 283:246-54. [PMID: 27349407 DOI: 10.1016/j.expneurol.2016.06.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 12/18/2022]
Abstract
Mutations in the dysferlin gene are linked to a group of muscular dystrophies known as dysferlinopathies. These myopathies are characterized by progressive atrophy. Studies in muscle tissue from dysferlinopathy patients or dysferlin-deficient mice point out its importance in membrane repair. However, expression of dysferlin homologous proteins that restore sarcolemma repair function in dysferlinopathy animal models fail to arrest muscle wasting, therefore suggesting that dysferlin plays other critical roles in muscle function. In the present review, we discuss dysferlin functions in the skeletal muscle, as well as pathological mechanisms related to dysferlin mutations. Particular focus is presented related the effect of dysferlin on cell membrane related function, which affect its repair, vesicle trafficking, as well as Ca(2+) homeostasis. Such mechanisms could provide accessible targets for pharmacological therapies.
Collapse
Affiliation(s)
- Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.
| | - Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile; Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Luis A Cea
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Jorge A Bevilacqua
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clinica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
24
|
Demonbreun AR, Quattrocelli M, Barefield DY, Allen MV, Swanson KE, McNally EM. An actin-dependent annexin complex mediates plasma membrane repair in muscle. J Cell Biol 2016; 213:705-18. [PMID: 27298325 PMCID: PMC4915191 DOI: 10.1083/jcb.201512022] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/19/2016] [Indexed: 01/03/2023] Open
Abstract
Disruption of the plasma membrane often accompanies cellular injury, and in muscle, plasma membrane resealing is essential for efficient recovery from injury. Muscle contraction, especially of lengthened muscle, disrupts the sarcolemma. To define the molecular machinery that directs repair, we applied laser wounding to live mammalian myofibers and assessed translocation of fluorescently tagged proteins using high-resolution microscopy. Within seconds of membrane disruption, annexins A1, A2, A5, and A6 formed a tight repair "cap." Actin was recruited to the site of damage, and annexin A6 cap formation was both actin dependent and Ca(2+) regulated. Repair proteins, including dysferlin, EHD1, EHD2, MG53, and BIN1, localized adjacent to the repair cap in a "shoulder" region enriched with phosphatidlyserine. Dye influx into muscle fibers lacking both dysferlin and the related protein myoferlin was substantially greater than control or individual null muscle fibers, underscoring the importance of shoulder-localized proteins. These data define the cap and shoulder as subdomains within the repair complex accumulating distinct and nonoverlapping components.
Collapse
Affiliation(s)
| | | | - David Y Barefield
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611
| | - Madison V Allen
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611
| | - Kaitlin E Swanson
- Center for Genetic Medicine, Northwestern University, Chicago, IL 60611 Department of Pathology, The University of Chicago, Chicago, IL 60637
| | | |
Collapse
|
25
|
Abstract
Mature muscle has a unique structure that is amenable to live cell imaging. Herein, we describe the experimental protocol for expressing fluorescently labeled proteins in the flexor digitorum brevis (FDB) muscle. Conditions have been optimized to provide a large number of high quality myofibers expressing the electroporated plasmid while minimizing muscle damage. The method employs fluorescent tags on various proteins. Combining this expression method with high resolution confocal microscopy permits live cell imaging, including imaging after laser-induced damage. Fluorescent dyes combined with imaging of fluorescently-tagged proteins provides information regarding the basic structure of muscle and its response to stimuli.
