1
|
Bender M, Abicht JM, Reichart B, Neumann E, Radan J, Mokelke M, Buttgereit I, Leuschen M, Wall F, Michel S, Ellgass R, Steen S, Paskevicius A, Lange A, Kessler B, Kemter E, Klymiuk N, Denner J, Godehardt AW, Tönjes RR, Burgmann JM, Figueiredo C, Milusev A, Zollet V, Salimi-Afjani N, Despont A, Rieben R, Ledderose S, Walz C, Hagl C, Ayares D, Wolf E, Schmoeckel M, Brenner P, Binder U, Gebauer M, Skerra A, Längin M. Combination of Anti-CD40 and Anti-CD40L Antibodies as Co-Stimulation Blockade in Preclinical Cardiac Xenotransplantation. Biomedicines 2024; 12:1927. [PMID: 39200391 PMCID: PMC11351779 DOI: 10.3390/biomedicines12081927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
The blockade of the CD40/CD40L immune checkpoint is considered essential for cardiac xenotransplantation. However, it is still unclear which single antibody directed against CD40 or CD40L (CD154), or which combination of antibodies, is better at preventing organ rejection. For example, the high doses of antibody administered in previous experiments might not be feasible for the treatment of humans, while thrombotic side effects were described for first-generation anti-CD40L antibodies. To address these issues, we conducted six orthotopic pig-to-baboon cardiac xenotransplantation experiments, combining a chimeric anti-CD40 antibody with an investigational long-acting PASylated anti-CD40L Fab fragment. The combination therapy effectively resulted in animal survival with a rate comparable to a previous study that utilized anti-CD40 monotherapy. Importantly, no incidence of thromboembolic events associated with the administration of the anti-CD40L PAS-Fab was observed. Two experiments failed early because of technical reasons, two were terminated deliberately after 90 days with the baboons in excellent condition and two were extended to 120 and 170 days, respectively. Unexpectedly, and despite the absence of any clinical signs, histopathology revealed fungal infections in all four recipients. This study provides, for the first time, insights into a combination therapy with anti-CD40/anti-CD40L antibodies to block this immune checkpoint.
Collapse
Affiliation(s)
- Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Ines Buttgereit
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Maria Leuschen
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Felicia Wall
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Sebastian Michel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | - Reinhard Ellgass
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Stig Steen
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 22242 Lund, Sweden
| | - Audrius Paskevicius
- Department of Cardiothoracic Surgery, Lund University and Skåne University Hospital, 22242 Lund, Sweden
| | - Andreas Lange
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Barbara Kessler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Kemter
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, 63225 Langen, Germany
| | - Jonathan M. Burgmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Constança Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, 30625 Hannover, Germany
| | - Anastasia Milusev
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | - Valentina Zollet
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | - Neda Salimi-Afjani
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, 3008 Bern, Switzerland
| | - Alain Despont
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Robert Rieben
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Stephan Ledderose
- Institute of Pathology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, LMU Munich, 81377 Munich, Germany
| | - Christian Hagl
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Heart Alliance, German Center for Cardiovascular Research (DZHK), 81377 Munich, Germany
| | | | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 81377 Munich, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Michael Schmoeckel
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Uli Binder
- XL-protein GmbH, 85354 Freising, Germany
| | | | - Arne Skerra
- Chair of Biological Chemistry, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
2
|
Lombardelli L, Logiodice F, Kullolli O, Haller H, Agostinis C, Bulla R, Rukavina D, Piccinni MP. At Embryo Implantation Site IL-35 Secreted by Trophoblast, Polarizing T Cells towards IL-35+ IL-10+ IL-4+ Th2-Type Cells, Could Favour Fetal Allograft Tolerance and Pregnancy Success. Int J Mol Sci 2022; 23:ijms23094926. [PMID: 35563316 PMCID: PMC9103079 DOI: 10.3390/ijms23094926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
We investigated the role of rhIL-35, at low concentrations compatible with those produced by human trophoblast cells (less than 1 ng/mL), on human T helper (Th) cell functions and the presence of decidual IL-35-producing Th cells in human pregnancy. We found that human trophoblast cells produced IL-35 but not IL-4 or IL-10. RhIL-35, at concentrations produced by human trophoblasts, polarized T cells towards IL-35+, IL-10+, IL-4+ Th2-type cells and to Foxp3+ EBI3+ p35+ T reg cells producing IL-35 but not IL-10 and IL-4. Moreover, rhIL-35 at low concentrations did not suppress the proliferation of Th cells but stimulated IL-4 and IL-10 production by established Th clones. In particular, Th1-type clones acquired the capacity to produce IL-4. In addition, purified human trophoblast cell supernatants containing IL-35 upregulated IL-4 and IL-10 production by Th clones. Finally, IL-35+, IL-10+, IL-4+ Th2-type cells, which were found to be induced by low concentrations of IL-35 compatible with those produced by human trophoblasts, are exclusively present in the decidua of a successful pregnancy and at the embryo implantation site, suggesting their stringent dependence on trophoblast cells. Thus, the proximity of Th cells to IL-35-producing trophoblasts could be the determining factor for the differentiation of IL-35+, IL-10+, IL-4+ Th2-type cells that are crucial for human pregnancy success.
Collapse
Affiliation(s)
- Letizia Lombardelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.L.); (F.L.); (O.K.)
| | - Federica Logiodice
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.L.); (F.L.); (O.K.)
| | - Ornela Kullolli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.L.); (F.L.); (O.K.)
| | - Herman Haller
- Department of Gynecology and Obstetrics, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia;
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Daniel Rukavina
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia;
| | - Marie-Pierre Piccinni
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (L.L.); (F.L.); (O.K.)
- Correspondence: ; Tel.: +39-055-275-8338
| |
Collapse
|
3
|
Chandiwana P, Munjoma PT, Mazhandu AJ, Mazengera LR, Misselwitz B, Jordi SBU, Yilmaz B, Duri K. Antenatal and postpartum immunological markers levels in women with HIV infection and malnutrition in a low resource setting: A pilot study. EUR J INFLAMM 2022. [DOI: 10.1177/1721727x221139261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objectives: Both, Human Immunodeficiency Virus (HIV) infection and malnutrition are major challenges in pregnancy and postpartum in low-resource settings and the respective cytokine levels remain poorly described. The main objectives of this study were to find immune markers that are associated with HIV infection and malnutrition in pregnant women and to determine how these would change at 14 weeks postpartum.Method: Pregnant women of at least 20 weeks gestational age were enrolled into this longitudinal observational single centre pilot study at 4 primary health clinics in high-density areas around Harare, Zimbabwe. Socio-demographic and clinical data including plasma samples were collected in pregnancy and 14 weeks postpartum (PP). Mid-upper-arm circumference (MUAC) ≤23 cm was used as an indicator for malnourishment. Fifty-six cytokines and chemokines were assayed in plasma using the Mesoscale multiplex assay. We determined cytokine/chemokine levels including markers for vascular injury in HIV-infection and malnutrition. Associations remaining significant after multiple test correction were confirmed in multivariable analyses after controlling for confounders.Results: Ninety-seven pregnant women were recruited for this study and from these, 44 were randomly selected for cytokine assaying of which 20 HIV infected, 15 malnourished, and 9 well-nourished HIV uninfected participants. HIV infection was associated with significantly higher interleukin (IL)-4 ( q < 0.05) and IL-10 ( q < 0.001) in pregnancy. Longitudinally, IL-4 ( q < 0.01) and IL-10 ( q < 0.001) significantly increased in HIV uninfected women whilst in the HIV-infected both were non-significantly decreased. IL-8 (q < 0.05) levels significantly increased in HIV-infected women from pregnancy to 14 weeks PP. Vascular Cell Adhesion Molecule 1 (VCAM-1) ( q < 0.05) and interleukin-1 receptor antagonist (IL-1RA) ( q < 0.05) were significantly lower in malnourished women in pregnancy and 14 weeks PP, respectively. Conclusions: IL-4, IL-8, IL-10, and VCAM-1 are potential biomarkers for monitoring immune functioning in HIV-infected pregnant women and malnutrition. However, studies with larger sample size are warranted to confirm these findings.
Collapse
Affiliation(s)
- Panashe Chandiwana
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Privilege T Munjoma
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Arthur J Mazhandu
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Lovemore R Mazengera
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| | - Benjamin Misselwitz
- Clinic for Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| | - Sebastian B U Jordi
- Department for Biomedical Research, Clinic for Visceral Surgery and Medicine, Inselspital University, Bern, Switzerland
| | - Bahtiyar Yilmaz
- Clinic for Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
- Department for Biomedical Research, Clinic for Visceral Surgery and Medicine, Inselspital University, Bern, Switzerland
| | - Kerina Duri
- Immunology Unit, University of Zimbabwe Faculty of Medicine and Health Sciences (UZ-FMHS), Harare, Zimbabwe
| |
Collapse
|
4
|
Zhou Q, Xiong Y, Qu B, Bao A, Zhang Y. DNA Methylation and Recurrent Pregnancy Loss: A Mysterious Compass? Front Immunol 2021; 12:738962. [PMID: 34745108 PMCID: PMC8566749 DOI: 10.3389/fimmu.2021.738962] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/04/2021] [Indexed: 12/24/2022] Open
Abstract
Recurrent pregnancy loss (RPL) is a common and severe pathological pregnancy, whose pathogenesis is not fully understood. With the development of epigenetics, the study of DNA methylation, provides a new perspective on the pathogenesis and therapy of RPL. The abnormal DNA methylation of imprinted genes, placenta-specific genes, immune-related genes and sperm DNA may, directly or indirectly, affect embryo implantation, growth and development, leading to the occurrence of RPL. In addition, the unique immune tolerogenic microenvironment formed at the maternal-fetal interface has an irreplaceable effect on the maintenance of pregnancy. In view of these, changes in the cellular components of the maternal-fetal immune microenvironment and the regulation of DNA methylation have attracted a lot of research interest. This review summarizes the research progress of DNA methylation involved in the occurrence of RPL and the regulation of the maternal-fetal immune microenvironment. The review provides insights into the personalized diagnosis and treatment of RPL.
Collapse
Affiliation(s)
- Qi Zhou
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunhe Xiong
- Urology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bing Qu
- Reproductive Medical Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Anyu Bao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Pereira MM, Torrado J, Sosa C, Zócalo Y, Bia D. Shedding light on the pathophysiology of preeclampsia-syndrome in the era of Cardio-Obstetrics: Role of inflammation and endothelial dysfunction. Curr Hypertens Rev 2021; 18:17-33. [DOI: 10.2174/1573402117666210218105951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/02/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022]
Abstract
:
Preeclampsia (PE) is a worldwide pregnancy complication with serious maternal and neonatal consequences. Our understanding of PE pathophysiology has significantly evolved over the last decades by recognizing that endothelial dysfunction and systemic inflammation, with an associated angiogenic imbalance, are key pieces of this still incomplete puzzle. In the present era, where no single treatment to cure or treat this obstetric condition has been developed so far, PE prevention and early prediction poses the most useful clinical approach to reduce the PE burden. Although most PE episodes occur in healthy nulliparous women, the identification of specific clinical conditions that increase dramatically the risk of PE provides a critical opportunity to improve outcomes by acting on potential reversible factors, and also contribute to better understand this pathophysiologic enigma. In this review, we highlight major clinical contributors of PE and shed light about their potential link with endothelial dysfunction and inflammation.
