1
|
Praska CE, Tamburrini R, Danobeitia JS. Innate immune modulation in transplantation: mechanisms, challenges, and opportunities. FRONTIERS IN TRANSPLANTATION 2023; 2:1277669. [PMID: 38993914 PMCID: PMC11235239 DOI: 10.3389/frtra.2023.1277669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/23/2023] [Indexed: 07/13/2024]
Abstract
Organ transplantation is characterized by a sequence of steps that involve operative trauma, organ preservation, and ischemia-reperfusion injury in the transplant recipient. During this process, the release of damage-associated molecular patterns (DAMPs) promotes the activation of innate immune cells via engagement of the toll-like receptor (TLR) system, the complement system, and coagulation cascade. Different classes of effector responses are then carried out by specialized populations of macrophages, dendritic cells, and T and B lymphocytes; these play a central role in the orchestration and regulation of the inflammatory response and modulation of the ensuing adaptive immune response to transplant allografts. Organ function and rejection of human allografts have traditionally been studied through the lens of adaptive immunity; however, an increasing body of work has provided a more comprehensive picture of the pivotal role of innate regulation of adaptive immune responses in transplant and the potential therapeutic implications. Herein we review literature that examines the repercussions of inflammatory injury to transplantable organs. We highlight novel concepts in the pathophysiology and mechanisms involved in innate control of adaptive immunity and rejection. Furthermore, we discuss existing evidence on novel therapies aimed at innate immunomodulation and how this could be harnessed in the transplant setting.
Collapse
Affiliation(s)
- Corinne E. Praska
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Riccardo Tamburrini
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Juan Sebastian Danobeitia
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
- Baylor Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, United States
| |
Collapse
|
2
|
Einstein SA, Steyn LV, Weegman BP, Suszynski TM, Sambanis A, O'Brien TD, Avgoustiniatos ES, Firpo MT, Graham ML, Janecek J, Eberly LE, Garwood M, Putnam CW, Papas KK. Hypoxia within subcutaneously implanted macroencapsulation devices limits the viability and functionality of densely loaded islets. FRONTIERS IN TRANSPLANTATION 2023; 2:1257029. [PMID: 38993891 PMCID: PMC11235299 DOI: 10.3389/frtra.2023.1257029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 07/13/2024]
Abstract
Introduction Subcutaneous macroencapsulation devices circumvent disadvantages of intraportal islet therapy. However, a curative dose of islets within reasonably sized devices requires dense cell packing. We measured internal PO2 of implanted devices, mathematically modeled oxygen availability within devices and tested the predictions with implanted devices containing densely packed human islets. Methods Partial pressure of oxygen (PO2) within implanted empty devices was measured by noninvasive 19F-MRS. A mathematical model was constructed, predicting internal PO2, viability and functionality of densely packed islets as a function of external PO2. Finally, viability was measured by oxygen consumption rate (OCR) in day 7 explants loaded at various islet densities. Results In empty devices, PO2 was 12 mmHg or lower, despite successful external vascularization. Devices loaded with human islets implanted for 7 days, then explanted and assessed by OCR confirmed trends proffered by the model but viability was substantially lower than predicted. Co-localization of insulin and caspase-3 immunostaining suggested that apoptosis contributed to loss of beta cells. Discussion Measured PO2 within empty devices declined during the first few days post-transplant then modestly increased with neovascularization around the device. Viability of islets is inversely related to islet density within devices.