Collapse
|
26
|
Leikina E, Defour A, Melikov K, Van der Meulen JH, Nagaraju K, Bhuvanendran S, Gebert C, Pfeifer K, Chernomordik LV, Jaiswal JK. Annexin A1 Deficiency does not Affect Myofiber Repair but Delays Regeneration of Injured Muscles. Sci Rep 2015; 5:18246. [PMID: 26667898 PMCID: PMC4678367 DOI: 10.1038/srep18246] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/13/2015] [Indexed: 12/28/2022] Open
Abstract
Repair and regeneration of the injured skeletal myofiber involves fusion of intracellular vesicles with sarcolemma and fusion of the muscle progenitor cells respectively. In vitro experiments have identified involvement of Annexin A1 (Anx A1) in both these fusion processes. To determine if Anx A1 contributes to these processes during muscle repair in vivo, we have assessed muscle growth and repair in Anx A1-deficient mouse (AnxA1-/-). We found that the lack of Anx A1 does not affect the muscle size and repair of myofibers following focal sarcolemmal injury and lengthening contraction injury. However, the lack of Anx A1 delayed muscle regeneration after notexin-induced injury. This delay in muscle regeneration was not caused by a slowdown in proliferation and differentiation of satellite cells. Instead, lack of Anx A1 lowered the proportion of differentiating myoblasts that managed to fuse with the injured myofibers by days 5 and 7 after notexin injury as compared to the wild type (w.t.) mice. Despite this early slowdown in fusion of Anx A1-/- myoblasts, regeneration caught up at later times post injury. These results establish in vivo role of Anx A1 in cell fusion required for myofiber regeneration and not in intracellular vesicle fusion needed for repair of myofiber sarcolemma.
Collapse
Affiliation(s)
- Evgenia Leikina
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10/Rm. 10D05, 10 Center Dr. Bethesda, Maryland 20892-1855, USA
| | - Aurelia Defour
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA
| | - Kamran Melikov
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10/Rm. 10D05, 10 Center Dr. Bethesda, Maryland 20892-1855, USA
| | - Jack H Van der Meulen
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA
| | - Kanneboyina Nagaraju
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| | - Shivaprasad Bhuvanendran
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA
| | - Claudia Gebert
- Section on Genome Imprinting, Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| | - Karl Pfeifer
- Section on Genome Imprinting, Program on Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, USA
| | - Leonid V Chernomordik
- Section on Membrane Biology, Program of Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bldg. 10/Rm. 10D05, 10 Center Dr. Bethesda, Maryland 20892-1855, USA
| | - Jyoti K Jaiswal
- Children's National Medical Center, Center for Genetic Medicine Research, 111 Michigan Avenue, NW, Washington DC 20010-2970, USA.,Department of Integrative Systems Biology, George Washington University School of Medicine and Health Sciences, Washington DC, USA
| |
Collapse
|
27
|
Abstract
Since an intact membrane is required for normal cellular homeostasis, membrane repair is essential for cell survival. Human genetic studies, combined with the development of novel animal models and refinement of techniques to study cellular injury, have now uncovered series of repair proteins highly relevant for human health. Many of the deficient repair pathways manifest in skeletal muscle, where defective repair processes result in myopathies or other forms of muscle disease. Dysferlin is a membrane-associated protein implicated in sarcolemmal repair and also linked to other membrane functions including the maintenance of transverse tubules in muscle. MG53, annexins, and Eps15 homology domain-containing proteins interact with dysferlin to form a membrane repair complex and similarly have roles in membrane trafficking in muscle. These molecular features of membrane repair are not unique to skeletal muscle, but rather skeletal muscle, due to its high demands, is more dependent on an efficient repair process. Phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, as well as Ca(2+), are central regulators of membrane organization during repair. Given the importance of muscle health in disease and in aging, these pathways are targets to enhance muscle function and recovery from injury.
Collapse
|
28
|
Calcium signaling in membrane repair. Semin Cell Dev Biol 2015; 45:24-31. [PMID: 26519113 DOI: 10.1016/j.semcdb.2015.10.031] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/20/2015] [Accepted: 10/20/2015] [Indexed: 11/21/2022]
Abstract
Resealing allows cells to mend damaged membranes rapidly when plasma membrane (PM) disruptions occur. Models of PM repair mechanisms include the "lipid-patch", "endocytic removal", and "macro-vesicle shedding" models, all of which postulate a dependence on local increases in intracellular Ca(2+) at injury sites. Multiple calcium sensors, including synaptotagmin (Syt) VII, dysferlin, and apoptosis-linked gene-2 (ALG-2), are involved in PM resealing, suggesting that Ca(2+) may regulate multiple steps of the repair process. Although earlier studies focused exclusively on external Ca(2+), recent studies suggest that Ca(2+) release from intracellular stores may also be important for PM resealing. Hence, depending on injury size and the type of injury, multiple sources of Ca(2+) may be recruited to trigger and orchestrate repair processes. In this review, we discuss the mechanisms by which the resealing process is promoted by vesicular Ca(2+) channels and Ca(2+) sensors that accumulate at damage sites.