Collapse
Affiliation(s)
- María M. Pereira
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA, United States
| | - Juan Torrado
- Department of Internal Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Claudio Sosa
- Department of Obstetrics and Gynecology “C”, Pereira-Rossell Hospital, School of Medicine, Republic University, Montevideo, Uruguay
| | - Yanina Zócalo
- Centro Universitario de Investigación, Innovación y Diagnóstico Arterial, Department of Physiology, School of Medicine, Republic University, Montevideo, Uruguay
| | - Daniel Bia
- Centro Universitario de Investigación, Innovación y Diagnóstico Arterial, Department of Physiology, School of Medicine, Republic University, Montevideo, Uruguay
| |
Collapse
|
6
|
Ali S, Majid S, Ali MN, Taing S, Rehman MU, Arafah A. Cytokine imbalance at materno-embryonic interface as a potential immune mechanism for recurrent pregnancy loss. Int Immunopharmacol 2020; 90:107118. [PMID: 33191177 DOI: 10.1016/j.intimp.2020.107118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/09/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Recurrent pregnancy loss (RPL) is a prominent reproductive disease that distresses about 2%-5% of couples. RPL is the loss of two or more successive spontaneous pregnancies prior to the 20th week of embryo development. The commencement of pregnancy necessitates implantation of the embryo into responsive maternal decidua synchronized with the process of placentation, decidual and myometrial trophoblast incursion as well as refashioning of spiral blood arteries of uterus. The collapse of any of the processes fundamental for pregnancy success may result into an array of pregnancy problems including spontaneous pregnancy loss. Endometrium of human female manufactures an extensive range of cytokines during the proliferative and secretory stage of the menstrual cycle. These endometrial cytokines are thought as major players for making the uterus ready for embryo implantation and placental development during pregnancy. Decidual cytokines regulate the invasion of trophoblast and remodeling of spiral arteries as well as take part in immune suppression to accomplish the pregnancy. Deterrence of maternal rejection of embryo needs a regulated milieu, which takes place essentially at the embryo-maternal interface and the tissues of the uterus. The reasons of RPL remain anonymous in a large number of cases that lead to difficulties in management and severe trauma in couples. Cytokine modulatory therapies have been shown promising for preventing RPL. Further study of novel factors is wanted to establish more effective RPL treatment protocols. The present study aims to review the outcome of cytokine breach at materno-embryonic interface and the efficacy of cytokine modulatory therapies in RPL.
Collapse
Affiliation(s)
- Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir-190006, Srinagar, J&K, India; Department of Biochemistry, Government Medical College, Srinagar, J&K, India.
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College, Srinagar, J&K, India
| | - Md Niamat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir-190006, Srinagar, J&K, India.
| | - Shahnaz Taing
- Department of Obstetrics and Gynaecology, Govt. Medical College Associated Lalla Ded Hospital, Srinagar, J&K, India
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
St-Germain LE, Castellana B, Baltayeva J, Beristain AG. Maternal Obesity and the Uterine Immune Cell Landscape: The Shaping Role of Inflammation. Int J Mol Sci 2020; 21:E3776. [PMID: 32471078 PMCID: PMC7312391 DOI: 10.3390/ijms21113776] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammation is often equated to the physiological response to injury or infection. Inflammatory responses defined by cytokine storms control cellular mechanisms that can either resolve quickly (i.e., acute inflammation) or remain prolonged and unabated (i.e., chronic inflammation). Perhaps less well-appreciated is the importance of inflammatory processes central to healthy pregnancy, including implantation, early stages of placentation, and parturition. Pregnancy juxtaposed with disease can lead to the perpetuation of aberrant inflammation that likely contributes to or potentiates maternal morbidity and poor fetal outcome. Maternal obesity, a prevalent condition within women of reproductive age, associates with increased risk of developing multiple pregnancy disorders. Importantly, chronic low-grade inflammation is thought to underlie the development of obesity-related obstetric and perinatal complications. While diverse subsets of uterine immune cells play central roles in initiating and maintaining healthy pregnancy, uterine leukocyte dysfunction as a result of maternal obesity may underpin the development of pregnancy disorders. In this review we discuss the current knowledge related to the impact of maternal obesity and obesity-associated inflammation on uterine immune cell function, utero-placental establishment, and pregnancy health.
Collapse
Affiliation(s)
- Lauren E. St-Germain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Barbara Castellana
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Jennet Baltayeva
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| | - Alexander G. Beristain
- The British Columbia Children’s Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada; (L.E.S.-G.); (B.C.); (J.B.)
- Department of Obstetrics & Gynecology, The University of British Columbia, Vancouver, BC V6Z 2K8, Canada
| |
Collapse
|
8
|
Ewenighi-Amankwah CO, Onyenekwe CC, Udemba O, Muogbo P, Rong L. A Mother-to-Child Transmission Study in Nigeria: The Impact of Maternal HIV Infection and HAART on Plasma Immunoglobulins, Cytokine Profiles and Infant Outcome. Virol Sin 2020; 35:468-477. [PMID: 32157604 DOI: 10.1007/s12250-020-00202-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/24/2019] [Indexed: 12/18/2022] Open
Abstract
Prevention of mother-to-child transmission (PMTCT) of HIV with highly active antiretroviral therapy (HARRT) allows the HIV+ pregnant mothers to have vaginal delivery and breastfeed. Here we investigated the maternal plasma immunoglobulin, cytokine secretion and the outcome of the exposed infants among the HIV+ HAART treated pregnant women in Nigeria. In this study, different plasma immunoglobulins and cytokines were measured in the HIV+ HAART treated pregnant mothers. Pooled culture supernatants of B and T lymphocytes showed lower levels of IFN-γ, IL-10 and IL-4. There were lower IFN-γ and IL-10 secretions at 1st trimester; however, IL-10 continued to be lower throughout 2nd and 3rd trimesters. TNF-α secretion significantly decreased as pregnancy progressed to term. There were high plasma IgG and low IgM in the HIV+ HAART treated pregnant women. Plasma IgG was high during 1st and 3rd trimesters. After one year of follow up, all the exposed children were seronegative for HIV-1 and HIV-2. Vaginal delivery and breastfeeding among HIV+ HAART treated mothers have shown to be safe. The use of HAART by the infected mothers and the use of septrin and niverapin by the exposed infants prevented mother to-child transmission of HIV.
Collapse
Affiliation(s)
- Chinwe O Ewenighi-Amankwah
- Department of Medical Laboratory Science, Ebonyi State University, Abakaliki, 480214, Nigeria. .,Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Charles Chinedum Onyenekwe
- Department of Medical Laboratory Science, Faculty of Health Science and Technology, Nnamdi Azikiwe University, Awka, 5025, Nigeria
| | - Ogochukwu Udemba
- Laboratory Unit, Mother of Christ Specialist Hospital, Ogui, Enugu, 400252, Nigeria
| | - Patience Muogbo
- Monitoring and Evaluation Unit, ART Department, Mother of Christ Specialist Hospital, Ogui, Enugu, 400252, Nigeria
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Ali S, Majid S, Niamat Ali M, Taing S. Evaluation of T cell cytokines and their role in recurrent miscarriage. Int Immunopharmacol 2020; 82:106347. [PMID: 32143004 DOI: 10.1016/j.intimp.2020.106347] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 02/08/2020] [Accepted: 02/23/2020] [Indexed: 01/03/2023]
Abstract
Recurrent miscarriage (RM) is defined as two or more consecutive pregnancy losses that affect approximately 5% of conceived women worldwide. RM is a multi-factorial reproductive problem and has been associated with parental chromosomal abnormalities, embryonic chromosomal rearrangements, uterine anomalies, autoimmune disorders, endocrine dysfunction, thrombophilia, life style factors, and maternal infections. However, the exact cause is still undecided in remaining 50% of cases. Immunological rejection of the embryo due to exacerbated maternal immune reaction against paternal embryonic antigens has been set forth as one of the significant reason for RM. The accurate means that shield the embryo during normal pregnancy from the attack of maternal immune network and dismissal are inadequately implicit. However, it is suggested that the genetically irreconcilable embryo escapes maternal immune rejection due to communication among many vital cytokines exuded at maternal-embryonic interface both by maternal and embryonic cells. Previous investigations suggested the Th1/Th2 dominance in altered immunity of RM patients, according to which the allogenic embryo flees maternal T cell reaction by inclining the Th0 differentiation toward Th2 pathway resulting into diminished pro-inflammatory Th1 immunity. However, recently pro-inflammatory Th17 cells and immunoregulatory Treg cells have been discovered as essential immune players in RM besides Th1/Th2 components. Cytokines are believed to develop a complicated regulatory network so as to establish a state of homeostasis between the semi-allogenic embryo and the maternal immune system. However, an adverse imbalance among cytokines at maternal-embryonic interface perhaps due to their gene polymorphisms may render immunoregulatory means not enough to re-establish homeostasis and thus may collapse pregnancy.
Collapse
Affiliation(s)
- Shafat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir, 190006 Srinagar, J&K, India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College, Srinagar, J&K, India
| | - Md Niamat Ali
- Cytogenetics and Molecular Biology Laboratory, Centre of Research for Development, University of Kashmir, 190006 Srinagar, J&K, India.
| | - Shahnaz Taing
- Department of Obstetrics and Gynaecology, Government Medical College Associated Lalla Ded Hospital, Srinagar, J&K, India
| |
Collapse
|
10
|
Qi M, Xin S. FGF signaling contributes to atherosclerosis by enhancing the inflammatory response in vascular smooth muscle cells. Mol Med Rep 2019; 20:162-170. [PMID: 31115530 PMCID: PMC6579995 DOI: 10.3892/mmr.2019.10249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/07/2019] [Indexed: 01/11/2023] Open
Abstract
The contractile to synthetic phenotypic switching of vascular smooth muscle cells (VSMCs) in response to fibroblast growth factor (FGF) has been previously described. However, the role of the inflammatory response induced by FGF signaling in VSMCs and its occurrence in atherosclerosis remains unclear. In the present study, FGF signaling promoted a contractile to secretory phenotypic transition in VSMCs. VSMCs (primary human aortic smooth muscle cells) treated with FGF exhibited a decrease in the protein expression levels of factors involved in contractility and the secretion of various chemokines was increased, as assessed by reverse transcription-quantitative PCR and ELISA. Additionally, inhibition of FGF signaling by silencing FGF receptor substrate 2 (FRS2) decreased the protein expression levels of various chemokines. Furthermore, VSMCs in the medial layers of arteries from apolipoprotein E-deficient mice and human atherosclerotic samples exhibited an increase in FGF signaling that was identified to be associated with an increase in the protein expression levels of pro-inflammatory molecules, including C-C motif chemokine ligand 2, C-X-C motif chemokine ligand (CXCL) 9, CXCL10 and CXCL11, compared with wild-type mice and healthy control samples, respectively. The present results suggested that FGF signaling induced dedifferentiation of contractile VSMCs and the transition to a secretory phenotype, which may be involved in the progression of atherosclerosis. Collectively, the present results suggested that the FGF signaling pathway may represent a novel target for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ming Qi
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Shijie Xin
- Department of Vascular Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
11
|
Piccinni MP, Lombardelli L, Logiodice F, Kullolli O, Maggi E, Barkley MS. Medroxyprogesterone Acetate Decreases Th1, Th17, and Increases Th22 Responses via AHR Signaling Which Could Affect Susceptibility to Infections and Inflammatory Disease. Front Immunol 2019; 10:642. [PMID: 31001262 PMCID: PMC6456711 DOI: 10.3389/fimmu.2019.00642] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/08/2019] [Indexed: 12/17/2022] Open
Abstract
A synthetic progestin, medroxyprogesterone acetate (MPA), was used in a novel study to determine progestin effects on human purified macrophages and Th1, Th2, Th17, Th22 cells. MPA concentrations were equivalent to those in the serum of women after 6 and 9 months of progestin use. MPA has no effect on the proliferation of PBMCs and CD4+ T cell clones induced by immobilized anti-CD3 antibodies or by antigen (streptokinase). However, MPA decreases production and mRNA expression of IL-5, IL-13, IFN-γ, T-bet, RORC, and IL-17A but increases production and mRNA expression of IL-22 by CD4+ Th22 cell clones and decreases IL-22 production by Th17 cells. MPA inhibits RORC, but not T-bet and AHR, by Th17 cells but increases AHR mRNA and T-bet expression of established CD4+ Th22 cell clones. This suggests that MPA, at concentrations equivalent to those found in the serum of women after treatment for contraception and hormone replacement therapy, can directly inhibit Th1 responses (against intracellular bacteria and viruses), Th17 (against extracellular bacteria and fungi), Th2 (against parasites) but MPA therapy increases IL-22 produced by Th22 cells mediated by an increased expression of AHR and T-bet controlling inflammation. MPA could be responsible for the tissue damage limited by IL-22 in absence of IL-17A.