Collapse
Affiliation(s)
- Samuel A Einstein
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Department of Radiology, The Pennsylvania State University, Hershey, PA, United States
| | - Leah V Steyn
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Bradley P Weegman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Sylvatica Biotech Inc., North Charleston, SC, United States
| | - Thomas M Suszynski
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Athanassios Sambanis
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Timothy D O'Brien
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | | | - Meri T Firpo
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Melanie L Graham
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Jody Janecek
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Lynn E Eberly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Klearchos K Papas
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
3
|
Lemos JRN, Poggioli R, Ambut J, Bozkurt NC, Alvarez AM, Padilla N, Vendrame F, Ricordi C, Baidal DA, Alejandro R. Impact of GAD65 and IA2 autoantibodies on islet allograft survival. FRONTIERS IN CLINICAL DIABETES AND HEALTHCARE 2023; 4:1269758. [PMID: 38028981 PMCID: PMC10679328 DOI: 10.3389/fcdhc.2023.1269758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Introduction Islet transplantation (ITx) shows promise in treating T1D, but the role of islet autoantibodies on graft survival has not been clearly elucidated. We aimed to analyze the effect of GAD65 and IA2 autoantibody status on graft survival and attainment of insulin independence in subjects with T1D who underwent ITx. Method We conducted a retrospective cohort study on 47 ITx recipients from 2000 to 2018. Islet infusion was performed via intrahepatic portal (n=44) or onto the omentum via laparoscopic approach (n=3). Immunosuppression involved anti-IL2 receptor antibody, anti-TNF, and dual combinations of sirolimus, tacrolimus, or mycophenolate mofetil (Edmonton-like) in 38 subjects (80.9%). T-cell depletion induction with Edmonton-like maintenance was used in 9 subjects (19%). GAD65 and IA2 autoantibodies were assessed pre-transplant and post-transplant (monthly) until graft failure, and categorized as persistently negative, persistently positive, or seroconverters. Graft survival was analyzed using U-Mann-Whitney test, and Quade's nonparametric ANCOVA adjusted for confounders. Kaplan-Meier and Log-Rank tests were employed to analyze attainment of insulin independence. P value <0.05 indicated statistical significance. Results ITx recipients with persistent autoantibody negativity (n = 21) showed longer graft function (98 [61 - 182] months) than those with persistent autoantibody positivity (n = 18; 38 [13 - 163] months), even after adjusting for immunosuppressive induction protocol (P = 0.027). Seroconverters (n=8) had a median graft survival time of 73 (7.7 - 167) months, which did not significantly differ from the other 2 groups. Subjects with persistently single antibody positivity to GAD65 (n = 8) had shorter graft survival compared to negative islet autoantibody (GAD65/IA2) subjects (n = 21; P = 0.016). Time of graft survival did not differ in subjects with single antibody positivity to IA2. The proportion of insulin independence attainment was similar irrespective of autoantibody status. Conclusion The persistence of islet autoantibodies, as markers of islet autoimmunity, may represent an underappreciated contributing factor to the failure of transplanted β cells. Whether induction with T-cell depletion may lead to improved graft survival, independent of islet autoantibody status, could not be evaluated in our cohort. Larger prospective studies are needed to further address the role of islet autoantibody status on islet graft survival.
Collapse
Affiliation(s)
- Joana R. N. Lemos
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Raffaella Poggioli
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jonathan Ambut
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nujen C. Bozkurt
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Ana M. Alvarez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nathalia Padilla
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Francesco Vendrame
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Camillo Ricordi
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Cellular Transplantation, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - David A. Baidal
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rodolfo Alejandro
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL, United States
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
4
|
Ahmadi F, Lotfi AS, Navaei-Nigjeh M, Kadivar M. Trimetazidine Preconditioning Potentiates the Effect of Mesenchymal Stem Cells Secretome on the Preservation of Rat Pancreatic Islet Survival and Function In Vitro. Appl Biochem Biotechnol 2023; 195:4796-4817. [PMID: 37184724 DOI: 10.1007/s12010-023-04532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Islet transplantation offers improved glycemic control in individuals with type 1 diabetes mellitus. However, in vitro islet culture is associated with islet apoptosis and eventually will lose their functionality prior to transplantation. In this study, we examined the effects of mesenchymal stem cells (MSCs) secretome preconditioned with diazoxide (DZ) and trimetazidine (TMZ) on rat islet cells during pre-transplant culture. With and without preconditioned hAD-MSCs' concentrated conditioned media (CCM) were added to the culture medium containing rat islets every 12 h for 24 and 48 h, after testing for selected cytokine concentrations (interleukin (IL)-4, IL-6, IL-13). Insulin content, glucose-stimulated insulin secretion, islet cell apoptosis, and mRNA expression of pro-apoptotic (BAX, BAK-1, and PUMA) and anti-apoptotic factors (BCL-2, BCL-xL, and XIAP) in rat islets were assessed after 24 and 48 h of culture. The protein level of IL-6 and IL-4 was significantly higher in TMZ-MSC-CM compared to MSC-non-CM. In rat isolated islets, normalized secreted insulin in the presence of 16.7 mM glucose was significantly higher in treated islet groups compared to control islets at both 24 and 48 h cultivation. Also, the percentage of apoptotic islet cells TMZ-MSC-CCM-treated islets was significantly lower compared to MSC-CM and MSC-CCM-treated islets in both 24 and 48 h cultivation. Consistent with the number of apoptotic cells, after 24 h culture, the expression of BCL-2 and BCL-xL genes in the control islets was lower than all treatment islet groups and in 48 h was lower than only TMZ-MSC-CM-treated islets. Also, the expression of the XIAP gene in control islets was significantly lower compared to the TMZ-MSC-CCM-treated islets at both at 24 and 48 h. In addition, mRNA level of the BAX gene in TMZ-MSC-CCM-treated islets was significantly lower compared to other groups at 48 h. Our findings revealed that TMZ proved to be more effective than DZ and could enhance the potential of hAD-MSCs-CM to improve the function and viability of islets prior to transplantation.