Collapse
|
29
|
Moe AM, Golding AE, Bement WM. Cell healing: Calcium, repair and regeneration. Semin Cell Dev Biol 2015; 45:18-23. [PMID: 26514621 DOI: 10.1016/j.semcdb.2015.09.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/24/2015] [Indexed: 01/25/2023]
Abstract
Cell repair is attracting increasing attention due to its conservation, its importance to health, and its utility as a model for cell signaling and cell polarization. However, some of the most fundamental questions concerning cell repair have yet to be answered. Here we consider three such questions: (1) How are wound holes stopped? (2) How is cell regeneration achieved after wounding? (3) How is calcium inrush linked to wound stoppage and cell regeneration?
Collapse
Affiliation(s)
- Alison M Moe
- Cell and Molecular Biology Graduate Program, Laboratory of Cell and Molecular Biology, 1525 Linden Drive, Madison, WI, USA
| | - Adriana E Golding
- Cell and Molecular Biology Graduate Program, Laboratory of Cell and Molecular Biology, 1525 Linden Drive, Madison, WI, USA
| | - William M Bement
- Cell and Molecular Biology Graduate Program, Laboratory of Cell and Molecular Biology, 1525 Linden Drive, Madison, WI, USA; Department of Zoology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, USA.
| |
Collapse
|
30
|
Barthélémy F, Blouin C, Wein N, Mouly V, Courrier S, Dionnet E, Kergourlay V, Mathieu Y, Garcia L, Butler-Browne G, Lamaze C, Lévy N, Krahn M, Bartoli M. Exon 32 Skipping of Dysferlin Rescues Membrane Repair in Patients' Cells. J Neuromuscul Dis 2015; 2:281-290. [PMID: 27858744 PMCID: PMC5240545 DOI: 10.3233/jnd-150109] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Dysferlinopathies are a family of disabling muscular dystrophies with LGMD2B and Miyoshi myopathy as the main phenotypes. They are associated with molecular defects in DYSF, which encodes dysferlin, a key player in sarcolemmal homeostasis. Previous investigations have suggested that exon skipping may be a promising therapy for a subset of patients with dysferlinopathies. Such an approach aims to rescue functional proteins when targeting modular proteins and specific tissues. We sought to evaluate the dysferlin functional recovery following exon 32 skipping in the cells of affected patients. Exon skipping efficacy was characterized at several levels by use of in vitro myotube formation assays and quantitative membrane repair and recovery tests. Data obtained from these assessments confirmed that dysferlin function is rescued by quasi-dysferlin expression in treated patient cells, supporting the case for a therapeutic antisense-based trial in a subset of dysferlin-deficient patients.
Collapse
Affiliation(s)
- Florian Barthélémy
- Aix Marseille Universit é, UMR S 910, Facult é de Médecine de la Timone, Marseille, France.,GMGF, INSERM UMR_ S 910, Marseille, France
| | - Cédric Blouin
- CNRS UMR 144, 26 rue d'Ulm, Paris Cedex 05, France.,Institut Curie, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, 26 rue d'Ulm, Paris Cedex 05, France
| | - Nicolas Wein
- Aix Marseille Universit é, UMR S 910, Facult é de Médecine de la Timone, Marseille, France.,GMGF, INSERM UMR_ S 910, Marseille, France
| | - Vincent Mouly
- INSERM UMR_S 974, Institut de Myologie, Paris, France.,CNRS, UMR7215, Institut de Myologie, Paris, France.,Universit é Pierre et Marie Curie, UM76, Paris, France