Collapse
Affiliation(s)
- Marie-Pierre Piccinni
- Department of Experimental and Clinical Medicine and Center of Excellence for Research, Transfer and High Education DENOTHE of the University of Florence, Florence, Italy
| | - Letizia Lombardelli
- Department of Experimental and Clinical Medicine and Center of Excellence for Research, Transfer and High Education DENOTHE of the University of Florence, Florence, Italy
| | - Federica Logiodice
- Department of Experimental and Clinical Medicine and Center of Excellence for Research, Transfer and High Education DENOTHE of the University of Florence, Florence, Italy
| | - Ornela Kullolli
- Department of Experimental and Clinical Medicine and Center of Excellence for Research, Transfer and High Education DENOTHE of the University of Florence, Florence, Italy
| | - Enrico Maggi
- Department of Experimental and Clinical Medicine and Center of Excellence for Research, Transfer and High Education DENOTHE of the University of Florence, Florence, Italy.,Immunology Area, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Marylynn S Barkley
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA, United States
| |
Collapse
|
12
|
Logiodice F, Lombardelli L, Kullolli O, Haller H, Maggi E, Rukavina D, Piccinni MP. Decidual Interleukin-22-Producing CD4+ T Cells (Th17/Th0/IL-22+ and Th17/Th2/IL-22+, Th2/IL-22+, Th0/IL-22+), Which Also Produce IL-4, Are Involved in the Success of Pregnancy. Int J Mol Sci 2019; 20:E428. [PMID: 30669479 PMCID: PMC6359245 DOI: 10.3390/ijms20020428] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
Trophoblast expressing paternal HLA-C resembles a semiallograft, and could be rejected by maternal T cells. IL-22 seems to be involved in allograft rejection and thus could be responsible for miscarriages. We examined the role of decidual IL-22-producing CD4+ T on human pregnancy. In those experiencing successful pregnancy and those experiencing unexplained recurrent abortion (URA), the levels of IL-22 produced by decidual CD4+ T cells are higher than those of peripheral blood T cells. We found a correlation of IL-22 and IL-4 produced by decidual CD4+ T cells in those experiencing successful pregnancy, not in those experiencing URA. The correlation of IL-22 and IL-4 was also found in the serum of successful pregnancy. A prevalence of CD4+ T cells producing IL-22 and IL-4 (Th17/Th2/IL-22+, Th17/Th0/IL-22+, Th17/Th2/IL-22+, and Th0/IL-22+ cells) was observed in decidua of those experiencing successful pregnancy, whereas Th17/Th1/IL-22+ cells, which do not produce IL-4, are prevalent in those experiencing URA. Th17/Th2/IL-22+ and Th17/Th0/IL-22+ cells are exclusively present at the embryo implantation site where IL-4, GATA-3, IL-17A, ROR-C, IL-22, and AHR mRNA are expressed. T-bet and IFN-γ mRNA are found away from the implantation site. There is no pathogenic role of IL-22 when IL-4 is also produced by decidual CD4+ cells. Th17/Th2/IL-22+ and Th17/Th0/IL-22+ cells seem to be crucial for embryo implantation.
Collapse
Affiliation(s)
- Federica Logiodice
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, 50134 Florence, Italy.
| | - Letizia Lombardelli
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, 50134 Florence, Italy.
| | - Ornela Kullolli
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, 50134 Florence, Italy.
| | - Herman Haller
- Department of Gynecology and Obstetrics, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia.
| | - Enrico Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, 50134 Florence, Italy.
- Immunology Area, IRCCS Bambino Gesù Children's Hospital, 00165 Rome, Italy.
| | - Daniel Rukavina
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia.
| | - Marie-Pierre Piccinni
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, 50134 Florence, Italy.
| |
Collapse
|
13
|
Karim S, Jamal HS, Rouzi A, Ardawi MSM, Schulten HJ, Mirza Z, Alansari NA, Al-Quaiti MM, Abusamra H, Naseer MI, Turki R, Chaudhary AG, Gari M, Abuzenadah AM, Al-Qhatani MH. Genomic answers for recurrent spontaneous abortion in Saudi Arabia: An array comparative genomic hybridization approach. Reprod Biol 2017; 17:133-143. [DOI: 10.1016/j.repbio.2017.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/14/2017] [Accepted: 03/17/2017] [Indexed: 12/29/2022]
|
14
|
Romero R, Chaemsaithong P, Chaiyasit N, Docheva N, Dong Z, Kim CJ, Kim YM, Kim JS, Qureshi F, Jacques SM, Yoon BH, Chaiworapongsa T, Yeo L, Hassan SS, Erez O, Korzeniewski SJ. CXCL10 and IL-6: Markers of two different forms of intra-amniotic inflammation in preterm labor. Am J Reprod Immunol 2017; 78. [PMID: 28544362 PMCID: PMC5488235 DOI: 10.1111/aji.12685] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/20/2017] [Indexed: 12/24/2022] Open
Abstract
Problem To determine whether amniotic fluid (AF) CXCL10 concentration is associated with histologic chronic chorioamnionitis in patients with preterm labor (PTL) and preterm prelabor rupture of the membranes (PROM). Method of Study This study included 168 women who had an episode of PTL or preterm PROM. AF interleukin (IL)‐6 and CXCL10 concentrations were determined by immunoassay. Results (i) Increased AF CXCL10 concentration was associated with chronic (OR: 4.8; 95% CI: 1.7‐14), but not acute chorioamnionitis; (ii) increased AF IL‐6 concentration was associated with acute (OR: 4.2; 95% CI: 1.3‐13.7) but not chronic chorioamnionitis; and (iii) an increase in AF CXCL10 concentration was associated with placental lesions consistent with maternal anti‐fetal rejection (OR: 3.7; 95% CI: 1.3‐10.4). (iv) All patients with elevated AF CXCL10 and IL‐6 delivered preterm. Conclusion Increased AF CXCL10 concentration is associated with chronic chorioamnionitis or maternal anti‐fetal rejection, whereas increased AF IL‐6 concentration is associated with acute histologic chorioamnionitis.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Noppadol Chaiyasit
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Nikolina Docheva
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chong Jai Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, University of Ulsan College of Medicine, Seoul, Korea
| | - Yeon Mee Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jung-Sun Kim
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Faisal Qureshi
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Suzanne M Jacques
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Pathology, Hutzel Women's Hospital, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bo Hyun Yoon
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Lami Yeo
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Steven J Korzeniewski
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
15
|
Graft-Derived IL-6 Amplifies Proliferation and Survival of Effector T Cells That Drive Alloimmune-Mediated Vascular Rejection. Transplantation 2016; 100:2332-2341. [DOI: 10.1097/tp.0000000000001227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
16
|
Piccinni MP, Lombardelli L, Logiodice F, Kullolli O, Parronchi P, Romagnani S. How pregnancy can affect autoimmune diseases progression? Clin Mol Allergy 2016; 14:11. [PMID: 27651750 PMCID: PMC5025626 DOI: 10.1186/s12948-016-0048-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/05/2016] [Indexed: 02/06/2023] Open
Abstract
Autoimmune disorders are characterized by tissue damage, caused by self-reactivity of different effectors mechanisms of the immune system, namely antibodies and T cells. Their occurrence may be associated with genetic and/or environmental predisposition and to some extent, have implications for fertility and obstetrics. The relationship between autoimmunity and reproduction is bidirectional. This review only addresses the impact of pregnancy on autoimmune diseases and not the influence of autoimmunity on pregnancy development. Th17/Th1-type cells are aggressive and pathogenic in many autoimmune disorders and inflammatory diseases. The immunology of pregnancy underlies the role of Th2-type cytokines to maintain the tolerance of the mother towards the fetal semi-allograft. Non-specific factors, including hormonal changes, favor a switch to Th2-type cytokine profile. In pregnancy Th2, Th17/Th2 and Treg cells accumulate in the decidua but may also be present in the mother’s circulation and can regulate autoimmune responses influencing the progression of autoimmune diseases.
