1
|
Khan KN, Fujishita A, Hiraki K, Ogawa K, Horiguchi G, Teramukai S, Fujieda M, Mori T. Lack of association between the length of anogenital distance and vaginal pH in women with endometriosis. J Obstet Gynaecol Res 2024. [PMID: 39438025 DOI: 10.1111/jog.16129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
AIM We investigated the association between the length of anogenital distance (AGD) and intra-vaginal pH, an indicator of vaginal eubiosis or dysbiosis, in women with endometriosis. METHODS A prospective cohort study was performed including patients with (n = 67) and without (n = 40) endometriosis undergoing surgery between July 2021 and June 2022. AGD was measured from the posterior fourchette to the center of the anus using digital caliper and vaginal pH was measured by inserting pH paper strip mostly into the posterior fornix. RESULTS There was no significant difference in the median AGD among control women (n = 40) (21.5 mm), women with revised-American Society of Reproductive Medicine stage I-II endometriosis (n = 27) (22.0 mm) and stage III-IV endometriosis (n = 40) (20.0 mm). In contrast, a significant difference of vaginal pH was observed among groups (p = 0.012) and between groups: control versus stage I-II, p = 0.004; stage I-II, versus stage III-IV, p = 0.037. After adjusting different confounding variables, the univariate analysis showed that women with endometriosis are less likely to have an alkaline vaginal pH (≥4.5) (OR [95% CI] = 0.40 [0.17, 0.93], p = 0.034). Multivariate analysis revealed that AGD or any of the other variables did not serve as an independent risk factor to predict the presence of endometriosis. CONCLUSIONS This study with Japanese women suggests a lack of association between length of AGD, either shorter or longer, and the status of vaginal pH or the presence of endometriosis in pelvis.
Collapse
Affiliation(s)
- Khaleque N Khan
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Medical Education and Human Resource Center for Clinical Research, Kochi Medical School, Kochi University, Kochi, Japan
| | - Akira Fujishita
- Department of Gynecology, Saiseikai Nagasaki Hospital, Nagasaki, Japan
| | - Koichi Hiraki
- Department of Gynecology, Saiseikai Nagasaki Hospital, Nagasaki, Japan
| | - Kanae Ogawa
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Go Horiguchi
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Satoshi Teramukai
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mikiya Fujieda
- Medical Education and Human Resource Center for Clinical Research, Kochi Medical School, Kochi University, Kochi, Japan
| | - Taisuke Mori
- Department of Obstetrics and Gynecology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
2
|
Wang F, Shao X, Bao B, Yang Y, Wang Y, Zhang J, Wang S, Chen Y, Han D. Cytotoxic and viricidal effects of human semen on mumps virus-infected lymphocytes: In vitro studies. J Med Virol 2024; 96:e29733. [PMID: 38874268 DOI: 10.1002/jmv.29733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Viruses in human semen may be sexually transmitted via free and cell-mediated viral infection. The potential effects of semen on the infection and sexual transmission of most viruses in semen remain largely unclear. The present study elucidated the inhibitory effects of human seminal plasma (SP) on Jurkat cell (JC)-mediated mumps virus (MuV) infection. We demonstrated that MuV efficiently infected JCs and that the JCs infected by MuV (JC-MuV) mediated MuV infection of HeLa cells. Remarkably, SP was highly cytotoxic to JCs and inhibited JC-MuV infection of HeLa cells. The cytotoxic factor possessed a molecular weight of less than 3 kDa, whereas that of the viricidal factor was over 100 kDa. The cooperation of cytotoxic and viricidal factors was required for the SP inhibition of JC-MuV infection, and prostatic fluid (PF) was responsible for both the cytotoxic and viricidal effects of SP. The cytotoxic effects we observed were resistant to the treatment of PF with boiling water, proteinase K, RNase A, and DNase I. Our results provide novel insights into the antiviral properties of SP, which may limit cell-mediated sexual viral transmission.
Collapse
Affiliation(s)
- Fei Wang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Xinyi Shao
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Binghao Bao
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Yixuan Yang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Siqi Wang
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yongmei Chen
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Daishu Han
- Department of Cell Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Wang F, Zhang J, Wang Y, Chen Y, Han D. Viral tropism for the testis and sexual transmission. Front Immunol 2022; 13:1040172. [PMID: 36439102 PMCID: PMC9682072 DOI: 10.3389/fimmu.2022.1040172] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 10/17/2023] Open
Abstract
The mammalian testis adopts an immune privileged environment to protect male germ cells from adverse autoimmune reaction. The testicular immune privileged status can be also hijacked by various microbial pathogens as a sanctuary to escape systemic immune surveillance. In particular, several viruses have a tropism for the testis. To overcome the immune privileged status and mount an effective local defense against invading viruses, testicular cells are well equipped with innate antiviral machinery. However, several viruses may persist an elongated duration in the testis and disrupt the local immune homeostasis, thereby impairing testicular functions and male fertility. Moreover, the viruses in the testis, as well as other organs of the male reproductive system, can shed to the semen, thus allowing sexual transmission to partners. Viral infection in the testis, which can impair male fertility and lead to sexual transmission, is a serious concern in research on known and on new emerging viruses. To provide references for our scientific peers, this article reviews research achievements and suggests future research focuses in the field.
Collapse
Affiliation(s)
| | | | | | - Yongmei Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Daishu Han
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| |
Collapse
|
4
|
The Bovine Seminal Plasma Protein PDC-109 Possesses Pan-Antiviral Activity. Viruses 2022; 14:v14092031. [PMID: 36146836 PMCID: PMC9504757 DOI: 10.3390/v14092031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Mammalian seminal plasma contains a multitude of bioactive components, including lipids, glucose, mineral elements, metabolites, proteins, cytokines, and growth factors, with various functions during insemination and fertilization. The seminal plasma protein PDC-109 is one of the major soluble components of the bovine ejaculate and is crucially important for sperm motility, capacitation, and acrosome reaction. A hitherto underappreciated function of seminal plasma is its anti-microbial and antiviral activity, which may limit the sexual transmission of infectious diseases during intercourse. We have recently discovered that PDC-109 inhibits the membrane fusion activity of influenza virus particles and significantly impairs viral infections at micromolar concentrations. Here we investigated whether the antiviral activity of PDC-109 is restricted to Influenza or if other mammalian viruses are similarly affected. We focused on Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), the etiological agent of the Coronavirus Disease 19 (COVID-19), thoroughly assessing PDC-109 inhibition with SARS-CoV-2 Spike (S)-pseudotyped reporter virus particles, but also live-virus infections. Consistent with our previous publications, we found significant virus inhibition, albeit accompanied by substantial cytotoxicity. However, using time-of-addition experiments we discovered a treatment regimen that enables virus suppression without affecting cell viability. We furthermore demonstrated that PDC-109 is also able to impair infections mediated by the VSV glycoprotein (VSVg), thus indicating a broad pan-antiviral activity against multiple virus species and families.
Collapse
|
5
|
Agrawal N, Parisini E. Early Stages of Misfolding of PAP248-286 at two different pH values: An Insight from Molecular Dynamics Simulations. Comput Struct Biotechnol J 2022; 20:4892-4901. [PMID: 36147683 PMCID: PMC9474323 DOI: 10.1016/j.csbj.2022.08.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 01/01/2023] Open
Abstract
PAP248-286 peptides, which are highly abundant in human semen, aggregate and form amyloid fibrils that enhance HIV infection. Previous experimental studies have shown that the infection-promoting activity of PAP248-286 begins to increase well before amyloid formation takes place and that pH plays a key role in the enhancement of PAP248-286-related infection. Hence, understanding the early stages of misfolding of the PAP2482-86 peptide is crucial. To this end, we have performed 60 independent MD simulations for a total of 24 µs at two different pH values (4.2 and 7.2). Our data shows that early stages of misfolding of the PAP248-286 peptide is a multistage process and that the first step of the process is a transition from an “I-shaped” structure to a “U-shaped” structure. We further observed that the structure of PAP248-286 at the two different pH values shows significantly different features. At pH 4.2, the peptide has less intra-molecular H-bonds and a reduced α-helical content than at pH 7.2. Moreover, differences in intra-peptide residues contacts are also observed at the two pH values. Finally, free energy landscape analysis shows that there are more local minima in the energy surface of the peptide at pH 7.2 than at pH 4.2. Overall, the present study elucidates the early stages of misfolding of the PAP248-286 peptide at the atomic level, thus possibly opening new avenues in structure-based drug discovery against HIV infection.
Collapse
Affiliation(s)
- Nikhil Agrawal
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia
- College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Corresponding authors at: Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia.
| | - Emilio Parisini
- Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia
- Department of Chemistry “G. Ciamician”, University of Bologna, Bologna, Italy
- Corresponding authors at: Latvian Institute of Organic Synthesis, Aizkraukles 21, LV, Riga 1006, Latvia.
| |
Collapse
|
6
|
Kusova A, Abramova M, Skvortsova P, Yulmetov A, Mukhametzyanov T, Klochkov V, Blokhin D. Structure of amyloidogenic PAP(85-120) peptide by high-resolution NMR spectroscopy. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Jewanraj J, Ngcapu S, Liebenberg LJP. Semen: A modulator of female genital tract inflammation and a vector for HIV-1 transmission. Am J Reprod Immunol 2021; 86:e13478. [PMID: 34077596 PMCID: PMC9286343 DOI: 10.1111/aji.13478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022] Open
Abstract
In order to establish productive infection in women, HIV must transverse the vaginal epithelium and gain access to local target cells. Genital inflammation contributes to the availability of HIV susceptible cells at the female genital mucosa and is associated with higher HIV transmission rates in women. Factors that contribute to genital inflammation may subsequently increase the risk of HIV infection in women. Semen is a highly immunomodulatory fluid containing several bioactive molecules with the potential to influence inflammation and immune activation at the female genital tract. In addition to its role as a vector for HIV transmission, semen induces profound mucosal changes to prime the female reproductive tract for conception. Still, most studies of mucosal immunity are conducted in the absence of semen or without considering its immune impact on the female genital tract. This review discusses the various mechanisms by which semen exposure may influence female genital inflammation and highlights the importance of routine screening for semen biomarkers in vaginal specimens to account for its impact on genital inflammation.