| | - Sébastien Courrier
- Aix Marseille Universit é, UMR S 910, Facult é de Médecine de la Timone, Marseille, France.,GMGF, INSERM UMR_ S 910, Marseille, France
| | - Eugénie Dionnet
- Aix Marseille Universit é, UMR S 910, Facult é de Médecine de la Timone, Marseille, France.,GMGF, INSERM UMR_ S 910, Marseille, France
| | - Virginie Kergourlay
- Aix Marseille Universit é, UMR S 910, Facult é de Médecine de la Timone, Marseille, France.,GMGF, INSERM UMR_ S 910, Marseille, France
| | - Yves Mathieu
- Aix Marseille Universit é, UMR S 910, Facult é de Médecine de la Timone, Marseille, France.,GMGF, INSERM UMR_ S 910, Marseille, France
| | - Luis Garcia
- INSERM UMR_S 974, Institut de Myologie, Paris, France.,CNRS, UMR7215, Institut de Myologie, Paris, France.,Universit é Versailles-Saint-Quentin, Versailles, France
| | - Gillian Butler-Browne
- INSERM UMR_S 974, Institut de Myologie, Paris, France.,CNRS, UMR7215, Institut de Myologie, Paris, France.,Universit é Pierre et Marie Curie, UM76, Paris, France
| | - Christophe Lamaze
- CNRS UMR 144, 26 rue d'Ulm, Paris Cedex 05, France.,Institut Curie, Centre de Recherche, Laboratoire Trafic, Signalisation et Ciblage Intracellulaires, 26 rue d'Ulm, Paris Cedex 05, France
| | - Nicolas Lévy
- Aix Marseille Universit é, UMR S 910, Facult é de Médecine de la Timone, Marseille, France.,GMGF, INSERM UMR_ S 910, Marseille, France.,AP-HM, Hôpital d'Enfants de la Timone, Département de Génétique Médicale et de Biologie Cellulaire, Marseille, France
| | - Martin Krahn
- Aix Marseille Universit é, UMR S 910, Facult é de Médecine de la Timone, Marseille, France.,GMGF, INSERM UMR_ S 910, Marseille, France.,AP-HM, Hôpital d'Enfants de la Timone, Département de Génétique Médicale et de Biologie Cellulaire, Marseille, France
| | - Marc Bartoli
- Aix Marseille Universit é, UMR S 910, Facult é de Médecine de la Timone, Marseille, France.,GMGF, INSERM UMR_ S 910, Marseille, France.,AP-HM, Hôpital d'Enfants de la Timone, Département de Génétique Médicale et de Biologie Cellulaire, Marseille, France
| |
Collapse
|
31
|
Jimenez AJ, Perez F. Physico-chemical and biological considerations for membrane wound evolution and repair in animal cells. Semin Cell Dev Biol 2015; 45:2-9. [DOI: 10.1016/j.semcdb.2015.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
|
32
|
Demonbreun AR, Biersmith BH, McNally EM. Membrane fusion in muscle development and repair. Semin Cell Dev Biol 2015; 45:48-56. [PMID: 26537430 PMCID: PMC4679555 DOI: 10.1016/j.semcdb.2015.10.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Mature skeletal muscle forms from the fusion of skeletal muscle precursor cells, myoblasts. Myoblasts fuse to other myoblasts to generate multinucleate myotubes during myogenesis, and myoblasts also fuse to other myotubes during muscle growth and repair. Proteins within myoblasts and myotubes regulate complex processes such as elongation, migration, cell adherence, cytoskeletal reorganization, membrane coalescence, and ultimately fusion. Recent studies have identified cell surface proteins, intracellular proteins, and extracellular signaling molecules required for the proper fusion of muscle. Many proteins that actively participate in myoblast fusion also coordinate membrane repair. Here we will review mammalian membrane fusion with specific attention to proteins that mediate myoblast fusion and muscle repair.