Collapse
Affiliation(s)
- Fariborz Ahmadi
- Department of Clinical Biochemistry, Tarbiat Modares University, Tehran, Iran
| | | | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
5
|
Naqvi RA, Naqvi A. Co-transplantation with mesenchymal stem cells and endothelial cells improvise islet engraftment and survival in STZ treated hyperglycemic mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525444. [PMID: 36747732 PMCID: PMC9900768 DOI: 10.1101/2023.01.24.525444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Though intra-portal islet transplantation demonstrated as best suited strategy for the reversal of hyperglycemia without the threat of iatrogenic hyperglycemia in type 1 diabetes (T1D) in patients, the inferior quality of post-transplantation (tx) vascularization needs to be addressed for the maximization of post-tx islet survival. Therefore, in this study, we have first generated MSCs and endothelial progenitor cells (EPC) from mice bone marrow by in house optimized protocol and then 3-D co-cultured them with mice islets. Secretion of in the culture supernatant suggested the pro-angiogenic nature of 3D cultured mice islets. After 5 days post-tx of these pro-angiogenic islets in the omental pouch of syngeneic mice led to: 1) restoration of normoglycemia, 2) secretion of mouse C-peptide and 3) induction of angiogenic factors after 3 days of post-tx. The induction of angiogenic factors was done by RT-qPCR of omental biopsies. Importantly, pro-angiogenic islet recipient mice also demonstrated the clearance of glucose within 75 min, reflecting their efficient function and engraftment. Our results highlights needs of 3-D co-culture islets for superior quality post-tx islet vasculature and better engraftment â€" crux to improvise the challenges associated with post-tx islet vascularization and functions.
Collapse
|
6
|
AP39, a Mitochondrial-Targeted H2S Donor, Improves Porcine Islet Survival in Culture. J Clin Med 2022; 11:jcm11185385. [PMID: 36143032 PMCID: PMC9504761 DOI: 10.3390/jcm11185385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/26/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
The rapid deterioration of transplanted islets in culture is a well-established phenomenon. We recently reported that pancreas preservation with AP39 reduces reactive oxygen species (ROS) production and improves islet graft function. In this study, we investigated whether the addition of AP39 to the culture medium could reduce isolated islet deterioration and improve islet function. Isolated islets from porcine pancreata were cultured with 400 nM AP39 or without AP39 at 37 °C. After culturing for 6–72 h, the islet equivalents of porcine islets in the AP39(+) group were significantly higher than those in the AP39(−) group. The islets in the AP39(+) group exhibited significantly decreased levels of ROS production compared to the islets in the AP39(−) group. The islets in the AP39(+) group exhibited significantly increased mitochondrial membrane potential compared to the islets in the AP39(−) group. A marginal number (1500 IEs) of cultured islets from each group was then transplanted into streptozotocin-induced diabetic mice. Culturing isolated islets with AP39 improved islet transplantation outcomes in streptozotocin-induced diabetic mice. The addition of AP39 in culture medium reduces islet deterioration and furthers the advancements in β-cell replacement therapy.
Collapse
|
7
|
Pancreas Preservation in Modified Histidine-lactobionate Solution Is Superior to That in University of Wisconsin Solution for Porcine Islet Isolation. Transplantation 2022; 106:1770-1776. [PMID: 36001489 DOI: 10.1097/tp.0000000000003636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We previously reported that modified extracellular-type trehalose-containing Kyoto (MK) solution, which contains a trypsin inhibitor (ulinastatin), significantly improved the islet yield compared with University of Wisconsin (UW) preservation, which is the gold standard for organ preservation for islet isolation. In this study, we evaluated the efficiency of a modified histidine-lactobionate (MHL) solution in addition to UW or MK solution. The MHL solution has a high sodium-low potassium composition with low viscosity compared with the UW solution. Moreover, similar to MK solution, MHL solution also contains ulinastatin. METHODS Porcine pancreata were preserved in UW, MK, or MHL solution, followed by islet isolation. An optimized number (1500 IE) of isolated islets from each group were then transplanted into streptozotocin-induced diabetic mice. RESULTS The islet yield before and after purification was significantly higher in the MHL group than in the UW group. On the contrary, the islet yield before and after purification was not significantly different between the MHL and MK groups. Preserving the porcine pancreata in MHL solution improved the outcome of islet transplantation in streptozotocin-induced diabetic mice compared with that in UW solution. CONCLUSIONS Pancreas preservation with MHL solution preserves islet function better than UW solution. The effect of MHL solution is similar to that of MK solution, suggesting that MHL solution can be used as an alternative to MK solution for pancreatic islet transplantation.