Collapse
Affiliation(s)
- Janine Jewanraj
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Sinaye Ngcapu
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Lenine J. P. Liebenberg
- Centre for the AIDS Programme of Research in South Africa (CAPRISA)DurbanSouth Africa
- Department of Medical MicrobiologyUniversity of KwaZulu‐NatalDurbanSouth Africa
| |
Collapse
|
8
|
Leukocytospermia induces intraepithelial recruitment of dendritic cells and increases SIV replication in colorectal tissue explants. Commun Biol 2021; 4:861. [PMID: 34253821 PMCID: PMC8275775 DOI: 10.1038/s42003-021-02383-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
Mucosal exposure to infected semen accounts for the majority of HIV-1 transmission events, with rectal intercourse being the route with the highest estimated risk of transmission. Yet, the impact of semen inflammation on colorectal HIV-1 transmission has never been addressed. Here we use cynomolgus macaques colorectal tissue explants to explore the effect of leukocytospermia, indicative of male genital tract inflammation, on SIVmac251 infection. We show that leukocytospermic seminal plasma (LSP) has significantly higher concentration of a number of pro-inflammatory molecules compared to normal seminal plasma (NSP). In virus-exposed explants, LSP enhance SIV infection more efficiently than NSP, being the increased viral replication linked to the level of inflammatory and immunomodulatory cytokines. Moreover, LSP induce leukocyte accumulation on the apical side of the colorectal lamina propria and the recruitment of a higher number of intraepithelial dendritic cells than with NSP. These results suggest that the outcome of mucosal HIV-1 infection is influenced by the inflammatory state of the semen donor, and provide further insights into mucosal SIV/HIV-1 pathogenesis.
Collapse
|
9
|
Chen R, Zhang W, Gong M, Wang F, Wu H, Liu W, Gao Y, Liu B, Chen S, Lu W, Yu X, Liu A, Han R, Chen Y, Han D. Characterization of an Antiviral Component in Human Seminal Plasma. Front Immunol 2021; 12:580454. [PMID: 33679733 PMCID: PMC7933687 DOI: 10.3389/fimmu.2021.580454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 01/04/2021] [Indexed: 02/04/2023] Open
Abstract
Numerous types of viruses have been found in human semen, which raises concerns about the sexual transmission of these viruses. The overall effect of semen on viral infection and transmission have yet to be fully investigated. In the present study, we aimed at the effect of seminal plasma (SP) on viral infection by focusing on the mumps viral (MuV) infection of HeLa cells. MuV efficiently infected HeLa cells in vitro. MuV infection was strongly inhibited by the pre-treatment of viruses with SP. SP inhibited MuV infection through the impairment of the virus's attachment to cells. The antiviral activity of SP was resistant to the treatment of SP with boiling water, Proteinase K, RNase A, and DNase I, suggesting that the antiviral factor would not be proteins and nucleic acids. PNGase or PLA2 treatments did not abrogate the antiviral effect of SP against MuV. Further, we showed that the prostatic fluid (PF) showed similar inhibition as SP, whereas the epididymal fluid and seminal vesicle extract did not inhibit MuV infection. Both SP and PF also inhibited MuV infection of other cell types, including another human cervical carcinoma cell line C33a, mouse primary epididymal epithelial cells, and Sertoli cell line 15P1. Moreover, this inhibitory effect was not specific to MuV, as the herpes simplex virus 1, dengue virus 2, and adenovirus 5 infections were also inhibited by SP and PF. Our findings suggest that SP contains a prostate-derived pan-antiviral factor that may limit the sexual transmission of various viruses.
Collapse
Affiliation(s)
- Ran Chen
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wenjing Zhang
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Maolei Gong
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Wang
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Han Wu
- Department of Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Weihua Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yunxiao Gao
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Baoxing Liu
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Song Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei Lu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaoqin Yu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Aijie Liu
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ruiqin Han
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yongmei Chen
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Daishu Han
- Institute of Basic Medical Sciences, School of Basic Medicine, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
10
|
Vojtech L, Zhang M, Davé V, Levy C, Hughes SM, Wang R, Calienes F, Prlic M, Nance E, Hladik F. Extracellular vesicles in human semen modulate antigen-presenting cell function and decrease downstream antiviral T cell responses. PLoS One 2019; 14:e0223901. [PMID: 31622420 PMCID: PMC6797208 DOI: 10.1371/journal.pone.0223901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/01/2019] [Indexed: 02/06/2023] Open
Abstract
Human semen contains trillions of extracellular vesicles (SEV) similar in size to sexually transmitted viruses and loaded with potentially bioactive miRNAs, proteins and lipids. SEV were shown to inhibit HIV and Zika virus infectivity, but whether SEV are able also to affect subsequent immune responses is unknown. We found that SEV efficiently bound to and entered antigen-presenting cells (APC) and thus we set out to further dissect the impact of SEV on APC function and the impact on downstream T cell responses. In an APC–T cell co-culture system, SEV exposure to APC alone markedly reduced antigen-specific cytokine production, degranulation and cytotoxicity by antigen-specific memory CD8+ T cells. In contrast, inhibition of CD4+ T cell responses required both APC and T cell exposure to SEV. Surprisingly, SEV did not alter MHC or co-stimulatory receptor expression on APCs, but caused APCs to upregulate indoleamine 2,3 deoxygenase, an enzyme known to indirectly inhibit T cells. Thus, SEV reduce the ability of APCs to activate T cells. We propose here that these immune-inhibitory properties of SEV may be intended to prevent immune responses against semen-derived antigens, but can be hi-jacked by genitally acquired viral infections to compromise adaptive cellular immunity.
Collapse
Affiliation(s)
- Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- * E-mail: (LV); (FH)
| | - Mengying Zhang
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, United States of America
| | - Veronica Davé
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Claire Levy
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Sean M. Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Ruofan Wang
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Fernanda Calienes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| | - Martin Prlic
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth Nance
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington, United States of America
- Department of Chemical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
- * E-mail: (LV); (FH)
| |
Collapse
|
11
|
Welke RW, Haralampiev I, Schröter F, Braun BC, Herrmann A, Sieben C, Müller P. Inhibition of influenza virus activity by the bovine seminal plasma protein PDC-109. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:503-511. [PMID: 31222413 DOI: 10.1007/s00249-019-01374-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/12/2019] [Accepted: 06/09/2019] [Indexed: 12/19/2022]
Abstract
A number of viruses causing sexually transmissible diseases are transmitted via mammalian seminal plasma. Several components of seminal plasma have been shown to influence those viruses and their physiological impact. To unravel whether components of seminal plasma could affect viruses transmitted via other pathways, it was investigated here whether the bovine seminal plasma protein PDC-109, belonging to the Fn-type 2 protein family, influences the activity of influenza A viruses, used as a model for enveloped viruses. We found that PDC-109 inhibits the fusion of influenza virus with human erythrocyte membranes and leads to a decreased viral infection in MDCK cells. In the presence of the head group of the phospholipid phosphatidylcholine, phosphorylcholine, the inhibitory effect of PDC-109 was attenuated. This indicates that the impact of the protein is mainly caused by its binding to viral and to erythrocyte membranes thereby interfering with virus-cell binding. Our study underlines that Fn-type 2 proteins have to be considered as new antiviral components present in mammalian seminal plasma.
Collapse
Affiliation(s)
- Robert-William Welke
- Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany.,Department of Intracellular Proteolysis, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Ivan Haralampiev
- Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany.,Department of Crystallography, Max Delbrück Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Filip Schröter
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany.,Department of Cardiovascular Surgery, Heart Center Brandenburg, Brandenburg Medical School "Theodor-Fontane", Ladeburger Straße 17, 16321, Bernau, Germany
| | - Beate C Braun
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
| | - Andreas Herrmann
- Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany
| | - Christian Sieben
- Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany. .,Laboratory for Experimental Biophysics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
| | - Peter Müller
- Institute for Biology, Humboldt-Universität zu Berlin, Invalidenstr. 42, 10115, Berlin, Germany.
| |
Collapse
|
12
|
Schönfeld M, Knackmuss U, Chandorkar P, Hörtnagl P, Hope TJ, Moris A, Bellmann-Weiler R, Lass-Flörl C, Posch W, Wilflingseder D. Co- but not Sequential Infection of DCs Boosts Their HIV-Specific CTL-Stimulatory Capacity. Front Immunol 2019; 10:1123. [PMID: 31178863 PMCID: PMC6542955 DOI: 10.3389/fimmu.2019.01123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 05/02/2019] [Indexed: 11/27/2022] Open
Abstract
Pathogenic bacteria and their microbial products activate dendritic cells (DCs) at mucosal surfaces during sexually transmitted infections (STIs) and therefore might also differently shape DC functions during co-infection with HIV-1. We recently illustrated that complement (C) coating of HIV-1 (HIV-C), as primarily found during the acute phase of infection before appearance of HIV-specific antibodies, by-passed SAMHD1-mediated restriction in DCs and therefore mediated an increased DC activation and antiviral capacity. To determine whether the superior antiviral effects of HIV-C-exposed DCs also apply during STIs, we developed a co-infection model in which DCs were infected with Chlamydia spp. simultaneously (HIV-C/Chlam-DCs or HIV/Chlam-DCs) or a sequential infection model, where DCs were exposed to Chlamydia for 3 or 24 h (Chlam-DCs) followed by HIV-1 infection. Co-infection of DCs with HIV-1 and Chlamydia significantly boosted the CTL-stimulatory capacity compared to HIV-1-loaded iDCs and this boost was independent on the opsonization pattern. This effect was lost in the sequential infection model, when opsonized HIV-1 was added delayed to Chlamydia-loaded DCs. The reduction in the CTL-stimulatory capacity of Chlam-DCs was not due to lower HIV-1 binding or infection compared to iDCs or HIV-C/Chlam-DCs, but due to altered fusion and internalization mechanisms within DCs. The CTL-stimulatory capacity of HIV-C in Chlam-DCs correlated with significantly reduced viral fusion compared to iDCs and HIV-C/Chlam-DCs and illustrated considerably increased numbers of HIV-C-containing vacuoles than iDCs. The data indicate that Chlamydia co-infection of DCs mediates a transient boost of their HIV-specific CTL-stimulatory and antiviral capacity, while in the sequential infection model this is reversed and associated with hazard to the host.