Collapse
Affiliation(s)
- Marie-Pierre Piccinni
- Center of Excellence for Research, Transfer and High Education DENOTHE of the University of Florence, Florence, Italy ; Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Letizia Lombardelli
- Center of Excellence for Research, Transfer and High Education DENOTHE of the University of Florence, Florence, Italy ; Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Federica Logiodice
- Center of Excellence for Research, Transfer and High Education DENOTHE of the University of Florence, Florence, Italy ; Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Ornela Kullolli
- Center of Excellence for Research, Transfer and High Education DENOTHE of the University of Florence, Florence, Italy ; Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Paola Parronchi
- Center of Excellence for Research, Transfer and High Education DENOTHE of the University of Florence, Florence, Italy ; Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Sergio Romagnani
- Center of Excellence for Research, Transfer and High Education DENOTHE of the University of Florence, Florence, Italy ; Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
17
|
Lombardelli L, Logiodice F, Aguerre-Girr M, Kullolli O, Haller H, Casart Y, Berrebi A, L'Faqihi-Olive FE, Duplan V, Romagnani S, Maggi E, Rukavina D, Le Bouteiller P, Piccinni MP. Interleukin-17-producing decidual CD4+ T cells are not deleterious for human pregnancy when they also produce interleukin-4. Clin Mol Allergy 2016; 14:1. [PMID: 26798325 PMCID: PMC4721137 DOI: 10.1186/s12948-016-0039-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 01/03/2016] [Indexed: 12/13/2022] Open
Abstract
Background Trophoblast expressing paternal HLA-C antigens resemble a semiallograft, and could be rejected by maternal CD4+ T lymphocytes. We examined the possible role in human pregnancy of Th17 cells, known to be involved in allograft rejection and reported for this reason to be responsible for miscarriages. We also studied Th17/Th1 and Th17/Th2 cells never investigated before. We defined for the first time the role of different Th17 subpopulations at the embryo implantation site and the role of HLA-G5, produced by the trophoblast/embryo, on Th17 cell differentiation. Methods Cytokine production by CD4+ purified T cell and T clones from decidua of normal pregnancy, unexplained recurrent abortion, and ectopic pregnancy at both embryo implantation site and distant from that site were analyzed for protein and mRNA production. Antigen-specific T cell lines were derived in the presence and in the absence of HLA-G5. Results We found an associated spontaneous production of IL-17A, IL-17F and IL-4 along with expression of CD161, CCR8 and CCR4 (Th2- and Th17-type markers) in fresh decidua CD4+ T cells during successful pregnancy. There was a prevalence of Th17/Th2 cells (producing IL-17A, IL-17F, IL-22 and IL-4) in the decidua of successful pregnancy, but the exclusive presence of Th17 (producing IL-17A, IL-17F, IL-22) and Th17/Th1 (producing IL-17A, IL-17F, IL-22 and IFN-γ) cells was found in the decidua of unexplained recurrent abortion. More importantly, we observed that Th17/Th2 cells were exclusively present at the embryo implantation site during tubal ectopic pregnancy, and that IL-4, GATA-3, IL-17A, ROR-C mRNA levels increased in tubal biopsies taken from embryo implantation sites, whereas Th17, Th17/Th1 and Th1 cells are exclusively present apart from implantation sites. Moreover, soluble HLA-G5 mediates the development of Th17/Th2 cells by increasing IL-4, IL-17A and IL-17F protein and mRNA production of CD4+ T helper cells. Conclusion No pathogenic role of decidual Th17 cells during pregnancy was observed. Indeed, a beneficial role for these cells was observed when they also produced IL-4. HLA-G5 could be the key feature of the uterine microenvironment responsible for the development of Th17/Th2 cells, which seem to be crucial for successful embryo implantation. Electronic supplementary material The online version of this article (doi:10.1186/s12948-016-0039-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Letizia Lombardelli
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Federica Logiodice
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Maryse Aguerre-Girr
- INSERM UMR1043, CNRS UMR5282, Centre de Physiopathologie Toulouse-Purpan, Université de Toulouse III, 31024 Toulouse, France
| | - Ornela Kullolli
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Herman Haller
- Department of Gynecology and Obstetrics, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Ysabel Casart
- INSERM UMR1043, CNRS UMR5282, Centre de Physiopathologie Toulouse-Purpan, Université de Toulouse III, 31024 Toulouse, France
| | - Alain Berrebi
- Gynécologie-Obstétrique, Hôpital Paule de Viguier, Toulouse, France
| | - Fatima-Ezzahra L'Faqihi-Olive
- INSERM UMR1043, CNRS UMR5282, Centre de Physiopathologie Toulouse-Purpan, Université de Toulouse III, 31024 Toulouse, France
| | - Valérie Duplan
- INSERM UMR1043, CNRS UMR5282, Centre de Physiopathologie Toulouse-Purpan, Université de Toulouse III, 31024 Toulouse, France
| | - Sergio Romagnani
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Enrico Maggi
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Daniel Rukavina
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia
| | - Philippe Le Bouteiller
- INSERM UMR1043, CNRS UMR5282, Centre de Physiopathologie Toulouse-Purpan, Université de Toulouse III, 31024 Toulouse, France
| | - Marie-Pierre Piccinni
- Department of Experimental and Clinical Medicine and DENOTHE Excellence Center, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
18
|
Comba C, Bastu E, Dural O, Yasa C, Keskin G, Ozsurmeli M, Buyru F, Serdaroglu H. Role of inflammatory mediators in patients with recurrent pregnancy loss. Fertil Steril 2015; 104:1467-74.e1. [PMID: 26368793 DOI: 10.1016/j.fertnstert.2015.08.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 07/31/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To examine interleukin-12 (IL-12), IL-18, IFN-γ, intracellular adhesion molecule-1 (ICAM-1), leukemia inhibitory factor (LIF), and migration inhibitory factor (MIF) levels in precisely-timed blood and endometrial tissue samples from women with idiopathic recurrent pregnancy loss (RPL). DESIGN Case-control study. SETTING University hospital. PATIENT(S) Twenty-one women with RPL and 20 women with proven fertility (controls). INTERVENTION(S) Primary endometrial cells and blood samples during the midsecretory phase (days 19-23). MAIN OUTCOME MEASURE(S) Detection of IL-12, IL-18, IFN-γ, ICAM-1, LIF, and MIF via enzyme-linked immunosorbent assay in both blood and endometrial tissue samples. RESULT(S) The blood and tissue levels of IL-12, IL-18, and IFN-γ were statistically significantly higher, and the blood and tissue levels of LIF and MIF were statistically significantly lower in patients with RPL. Only the level of tissue ICAM-1 was higher in patients with RPL. There was a strong correlation between blood and tissue level measurements of IL-12, IL-18, LIF, and MIF. CONCLUSION(S) Our findings support the hypothesis that inflammatory processes may contribute to pregnancy loss, possibly through their role in implantation. We found that blood and tissue levels of IL-18, LIF, and MIF, and tissue levels of IL-12, IFN-γ, and ICAM-1 have statistically significant prognostic relevance.
Collapse
Affiliation(s)
- Cihan Comba
- Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Ercan Bastu
- Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey.
| | - Ozlem Dural
- Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Cenk Yasa
- Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Gulsah Keskin
- Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Mehmet Ozsurmeli
- Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Faruk Buyru
- Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| | - Hasan Serdaroglu
- Department of Obstetrics and Gynecology, Istanbul University School of Medicine, Istanbul, Turkey
| |
Collapse
|
19
|
Hu Y, Wu L, Wang C, Luo J, Liao F, Tan H, He H. Swainsonine exposure induces impairment of host immune response in pregnant BALB/c mice. BMC Immunol 2015; 16:53. [PMID: 26335138 PMCID: PMC4559345 DOI: 10.1186/s12865-015-0114-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Swainsonine can cause serious disorders in reproduction of livestock, affecting both corpora lutea and reproductive hormone. The purpose of this study was to investigate the mechanisms of swainsonine about the immunotoxic effects on pregnant mice in vivo. RESULTS The peripheral Th1/Th2 was detected by Ionomycin and phorbol myristate acetate (PMA)-stimulating peripheral blood mononuclear cells (PBMC) of phase pregnant mice. Relevant cytokines in serum was evaluated after exposed to different dose of swainsonine. Gene expression of IL-1β, IFN-γ, TNF-α, IL-4 and IL-10 in PBMC was assessed by real-time PCR. Swainsonine caused vacuolization phenomenon of lutein cells and a dose-effect relationship. The IL-1β, IFN-γ and TNF-α were promoted, but IL-4 and IL-10 were suppressed in serum. Swainsonine significantly increased IL-1β, IFN-γ and TNF-α nuclear translocation and decreased IL-4 and IL-10. Swainsonine resulted in a significant shift of peripheral Th1/Th2 paradigm to Th1. CONCLUSIONS Our data demonstrate that the immunomodulatory of swainsonine disturbed the regular immunologic state of the pregnant mice. This may increase the risk of abortion and probably resulted in serious disorders in reproduction of livestock.
Collapse
Affiliation(s)
- Yanchun Hu
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P.R. China. .,Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, P.R. China.
| | - Lei Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, P.R. China.
| | - Chengmin Wang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P.R. China.
| | - Jing Luo
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P.R. China.
| | - Fei Liao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, P.R. China.
| | - Hui Tan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, P.R. China.
| | - Hongxuan He
- Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, P.R. China.
| |
Collapse
|
20
|
Recovery Profiles of T-Cell Subsets Following Low-Dose Total Body Irradiation and Improvement With Cinnamon. Int J Radiat Oncol Biol Phys 2015; 93:1118-26. [PMID: 26475064 DOI: 10.1016/j.ijrobp.2015.08.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/09/2015] [Accepted: 08/18/2015] [Indexed: 12/24/2022]
Abstract
PURPOSE Inefficient T-cell reconstitution from x-ray-induced immune damage reduces antitumor response. To understand the profile of T-cell reconstitution after irradiation will overcome the barrier of antitumor immunity. This study aimed to identify the recovery profile of T-cell subsets following x-ray irradiation and to highlight the role of cinnamon on efficient T-cell restoration postexposure in the antitumor response. METHODS AND MATERIALS CD3(+), CD8(+), and CD4(+) T cells and Th1, Th2, Th17, and regulatory T (Treg) cells were evaluated at different time points after single low-dose total body irradiation (SLTBI) with or without cinnamon treatments. T-bet, GATA3, RORγt, and Foxp3 signaling specific for Th1, Th2, Th17, and Treg were also analyzed by RT-PCR assay. The effects of cinnamon on efficient T-cell subset reconstitution was confirmed in a lung melanoma model in irradiated mice. RESULTS Reconstitution of CD4(+) T cells was delayed more than that of CD8(+) T cells in T-cell restoration after SLTBI. The production of IFNγ by Th1 or Tc1 cells was sharply decreased and was accompanied by reduced T-bet mRNA, even when total T-cell numbers had recovered; the frequencies of Th17 and Treg cells and their specific transcription factors (RORγt and Foxp3, respectively) were obviously increased. Irradiation-induced inefficient T-cell reconstitution impaired the antitumor capacities in the lung melanoma model. Pretreatment with cinnamon in irradiated mice accelerated the generation of Th1 and reduced the differentiation of Treg cells by activating T-bet and limiting transcriptions of Foxp3. Improvement resulting from cinnamon pretreatment on the efficient T-cell recovery profile from SLTBI promoted antitumor immunity in the lung melanoma model. CONCLUSIONS T-cell reconstitution from SLTBI was characterized by impaired Th1 and elevated Th17 and Treg cells. Cinnamon effectively improved the imbalance of T-cell subsets by promoting the proliferation of Th1 and by suppressing expansions of Th17 and Tregs. The role of cinnamon in efficient T-cell reconstitution from SLTBI is effective in antitumor immunity.
Collapse
|
21
|
Piccinni MP, Lombardelli L, Logiodice F, Kullolli O, Romagnani S, Le Bouteiller P. T helper cell mediated-tolerance towards fetal allograft in successful pregnancy. Clin Mol Allergy 2015; 13:9. [PMID: 26064081 PMCID: PMC4461901 DOI: 10.1186/s12948-015-0015-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/16/2015] [Indexed: 03/13/2023] Open
Abstract
Trophoblast HLA-C antigens from paternal origins, which liken the trophoblast to a semiallograft, could be presented by the maternal APCs to the specific maternal CD4+ T helper cells, which could release various cytokines in response to these alloantigens. On the basis of the cytokines produced, these cells can be classified in Th1, Th2 and Th17 cells. Th1 and Th17 cells, known to be responsible for acute allograft rejection, could be involved in miscarriage and Th2 cells together with regulatory CD4+ T cells, known to be involved in allograft tolerance, could be responsible, at least in part, for the success of pregnancy. In this review we focus the role effector CD4+ T cells Th1, Th2 and Th17 cells on the fetal allograft tolerance.
Collapse
Affiliation(s)
- Marie-Pierre Piccinni
- Center of Excellence for Research, Transfer and High Education, DENOTHE of the University of Florence, Florence, Italy ; Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134 Italy
| | - Letizia Lombardelli
- Center of Excellence for Research, Transfer and High Education, DENOTHE of the University of Florence, Florence, Italy ; Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134 Italy
| | - Federica Logiodice
- Center of Excellence for Research, Transfer and High Education, DENOTHE of the University of Florence, Florence, Italy ; Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134 Italy
| | - Ornela Kullolli
- Center of Excellence for Research, Transfer and High Education, DENOTHE of the University of Florence, Florence, Italy ; Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134 Italy
| | - Sergio Romagnani
- Center of Excellence for Research, Transfer and High Education, DENOTHE of the University of Florence, Florence, Italy ; Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, Florence, 50134 Italy
| | - Philippe Le Bouteiller
- INSERM UMR1043, CNRS UMR5282, Université de Toulouse III, Centre de Physiopathologie Toulouse-Purpan, Toulouse, 31024 France
| |
Collapse
|
22
|
Abstract
Inflammatory arterial diseases differentially affect the compartments of the vessel wall. The intima and adventitia are commonly involved by the disease process, with luminal and microvascular endothelial cells playing a critical role in the recruitment and activation of leukocytes. In contrast, the avascular media is often spared by immune-mediated disorders. Surprisingly, vascular smooth muscle cells (VSMCs), the predominant and often exclusive cell type of the media, are capable of robust proinflammatory responses to diverse stressors. The multiple cytokines and chemokines produced within the media can profoundly affect macrophage and T cell function, thus amplifying and shaping innate and adaptive immune responses. On the other hand, VSMCs and the extracellular matrix that they produce also display significant anti-inflammatory properties. The balance between the pro- and anti-inflammatory effects of VSMCs and their extracellular matrix versus the strength of the inciting immunologic events determines the pattern of medial pathology. Limitations on the extent of medial infiltration and injury, defined as medial immunoprivilege, are typically seen in arteriosclerotic diseases, such as atherosclerosis and transplant vasculopathy. Conversely, breakdown of medial immunoprivilege that manifests as more intense leukocytic infiltrates, loss of VSMCs, and destruction of the extracellular matrix architecture is a general feature of certain aneurysmal diseases and vasculitides. In this review, we consider the inflammatory and immune functions of VSMCs and how they may lead to medial immunoprivilege or medial inflammation in arterial diseases.