Collapse
|
8
|
Pancreas Preservation with a Neutrophil Elastase Inhibitor, Alvelestat, Contributes to Improvement of Porcine Islet Isolation and Transplantation. J Clin Med 2022; 11:jcm11154290. [PMID: 35893379 PMCID: PMC9330829 DOI: 10.3390/jcm11154290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/21/2022] [Indexed: 12/14/2022] Open
Abstract
For pancreatic islet transplantation, pancreas procurement, preservation, and islet isolation destroy cellular and non-cellular components and activate components such as resident neutrophils, which play an important role in the impairment of islet survival. It has been reported that inhibitors of neutrophil elastase (NE), such as sivelestat and α1-antitrypsin, could contribute to improvement of islet isolation and transplantation. In this study, we investigated whether pancreatic preservation with alvelestat, a novel NE inhibitor, improves porcine islet yield and function. Porcine pancreata were preserved with or without 5 μM alvelestat for 18 h, and islet isolation was performed. The islet yields before and after purification were significantly higher in the alvelestat (+) group than in the alvelestat (−) group. After islet transplantation into streptozotocin-induced diabetic mice, blood glucose levels reached the normoglycemic range in 55% and 5% of diabetic mice in the alvelestat (+) and alvelestat (−) groups, respectively. These results suggest that pancreas preservation with alvelestat improves islet yield and graft function and could thus serve as a novel clinical strategy for improving the outcome of islet transplantation.
Collapse
|
9
|
Clinical Islet Transplantation Covered by Health Insurance in Japan. J Clin Med 2022; 11:jcm11143977. [PMID: 35887740 PMCID: PMC9321768 DOI: 10.3390/jcm11143977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Pancreatic islet transplantation is a treatment option for patients with type 1 diabetes mellitus and has been performed in various countries [1–5]. [...]
Collapse
|
10
|
Szempruch KR, Walter K, Ebert N, Bridgens K, Desai CS. Pharmacological management of patients undergoing total pancreatectomy with auto-islet transplantation. Pancreatology 2022; 22:656-664. [PMID: 35490122 DOI: 10.1016/j.pan.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/17/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022]
Abstract
Chronic pancreatitis results in permanent parenchymal destruction of the pancreas gland leading to anatomical and physiological consequences for patients. Surgical management varies, and some patients require total pancreatectomy with autologous islet cell transplantation (TPIAT). Patients undergoing TPIAT require complex and diligent management after surgery. This encompasses the management of glucose control (endocrine function of the pancreas) and supplementing loss of exocrine function of the pancreas with digestive enzymes. Other areas of management include optimizing pain relief while reducing narcotic usage, providing antimicrobial prophylaxis, and reducing loss of islet cells by improving its integrity through anticoagulation and use of anti-inflammatory agents. Each aspect of care is unique to this population. However, comprehensive reviews on its pharmacological management are scarce. This review will discuss the available literature to date surrounding all aspects of pharmacological management of patients undergoing TPIAT.
Collapse
Affiliation(s)
- Kristen R Szempruch
- Pharmacy Department, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Krysta Walter
- Pharmacy Department, Michigan Medicine, Ann Arbor, MI, USA
| | - Natassha Ebert
- Pharmacy Department, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Kathryn Bridgens
- Department of Nutrition and Food Services, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Chirag S Desai
- Department of Surgery, Transplant, University of North Carolina Medical Center, Chapel Hill, NC, USA.