Collapse
Affiliation(s)
- Manuela Schönfeld
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulla Knackmuss
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Parul Chandorkar
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Paul Hörtnagl
- Central Institute for Blood Transfusion and Immunological Department, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas John Hope
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Arnaud Moris
- Sorbonne Université, INSERM, CNRS, Center for Immunology and Microbial Infections - CIMI-Paris, Paris, France.,Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wilfried Posch
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Doris Wilflingseder
- Division of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
13
|
Ouattara LA, Anderson SM, Doncel GF. Seminal exosomes and HIV-1 transmission. Andrologia 2019; 50:e13220. [PMID: 30569645 PMCID: PMC6378409 DOI: 10.1111/and.13220] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/16/2018] [Accepted: 11/22/2018] [Indexed: 12/11/2022] Open
Abstract
Exosomes are endosomal‐derived membrane‐confined nanovesicles secreted by many (if not all) cell types and isolated from every human bodily fluid examined up to now including plasma, semen, vaginal secretions and breast milk. Exosomes are thought to represent a new player in cell‐to‐cell communication pathways and immune regulation, and be involved in many physiological and pathological processes. Susceptibility to HIV‐1 infection can be impacted by exosomes, while HIV‐1 pathogenesis can alter exosomal function and composition. Exosomes isolated from semen and vaginal fluid of healthy individuals can inhibit HIV‐1 infection and/or potently block viral transfer in vitro. However, the role of exosomes in HIV‐1 transmission and progression is not fully understood yet and some studies show conflicting results, mainly for exosomes isolated from plasma and breast milk. Determining the composition of exosomes from infected donors and studying their interaction with HIV‐1 in vitro compared to exosomes isolated from uninfected donors will provide insights into the role exosomes play in HIV‐1 transmission during sexual intercourse and breastfeeding.
Collapse
|
14
|
Welch JL, Stapleton JT, Okeoma CM. Vehicles of intercellular communication: exosomes and HIV-1. J Gen Virol 2019; 100:350-366. [PMID: 30702421 PMCID: PMC7011712 DOI: 10.1099/jgv.0.001193] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/15/2018] [Indexed: 12/20/2022] Open
Abstract
The terms extracellular vesicles, microvesicles, oncosomes, or exosomes are often used interchangeably as descriptors of particles that are released from cells and comprise a lipid membrane that encapsulates nucleic acids and proteins. Although these entities are defined based on a specific size range and/or mechanism of release, the terminology is often ambiguous. Nevertheless, these vesicles are increasingly recognized as important modulators of intercellular communication. The generic characterization of extracellular vesicles could also be used as a descriptor of enveloped viruses, highlighting the fact that extracellular vesicles and enveloped viruses are similar in both composition and function. Their high degree of similarity makes differentiating between vesicles and enveloped viruses in biological specimens particularly difficult. Because viral particles and extracellular vesicles are produced simultaneously in infected cells, it is necessary to separate these populations to understand their independent functions. We summarize current understanding of the similarities and differences of extracellular vesicles, which henceforth we will refer to as exosomes, and the enveloped retrovirus, HIV-1. Here, we focus on the presence of these particles in semen, as these are of particular importance during HIV-1 sexual transmission. While there is overlap in the terminology and physical qualities between HIV-1 virions and exosomes, these two types of intercellular vehicles may differ depending on the bio-fluid source. Recent data have demonstrated that exosomes from human semen serve as regulators of HIV-1 infection that may contribute to the remarkably low risk of infection per sexual exposure.
Collapse
Affiliation(s)
- Jennifer L. Welch
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Jack T. Stapleton
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242-1109, USA
- Medical Service, Iowa City Veterans Affairs Medical Center, University of Iowa, 604 Highway 6, Iowa City, IA 52246-2208, USA
| | - Chioma M. Okeoma
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242-1109, USA
- Department of Pharmacologic Sciences, Basic Sciences Tower, Rm 8-142, Stony Brook, University School of Medicine, Stony Brook, NY 11794-8651, USA
| |
Collapse
|
15
|
Zhang X, Chen J, Yu F, Wang C, Ren R, Wang Q, Tan S, Jiang S, Liu S, Li L. 3-Hydroxyphthalic Anhydride- Modified Rabbit Anti-PAP IgG as a Potential Bifunctional HIV-1 Entry Inhibitor. Front Microbiol 2018; 9:1330. [PMID: 29971062 PMCID: PMC6018217 DOI: 10.3389/fmicb.2018.01330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/30/2018] [Indexed: 01/08/2023] Open
Abstract
Several studies have reported that amyloid fibrils in human semen formed from a naturally occurring peptide fragment of prostatic acidic phosphatase (PAP248-286), known as semen-derived enhancer of viral infection (SEVI), could dramatically enhance human immunodeficiency virus type 1 (HIV-1) infection. Accordingly, SEVI might serve as a novel target for new antiviral drugs or microbicide candidates for the prevention of sexually transmitted HIV. Theoretically, a special anti-PAP or anti-SEVI antibody could reduce the enhancement of viral infection by blocking the binding of HIV and SEVI fibrils. Here, 3-hydroxyphthalic anhydride modified anti-PAP248-286 antibody, named HP-API, exhibited broad-spectrum and highly effective anti-HIV-1 activities on different subtypes and tropism. By using time-of-addition, cell–cell fusion and a single-cycle HIV-1 infection assays, we demonstrated that HP-API is an HIV-1 entry/fusion inhibitor. Mechanism studies suggest that HP-API inhibited HIV-1 entry/fusion by targeting both HIV-1 gp120 envelop and CD4 receptor on the host cell specifically. It is noteworthy that HP-API abrogated the formation of SEVI fibrils and partially interfered with SEVI-mediated enhancement of HIV-1 infection. Based on these findings, HP-API could be considered a bifunctional HIV-1 entry/fusion inhibitor with high potential.
Collapse
Affiliation(s)
- Xuanxuan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jinquan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Jiangsu Food and Pharmaceutical Science College, Huai'an, China
| | - Fei Yu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,College of Life Sciences, Agricultural University of Hebei, Baoding, China
| | - Chunyan Wang
- Center for Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruxia Ren
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Suiyi Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Kordy K, Elliott J, Tanner K, Johnson EJ, McGowan IM, Anton PA. Human Semen or Seminal Plasma Does Not Enhance HIV-1 BaL Ex Vivo Infection of Human Colonic Explants. AIDS Res Hum Retroviruses 2018; 34:459-466. [PMID: 29343073 PMCID: PMC5934974 DOI: 10.1089/aid.2017.0118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To determine whether human whole semen (WS) and seminal plasma (SP) either previously frozen or freshly acquired altered ex vivo infectibility of human colonic explants or was associated with histology or toxicity changes, which may influence mucosal HIV-1 transmission in vivo. Pooled human semen samples were freshly obtained from study volunteers (never frozen) and from commercial sources (frozen/thawed). Endoscopically acquired rectal biopsies were evaluated for toxicity following titered ex vivo WS/SP exposure by histological grading and by MTT assay. The ex vivo HIV-1 biopsy challenge model was used to evaluate effects of exposure to either previously frozen or freshly acquired WS/SP on HIVBaL infectibility at a range of viral inocula (104-100 TCID50). To evaluate the effects at lower viral inocula of HIV-1 (10-2-102), experiments in the presence or absence of WS/SP were also performed utilizing TZM-bl cells. MTT assays and histological scoring demonstrated no tissue degradation of biopsies when exposed for 2 h to concentrations of 10% or 100% of either fresh or previously frozen WS/SP. Ex vivo biopsy HIV-1 challenge experiments showed no differences in the presence of freshly acquired or previously frozen/thawed WS/SP compared with control; no differences were seen with lower infectious titers on TZM-bl cells. Within the limits of assay sensitivity and variability, these data show no toxicity or significant enhancement of HIV-1 infectibility of human rectal mucosa using the colorectal explant model with either pooled fresh or frozen/thawed nonautologous human semen.