Collapse
Affiliation(s)
- George Tellides
- From the Departments of Surgery (G.T.) and Immunobiology (J.S.P.), Yale University School of Medicine, New Haven, CT; and Veterans Affairs Connecticut Healthcare System, West Haven, CT (G.T.).
| | - Jordan S Pober
- From the Departments of Surgery (G.T.) and Immunobiology (J.S.P.), Yale University School of Medicine, New Haven, CT; and Veterans Affairs Connecticut Healthcare System, West Haven, CT (G.T.)
| |
Collapse
|
23
|
von Rossum A, Laher I, Choy JC. Immune-mediated vascular injury and dysfunction in transplant arteriosclerosis. Front Immunol 2015; 5:684. [PMID: 25628623 PMCID: PMC4290675 DOI: 10.3389/fimmu.2014.00684] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 12/18/2014] [Indexed: 12/16/2022] Open
Abstract
Solid organ transplantation is the only treatment for end-stage organ failure but this life-saving procedure is limited by immune-mediated rejection of most grafts. Blood vessels within transplanted organs are targeted by the immune system and the resultant vascular damage is a main contributor to acute and chronic graft failure. The vasculature is a unique tissue with specific immunological properties. This review discusses the interactions of the immune system with blood vessels in transplanted organs and how these interactions lead to the development of transplant arteriosclerosis, a leading cause of heart transplant failure.
Collapse
Affiliation(s)
- Anna von Rossum
- Department of Molecular Biology and Biochemistry, Simon Fraser University , Burnaby, BC , Canada
| | - Ismail Laher
- Department of Anaesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC , Canada
| | - Jonathan C Choy
- Department of Molecular Biology and Biochemistry, Simon Fraser University , Burnaby, BC , Canada
| |
Collapse
|
24
|
Chatterjee P, Chiasson VL, Bounds KR, Mitchell BM. Regulation of the Anti-Inflammatory Cytokines Interleukin-4 and Interleukin-10 during Pregnancy. Front Immunol 2014; 5:253. [PMID: 24904596 PMCID: PMC4034149 DOI: 10.3389/fimmu.2014.00253] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 05/14/2014] [Indexed: 01/05/2023] Open
Abstract
Inflammation mediated by both innate and adaptive immune cells is necessary for several important processes during pregnancy. Pro-inflammatory immune cell activation plays a critical role in embryo implantation, placentation, and parturition; however dysregulation of these cells can lead to detrimental pregnancy outcomes including spontaneous abortion, fetal growth restriction, maternal pathology including hypertensive disorders, or fetal and maternal death. The resolution of inflammation plays an important role throughout pregnancy and is largely mediated by immune cells that produce interleukin (IL)-4 and IL-10. The temporal and spatial aspects of reducing inflammation during pregnancy represent a complex process that if not functioning optimally can lead to persistent inflammation and pregnancy complications. In this review, we examine how immune cells that produce IL-4 and IL-10 are regulated throughout pregnancy as well as the effects that reduced IL-4 and IL-10 signaling has on fetal and maternal physiology.
Collapse
Affiliation(s)
- Piyali Chatterjee
- Department of Internal Medicine, Texas A&M Health Science Center , Temple, TX , USA ; Baylor Scott and White Health , Temple, TX , USA
| | - Valorie L Chiasson
- Department of Internal Medicine, Texas A&M Health Science Center , Temple, TX , USA
| | - Kelsey R Bounds
- Department of Internal Medicine, Texas A&M Health Science Center , Temple, TX , USA
| | - Brett M Mitchell
- Department of Internal Medicine, Texas A&M Health Science Center , Temple, TX , USA ; Baylor Scott and White Health , Temple, TX , USA
| |
Collapse
|
25
|
Profile of maternal CD4 T-cell effector function during normal pregnancy and in women with a history of recurrent miscarriage. Clin Sci (Lond) 2014; 126:347-54. [PMID: 23962040 DOI: 10.1042/cs20130247] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The traditional paradigm suggests that during normal pregnancy maternal immunological tolerance of the allogenic fetus is association with a maternal T-lymphocyte shift from a Th1 to a Th2 phenotype, with the opposite effect reported in patients with recurrent miscarriage. However, studies on maternal peripheral blood are conflicting. In the present study, we characterized the maternal CD4 T-cell effector subsets, including the recently described Th17 subset, during normal pregnancy (cross-sectional cohort, n=71; longitudinal cohort, n=17) and contrasted this with women with recurrent miscarriage (n=24). Longitudinal analysis of peripheral blood from normal pregnancy demonstrated a fall in the percentage of Th17 cells between the first and second trimester (P≤0.05), but no significant changes were observed across gestation or the post-natal period in Th1 or Th2 subsets. In contrast, in women with a history of recurrent miscarriage, an elevated proportion of Th17 (0.314% compared with 0.097%; P=0.0009) and Th1 (12.4% compared with 5.3%; P=0.0002) cells was detected. The suggestion that Th17 cells may have a role in the normal events of implantation and early pregnancy requires further evaluation and mechanistic studies. The results of the present study, by conducting a careful longitudinal analysis, demonstrate that a peripheral Th1/Th2 shift is not a requirement for normal pregnancy. By contrast, the profound increase in Th1 and Th17 cells in women with recurrent miscarriage indicates that peripheral immunological dysfunction may be important in this group specifically, and these assays may be important in guiding therapeutic interventions in this group and warrant further investigation to determine whether they are predictive of outcome or responses to immunomodulatory therapy.
Collapse
|
26
|
Wilson JS, Virag L, Di Achille P, Karsaj I, Humphrey JD. Biochemomechanics of intraluminal thrombus in abdominal aortic aneurysms. J Biomech Eng 2013; 135:021011. [PMID: 23445056 DOI: 10.1115/1.4023437] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most computational models of abdominal aortic aneurysms address either the hemodynamics within the lesion or the mechanics of the wall. More recently, however, some models have appropriately begun to account for the evolving mechanics of the wall in response to the changing hemodynamic loads. Collectively, this large body of work has provided tremendous insight into this life-threatening condition and has provided important guidance for current research. Nevertheless, there has yet to be a comprehensive model that addresses the mechanobiology, biochemistry, and biomechanics of thrombus-laden abdominal aortic aneurysms. That is, there is a pressing need to include effects of the hemodynamics on both the development of the nearly ubiquitous intraluminal thrombus and the evolving mechanics of the wall, which depends in part on biochemical effects of the adjacent thrombus. Indeed, there is increasing evidence that intraluminal thrombus in abdominal aortic aneurysms is biologically active and should not be treated as homogeneous inert material. In this review paper, we bring together diverse findings from the literature to encourage next generation models that account for the biochemomechanics of growth and remodeling in patient-specific, thrombus-laden abdominal aortic aneurysms.
Collapse
Affiliation(s)
- J S Wilson
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
27
|
Maeda Y, Ohtsuka H, Tomioka M, Oikawa M. Effect of progesterone on Th1/Th2/Th17 and regulatory T cell-related genes in peripheral blood mononuclear cells during pregnancy in cows. Vet Res Commun 2012. [PMID: 23203561 DOI: 10.1007/s11259-012-9545-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T helper (Th) cells play a central role in immune responses and new Th1/Th2/Th17 and regulatory T (Treg)-cell paradigm in pregnancy has developed. Progesterone (P(4)) is essential for the maintenance of pregnancy; however the effect of P(4) on Th1/Th2/Th17 and Treg paradigm is unclear in cows. We evaluated the effect of P(4) on the expression of Th1/Th2/Th17 and Treg-related cytokines, transcription factors, and P(4) receptors in the peripheral blood mononuclear cells (PBMCs) from 8 pregnant (163.1 ± 16.9 days of gestation) and 8 non-pregnant luteal phase cows. PBMCs were stimulated with P(4) at 0, 0.1, 1 or 10 μg/ml, and the mRNA expression of Th1, Th2, Th17 and Treg-related cytokines (IFN-γ, IL-4, IL-17 and TGF-β), transcription factors (T-bet, GATA-3, RORC and Foxp3) and P(4) receptors (PGR, PGRMC1 and PGRMC2) were analyzed by real time RT-PCR. In both pregnant and non-pregnant cows, P(4) significantly inhibited the expression of IFN-γ and IL-17 dose-dependently, whereas P(4) did not affect the expression of TGF-β and Foxp3. In addition, P(4) significantly decreased the expression of T-bet and RORC, and enhanced the expression of IL-4 in the pregnant cows, but this reaction was not found in the non-pregnant cows. P(4) tended to increase PGRMC1 in the pregnant cows but not in the non-pregnant cows, indicating that PGRMC1 may be involved in the regulation of the effect of P(4) during bovine pregnancy. These results indicate that P(4) is an important regulator of Th1/Th2/Th17 and Treg immunity, and higher Th2 immunity is characteristic in the pregnant cows.
Collapse
Affiliation(s)
- Yousuke Maeda
- Laboratory of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Kitasato University, 35-1 Higashi 23 bancho, Towada, Aomori, 034-8628, Japan
| | | | | | | |
Collapse
|
28
|
Zhang J, Razavian M, Tavakoli S, Nie L, Tellides G, Backer JM, Backer MV, Bender JR, Sadeghi MM. Molecular imaging of vascular endothelial growth factor receptors in graft arteriosclerosis. Arterioscler Thromb Vasc Biol 2012; 32:1849-55. [PMID: 22723442 DOI: 10.1161/atvbaha.112.252510] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Vascular endothelial growth factor (VEGF) signaling plays a key role in the pathogenesis of vascular remodeling, including graft arteriosclerosis. Graft arteriosclerosis is the major cause of late organ failure in cardiac transplantation. We used molecular near-infrared fluorescent imaging with an engineered Cy5.5-labeled single-chain VEGF tracer (scVEGF/Cy) to detect VEGF receptors and vascular remodeling in human coronary artery grafts by molecular imaging. METHODS AND RESULTS VEGF receptor specificity of probe uptake was shown by flow cytometry in endothelial cells. In severe combined immunodeficiency mice, transplantation of human coronary artery segments into the aorta followed by adoptive transfer of allogeneic human peripheral blood mononuclear cells led to significant neointima formation in the grafts over a period of 4 weeks. Near-infrared fluorescent imaging of transplant recipients at 4 weeks demonstrated focal uptake of scVEGF/Cy in remodeling artery grafts. Uptake specificity was demonstrated using an inactive homolog of scVEGF/Cy. scVEGF/Cy uptake predominantly localized in the neointima of remodeling coronary arteries and correlated with VEGF receptor-1 but not VEGF receptor-2 expression. There was a significant correlation between scVEGF/Cy uptake and transplanted artery neointima area. CONCLUSIONS Molecular imaging of VEGF receptors may provide a noninvasive tool for detection of graft arteriosclerosis in solid organ transplantation.