Collapse
|
33
|
Demonbreun AR, Swanson KE, Rossi AE, Deveaux HK, Earley JU, Allen MV, Arya P, Bhattacharyya S, Band H, Pytel P, McNally EM. Eps 15 Homology Domain (EHD)-1 Remodels Transverse Tubules in Skeletal Muscle. PLoS One 2015; 10:e0136679. [PMID: 26325203 PMCID: PMC4556691 DOI: 10.1371/journal.pone.0136679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/06/2015] [Indexed: 11/19/2022] Open
Abstract
We previously showed that Eps15 homology domain-containing 1 (EHD1) interacts with ferlin proteins to regulate endocytic recycling. Myoblasts from Ehd1-null mice were found to have defective recycling, myoblast fusion, and consequently smaller muscles. When expressed in C2C12 cells, an ATPase dead-EHD1 was found to interfere with BIN1/amphiphysin 2. We now extended those findings by examining Ehd1-heterozygous mice since these mice survive to maturity in normal Mendelian numbers and provide a ready source of mature muscle. We found that heterozygosity of EHD1 was sufficient to produce ectopic and excessive T-tubules, including large intracellular aggregates that contained BIN1. The disorganized T-tubule structures in Ehd1-heterozygous muscle were accompanied by marked elevation of the T-tubule-associated protein DHPR and reduction of the triad linker protein junctophilin 2, reflecting defective triads. Consistent with this, Ehd1-heterozygous muscle had reduced force production. Introduction of ATPase dead-EHD1 into mature muscle fibers was sufficient to induce ectopic T-tubule formation, seen as large BIN1 positive structures throughout the muscle. Ehd1-heterozygous mice were found to have strikingly elevated serum creatine kinase and smaller myofibers, but did not display findings of muscular dystrophy. These data indicate that EHD1 regulates the maintenance of T-tubules through its interaction with BIN1 and links T-tubules defects with elevated creatine kinase and myopathy.
Collapse
Affiliation(s)
- Alexis R. Demonbreun
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States of America
- * E-mail:
| | - Kaitlin E. Swanson
- Department of Pathology, The University of Chicago, Chicago, IL, United States of America
| | - Ann E. Rossi
- Department of Medicine, The University of Chicago, Chicago, IL, United States of America
| | - H. Kieran Deveaux
- Department of Medicine, The University of Chicago, Chicago, IL, United States of America
| | - Judy U. Earley
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States of America
| | - Madison V. Allen
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States of America
| | - Priyanka Arya
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Sohinee Bhattacharyya
- Department of Pathology & Microbiology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Hamid Band
- Department of Pathology & Microbiology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Peter Pytel
- Department of Pathology, The University of Chicago, Chicago, IL, United States of America
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University, Chicago, IL, United States of America
| |
Collapse
|
34
|
Koles K, Messelaar EM, Feiger Z, Yu CJ, Frank CA, Rodal AA. The EHD protein Past1 controls postsynaptic membrane elaboration and synaptic function. Mol Biol Cell 2015. [PMID: 26202464 PMCID: PMC4569317 DOI: 10.1091/mbc.e15-02-0093] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The conserved C-terminal EHD protein Past1 is required for postsynaptic membrane remodeling and synaptic transmission at the Drosophila neuromuscular junction. Past1 activity defines distinct synaptic microdomains of the BAR-domain proteins Syndapin and Amphiphysin, suggesting a new mechanism for elaboration of the postsynaptic membrane reticulum. Membranes form elaborate structures that are highly tailored to their specialized cellular functions, yet the mechanisms by which these structures are shaped remain poorly understood. Here, we show that the conserved membrane-remodeling C-terminal Eps15 Homology Domain (EHD) protein Past1 is required for the normal assembly of the subsynaptic muscle membrane reticulum (SSR) at the Drosophila melanogaster larval neuromuscular junction (NMJ). past1 mutants exhibit altered NMJ morphology, decreased synaptic transmission, reduced glutamate receptor levels, and a deficit in synaptic homeostasis. The membrane-remodeling proteins Amphiphysin and Syndapin colocalize with Past1 in distinct SSR subdomains and collapse into Amphiphysin-dependent membrane nodules in the SSR of past1 mutants. Our results suggest a mechanism by which the coordinated actions of multiple lipid-binding proteins lead to the elaboration of increasing layers of the SSR and uncover new roles for an EHD protein at synapses.