Collapse
Affiliation(s)
| | - Julie Elliott
- Department of Medicine, Center for HIV Prevention Research, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Karen Tanner
- Department of Medicine, Center for HIV Prevention Research, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | - Ian M. McGowan
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Peter A. Anton
- Department of Medicine, Center for HIV Prevention Research, UCLA AIDS Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
17
|
Lotfi H, Sheervalilou R, Zarghami N. An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. BIOIMPACTS : BI 2018. [PMID: 29977835 DOI: 10.1517/bi.2018.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Introduction: Human immunodeficiency virus (HIV) is a debilitating challenge and concern worldwide. Accessibility to highly active antiretroviral drugs is little or none for developing countries. Production of cost-effective microbicides to prevent the infection with HIV is a requirement. Cyanovirin-N (CVN) is known as a promising cyanobacterial lectin, capable of inhibiting the HIV cell entry in a highly specific manner. Methods: This review article presents an overview of attempts conducted on different expression systems for the recombinant production of CVN. We have also assessed the potential of the final recombinant product, as an effective anti-HIV microbicide, comparing prokaryotic and eukaryotic expression systems. Results: Artificial production of CVN is a challenging task because the desirable anti-HIV activity (CVN-gp120 interaction) depends on the correct formation of disulfide bonds during recombinant production. Thus, inexpensive and functional production of rCVN requires an effective expression system which must be found among the bacteria, yeast, and transgenic plants, for the subsequent satisfying medical application. Moreover, the strong anti-HIV potential of CVN in trace concentrations (micromolar to picomolar) was reported for the in vitro and in vivo tests. Conclusion: To produce pharmaceutically effective CVN, we first need to identify the best expression system, with Escherichia coli, Pichia pastoris , Lactic acid bacteria and transgenic plants being possible candidates. For this reason, heterologous production of this valuable protein is a serious challenge. Since different obstacles influence clinical trials on microbicides in the field of HIV prevention, these items should be considered for evaluating the CVN activity in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Hajie Lotfi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
In vitro models for deciphering the mechanisms underlying the sexual transmission of viruses at the mucosal level. Virology 2017; 515:1-10. [PMID: 29220713 DOI: 10.1016/j.virol.2017.11.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/13/2017] [Accepted: 11/28/2017] [Indexed: 01/31/2023]
Abstract
Sexually transmitted viruses infect the genital and colorectal mucosa of the partner exposed to contaminated genital secretions through a wide range of mechanisms, dictated in part by the organization of the mucosa. Because understanding the modes of entry into the organism of viruses transmitted through sexual intercourse is a necessary prerequisite to the design of treatments to block those infections, in vitro modeling of the transmission is essential. The aim of this review is to present the models and methodologies available for the in vitro study of the interactions between viruses and mucosal tissue and for the preclinical evaluation of antiviral compounds, and to point out their advantages and limitations according to the question being studied.
Collapse
|
19
|
Chen J, Ren R, Yu F, Wang C, Zhang X, Li W, Tan S, Jiang S, Liu S, Li L. A Degraded Fragment of HIV-1 Gp120 in Rat Hepatocytes Forms Fibrils and Enhances HIV-1 Infection. Biophys J 2017; 113:1425-1439. [PMID: 28978437 DOI: 10.1016/j.bpj.2017.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/03/2017] [Accepted: 08/04/2017] [Indexed: 12/26/2022] Open
Abstract
Identification of the host or viral factors that enhance HIV infection is critical for preventing sexual transmission of HIV. Amyloid fibrils derived from human semen, including semen-derived enhancer of virus infection and semenogelins, enhance HIV-1 infection dramatically in vitro. In this study, we reported that a short-degraded peptide fragment 1 (DPF1) derived from native HIV-1 envelope protein gp120-loaded rat hepatocytes, formed fibrils by self-assembly and thus enhanced HIV-1 infection by promoting the binding of HIV-1 to target cells. Furthermore, DPF1-formed fibrils might be used as a crossing seed to accelerate the formation of semen-derived enhancer of virus infection and semenogelin fibrils. It will be helpful to clarify the viral factors that affect HIV-1 infection. DPF1 as an analog of gp120 containing the critical residues for CD4 binding might be useful for designing of HIV vaccines and developing HIV entry inhibitors.
Collapse
Affiliation(s)
- Jinquan Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; Jiangsu Protein Drug Engineering Laboratory, Jiangsu Food and Pharmaceutical Science College, Huai'an, China
| | - Ruxia Ren
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fei Yu
- College of Life Sciences, Agricultural University of Hebei, Baoding, China; Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chunyan Wang
- Center for Clinical Laboratory, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuanxuan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenjuan Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Suiyi Tan
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| | - Lin Li
- Guangdong Provincial Key Laboratory of New Drug Screening, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
20
|
Lotfi H, Sheervalilou R, Zarghami N. An update of the recombinant protein expression systems of Cyanovirin-N and challenges of preclinical development. ACTA ACUST UNITED AC 2017; 8:139-151. [PMID: 29977835 PMCID: PMC6026528 DOI: 10.15171/bi.2018.16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/05/2017] [Accepted: 11/07/2017] [Indexed: 12/15/2022]
Abstract
![]()
Introduction: Human immunodeficiency virus (HIV) is a debilitating challenge and concern worldwide. Accessibility to highly active antiretroviral drugs is little or none for developing countries. Production of cost-effective microbicides to prevent the infection with HIV is a requirement. Cyanovirin-N (CVN) is known as a promising cyanobacterial lectin, capable of inhibiting the HIV cell entry in a highly specific manner.
Methods: This review article presents an overview of attempts conducted on different expression systems for the recombinant production of CVN. We have also assessed the potential of the final recombinant product, as an effective anti-HIV microbicide, comparing prokaryotic and eukaryotic expression systems.
Results: Artificial production of CVN is a challenging task because the desirable anti-HIV activity (CVN-gp120 interaction) depends on the correct formation of disulfide bonds during recombinant production. Thus, inexpensive and functional production of rCVN requires an effective expression system which must be found among the bacteria, yeast, and transgenic plants, for the subsequent satisfying medical application. Moreover, the strong anti-HIV potential of CVN in trace concentrations (micromolar to picomolar) was reported for the in vitro and in vivo tests.
Conclusion: To produce pharmaceutically effective CVN, we first need to identify the best expression system, with Escherichia coli, Pichia pastoris , Lactic acid bacteria and transgenic plants being possible candidates. For this reason, heterologous production of this valuable protein is a serious challenge. Since different obstacles influence clinical trials on microbicides in the field of HIV prevention, these items should be considered for evaluating the CVN activity in pre-clinical and clinical studies.
Collapse
Affiliation(s)
- Hajie Lotfi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Mullin JM, Diguilio KM, Valenzano MC, Deis R, Thomas S, Zurbach EP, Abdulhaqq S, Montaner LJ. Zinc reduces epithelial barrier compromise induced by human seminal plasma. PLoS One 2017; 12:e0170306. [PMID: 28278250 PMCID: PMC5344308 DOI: 10.1371/journal.pone.0170306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/03/2017] [Indexed: 01/11/2023] Open
Abstract
Human semen has the potential to modulate the epithelial mucosal tissues it contacts, as seminal plasma (SP) is recognized to contain both pro- and anti-barrier components, yet its effects on epithelial barrier function are largely unknown. We addressed the role of human SP when exposed to the basal-lateral epithelial surface, a situation that would occur clinically with prior mechanical or disease-related injury of the human epithelial mucosal cell layers in contact with semen. The action of SP on claudins-2, -4, -5, and -7 expression, as well as on a target epithelium whose basolateral surface has been made accessible to SP, showed upregulation of claudins-4 and -5 in CACO-2 human epithelial cell layers, despite broad variance in SP-induced modulation of transepithelial electrical resistance and mannitol permeability. Upregulation of claudin-2 by SP also exhibited such variance by SP sample. We characterize individual effects on CACO-2 barrier function of nine factors known to be present abundantly in seminal plasma (zinc, EGF, citrate, spermine, fructose, urea, TGF, histone, inflammatory cytokines) to establish that zinc, spermine and fructose had significant potential to raise CACO-2 transepithelial resistance, whereas inflammatory cytokines and EGF decreased this measure of barrier function. The role of zinc as a dominant factor in determining higher levels of transepithelial resistance and lower levels of paracellular leak were confirmed by zinc chelation and exogenous zinc addition. As expected, SP presentation to the basolateral cell surface also caused a very dramatic yet transient elevation of pErk levels. Results suggest that increased zinc content in SP can compete against the barrier-compromising effect of negative modulators in SP when SP gains access to that epithelium's basolateral surface. Prophylactic elevation of zinc in an epithelial cell layer prior to contact by SP may help to protect an epithelial barrier from invasion by SP-containing STD microbial pathogens such as HPV or HIV.
Collapse
Affiliation(s)
- James M. Mullin
- Lankenau Institute for Medical Research, Wynnewood, PA, United States of America
- * E-mail:
| | | | - Mary C. Valenzano
- Lankenau Institute for Medical Research, Wynnewood, PA, United States of America
| | - Rachael Deis
- Department of Biology, Drexel University, Philadelphia, PA, United States of America
| | - Sunil Thomas
- Lankenau Institute for Medical Research, Wynnewood, PA, United States of America
| | - E. Peter Zurbach
- Department of Chemistry, Saint Joseph’s University, Philadelphia, PA, United States of America
| | | | - Luis J. Montaner
- The Wistar Institute, Philadelphia, PA, United States of America
| |
Collapse
|
22
|
Malik R, Bunkar D, Choudhary BS, Srivastava S, Mehta P, Sharma M. High throughput virtual screening and in silico ADMET analysis for rapid and efficient identification of potential PAP248-286 aggregation inhibitors as anti-HIV agents. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.05.086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
23
|
Abstract
Objectives: Semen composition is influenced by HIV-1 infection, yet the impact of semen components on HIV infection of primary target cells has only been studied in samples from HIV-uninfected donors. Design: We compared the effect of seminal plasma (SP) from chronically HIV-infected (SP+) versus uninfected donors (SP–) on HIV-1 infection of peripheral blood mononuclear cells (PBMCs) and CD4+ T cells. Methods: Primary cells were infected with HIV-1 in the presence of SP+ or SP– and analyzed for infection level, metabolic activity, HIV receptor expression, proliferation and activation. SP+ and SP– were compared for infection-enhancing peptides, cytokines and prostaglandin E2 levels. Results: SP– efficiently enhanced HIV-1 R5 infection of CD4+ T cells, whereas SP+ enhancing activity was significantly reduced. RANTES (CCL5) concentrations were elevated in SP+ relative to SP–, whereas the concentrations of infectivity-enhancing peptides [semen-derived enhancer of viral infection (SEVI), SEM1, SEM2] were similar. CCR5 membrane expression levels were reduced on CD4+ T cells shortly postexposure to SP+ compared with SP– and correlated to R5-tropic HIV-1 infection levels, and CCR5 ligands’ concentrations in semen. SP+ and SP– displayed similar enhancing activity on PBMC infection by X4-tropic HIV-1. Addition/depletion of RANTES (regulated on activation, normal T-cell expressed and secreted) from SPs modulated their effect on PBMC infection by R5-tropic HIV-1. Conclusion: Semen from HIV-infected donors exhibits a significantly reduced enhancing potential on CD4+ T-cell infection by R5-tropic HIV-1 when compared with semen from uninfected donors. Our data indicate that elevated seminal concentrations of RANTES in HIV-infected men can influence the ability of semen to enhance infection.