Collapse
Affiliation(s)
- Jiasheng Zhang
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Hayashida JN, Nakamura S, Toyoshima T, Moriyama M, Sasaki M, Kawamura E, Ohyama Y, Kumamaru W, Shirasuna K. Possible involvement of cytokines, chemokines and chemokine receptors in the initiation and progression of chronic GVHD. Bone Marrow Transplant 2012; 48:115-23. [PMID: 22659679 DOI: 10.1038/bmt.2012.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic GVHD (cGVHD) after allogeneic hematopoietic SCT (HSCT) is characterized by an infiltration of T cells into target organs including the oral mucosa and salivary glands. This study was designed to clarify the molecular mechanism of the local accumulation of pathogenic T cells in cGVHD. The expression of cytokines, chemokines and chemokine receptors in the buccal mucosa (BM), labial salivary glands (LSG) and PBMC from 16 patients with cGVHD after allogeneic HSCT was examined. The mRNA expression of T helper 1 (Th1) and Th2 cytokines, and several chemokines and chemokine receptors was significantly increased in the BM and LSG from cGVHD patients, in comparison with both those in the BM and LSG from controls, respectively, and also with those in the PBMC from cGVHD patients. Furthermore, the mRNA expression of Th2 cytokines, macrophage-derived chemokine and CC chemokine receptor 4 was closely associated with a strong T-cell infiltration in the BM and LSG from cGVHD patients. These results suggest that cGVHD might be initiated and/or maintained by Th1/Th0 cells and thereafter progresses in association with Th2 cell accumulation via the interaction of particular chemokine and chemokine receptors.
Collapse
Affiliation(s)
- J-N Hayashida
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liang P, Mo M, Li GG, Yin B, Cai J, Wu T, He X, Zhang X, Zeng Y. Comprehensive Analysis of Peripheral Blood Lymphocytes in 76 Women with Recurrent Miscarriage before and after Lymphocyte Immunotherapy. Am J Reprod Immunol 2012; 68:164-74. [DOI: 10.1111/j.1600-0897.2012.01141.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 03/20/2012] [Indexed: 11/28/2022] Open
|
31
|
Romagnani P, Crescioli C. CXCL10: a candidate biomarker in transplantation. Clin Chim Acta 2012; 413:1364-73. [PMID: 22366165 DOI: 10.1016/j.cca.2012.02.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 02/10/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
Interferon (IFN) γ-induced protein 10 kDa (IP-10) or C-X-C motif chemokine 10 (CXCL10) is a small cytokine belonging to the CXC chemokine family. This family of signaling molecules is known to control several biological functions and to also play pivotal roles in disease initiation and progression. By binding to its specific cognate receptor CXCR3, CXCL10 critically regulates chemotaxis during several immune-inflammatory processes. In particular, this chemokine controls chemotaxis during the inflammatory response resulting from allograft rejection after transplantation. Interestingly, a strong association has been described between CXCL10 production, immune response and the fate of the graft following allotransplantation. Enhanced CXCL10 production has been observed in recipients of transplants of different organs. This enhanced production likely comes from either the graft or the immune cells and is correlated with an increase in the concentration of circulating CXCL10. Because CXCL10 can be easily measured in the serum and plasma from a patient, the detection and quantitation of circulating CXCL10 could be used to reveal a transplant recipient's immune status. The purpose of this review is to examine the critical role of CXCL10 in the pathogenesis of allograft rejection following organ transplantation. This important role highlights the potential utilization of CXCL10 not only as a therapeutic target but also as a biomarker to predict the severity of rejection, to monitor the inflammatory status of organ recipients and, hopefully, to fine-tune patient therapy in transplantation.
Collapse
Affiliation(s)
- Paola Romagnani
- Excellence Center for Research, Transfer and High Education (DENOthe), University of Florence, 50139 Florence, Italy
| | | |
Collapse
|
32
|
Jones KL, Maguire JJ, Davenport AP. Chemokine receptor CCR5: from AIDS to atherosclerosis. Br J Pharmacol 2011; 162:1453-69. [PMID: 21133894 DOI: 10.1111/j.1476-5381.2010.01147.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
There is increasing recognition of an important contribution of chemokines and their receptors in the pathology of atherosclerosis and related cardiovascular disease. The chemokine receptor CCR5 was initially known for its role as a co-receptor for HIV infection of macrophages and is the target of the recently approved CCR5 antagonist maraviroc. However, evidence is now emerging supporting a role for CCR5 and its ligands CCL3 (MIP-1α), CCL4 (MIP-1β) and CCL5 (RANTES) in the initiation and progression of atherosclerosis. Specifically, the CCR5 deletion polymorphism CCR5delta32, which confers resistance to HIV infection, has been associated with a reduced risk of cardiovascular disease and both CCR5 antagonism and gene deletion reduce atherosclerosis in mouse models of the disease. Antagonism of CCL5 has also been shown to reduce atherosclerotic burden in these animal models. Crucially, CCR5 and its ligands CCL3, CCL4 and CCL5 have been identified in human and mouse vasculature and have been detected in human atherosclerotic plaque. Not unexpectedly, CC chemokines have also been linked to saphenous vein graft disease, which shares similarity to native vessel atherosclerosis. Distinct roles for chemokine-receptor systems in atherogenesis have been proposed, with CCR5 likely to be critical in recruitment of monocytes to developing plaques. With an increased burden of cardiovascular disease observed in HIV-infected individuals, the potential cardiovascular-protective effects of drugs that target the CCR5 receptor warrant greater attention. The availability of clinically validated antagonists such as maraviroc currently provides an advantage for targeting of CCR5 over other chemokine receptors.
Collapse
Affiliation(s)
- K L Jones
- Clinical Pharmacology Unit, University of Cambridge, Centre for Clinical Investigation, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
33
|
Saini V, Arora S, Yadav A, Bhattacharjee J. Cytokines in recurrent pregnancy loss. Clin Chim Acta 2011; 412:702-8. [PMID: 21236247 DOI: 10.1016/j.cca.2011.01.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 01/02/2011] [Accepted: 01/04/2011] [Indexed: 12/14/2022]
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) is defined as the occurrence of three or more consecutive miscarriages prior to 20 weeks gestation. Exaggerated maternal immune response to fetal antigens has been proposed to be one of the mechanisms underlying recurrent pregnancy loss. METHOD A comprehensive literature search was conducted from the websites of the National Library of Medicine (http://www.ncbl.nlm.nih.gov) and Pubmed Central, the US National Library of Medicine's digital archive of life sciences literature (http://www.pubmedcentral.nih.gov/). The data was assessed from books and journals that published relevant articles in this field. RESULT In normal pregnancy, tolerance of the genetically incompatible fetus by the maternal immune system depends on the interactions of an array of cytokines secreted by maternal and fetal cells at the site of implantation. Earlier research indicated that altered immunity in RPL is dominated by the Th1/Th2 hypothesis, which proposed that the fetus escapes maternal-derived T-cell responses through skewing the Th0 differentiation toward Th2 pathway which dampens pro-inflammatory Th1-type immunity. Recent studies indicate the role of proinflammatory Th17 cells and immunoregulatory Treg cells in RPL in addition to Th1/Th2 interactions. CONCLUSION Cytokines form a complex regulatory network which maintains homeostasis between the fetal unit and the maternal immune system. If this delicate balance is adversely affected, immunoregulatory mechanisms may be insufficient to restore homeostasis and this may lead to pregnancy failure.
Collapse
Affiliation(s)
- Vandana Saini
- Department of Biochemistry, Lady Hardinge Medical College, New Delhi–110001, India
| | | | | | | |
Collapse
|
34
|
Choi BH, Choi YS, Kang DG, Kim BJ, Song YH, Cha HJ. Cell behavior on extracellular matrix mimic materials based on mussel adhesive protein fused with functional peptides. Biomaterials 2010; 31:8980-8. [DOI: 10.1016/j.biomaterials.2010.08.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 08/16/2010] [Indexed: 12/16/2022]
|
35
|
Zhang J, Silva T, Yarovinsky T, Manes TD, Tavakoli S, Nie L, Tellides G, Pober JS, Bender JR, Sadeghi MM. VEGF blockade inhibits lymphocyte recruitment and ameliorates immune-mediated vascular remodeling. Circ Res 2010; 107:408-17. [PMID: 20538685 DOI: 10.1161/circresaha.109.210963] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE There are conflicting data on the effects of vascular endothelial growth factor (VEGF) in vascular remodeling. Furthermore, there are species-specific differences in leukocyte and vascular cell biology and little is known about the role of VEGF in remodeling of human arteries. OBJECTIVE We sought to address the role of VEGF blockade on remodeling of human arteries in vivo. METHODS AND RESULTS We used an anti-VEGF antibody, bevacizumab, to study the effect of VEGF blockade on remodeling of human coronary artery transplants in severe combined immunodeficient mice. Bevacizumab ameliorated peripheral blood mononuclear cell-induced but not interferon-gamma-induced neointimal formation. This inhibitory effect was associated with a reduction in graft T-cell accumulation without affecting T-cell activation. VEGF enhanced T-cell capture by activated endothelium under flow conditions. The VEGF effect could be recapitulated when a combination of recombinant intercellular adhesion molecule 1 and vascular cell adhesion molecule-1 rather than endothelial cells was used to capture T cells. A subpopulation of CD3+ T cells expressed VEGF receptor (VEGFR)-1 by immunostaining and FACS analysis. VEGFR-1 mRNA was also detectable in purified CD4+ T cells and Jurkat and HSB-2 T-cell lines. Stimulation of HSB-2 and T cells with VEGF triggered downstream ERK phosphorylation, demonstrating the functionality of VEGFR-1 in human T cells. CONCLUSIONS VEGF contributes to vascular remodeling in human arteries through a direct effect on human T cells that enhances their recruitment to the vessel. These findings raise the possibility of novel therapeutic approaches to vascular remodeling based on inhibition of VEGF signaling.
Collapse
Affiliation(s)
- Jiasheng Zhang
- Yale University School of Medicine, New Haven, Conn., USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Boyd AS, Wood KJ. Characteristics of the early immune response following transplantation of mouse ES cell derived insulin-producing cell clusters. PLoS One 2010; 5:e10965. [PMID: 20532031 PMCID: PMC2881030 DOI: 10.1371/journal.pone.0010965] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2009] [Accepted: 02/22/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The fully differentiated progeny of ES cells (ESC) may eventually be used for cell replacement therapy (CRT). However, elements of the innate immune system may contribute to damage or destruction of these tissues when transplanted. METHODOLOGY/PRINCIPAL FINDINGS Herein, we assessed the hitherto ill-defined contribution of the early innate immune response in CRT after transplantation of either ESC derived insulin producing cell clusters (IPCCs) or adult pancreatic islets. Ingress of neutrophil or macrophage cells was noted immediately at the site of IPCC transplantation, but this infiltration was attenuated by day three. Gene profiling identified specific inflammatory cytokines and chemokines that were either absent or sharply reduced by three days after IPCC transplantation. Thus, IPCC transplantation provoked less of an early immune response than pancreatic islet transplantation. CONCLUSIONS/SIGNIFICANCE Our study offers insights into the characteristics of the immune response of an ESC derived tissue in the incipient stages following transplantation and suggests potential strategies to inhibit cell damage to ensure their long-term perpetuation and functionality in CRT.
Collapse
Affiliation(s)
- Ashleigh S. Boyd
- Transplantation Research Immunology Group, Nuffield Department of Surgery, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- NIH Center of Biomedical Research Excellence (COBRE) in Tissue Repair and Stem Cell Biology, Roger Williams Hospital, Boston University School of Medicine, Providence, Rhode Island, United States of America
| | - Kathryn J. Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgery, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
37
|
Piccinni MP. T cell tolerance towards the fetal allograft. J Reprod Immunol 2010; 85:71-5. [PMID: 20334928 DOI: 10.1016/j.jri.2010.01.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Revised: 11/25/2009] [Accepted: 01/22/2010] [Indexed: 10/19/2022]
Abstract
The conceptus is considered a semi-allograft because of the presence of paternal HLA-C molecules. These alloantigens can be processed by maternal antigen presenting cells, which present them to specific maternal CD4+ T cells. After activation, the maternal CD4+ T cells can become effector decidual CD4+ T cells, which are able to release various cytokines. Th1-type cytokines (IFNgamma) that promote allograft rejection may compromise pregnancy, whereas the Th2-type cytokines (IL-4, IL-10) that inhibit Th1 responses, promote allograft tolerance and therefore may improve fetal survival. A collaborative interaction between the decidual natural regulatory T cells, CD4+ CD25+ Foxp3 T cells and NKT cells in preventing fetal allograft rejection is suggested.