Collapse
Affiliation(s)
- Kate Koles
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02453
| | - Emily M Messelaar
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02453
| | - Zachary Feiger
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02453
| | - Crystal J Yu
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02453
| | - C Andrew Frank
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52242
| | - Avital A Rodal
- Rosenstiel Basic Medical Sciences Research Center, Department of Biology, Brandeis University, Waltham, MA 02453
| |
Collapse
|
35
|
Bahl K, Naslavsky N, Caplan S. Role of the EHD2 unstructured loop in dimerization, protein binding and subcellular localization. PLoS One 2015; 10:e0123710. [PMID: 25875965 PMCID: PMC4398442 DOI: 10.1371/journal.pone.0123710] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/05/2015] [Indexed: 11/20/2022] Open
Abstract
The C-terminal Eps 15 Homology Domain proteins (EHD1-4) play important roles in regulating endocytic trafficking. EHD2 is the only family member whose crystal structure has been solved, and it contains an unstructured loop consisting of two proline-phenylalanine (PF) motifs: KPFRKLNPF. In contrast, despite EHD2 having nearly 70% amino acid identity with its paralogs, EHD1, EHD3 and EHD4, the latter proteins contain a single KPF or RPF motif, but no NPF motif. In this study, we sought to define the precise role of each PF motif in EHD2’s homo-dimerization, binding with the protein partners, and subcellular localization. To test the role of the NPF motif, we generated an EHD2 NPF-to-NAF mutant to mimic the homologous sequences of EHD1 and EHD3. We demonstrated that this mutant lost both its ability to dimerize and bind to Syndapin2. However, it continued to localize primarily to the cytosolic face of the plasma membrane. On the other hand, EHD2 NPF-to-APA mutants displayed normal dimerization and Syndapin2 binding, but exhibited markedly increased nuclear localization and reduced association with the plasma membrane. We then hypothesized that the single PF motif of EHD1 (that aligns with the KPF of EHD2) might be responsible for both binding and localization functions of EHD1. Indeed, the EHD1 RPF motif was required for dimerization, interaction with MICAL-L1 and Syndapin2, as well as localization to tubular recycling endosomes. Moreover, recycling assays demonstrated that EHD1 RPF-to-APA was incapable of supporting normal receptor recycling. Overall, our data suggest that the EHD2 NPF phenylalanine residue is crucial for EHD2 localization to the plasma membrane, whereas the proline residue is essential for EHD2 dimerization and binding. These studies support the recently proposed model in which the EHD2 N-terminal region may regulate the availability of the unstructured loop for interactions with neighboring EHD2 dimers, thus promoting oligomerization.
Collapse
Affiliation(s)
- Kriti Bahl
- Department of Biochemistry and Molecular Biology, the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology, the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (SC); (NN)
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology, the Fred and Pamela Buffett Cancer Center, The University of Nebraska Medical Center, Omaha, Nebraska, United States of America
- * E-mail: (SC); (NN)
| |
Collapse
|
36
|
Posey AD, Swanson KE, Alvarez MG, Krishnan S, Earley JU, Band H, Pytel P, McNally EM, Demonbreun AR. EHD1 mediates vesicle trafficking required for normal muscle growth and transverse tubule development. Dev Biol 2014; 387:179-90. [PMID: 24440153 DOI: 10.1016/j.ydbio.2014.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 01/03/2023]
Abstract
EHD proteins have been implicated in intracellular trafficking, especially endocytic recycling, where they mediate receptor and lipid recycling back to the plasma membrane. Additionally, EHDs help regulate cytoskeletal reorganization and induce tubule formation. It was previously shown that EHD proteins bind directly to the C2 domains in myoferlin, a protein that regulates myoblast fusion. Loss of myoferlin impairs normal myoblast fusion leading to smaller muscles in vivo but the intracellular pathways perturbed by loss of myoferlin function are not well known. We now characterized muscle development in EHD1-null mice. EHD1-null myoblasts display defective receptor recycling and mislocalization of key muscle proteins, including caveolin-3 and Fer1L5, a related ferlin protein homologous to myoferlin. Additionally, EHD1-null myoblast fusion is reduced. We found that loss of EHD1 leads to smaller muscles and myofibers in vivo. In wildtype skeletal muscle EHD1 localizes to the transverse tubule (T-tubule), and loss of EHD1 results in overgrowth of T-tubules with excess vesicle accumulation in skeletal muscle. We provide evidence that tubule formation in myoblasts relies on a functional EHD1 ATPase domain. Moreover, we extended our studies to show EHD1 regulates BIN1 induced tubule formation. These data, taken together and with the known interaction between EHD and ferlin proteins, suggests that the EHD proteins coordinate growth and development likely through mediating vesicle recycling and the ability to reorganize the cytoskeleton.