Collapse
|
24
|
Munawwar A, Singh S. Human Herpesviruses as Copathogens of HIV Infection, Their Role in HIV Transmission, and Disease Progression. J Lab Physicians 2016; 8:5-18. [PMID: 27013807 PMCID: PMC4785766 DOI: 10.4103/0974-2727.176228] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Of eight human herpesviruses (HHVs), often, only herpes simplex virus types 1 (HSV-1) and 2 (HSV-2) find mention in medical literature as both of these viruses are commonly associated with genital lesions and oral ulcers, commonly known as cold sores. However, role of human herpesviruses as copathogens and in aggravation and in the transmission of other human diseases, especially the Acquired immunodeficiency syndrome (HIV/AIDS) has only very recently been recognized. Therefore, screening and treating subclinical HHV infections may offer slowing of HIV infection, disease progression, and its transmission. Beside HSV-1 and HSV-2, HHV-3 a causative agent of herpes zoster remained one of the first manifestations of HIV disease before the era of highly active antiretroviral therapy (HAART). HHV-5 also known as human Cytomegalovirus infection remains a significant risk factor for HIV-associated mortality and morbidity even in HAART era. It is proposed that Cytomegalovirus viremia could be a better predictor of HIV disease progression than CD4+ T-lymphocyte count. The role of HHV-4 or Epstein-Burr virus and HHV-6, HHV-7, and HHV-8 is still being investigated in HIV disease progression. This review provides insight into the current understanding about these 8 HHVs, their co-pathogenesis, and role in HIV/AIDS disease progression. The review also covers recent literature in favor and against administering anti-HHV treatment along with HAART for slower AIDS progression and interrupted sexual transmission.
Collapse
Affiliation(s)
- Arshi Munawwar
- Department of Laboratory Medicine, Division of Clinical Microbiology and Molecular Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Sarman Singh
- Department of Laboratory Medicine, Division of Clinical Microbiology and Molecular Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
A Peptide Derived from the HIV-1 gp120 Coreceptor-Binding Region Promotes Formation of PAP248-286 Amyloid Fibrils to Enhance HIV-1 Infection. PLoS One 2015; 10:e0144522. [PMID: 26656730 PMCID: PMC4687630 DOI: 10.1371/journal.pone.0144522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 11/19/2015] [Indexed: 12/04/2022] Open
Abstract
Background Semen is a major vehicle for HIV transmission. Prostatic acid phosphatase (PAP) fragments, such as PAP248-286, in human semen can form amyloid fibrils to enhance HIV infection. Other endogenous or exogenous factors present during sexual intercourse have also been reported to promote the formation of seminal amyloid fibrils. Methodology and Principal Findings Here, we demonstrated that a synthetic 15-residue peptide derived from the HIV-1 gp120 coreceptor-binding region, designated enhancing peptide 2 (EP2), can rapidly self-assemble into nanofibers. These EP2-derivated nanofibers promptly accelerated the formation of semen amyloid fibrils by PAP248-286, as shown by Thioflavin T (ThT) and Congo red assays. The amyloid fibrils presented similar morphology, assessed via transmission electron microscopy (TEM), in the presence or absence of EP2. Circular dichroism (CD) spectroscopy revealed that EP2 accelerates PAP248-286 amyloid fibril formation by promoting the structural transition of PAP248-286 from a random coil into a cross-β-sheet. Newly formed semen amyloid fibrils effectively enhanced HIV-1 infection in TZM-bl cells and U87 cells by promoting the binding of HIV-1 virions to target cells. Conclusions and Significance Nanofibers composed of EP2 promote the formation of PAP248-286 amyloid fibrils and enhance HIV-1 infection.
Collapse
|
26
|
Complement-Opsonized HIV-1 Overcomes Restriction in Dendritic Cells. PLoS Pathog 2015; 11:e1005005. [PMID: 26121641 PMCID: PMC4485899 DOI: 10.1371/journal.ppat.1005005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
DCs express intrinsic cellular defense mechanisms to specifically inhibit HIV-1 replication. Thus, DCs are productively infected only at very low levels with HIV-1, and this non-permissiveness of DCs is suggested to go along with viral evasion. We now illustrate that complement-opsonized HIV-1 (HIV-C) efficiently bypasses SAMHD1 restriction and productively infects DCs including BDCA-1 DCs. Efficient DC infection by HIV-C was also observed using single-cycle HIV-C, and correlated with a remarkable elevated SAMHD1 T592 phosphorylation but not SAMHD1 degradation. If SAMHD1 phosphorylation was blocked using a CDK2-inhibitor HIV-C-induced DC infection was also significantly abrogated. Additionally, we found a higher maturation and co-stimulatory potential, aberrant type I interferon expression and signaling as well as a stronger induction of cellular immune responses in HIV-C-treated DCs. Collectively, our data highlight a novel protective mechanism mediated by complement opsonization of HIV to effectively promote DC immune functions, which might be in the future exploited to tackle HIV infection. We here give insight into a substantial novel way of dendritic cell modulation at least during acute HIV-1 infection by triggering integrin receptor signaling. We found that complement-opsonization of the virus is able to relieve SAMHD1 restriction in DCs, thereby initiating strong maturation and co-stimulatory capacity of the cells and stimulating efficient cellular and humoral antiviral immune responses. This newly described way of DC modulation by complement might be exploited to find novel therapeutic targets promoting DC immune functions against HIV.
Collapse
|
27
|
Characterization of the Influence of Semen-Derived Enhancer of Virus Infection on the Interaction of HIV-1 with Female Reproductive Tract Tissues. J Virol 2015; 89:5569-80. [PMID: 25740984 DOI: 10.1128/jvi.00309-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 02/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The majority of human immunodeficiency virus type 1 (HIV-1) transmission events occur in women when semen harboring infectious virus is deposited onto the mucosal barriers of the vaginal, ectocervical, and endocervical epithelia. Seminal factors such as semen-derived enhancer of virus infection (SEVI) fibrils were previously shown to greatly enhance the infectivity of HIV-1 in cell culture systems. However, when SEVI is intravaginally applied to living animals, there is no effect on vaginal transmission. To define how SEVI might function in the context of sexual transmission, we applied HIV-1 and SEVI to intact human and rhesus macaque reproductive tract tissues to determine how it influences virus interactions with these barriers. We show that SEVI binds HIV-1 and sequesters most virions to the luminal surface of the stratified squamous epithelium, significantly reducing the number of virions that penetrated the tissue. In the simple columnar epithelium, SEVI was no longer fibrillar in structure and was detached from virions but allowed significantly deeper epithelial virus penetration. These observations reveal that the action of SEVI in intact tissues is very different in the anatomical context of sexual transmission and begin to explain the lack of stimulation of infection observed in the highly relevant mucosal transmission model. IMPORTANCE The most common mode of HIV-1 transmission in women occurs via genital exposure to the semen of HIV-infected men. A productive infection requires the virus to penetrate female reproductive tract epithelial barriers to infect underlying target cells. Certain factors identified within semen, termed semen-derived enhancers of virus infection (SEVI), have been shown to significantly enhance HIV-1 infectivity in cell culture. However, when applied to the genital tracts of living female macaques, SEVI did not enhance virus transmission. Here we show that SEVI functions very differently in the context of intact mucosal tissues. SEVI decreases HIV-1 penetration of squamous epithelial barriers in humans and macaques. At the mucus-coated columnar epithelial barrier, the HIV-1/SEVI interaction is disrupted. These observations suggest that SEVI may not play a significant stimulatory role in the efficiency of male-to-female sexual transmission of HIV.
Collapse
|
28
|
Bernard-Stoecklin S, Gommet C, Cavarelli M, Le Grand R. Nonhuman primate models for cell-associated simian immunodeficiency virus transmission: the need to better understand the complexity of HIV mucosal transmission. J Infect Dis 2015; 210 Suppl 3:S660-6. [PMID: 25414421 DOI: 10.1093/infdis/jiu536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nonhuman primates are extensively used to assess strategies to prevent infection from sexual exposure to human immunodeficiency virus (HIV) and to study mechanisms of mucosal transmission. However, although semen represents one of the most important vehicles for the virus, the vast majority of preclinical challenge studies have used cell-free simian immunodeficiency virus (SIV) or simian/human immunodeficiency virus (SHIV) viral particles inoculated as diluted culture supernatants. Semen is a complex body fluid containing many factors that may facilitate or decrease HIV infectiousness. The virus in semen is present in different forms: as free virus particles or as cell-associated virus (ie, within infected leukocytes). Although cell-to-cell transmission of HIV is highly efficient, the role of cell-associated virus in semen has been surprisingly poorly investigated in nonhuman primate models. Mucosal exposure of macaques to cell-associated SIV by using infected peripheral blood mononuclear cells or spleen cells has been shown to be an efficient means of infection; however, it has yet to be shown that SIV- or SHIV-infected seminal leukocytes can transmit infection in vivo. Improvement of animal models to better recapitulate the complex microenvironment at portals of HIV entry is needed for testing candidate antiretrovirals, microbicides, and vaccines.