Collapse
Affiliation(s)
- Marie-Pierre Piccinni
- Center of Excellence for Research, Transfer and High Education DENOTHE of the University of Florence, Florence, Italy.
| |
Collapse
|
38
|
|
39
|
Abstract
Transplant vasculopathy (TV) remains the leading cause of late death among heart transplant recipients. Transplant vasculopathy is characterized by progressive neointimal proliferation, leading to ischemic failure of the allograft. Multiple experimental and clinical studies have shown that injury to the graft at various stages of transplantation can be a risk factor for development of transplant vasculopathy. The hallmark of cardiac allograft injury is the infiltration of leukocytes. Recruitment of leukocytes requires intercellular communication between infiltrating cells, endothelium, parenchymal cells, and components of extracellular matrix. These events are mediated via the generation of adhesion molecules, cytokines, and chemokines. The chemokines, by virtue of their specific cell receptor expression, can selectively mediate the local recruitment/activation of distinct leukocytes/cells, allowing for migration across the endothelium and beyond the vascular compartment. This report provides a comprehensive review of the chemokines that participate in the development of transplant vasculopathy.
Collapse
Affiliation(s)
- John A Belperio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California, Los Angele, CA 90095, USA
| | | |
Collapse
|
40
|
Hagemeijer MC, van Oosterhout MFM, van Wichen DF, van Kuik J, Siera-de Koning E, Gmelig Meyling FHJ, Schipper MEI, de Jonge N, de Weger RA. T cells in cardiac allograft vasculopathy are skewed to memory Th-1 cells in the presence of a distinct Th-2 population. Am J Transplant 2008; 8:1040-50. [PMID: 18416740 DOI: 10.1111/j.1600-6143.2008.02198.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cardiac allograft vasculopathy (CAV) in heart transplantation (HTx) patients remains the major complication for long-term survival, due to concentric neointima hyperplasia induced by infiltrating mononuclear cells (MNC). Previously, we showed that activated memory T-helper-1 (Th-1) cells are the major component of infiltrating MNC in coronary arteries with CAV. In this study, a more detailed characterization of the MNC in human coronary arteries with CAV (n = 5) was performed and compared to coronary arteries without CAV (n = 5), by investigating MNC markers (CD1a, DRC-1, CD3, CD20, CD27, CD28, CD56, CD68, CD69, FOXP3 and HLA-DR), cytokines (IL-1A, 2, 4, 10, 12B, IFN-gamma, and TGF-beta1), and chemokine receptors (CCR3, CCR4, CCR5, CCR7, CCR8, CXCR3 and CX3CR1) by immunohistochemical double-labeling and quantitative PCR on mRNA isolated from laser microdissected layers of coronary arteries. T cells in the neointima and adventitia of CAV were skewed toward an activated memory Th-1 phenotype, but in the presence of a distinct Th-2 population. FOXP3 positive T cells were not detected and production of most cytokines was low or absent, except for IFN-gamma, and TGF-beta. This typical composition of T-helper cells and especially production of IFN-gamma and TGF-beta may play an important role in the proliferative CAV reaction.
Collapse
Affiliation(s)
- M C Hagemeijer
- Department of Pathology, University Medical Center Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kalu E, Bhaskaran S, Thum MY, Vishwanatha R, Croucher C, Sherriff E, Ford B, Bansal AS. ORIGINAL ARTICLE: Serial Estimation of Th1:Th2 Cytokines Profile in Women Undergoing In-Vitro Fertilization-Embryo Transfer. Am J Reprod Immunol 2008; 59:206-11. [DOI: 10.1111/j.1600-0897.2007.00565.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
42
|
Gotsch F, Romero R, Friel L, Kusanovic JP, Espinoza J, Erez O, Than NG, Mittal P, Edwin S, Yoon BH, Kim CJ, Mazaki-Tovi S, Chaiworapongsa T, Hassan SS. CXCL10/IP-10: a missing link between inflammation and anti-angiogenesis in preeclampsia? J Matern Fetal Neonatal Med 2008; 20:777-92. [PMID: 17943641 DOI: 10.1080/14767050701483298] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Interferon (IFN)-gamma inducible protein, CXCL10/IP-10, is a member of the CXC chemokine family with pro-inflammatory and anti-angiogenic properties. This chemokine has been proposed to be a key link between inflammation and angiogenesis. The aim of this study was to determine whether preeclampsia and delivery of a small for gestational age (SGA) neonate are associated with changes in maternal serum concentration of CXCL10/IP-10. STUDY DESIGN This cross-sectional study included patients in the following groups: (1) non-pregnant women (N = 49); (2) women with normal pregnancies (N = 89); (3) patients with preeclampsia (N = 100); and (4) patients who delivered an SGA neonate (N = 78). SGA was defined as birth weight below the 10th percentile. Maternal serum concentrations of CXCL10/IP-10 were measured by sensitive immunoassay. Non-parametric statistics were used for analysis. RESULTS (1) Patients with normal pregnancies had a significantly higher median serum concentration of CXCL10/IP-10 than non-pregnant women (median 116.1 pg/mL, range 40.7-1314.3 vs. median 90.3 pg/mL, range 49.2-214.7, respectively; p = 0.002); (2) no significant correlation was found between maternal serum concentration of CXCL10/IP-10 and gestational age (between 19 and 38 weeks); (3) there were no differences in median serum CXCL10/IP-10 concentrations between patients who delivered an SGA neonate and those with normal pregnancies (median 122.4 pg/mL, range 37.3-693.5 vs. median 116.1 pg/mL, range 40.7-1314.3, respectively; p > 0.05); (4) patients with preeclampsia had a higher median serum concentration of CXCL10/IP-10 than normal pregnant women (median 156.4 pg/mL, range 47.4-645.9 vs. median 116.1 pg/mL, range 40.7-1314.3, respectively; p < 0.05); (5) patients with preeclampsia had a higher median concentration of CXCL10/IP-10 than those who delivered an SGA neonate (median 156.4 pg/mL, range 47.4-645.9 vs. median 122.4 pg/mL, range 37.3-693.5, respectively; p < 0.05). CONCLUSIONS Patients with preeclampsia have significantly higher serum concentrations of CXCL10/IP-10 than both normal pregnant women and mothers who have SGA neonates. These results are likely to reflect an anti-angiogenic state as well as an enhanced systemic inflammatory response in patients with preeclampsia. Alternatively, since preeclampsia and SGA share several mechanisms of disease, it is possible that a higher concentration of this chemokine may contribute to the clinical presentation of preeclampsia in patients with a similar intrauterine insult.
Collapse
Affiliation(s)
- Francesca Gotsch
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bai Y, Ahmad U, Wang Y, Li JH, Choy JC, Kim RW, Kirkiles-Smith N, Maher SE, Karras JG, Bennett CF, Bothwell ALM, Pober JS, Tellides G. Interferon-gamma induces X-linked inhibitor of apoptosis-associated factor-1 and Noxa expression and potentiates human vascular smooth muscle cell apoptosis by STAT3 activation. J Biol Chem 2008; 283:6832-42. [PMID: 18192275 DOI: 10.1074/jbc.m706021200] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon (IFN)-gamma actions on the vessel wall play an important role in the pathogenesis of arteriosclerosis, yet the contribution of different IFN-gamma signaling pathways to the phenotypic modulation of vascular smooth muscle cells (VSMCs) are poorly understood. We investigated the effects of IFN-gamma on VSMCs and arteries through interactions involving signal transducer and activator of transcription (STAT) proteins. In addition to STAT1 activation, IFN-gamma consistently phosphorylated STAT3 in human VSMCs but weakly or not at all in human endothelial cells or mouse VSMCs. STAT3 activation resulted in nuclear translocation of this transcription factor. By selectively inhibiting STAT3 and not STAT1 signaling, we identified a number of candidate IFN-gamma-inducible, STAT3-dependent gene products by microarray analysis. Results for selected genes, including the pro-apoptotic molecules X-linked inhibitor of apoptosis associated factor-1 (XAF1) and Noxa, were verified by real time quantitative reverse transcription-PCR and immunoblot analyses. IFN-gamma-induced STAT3 and STAT1 signaling in VSMCs demonstrated reciprocal inhibition. STAT3 activation by IFN-gamma sensitized VSMCs to apoptosis triggered by both death receptor- and mitochondrial-mediated pathways. Knock down of XAF1 and Noxa expression inhibited the priming of VSMCs to apoptotic stimuli by IFN-gamma. Finally, we confirmed the in vivo relevance of our observations using a chimeric animal model of immunodeficient mice bearing human coronary artery grafts in which the expression of XAF1 and Noxa as well as the pro-apoptotic effects induced by IFN-gamma were dependent on STAT3. The data suggest STAT1-independent signaling by IFN-gamma via STAT3 that promotes the death of human VSMCs.
Collapse
Affiliation(s)
- Yalai Bai
- Interdepartmental Program in Vascular Biology and Transplantation and the Department of Surgery, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Piccinni MP. Role of T-cell cytokines in decidua and in cumulus oophorus during pregnancy. Gynecol Obstet Invest 2007; 64:144-8. [PMID: 17934310 DOI: 10.1159/000101738] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Indexed: 11/19/2022]
Abstract
We focus on the roles of decidual and cumulus oophorus T cells. It was suggested that Th1-type cytokines (IFN-gamma and TNF-beta), which promote allograft rejection, may compromise pregnancy, whereas the Th2-type cytokines (IL-4, IL-5, IL-10) inhibiting the Th1 responses promote allograft tolerance and therefore may improve fetal survival. We found that T cells' leukemia inhibitory factor (LIF), M-CSF, IL-4 and IL-10 production at the fetomaternal interface could contribute to the maintenance of pregnancy. Interestingly, we did not find an increased production of IFN-gamma by decidual T cells during spontaneous abortion, as expected. We detected T cells in the cumulus oophorus, which surrounds the oocyte during ovulation and the egg before implantation. Cumulus oophorus T cells produce higher levels of IL-4 and LIF than the T cells of peripheral blood or the ovary. We can only speculate what the factors present in the microenvironment of the T cells are that could be responsible for the cytokine profile of decidual and cumulus oophorus T cells. Hormones present in the decidua and in the cumulus oophorus could be the first candidates. In particular, progesterone is a potent inducer of production of Th2-type cytokines, LIF and M-CSF. Other candidates could be molecules produced by the trophoblast or the embryo.
Collapse
Affiliation(s)
- Marie-Pierre Piccinni
- Department of Internal Medicine, Immunoallergology Unit, Centre of Excellence of the University of Florence, Florence, Italy.
| |
Collapse
|
45
|
Cuffy MC, Silverio AM, Qin L, Wang Y, Eid R, Brandacher G, Lakkis FG, Fuchs D, Pober JS, Tellides G. Induction of Indoleamine 2,3-Dioxygenase in Vascular Smooth Muscle Cells by Interferon-γ Contributes to Medial Immunoprivilege. THE JOURNAL OF IMMUNOLOGY 2007; 179:5246-54. [PMID: 17911610 DOI: 10.4049/jimmunol.179.8.5246] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Atherosclerosis and graft arteriosclerosis are characterized by leukocytic infiltration of the vessel wall that spares the media. The mechanism(s) for medial immunoprivilege is unknown. In a chimeric humanized mouse model of allograft rejection, medial immunoprivilege was associated with expression of IDO by vascular smooth muscle cells (VSMCs) of rejecting human coronary artery grafts. Inhibition of IDO by 1-methyl-tryptophan (1-MT) increased medial infiltration by allogeneic T cells and increased VSMC loss. IFN-gamma-induced IDO expression and activity in cultured human VSMCs was considerably greater than in endothelial cells (ECs) or T cells. IFN-gamma-treated VSMCs, but not untreated VSMCs nor ECs with or without IFN-gamma pretreatment, inhibited memory Th cell alloresponses across a semipermeable membrane in vitro. This effect was reversed by 1-MT treatment or tryptophan supplementation and replicated by the absence of tryptophan, but not by addition of tryptophan metabolites. However, IFN-gamma-treated VSMCs did not activate allogeneic memory Th cells, even after addition of 1-MT or tryptophan. Our work extends the concept of medial immunoprivilege to include immune regulation, establishes the compartmentalization of immune responses within the vessel wall due to distinct microenvironments, and demonstrates a duality of stimulatory EC signals versus inhibitory VSMC signals to artery-infiltrating T cells that may contribute to the chronicity of arteriosclerotic diseases.