Collapse
Affiliation(s)
- Avery D Posey
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Kaitlin E Swanson
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Manuel G Alvarez
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Swathi Krishnan
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Judy U Earley
- Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Hamid Band
- Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peter Pytel
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Elizabeth M McNally
- Committee on Genetics, Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Medicine, The University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, The University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
37
|
Simone LC, Naslavsky N, Caplan S. Scratching the surface: actin' and other roles for the C-terminal Eps15 homology domain protein, EHD2. Histol Histopathol 2013; 29:285-92. [PMID: 24347515 DOI: 10.14670/hh-29.285] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The C-terminal Eps15 homology domain-containing (EHD) proteins participate in multiple aspects of endocytic membrane trafficking. Of the four mammalian EHD proteins, EHD2 appears to be the most disparate, both in terms of sequence homology, and in subcellular localization/function. Since its initial description as a plasma membrane-associated protein, the precise function of EHD2 has remained enigmatic. Various reports have suggested roles for EHD2 at the plasma membrane, within the endocytic transport system, and even in the nucleus. For example, EHD2 facilitates membrane fusion/repair in muscle cells. Recently the focus has shifted to the role of EHD2 in regulating caveolae. Indeed, EHD2 is highly expressed in tissues rich in caveolae, including fat, muscle and blood vessels. This review highlights cumulative evidence linking EHD2 to actin-rich structures at the plasma membrane, where the plasma membrane-associated phospholipid phosphatidylinositol 4,5-bisphosphate controls EHD2 recruitment. Herein we examine the key pathways where EHD2 might function, and address its potential involvement in these processes.
Collapse
Affiliation(s)
- Laura C Simone
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Naava Naslavsky
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Steve Caplan
- Department of Biochemistry and Molecular Biology and the Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
38
|
Pakula A, Schneider J, Janke J, Zacharias U, Schulz H, Hübner N, Mähler A, Spuler A, Spuler S, Carlier P, Boschmann M. Altered expression of cyclin A 1 in muscle of patients with facioscapulohumeral muscle dystrophy (FSHD-1). PLoS One 2013; 8:e73573. [PMID: 24019929 PMCID: PMC3760810 DOI: 10.1371/journal.pone.0073573] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 07/24/2013] [Indexed: 11/19/2022] Open
Abstract
Objectives Cyclin A1 regulates cell cycle activity and proliferation in somatic and germ-line cells. Its expression increases in G1/S phase and reaches a maximum in G2 and M phases. Altered cyclin A1 expression might contribute to clinical symptoms in facioscapulohumeral muscular dystrophy (FSHD). Methods Muscle biopsies were taken from the Vastus lateralis muscle for cDNA microarray, RT-PCR, immunohistochemistry and Western blot analyses to assess RNA and protein expression of cyclin A1 in human muscle cell lines and muscle tissue. Muscle fibers diameter was calculated on cryosections to test for hypertrophy. Results cDNA microarray data showed specifically elevated cyclin A1 levels in FSHD vs. other muscular disorders such as caveolinopathy, dysferlinopathy, four and a half LIM domains protein 1 deficiency and healthy controls. Data could be confirmed with RT-PCR and Western blot analysis showing up-regulated cyclin A1 levels also at protein level. We found also clear signs of hypertrophy within the Vastus lateralis muscle in FSHD-1 patients. Conclusions In most somatic human cell lines, cyclin A1 levels are low. Overexpression of cyclin A1 in FSHD indicates cell cycle dysregulation in FSHD and might contribute to clinical symptoms of this disease.