Collapse
Affiliation(s)
- Sibylle Bernard-Stoecklin
- CEA, Division of Immunovirology, IDMIT Center, iMETI/DSV, Fontenay-aux-Roses UMR-E1, Université Paris-Sud 11, Orsay, France
| | - Céline Gommet
- CEA, Division of Immunovirology, IDMIT Center, iMETI/DSV, Fontenay-aux-Roses UMR-E1, Université Paris-Sud 11, Orsay, France
| | - Mariangela Cavarelli
- CEA, Division of Immunovirology, IDMIT Center, iMETI/DSV, Fontenay-aux-Roses UMR-E1, Université Paris-Sud 11, Orsay, France DIBIT, Hospedale San Raffaele, Milano, Italy
| | - Roger Le Grand
- CEA, Division of Immunovirology, IDMIT Center, iMETI/DSV, Fontenay-aux-Roses UMR-E1, Université Paris-Sud 11, Orsay, France
| |
Collapse
|
29
|
Khan KN, Fujishita A, Kitajima M, Hiraki K, Nakashima M, Masuzaki H. Intra-uterine microbial colonization and occurrence of endometritis in women with endometriosis†. Hum Reprod 2014; 29:2446-56. [DOI: 10.1093/humrep/deu222] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
30
|
Kafka JK, Osborne BJW, Sheth PM, Nazli A, Dizzell S, Huibner S, Kovacs C, Verschoor CP, Bowdish DM, Kaul R, Kaushic C. Latent TGF-β1 is compartmentalized between blood and seminal plasma of HIV-positive men and its activation in semen is negatively correlated with viral load and immune activation. Am J Reprod Immunol 2014; 73:151-61. [PMID: 25052241 DOI: 10.1111/aji.12300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/02/2014] [Indexed: 12/15/2022] Open
Abstract
PROBLEM Semen is the primary medium for sexual transmission of HIV-1 and contains high concentrations of TGF-β1, but its role in regulating HIV-mediated immune activation is unclear. METHOD OF STUDY TGF-β1 and sCD14 were compared in blood plasma (BP) and seminal plasma (SP) from HIV-uninfected and infected, antiretroviral therapy (ART)-naive and ART-treated men and in THP-1 cells following exposure to HIV-1. The relationship between TGF-β1 and sCD14 was determined by Spearman correlation. RESULTS Active and latent forms of TGF-β1 were compartmentalized between BP and SP. Highest active TGF-β1 levels were present in SP of ART-naïve chronic-infected men and decreased following ART treatment. Latent TGF-β1 was upregulated in BP following HIV infection, and highest levels were observed in BP of acute-infected men. Similar expression trends were observed between latent TGF-β1 and sCD14 in BP. A significant negative correlation was observed between active TGF-β1, sCD14, and semen viral load in ART-naive men. CONCLUSION TGF-β1 is compartmentalized between blood and semen, possibly co-expressed with sCD14 by activated monocytes/macrophages in BP as a result of HIV infection. Conversion of latent TGF-β1 into its active form could contribute to regulation of viral load and immune activation in the male genital tract, but depends on the stage of infection.
Collapse
Affiliation(s)
- Jessica K Kafka
- Department of Pathology & Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shen R, Richter HE, Smith PD. Interactions between HIV-1 and mucosal cells in the female reproductive tract. Am J Reprod Immunol 2014; 71:608-17. [PMID: 24689653 PMCID: PMC4073589 DOI: 10.1111/aji.12244] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 02/26/2014] [Indexed: 12/13/2022] Open
Abstract
Worldwide, the heterosexual route is the prevalent mode of HIV-1 transmission, and the female reproductive tract accounts for approximately 40% of all HIV-1 transmissions. HIV-1 infection in the female reproductive tract involves three major events: entry through the mucosal epithelium, productive infection in subepithelial mononuclear cells, and delivery to lymph nodes to initiate systemic infection. Here, we provide a focused review of the interaction between HIV-1 and mucosal epithelial cells, lymphocytes, macrophages, and dendritic cells in female genital mucosa. Increased understanding of these interactions could illuminate new approaches for interdicting HIV-1 heterosexual transmission.
Collapse
Affiliation(s)
- Ruizhong Shen
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL, USA
| | - Holly E. Richter
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Phillip D. Smith
- Department of Medicine (Gastroenterology), University of Alabama at Birmingham, Birmingham, AL, USA
- VA Medical Center, Birmingham, AL, USA
| |
Collapse
|
32
|
Vojtech L, Woo S, Hughes S, Levy C, Ballweber L, Sauteraud RP, Strobl J, Westerberg K, Gottardo R, Tewari M, Hladik F. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 2014; 42:7290-304. [PMID: 24838567 PMCID: PMC4066774 DOI: 10.1093/nar/gku347] [Citation(s) in RCA: 413] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/01/2014] [Accepted: 04/11/2014] [Indexed: 12/21/2022] Open
Abstract
Semen contains relatively ill-defined regulatory components that likely aid fertilization, but which could also interfere with defense against infection. Each ejaculate contains trillions of exosomes, membrane-enclosed subcellular microvesicles, which have immunosuppressive effects on cells important in the genital mucosa. Exosomes in general are believed to mediate inter-cellular communication, possibly by transferring small RNA molecules. We found that seminal exosome (SE) preparations contain a substantial amount of RNA from 20 to 100 nucleotides (nts) in length. We sequenced 20-40 and 40-100 nt fractions of SE RNA separately from six semen donors. We found various classes of small non-coding RNA, including microRNA (21.7% of the RNA in the 20-40 nt fraction) as well as abundant Y RNAs and tRNAs present in both fractions. Specific RNAs were consistently present in all donors. For example, 10 (of ∼2600 known) microRNAs constituted over 40% of mature microRNA in SE. Additionally, tRNA fragments were strongly enriched for 5'-ends of 18-19 or 30-34 nts in length; such tRNA fragments repress translation. Thus, SE could potentially deliver regulatory signals to the recipient mucosa via transfer of small RNA molecules.
Collapse
Affiliation(s)
- Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - Sangsoon Woo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Sean Hughes
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA
| | - Claire Levy
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Lamar Ballweber
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Renan P Sauteraud
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Johanna Strobl
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Katharine Westerberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Raphael Gottardo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA Department of Medicine, University of Washington, Seattle, USA
| | - Muneesh Tewari
- Department of Medicine, University of Washington, Seattle, USA Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, USA Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA Department of Medicine, University of Washington, Seattle, USA
| |
Collapse
|
33
|
Venkatesh KK, Cu-Uvin S. Anatomic and Hormonal Changes in the Female Reproductive Tract Immune Environment during the Life Cycle: Implications for HIV/STI Prevention Research. Am J Reprod Immunol 2014; 71:495-504. [DOI: 10.1111/aji.12247] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 03/06/2014] [Indexed: 12/30/2022] Open
Affiliation(s)
- Kartik K. Venkatesh
- Department of Obstetrics and Gynecology; Brigham and Women's Hospital and Massachusetts General Hospital; Harvard Medical School; Boston MA USA
| | - Susan Cu-Uvin
- Department of Obstetrics and Gynecology; Alpert Medical School; Brown University; Providence RI USA
- Division of Infectious Diseases; Department of Medicine; Alpert Medical School; Brown University; Providence RI USA
| |
Collapse
|
34
|
Barreto-de-Souza V, Arakelyan A, Margolis L, Vanpouille C. HIV-1 vaginal transmission: cell-free or cell-associated virus? Am J Reprod Immunol 2014; 71:589-99. [PMID: 24730358 DOI: 10.1111/aji.12240] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 02/25/2014] [Indexed: 12/28/2022] Open
Abstract
The vast majority of new HIV infections in male-to-female transmission occurs through semen, where HIV-1 is present in two different forms: as free and as cell-associated virus. In the female lower genital tract, semen mixes with female genital secretions that contain various factors, some of which facilitate or inhibit HIV-1 transmission. Next, HIV-1 crosses the genital epithelia, reaches the regional lymph nodes, and disseminates through the female host. Cervico-vaginal mucosa contains multiple barriers, resulting in a low probability of vaginal transmission. However, in some cases, HIV-1 is able to break these barriers. Although the exact mechanisms of how these barriers function remain unclear, their levels of efficiency against cell-free and cell-associated HIV-1 are different, and both cell-free and cell-associated virions seem to use different strategies to overcome these barriers. Understanding the basic mechanisms of HIV-1 vaginal transmission is required for the development of new antiviral strategies to contain HIV-1 epidemics.
Collapse
Affiliation(s)
- Victor Barreto-de-Souza
- Section of Intercellular Interactions, Program in Physical Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | | | | | | |
Collapse
|
35
|
Roan NR, Chu S, Liu H, Neidleman J, Witkowska HE, Greene WC. Interaction of fibronectin with semen amyloids synergistically enhances HIV infection. J Infect Dis 2014; 210:1062-6. [PMID: 24719472 DOI: 10.1093/infdis/jiu220] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Semen harbors amyloids that enhance human immunodeficiency virus type 1 (HIV-1) infection. We set out to identify factors that bind these amyloids and to determine whether these factors modulate amyloid-mediated HIV-enhancing activity. Using biochemical and mass spectrometric approaches, we identified fibronectin as a consistent interaction partner. Although monomeric fibronectin did not enhance HIV infection, it synergistically increased the infectivity enhancement activity of the amyloids. Depletion of fibronectin decreased the enhancing activity of semen, suggesting that interfering with the binding interface between fibronectin and the amyloids could be an approach to developing a novel class of microbicides targeting the viral-enhancing activity of semen.