Collapse
MESH Headings
- Animals
- Cell Movement/drug effects
- Cell Movement/immunology
- Cells, Cultured
- Coculture Techniques
- Coronary Vessels/enzymology
- Coronary Vessels/immunology
- Coronary Vessels/transplantation
- Endothelium, Vascular/cytology
- Endothelium, Vascular/enzymology
- Endothelium, Vascular/immunology
- Enzyme Induction/immunology
- Female
- Growth Inhibitors/antagonists & inhibitors
- Growth Inhibitors/biosynthesis
- Growth Inhibitors/physiology
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/biosynthesis
- Indoleamine-Pyrrole 2,3,-Dioxygenase/physiology
- Interferon-gamma/physiology
- Lymphocyte Activation/immunology
- Mice
- Mice, SCID
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/pathology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Helper-Inducer/immunology
- Tryptophan/analogs & derivatives
- Tryptophan/pharmacology
- Tunica Media/enzymology
- Tunica Media/immunology
- Tunica Media/pathology
Collapse
Affiliation(s)
- Madison C Cuffy
- Interdepartmental Program in Vascular Biology and Transplantation, Department of Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Holst PJ, Orskov C, Qvortrup K, Christensen JP, Thomsen AR. CCR5 and CXCR3 are dispensable for liver infiltration, but CCR5 protects against virus-induced T-cell-mediated hepatic steatosis. J Virol 2007; 81:10101-12. [PMID: 17626099 PMCID: PMC2045423 DOI: 10.1128/jvi.01242-07] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
CCR5 and CXCR3 are important molecules in regulating the migration of activated lymphocytes. Thus, the majority of tissue-infiltrating T cells found in the context of autoimmune conditions and viral infections express CCR5 and CXCR3, and the principal chemokine ligands are expressed within inflamed tissues. Accordingly, intervention studies have pointed to nonredundant roles of these receptors in models of allograft rejection, viral infection, and autoimmunity. In spite of this, considerable controversy exists, with many studies failing to support a role for CCR5 or CXCR3 in disease pathogenesis. One possible explanation is that different chemokine receptors may take over in the absence of any individual receptor, thus rendering individual receptors redundant. We have attempted to address this issue by analyzing CCR5(-/-), CXCR3(-/-), and CCR5/CXCR3(-/-) mice with regard to virus-induced liver inflammation, generation and recruitment of effector cells, virus control, and immunopathology. Our results indicate that CCR5 and CXCR3 are largely dispensable for tissue infiltration and virus control. In contrast, the T-cell response is accelerated in CCR5(-/-) and CCR5/CXCR3(-/-) mice and the absence of CCR5 is associated with the induction of CD8(+) T-cell-mediated immunopathology consisting of marked hepatic microvesicular steatosis.
Collapse
Affiliation(s)
- P J Holst
- Institute of Medical Microbiology and Immunology, University of Copenhagen, The Panum Institute, 3C Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | | | | | | | | |
Collapse
|
47
|
Abstract
Cardiac transplantation is the most effective treatment for advanced heart failure. Despite improvements in immunosuppression therapy that prevent acute rejection, cardiac allografts fail at rates of 3% to 5% per posttransplant year. The hallmark morphological lesion of chronically failing cardiac allografts, also seen in chronic renal and liver graft failure, is luminal stenosis of blood vessels, especially of conduit arteries. Late graft failure results from widespread secondary ischemic injury to the graft parenchyma rather than direct immune-mediated damage. Although this process affects the entire graft vasculature, graft arteriosclerosis is a suitable term to describe the problem because it applies to different types of failing organs and because it emphasizes the central feature, namely an accelerated form of arterial injury and remodeling. The precise pathogenesis of graft arteriosclerosis is unknown. In this review, we make the case that the signature T-helper type 1 cytokine, interferon (IFN)-γ, is a key effector in graft arteriosclerosis, which, together with the IFN-γ–inducing cytokine interleukin-12 and IFN-γ–inducible chemokines such as CXCR3 ligands, constitute a positive feedback loop for T-cell activation, differentiation, and recruitment that we refer to as the IFN-γ axis. We evaluate the evidence to support this hypothesis in clinical observational and experimental animal studies. Additionally, we examine the regulation of IFN-γ production within the artery wall, the effects of IFN-γ on vessel wall cells, and the outcome of therapeutic agents on IFN-γ production and signaling. These observations lead us to suggest that new therapies for graft arteriosclerosis should be optimized which focus on reducing IFN-γ synthesis or actions.
Collapse
Affiliation(s)
- George Tellides
- Interdepartmental Program in Vascular Biology and Transplantation, Department of Surgery, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
48
|
Ranjbaran H, Sokol SI, Gallo A, Eid RE, Iakimov AO, D'Alessio A, Kapoor JR, Akhtar S, Howes CJ, Aslan M, Pfau S, Pober JS, Tellides G. An inflammatory pathway of IFN-gamma production in coronary atherosclerosis. THE JOURNAL OF IMMUNOLOGY 2007; 178:592-604. [PMID: 17182600 DOI: 10.4049/jimmunol.178.1.592] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Inflammation is associated with the pathogenesis of coronary atherosclerosis, although the mechanisms remain unclear. We investigated whether cytokine secretion by innate immune responses could contribute to the production of proarteriosclerotic Th1-type cytokines in human coronary atherosclerosis. Cytokines were measured by ELISA in the plasma of patients with coronary atherosclerosis undergoing cardiac catheterization. IL-18 was detected in all subjects, whereas a subset of patients demonstrated a coordinated induction of other IFN-gamma-related cytokines. Specifically, elevated plasma levels of IL-12 correlated with that of IFN-gamma and IFN-gamma-inducible chemokines, defining an IFN-gamma axis that was activated independently of IL-6 or C-reactive protein. Systemic inflammation triggered by cardiopulmonary bypass increased plasma levels of the IFN-gamma axis, but not that of IL-18. Activation of the IFN-gamma axis was not associated with acute coronary syndromes, but portended increased morbidity and mortality after 1-year follow-up. IL-12 and IL-18, but not other monokines, elicited secretion of IFN-gamma and IFN-gamma-inducible chemokines in human atherosclerotic coronary arteries maintained in organ culture. T cells were the principal source of IFN-gamma in response to IL-12/IL-18 within the arterial wall. This inflammatory response did not require, but was synergistic with and primed for TCR signals. IL-12/IL-18-stimulated T cells displayed a cytokine-producing, nonproliferating, and noncytolytic phenotype, consistent with previous descriptions of lymphocytes in stable plaques. In contrast to cognate stimuli, IL-12/IL-18-dependent IFN-gamma secretion was prevented by a p38 MAPK inhibitor and not by cyclosporine. In conclusion, circulating IL-12 may provide a mechanistic link between inflammation and Th1-type cytokine production in coronary atherosclerosis.
Collapse
Affiliation(s)
- Hooman Ranjbaran
- Department of Surgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Advances in immunosuppression have decreased the incidence of acute rejection, but the development of vasculopathy in the coronary arteries of transplants continues to limit the survival of cardiac allografts. Transplant vasculopathy has also been referred to as accelerated graft arteriosclerosis because it has features of arteriosclerosis, but it is limited to the graft and develops over a period of months to years. Although the pathological features of transplant vasculopathy are well defined, the causative mechanisms are not completely understood. This review focuses on the mechanisms by which antibody and complement can cause or contribute to coronary vasculopathy in cardiac transplants. Antibodies and complement can have independent effects, but the combination of antibodies and complement with inflammatory cells has greater pathogenic potential for the endothelial and smooth muscle cells of the coronary arteries. For example, stimulation through receptors for IgG or complement split products can activate macrophages, but stimulation through combinations of these receptors generates synergistic results. Together, antibodies and complement efficiently integrate the activation of endothelial cells, platelets, and macrophages, which are 3 of the primary components in the pathogenesis of transplant vasculopathy. Recent findings indicate that antibodies and complement produced within the transplant may contribute to vascular pathology in some transplants. Acute rejection caused by antibodies and complement has been treated by combinations of plasmapheresis, intravenous gamma-globulin and monoclonal antibodies to CD20 on B lymphocytes. The effect of these treatment modalities on the development of coronary vasculopathy is unknown.
Collapse
Affiliation(s)
- Jennifer Wehner
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | | | | | | | |
Collapse
|
50
|
van Loosdregt J, van Oosterhout MFM, Bruggink AH, van Wichen DF, van Kuik J, de Koning E, Baan CC, de Jonge N, Gmelig-Meyling FHJ, de Weger RA. The Chemokine and Chemokine Receptor Profile of Infiltrating Cells in the Wall of Arteries With Cardiac Allograft Vasculopathy Is Indicative of a Memory T–Helper 1 Response. Circulation 2006; 114:1599-607. [PMID: 17015796 DOI: 10.1161/circulationaha.105.597526] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Despite improvement in short-term patient survival after heart transplantation (HTx), long-term survival rates have not improved much, mainly because of cardiac allograft vasculopathy (CAV). Cytokines and chemokines are considered to play an important role in CAV development. METHODS AND RESULTS We focused on coronary arteries of HTx patients and made an inventory of the infiltrating cells and the expression of cytokines as well as chemokines and chemokine receptors (C+CR) in the different layers of the vessel wall with CAV. Tissue slides were stained for a variety of cell markers (CD3, CD4, CD8, CD20, CD68, CD79a), chemokines (monokine induced by interferon [MIG], interferon-inducible protein 10 [IP-10], interferon-inducible T cell-alpha chemoattractant [ITAC], RANTES [regulated on activation normal T cell expressed and secreted], and fractalkine), and chemokine receptors (CXCR3, CCR5, and CX3CR1). In reference coronary arteries (not transplanted), almost no infiltrating cells were found, and in transplanted hearts with CAV (HTx+CAV), a large number of T cells were observed (CD4:CD8=2:1), mainly localized in the neointima and adventitia. Most of these T cells appeared to be activated (human leukocyte antigen DR positive). Coronary arteries from transplanted hearts without CAV (HTx-CAV), HTx+CAV, and references were also analyzed for cytokine and C+CR mRNA expression with the use of quantitative polymerase chain reaction. Interferon-gamma was highly expressed in HTx+CAV compared with HTx-CAV. Interleukin-4 and interleukin-10 were expressed at the same level in both HTx groups and references. In HTx+CAV, all C+CR, but especially the T-helper 1 (TH1) C+CR, were more abundant than in the HTx-CAV and references. However, TH2 CCR4 expression did not differ significantly between both HTx groups. CONCLUSIONS In coronary arteries with CAV, most T cells are CD4+ and express human leukocyte antigen DR. These activated TH cells are mainly memory TH1 cells on the basis of their C+CR profile and cytokine expression.
Collapse
Affiliation(s)
- Jorg van Loosdregt
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, PO Box 85500, 3508 GA Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|