Collapse
Affiliation(s)
- Anna Pakula
- Experimental and Clinical Research Center, a joint co-operation of Charité University Medicine and Max-Delbrück Center for Molecular Medicine, Franz-Volhard Center for Clinical Research, Berlin, Germany
| | - Joanna Schneider
- Experimental and Clinical Research Center, a joint co-operation of Charité University Medicine and Max-Delbrück Center for Molecular Medicine, Muscle Research Unit, Berlin, Germany
| | - Jürgen Janke
- Max-Delbrück Center for Molecular Medicine, Department of Molecular Epidemiology, Berlin, Germany
| | - Ute Zacharias
- Experimental and Clinical Research Center, a joint co-operation of Charité University Medicine and Max-Delbrück Center for Molecular Medicine, Muscle Research Unit, Berlin, Germany
| | - Herbert Schulz
- Max-Delbrück Center for Molecular Medicine, Department of Experimental Genetics of Cardiovascular Diseases, Berlin, Germany
| | - Norbert Hübner
- Max-Delbrück Center for Molecular Medicine, Department of Experimental Genetics of Cardiovascular Diseases, Berlin, Germany
| | - Anja Mähler
- Experimental and Clinical Research Center, a joint co-operation of Charité University Medicine and Max-Delbrück Center for Molecular Medicine, Franz-Volhard Center for Clinical Research, Berlin, Germany
| | - Andreas Spuler
- Klinik für Neurochirurgie, HELIOS Klinikum Berlin-Buch, Berlin, Germany
| | - Simone Spuler
- Experimental and Clinical Research Center, a joint co-operation of Charité University Medicine and Max-Delbrück Center for Molecular Medicine, Muscle Research Unit, Berlin, Germany
| | - Pierre Carlier
- Institut de Myologie, AIM-CEA NMR Laboratory, Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France
| | - Michael Boschmann
- Experimental and Clinical Research Center, a joint co-operation of Charité University Medicine and Max-Delbrück Center for Molecular Medicine, Franz-Volhard Center for Clinical Research, Berlin, Germany
- * E-mail:
| |
Collapse
|
39
|
Mariano A, Henning A, Han R. Dysferlin-deficient muscular dystrophy and innate immune activation. FEBS J 2013; 280:4165-76. [PMID: 23527661 DOI: 10.1111/febs.12261] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/06/2013] [Accepted: 03/20/2013] [Indexed: 11/27/2022]
Abstract
Cells encounter many physical, chemical and biological stresses that perturb plasma membrane integrity, warranting an immediate membrane repair response to regain cell homeostasis. Failure to respond properly to such perturbation leads to individual cell death, which may also produce systemic influence by triggering sterile immunological responses. In this review, we discuss recent progress on understanding the mechanisms underlying muscle cell membrane repair and the potential mediators of innate immune activation when the membrane repair system is defective, specifically focusing on pathology associated with dysferlin deficiency.
Collapse
Affiliation(s)
- Andrew Mariano
- Department of Cell and Molecular Physiology, Loyola University Chicago Health Science Division, Maywood, IL 60153, USA
| | | | | |
Collapse
|
40
|
Schoewel V, Marg A, Kunz S, Overkamp T, Siegert Carrazedo R, Zacharias U, Daniel PT, Spuler S. Dysferlin-peptides reallocate mutated dysferlin thereby restoring function. PLoS One 2012. [PMID: 23185377 PMCID: PMC3502493 DOI: 10.1371/journal.pone.0049603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in the dysferlin gene cause the most frequent adult-onset limb girdle muscular dystrophy, LGMD2B. There is no therapy. Dysferlin is a membrane protein comprised of seven, beta-sheet enriched, C2 domains and is involved in Ca2+dependent sarcolemmal repair after minute wounding. On the protein level, point mutations in DYSF lead to misfolding, aggregation within the endoplasmic reticulum, and amyloidogenesis. We aimed to restore functionality by relocating mutant dysferlin. Therefore, we designed short peptides derived from dysferlin itself and labeled them to the cell penetrating peptide TAT. By tracking fluorescently labeled short peptides we show that these dysferlin-peptides localize in the endoplasmic reticulum. There, they are capable of reducing unfolded protein response stress. We demonstrate that the mutant dysferlin regains function in membrane repair in primary human myotubes derived from patients’ myoblasts by the laser wounding assay and a novel technique to investigate membrane repair: the interventional atomic force microscopy. Mutant dysferlin abuts to the sarcolemma after peptide treatment. The peptide-mediated approach has not been taken before in the field of muscular dystrophies. Our results could redirect treatment efforts for this condition.
Collapse
Affiliation(s)
- Verena Schoewel
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Andreas Marg
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Severine Kunz
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Tim Overkamp
- Clinical and Molecular Oncology, University Medical Center Charité, Campus Berlin-Buch, Berlin, Germany
| | - Romy Siegert Carrazedo
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Ute Zacharias
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Peter T. Daniel
- Clinical and Molecular Oncology, University Medical Center Charité, Campus Berlin-Buch, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center, a joint cooperation between the Charité Medical Faculty and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- * E-mail:
| |
Collapse
|