Collapse
Affiliation(s)
- Nadia R Roan
- Gladstone Institute of Virology and Immunology Department of Urology
| | - Simon Chu
- Gladstone Institute of Virology and Immunology
| | - Haichuan Liu
- Department of Obstetrics, Gynecology, and Reproductive Sciences Sandler-Moore Mass Spectrometry Core Facility
| | | | - H Ewa Witkowska
- Department of Obstetrics, Gynecology, and Reproductive Sciences Sandler-Moore Mass Spectrometry Core Facility
| | - Warner C Greene
- Gladstone Institute of Virology and Immunology Department of Medicine Department of Microbiology and Immunology, University of California, San Francisco
| |
Collapse
|
36
|
Doncel GF, Anderson S, Zalenskaya I. Role of Semen in Modulating the Female Genital Tract Microenvironment – Implications for HIV Transmission. Am J Reprod Immunol 2014; 71:564-74. [DOI: 10.1111/aji.12231] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/19/2014] [Indexed: 02/03/2023] Open
Affiliation(s)
- Gustavo F. Doncel
- Department of Obstetrics and Gynecology CONRAD Eastern Virginia Medical School Norfolk VA USA
| | - Sharon Anderson
- Department of Obstetrics and Gynecology CONRAD Eastern Virginia Medical School Norfolk VA USA
| | - Irina Zalenskaya
- Department of Obstetrics and Gynecology CONRAD Eastern Virginia Medical School Norfolk VA USA
| |
Collapse
|
37
|
Direct visualization of HIV-enhancing endogenous amyloid fibrils in human semen. Nat Commun 2014; 5:3508. [PMID: 24691351 PMCID: PMC4129123 DOI: 10.1038/ncomms4508] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/25/2014] [Indexed: 12/12/2022] Open
Abstract
Naturally occurring fragments of the abundant semen proteins prostatic acid phosphatase (PAP) and semenogelins form amyloid fibrils in vitro. These fibrils boost HIV infection and may play a key role in the spread of the AIDS pandemic. However, the presence of amyloid fibrils in semen remained to be demonstrated. Here, we use state of the art confocal and electron microscopy techniques for direct imaging of amyloid fibrils in human ejaculates. We detect amyloid aggregates in all semen samples and find that they partially consist of PAP fragments, interact with HIV particles and increase viral infectivity. Our results establish semen as a body fluid that naturally contains amyloid fibrils that are exploited by HIV to promote its sexual transmission.
Collapse
|
38
|
Lourenço AG, Komesu MC, Machado AA, Bourlet T, Pozzetto B, Delézay O. Potential contribution of saliva to the sexual transmission of HIV through the secretion of CCL20 by genital epithelial cells. J Med Virol 2013; 86:58-63. [PMID: 24122904 DOI: 10.1002/jmv.23776] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2013] [Indexed: 12/29/2022]
Abstract
Saliva can be considered as an important actor during sexual intercourse. However, there is no data concerning its influence on HIV sexual transmission. The aim of this study was to evaluate the role of whole saliva on the in vitro secretion of CCL20 by monolayered HEC-1A endocervical epithelium cells. HEC-1A cells were cultivated in 96-well microplates and incubated with specimens of whole saliva collected from 57 subjects tested seropositive (n = 34) or seronegative (n = 23) for HIV and presenting different oral conditions (healthy periodontally, n = 22, and gingivitis/periodontitis, n = 35). The production of CCL20 in the supernatants of HEC-1A cells after overnight incubation at 37°C was quantified using ELISA. The salivary concentration of lactoferrin (Lf) and IL-1β was tested by ELISA. Saliva samples were found able to stimulate dramatically the production of CCL20 by epithelial cells, increasing this synthesis by a mean factor of 38.1 with reference to untreated cells. This stimulation was equivalent to that observed with IL-1β used as positive control. Although no difference was observed according to oral condition, HIV status or salivary concentration of Lf and IL-1β, the high salivary concentration of the latter protein could acknowledge in large part for the overproduction of CCL20 by HEC-1A cells when stimulated by saliva. Saliva was shown to significantly increase CCL20 secretion and may be responsible for an enhanced recruitment of dendritic/Langerhans cells at the genital level. These results suggest that saliva could facilitate HIV entry and possibly other pathogens through the genital mucosa during heterosexual intercourse.
Collapse
Affiliation(s)
- Alan Grupioni Lourenço
- Division of Infectious Diseases, Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; Department of Morphology, Stomatology and Physiology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil; EA3064, Groupe Immunité des Muqueuses et Agents Pathogènes (GIMAP), Faculté de Médecine de Saint-Etienne, Université de Lyon, Saint-Etienne, France
| | | | | | | | | | | |
Collapse
|
39
|
Southern PJ. Missing out on the biology of heterosexual HIV-1 transmission. Trends Microbiol 2013; 21:245-52. [DOI: 10.1016/j.tim.2013.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/03/2013] [Accepted: 02/06/2013] [Indexed: 11/16/2022]
|
40
|
Introini A, Vanpouille C, Lisco A, Grivel JC, Margolis L. Interleukin-7 facilitates HIV-1 transmission to cervico-vaginal tissue ex vivo. PLoS Pathog 2013; 9:e1003148. [PMID: 23408885 PMCID: PMC3567179 DOI: 10.1371/journal.ppat.1003148] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/07/2012] [Indexed: 11/30/2022] Open
Abstract
The majority of HIV-1 infections in women occur through vaginal intercourse, in which virus-containing semen is deposited on the cervico-vaginal mucosa. Semen is more than a mere carrier of HIV-1, since it contains many biological factors, in particular cytokines, that may affect HIV-1 transmission. The concentration of interleukin (IL)-7, one of the most prominent cytokines in semen of healthy individuals, is further increased in semen of HIV-1-infected men. Here, we investigated the potential role of IL-7 in HIV-1 vaginal transmission in an ex vivo system of human cervico-vaginal tissue. We simulated an in vivo situation by depositing HIV-1 on cervico-vaginal tissue in combination with IL-7 at concentrations comparable with those measured in semen of HIV-1-infected individuals. We found that IL-7 significantly enhanced virus replication in ex vivo infected cervico-vaginal tissue. Similarly, we observed an enhancement of HIV-1 replication in lymphoid tissue explants. Analysis of T cells isolated from infected tissues showed that IL-7 reduced CD4+ T cell depletion preventing apoptosis, as shown by the decrease in the number of cells expressing the apoptotic marker APO2.7 and the increase in the expression of the anti-apoptotic protein B-cell lymphoma (Bcl)-2. Also, IL-7 increased the fraction of cycling CD4+ T cells, as evidenced by staining for the nuclear factor Ki-67. High levels of seminal IL-7 in vivo may be relevant to the survival of the founder pool of HIV-1-infected cells in the cervico-vaginal mucosa at the initial stage of infection, promoting local expansion and dissemination of HIV infection. Male-to-female HIV-1 transmission occurs predominantly through vaginal intercourse when the virus is transmitted with seminal fluid. The identification of the determinants of HIV-1 transmission to the female lower genital tract is of pivotal importance for understanding the basic mechanisms of HIV-1 infection. This understanding is necessary for the development of new strategies to prevent or contain this infection. Semen of HIV-1-infected individuals is highly enriched with IL-7, a crucial cytokine for the life cycle of CD4+ T cells, the primary target of HIV-1. Here, we utilized a system of human cervico-vaginal and lymphoid tissues ex vivo to study the effect of IL-7 on HIV-1 transmission and dissemination. Our results show that IL-7 at concentrations comparable to those found in semen of HIV-1-infected individuals enhanced HIV-1 replication by preventing the death and by stimulating the proliferation of CD4+ T cells. This allows sustained viral production by infected cells and provides new cellular targets for propagation of infection. The concentration of IL-7 in semen of HIV-1-infected men may be a key determinant of the efficiency of HIV-1 transmission to an uninfected female partner through vaginal intercourse.
Collapse
Affiliation(s)
- Andrea Introini
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Biomedical Sciences and Technology, University of Milan, Milan, Italy
- * E-mail:
| | - Christophe Vanpouille
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Andrea Lisco
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jean-Charles Grivel
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leonid Margolis
- Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
41
|
Costiniuk CT, Kovacs C, Routy JP, Singer J, Gurunathan S, Sekaly RP, Angel JB. Short communication: human immunodeficiency virus rebound in blood and seminal plasma following discontinuation of antiretroviral therapy. AIDS Res Hum Retroviruses 2013; 29:266-9. [PMID: 22908887 DOI: 10.1089/aid.2011.0343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although there is discordance between human immunodeficiency virus (HIV) blood plasma and seminal plasma viral loads (VL), little is known about the dynamics of VL rebound in these compartments upon discontinuation of highly active antiretroviral therapy (HAART). Therefore, we sought to examine the relationship between blood and semen VL rebound after discontinuation of HAART. Participants in this substudy were men enrolled from two centers of a multicenter, placebo-controlled randomized trial of HIV therapeutic vaccination using ALVAC with or without Remune. With at least 2 years of sustained virologic suppression and following a 20-week vaccination course, subjects underwent structured HAART interruption. Fourteen men provided semen samples. Seven to 12 weeks after HAART interruption, all 14 men had detectable blood VLs whereas 8 of 14 had detectable seminal VLs. There was a significant correlation between blood and seminal VLs (Spearman r=0.58, p=0.03) at the time of semen collection. An earlier time to detectable blood VL after HAART interruption was associated with higher seminal VL (Spearman r=-0.64, p=0.02). These findings support the compartmentalization of HIV and underscore the importance of understanding the genital tract as an HIV reservoir in the quest to minimize HIV transmission.
Collapse
Affiliation(s)
| | - Colin Kovacs
- University of Toronto and the Maple Leaf Medical Clinic, Toronto, Canada
| | - Jean-Pierre Routy
- Division of Hematology and Immunology Service, McGill University Health Centre, Montreal, Canada
| | - Joel Singer
- CIHR Canadian HIV Trials Network, Vancouver, Canada
| | | | - Rafick-Pierre Sekaly
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - Jonathan B. Angel
- Division of Infectious Diseases, University of Ottawa, Ottawa, Canada
- Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
42
|
Purcell D, Cunningham A, Turville S, Tachedjian G, Landay A. Biology of mucosally transmitted sexual infection-translating the basic science into novel HIV intervention: a workshop summary. AIDS Res Hum Retroviruses 2012; 28:1389-96. [PMID: 22966898 DOI: 10.1089/aid.2012.0276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A group of over 200 international scientists came together on April 15 in Sydney, Australia just before the 2012 International Microbicides Conference as a part of a workshop to address the basic concepts and factors that modulate HIV infection at the mucosal surface. The meeting focused on defining the interaction between virus, prevailing host physiology, microbiota, and innate and adaptive immune responses and how they combine to impact the outcome at the moment of potential viral transmission. Speakers examined the biology of HIV entry during transmission, innate and natural antiviral mechanisms at the mucosa, microbicide efficacy, pharmacokinetic, and pharmacodynamics, animal models, and opportunities for combining HIV prevention strategies. Other viral infection models both in vivo and in vitro were considered for the insights they provided into HIV transmission events. The workshop raised important questions that we need to answer to further our basic understanding of host and viral factors influencing HIV transmission to inform the development of novel prevention strategies.
Collapse
|
43
|
Schust DJ, Quayle AJ, Amedee AM. Mucosal co-infections and HIV-1 transmission and pathogenesis. Curr HIV Res 2012; 10:195-201. [PMID: 22497695 DOI: 10.2174/157016212800618174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 01/02/2012] [Accepted: 01/03/2012] [Indexed: 12/24/2022]
|
44
|
Factors Important to the Prioritization and Development of Successful Topical Microbicides for HIV-1. Mol Biol Int 2012; 2012:781305. [PMID: 22848826 PMCID: PMC3403474 DOI: 10.1155/2012/781305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/11/2012] [Indexed: 12/20/2022] Open
Abstract
Significant advancements in topical microbicide development have occurred since the prevention strategy was first described as a means to inhibit the sexual transmission of HIV-1. The lack of clinical efficacy of the first generation microbicide products has focused development attention on specific antiretroviral agents, and these agents have proven partially successful in human clinical trials. With greater understanding of vaginal and rectal virus infection, replication, and dissemination, better microbicide products and delivery strategies should result in products with enhanced potency. However, a variety of development gaps exist which relate to product dosing, formulation and delivery, and pharmacokinetics and pharmacodynamics which must be better understood in order to prioritize microbicide products for clinical development. In vitro, ex vivo, and in vivo models must be optimized with regard to these development gaps in order to put the right product at the right place, at the right time, and at the right concentration for effective inhibition of virus transmission. As the microbicide field continues to evolve, we must harness the knowledge gained from unsuccessful and successful clinical trials and development programs to continuously enhance our preclinical development algorithms.
Collapse
|
45
|
Rosenberger JG, Reece M, Schick V, Herbenick D, Novak DS, Van Der Pol B, Fortenberry JD. Condom Use during Most Recent Anal Intercourse Event among a U.S. Sample of Men Who Have Sex with Men. J Sex Med 2012; 9:1037-47. [DOI: 10.1111/j.1743-6109.2012.02650.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Popovych N, Brender JR, Soong R, Vivekanandan S, Hartman K, Basrur V, Macdonald PM, Ramamoorthy A. Site specific interaction of the polyphenol EGCG with the SEVI amyloid precursor peptide PAP(248-286). J Phys Chem B 2012; 116:3650-8. [PMID: 22360607 DOI: 10.1021/jp2121577] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recently, a 39 amino acid peptide fragment from prostatic acid phosphatase has been isolated from seminal fluid that can enhance infectivity of the HIV virus by up to 4-5 orders of magnitude. PAP(248-286) is effective in enhancing HIV infectivity only when it is aggregated into amyloid fibers termed SEVI. The polyphenol EGCG (epigallocatechin-3-gallate) has been shown to disrupt both SEVI formation and HIV promotion by SEVI, but the mechanism by which it accomplishes this task is unknown. Here, we show that EGCG interacts specifically with the side chains of monomeric PAP(248-286) in two regions (K251-R257 and N269-I277) of primarily charged residues, particularly lysine. The specificity of interaction to these two sites is contrary to previous studies on the interaction of EGCG with other amyloidogenic proteins, which showed the nonspecific interaction of EGCG with exposed backbone sites of unfolded amyloidogenic proteins. This interaction is specific to EGCG as the related gallocatechin (GC) molecule, which shows greatly decreased antiamyloid activity, exhibits minimal interaction with monomeric PAP(248-286). The EGCG binding was shown to occur in two steps, with the initial formation of a weakly bound complex followed by a pH dependent formation of a tightly bound complex. Experiments in which the lysine residues of PAP(248-286) have been chemically modified suggest the tightly bound complex is created by Schiff-base formation with lysine residues. The results of this study could aid in the development of small molecule inhibitors of SEVI and other amyloid proteins.
Collapse
Affiliation(s)
- Nataliya Popovych
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Olsen JS, DiMaio JTM, Doran TM, Brown C, Nilsson BL, Dewhurst S. Seminal plasma accelerates semen-derived enhancer of viral infection (SEVI) fibril formation by the prostatic acid phosphatase (PAP248-286) peptide. J Biol Chem 2012; 287:11842-9. [PMID: 22354963 PMCID: PMC3320932 DOI: 10.1074/jbc.m111.314336] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Amyloid fibrils contained in semen, known as SEVI, or semen-derived enhancer of viral infection, have been shown to increase the infectivity of HIV dramatically. However, previous work with these fibrils has suggested that extensive time and nonphysiologic levels of agitation are necessary to induce amyloid formation from the precursor peptide (a proteolytic cleavage product of prostatic acid phosphatase, PAP248–286). Here, we show that fibril formation by PAP248–286 is accelerated dramatically in the presence of seminal plasma (SP) and that agitation is not required for fibrillization in this setting. Analysis of the effects of specific SP components on fibril formation by PAP248–286 revealed that this effect is primarily due to the anionic buffer components of SP (notably inorganic phosphate and sodium bicarbonate). Divalent cations present in SP had little effect on the kinetics of fibril formation, but physiologic levels of Zn2+ strongly protected SEVI fibrils from degradation by seminal proteases. Taken together, these data suggest that in the in vivo environment, PAP248–286 is likely to form fibrils efficiently, thus providing an explanation for the presence of SEVI in human semen.
Collapse
Affiliation(s)
- Joanna S Olsen
- Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
48
|
Bélec L, Jenabian MA, Charpentier C, Saïdi H. Combinatorial prevention of HIV transmission in women: the case for a vaginal microbicide. Future Microbiol 2011; 6:731-7. [PMID: 21797688 DOI: 10.2217/fmb.11.64] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Women are now becoming pivotal in the epidemiological spread of HIV infection throughout the world, especially in developing countries, where heterosexual transmission accounts for more than 80% of all new HIV infections. Recently, significant but partial successes have occurred in the field of HIV prevention, including male circumcision, preventive HIV vaccines, vaginal microbicides and oral pre-exposure prophylaxis, and there is increasingly widespread access to antiretroviral treatment. However, none of the currently available tools for HIV intervention are sufficiently effective, particularly for women, and all require further development. Among all biomedical approaches, microbicides could hold the greatest hope of curtailing AIDS worldwide, especially if used by women in Africa. Research for an efficacious microbicide constitutes a priority in the global agenda to prevent HIV infection. Finally, the combination of existing partially effective strategies for HIV prevention should be promoted, scaled-up and evaluated.
Collapse
Affiliation(s)
- Laurent Bélec
- Laboratoire de Virologie, Hôpital Européen Georges Pompidou, Paris, France, 15-20 rue Leblanc, 75 908 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
49
|
Abstract
The human immunodeficiency virus displays a narrow tropism for CD4+ mononuclear cells, and activated CD4+ T lymphocytes are the main target. When these cells are depleted by viral replication, bystander apoptosis and increased cell turnover mediated by immune activation, there is a progressive immunodeficiency (i.e., AIDS). Despite this specific cell tropism, HIV-infected persons demonstrate pathology in nearly every organ system. This article reviews current understanding of tissue-specific HIV-1 infection in the CNS, the genital tract, and gastrointestinal-associated lymphoid tissue.
Collapse
Affiliation(s)
- Maile Ay Karris
- University of California, San Diego, Division of Infectious Diseases, Stein Clinical Research Bldg MC 0679, 9500 Gilman Drive, La Jolla, CA 92037, USA
| | | |
Collapse
|
50
|
Coming of age: reconstruction of heterosexual HIV-1 transmission in human ex vivo organ culture systems. Mucosal Immunol 2011; 4:383-96. [PMID: 21430654 DOI: 10.1038/mi.2011.12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Heterosexual transmission of human immunodeficiency virus-1 (HIV-1), from men to women, involves exposure to infectious HIV-1 in semen. Therefore, the cellular and molecular processes that underlie HIV-1 transmission are closely interconnected with fundamental principles of human reproductive biology. Human ex vivo organ culture systems allow experimental reconstruction of HIV-1 transmission, using human semen and premenopausal cervicovaginal mucosal tissue, with specific emphasis on the progression from exposure to development of primary HIV-1 infection. Clearly, an isolated piece of human tissue cannot duplicate the full complexity of events in natural infections, but with correct observation of conventional medical and ethical standards, there is no opportunity to study HIV-1 exposure and primary infection in young women. Human mucosal organ cultures allow direct study of HIV-1 infection in a reproducible format while retaining major elements of complexity and variability that typify community-based HIV-1 transmission. Experimental manipulation of human mucosal tissue both allows and requires acquisition of new insights into basic processes of human mucosal immunology. Expanding from the current foundations, we believe that human organ cultures will become increasingly prominent in experimental studies of HIV-1 transmission and continuing efforts to prevent HIV-1 infection at human mucosal surfaces.
Collapse
|