| |
Collapse
|
11
|
ABSTRACTS (BY NUMBER). Tissue Eng Part A 2022. [DOI: 10.1089/ten.tea.2022.29025.abstracts] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
12
|
Lemos JRN, Baidal DA, Poggioli R, Fuenmayor V, Chavez C, Alvarez A, Linetsky E, Mauvais-Jarvis F, Ricordi C, Alejandro R. Prolonged Islet Allograft Function is Associated With Female Sex in Patients After Islet Transplantation. J Clin Endocrinol Metab 2022; 107:e973-e979. [PMID: 34727179 PMCID: PMC8852206 DOI: 10.1210/clinem/dgab787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Islet transplantation (ITx) has proved to be effective in preventing severe hypoglycemia and improving metabolic control in selected subjects with type 1 diabetes. Long-term graft function remains a challenge. Estrogens have been shown to protect β cells from metabolic stresses and improve revascularization of transplanted human islets in the mouse. We aimed to evaluate the influence of sex in allograft survival of ITx recipients. METHODS We analyzed a retrospective cohort of ITx recipients (n = 56) followed-up for up to 20 years. Allograft failure was defined as a stimulated C-peptide <0.3 ng/mL during a mixed-meal tolerance test. Subjects were divided into recipients of at least 1 female donor (group 1) and recipients of male donors only (group 2). RESULTS Group 1 subjects (n = 25) were aged 41.5 ± 8.4 years and group 2 subjects (n = 22) 45.9 ± 7.3 years (P = 0.062). Female recipient frequency was 44.8% (n = 13) in group 1 and 55.2% (n = 16) in group 2 (P = 0.145). Group 2 developed graft failure earlier than group 1 (680 [286-1624] vs 1906 [756-3256] days, P = 0.038). We performed additional analyses on female recipients only from each group (group 1, n = 16; group 2, n = 20). Female recipients in group 1 exhibited prolonged allograft function compared with group 2, after adjustment for confounders (odds ratio, 28.6; 95% CI, 1.3-619.1; P < 0.05). CONCLUSION Recipients of islets from at least 1 female donor exhibited prolonged graft survival compared with recipients of islets from exclusively male donors. In addition, female recipients exhibited prolonged survival compared with male recipients following ITx of at least 1 female donor.
Collapse
Affiliation(s)
- Joana R N Lemos
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - David A Baidal
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Tulane Center of Excellence in Sex Based Biology & Medicine, New Orleans, LA 70112, USA
| | - Raffaella Poggioli
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Virginia Fuenmayor
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Carmen Chavez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ana Alvarez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Elina Linetsky
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Franck Mauvais-Jarvis
- Tulane Center of Excellence in Sex Based Biology & Medicine, New Orleans, LA 70112, USA
- Diabetes Discovery Research & Sex-Based Medicine Laboratory, New Orleans, LA 70112, USA
- Section of Endocrinology and Metabolism, Deming Department of Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - Camillo Ricordi
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Cellular Transplantation, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rodolfo Alejandro
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
13
|
Walker S, Appari M, Forbes S. Considerations and challenges of islet transplantation and future therapies on the horizon. Am J Physiol Endocrinol Metab 2022; 322:E109-E117. [PMID: 34927459 DOI: 10.1152/ajpendo.00310.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Islet transplantation is a treatment for selected adults with type 1 diabetes and severe hypoglycemia. Islets from two or more donor pancreases, a scarce resource, are usually required to impact glycemic control, but the treatment falls short of a cure. Islets are avascular when transplanted into the hypoxic liver environment and subjected to inflammatory insults, immune attack, and toxicity from systemic immunosuppression. The Collaborative Islet Transplant Registry, with outcome data on over 1,000 islet transplant recipients, has demonstrated that larger islet numbers transplanted and older age of recipients are associated with better outcomes. Induction with T-cell depleting agents and the TNF-α inhibitor etanercept and maintenance systemic immunosuppression with mTOR inhibitors in combination with calcineurin inhibitors also appear advantageous, but concerns remain over immunosuppressive toxicity. We discuss strategies and therapeutics that address specific challenges of islet transplantation, many of which are at the preclinical stage of development. On the horizon are adjuvant cell therapies with mesenchymal stromal cells and regulatory T cells that have been used in preclinical models and in humans in other contexts; such a strategy may enable reductions in immunosuppression in the early peri-transplant period when the islets are vulnerable to apoptosis. Human embryonic stem cell-derived islets are in early-phase clinical trials and hold the promise of an inexhaustible supply of insulin-producing cells; effective encapsulation of such cells or, silencing of the human leukocyte antigen (HLA) complex would eliminate the need for immunosuppression, enabling this therapy to be used in all those with type 1 diabetes.
Collapse
Affiliation(s)
- Sophie Walker
- BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Mahesh Appari
- BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Shareen Forbes
- BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Transplant Unit, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
- Islet Transplant Program, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Shindo Y, Kalivarathan J, Saravanan PB, Levy MF, Kanak MA. Assessment of Culture/Preservation Conditions of Human Islets for Transplantation. Cell Transplant 2022; 31:9636897221086966. [PMID: 35343264 PMCID: PMC8958522 DOI: 10.1177/09636897221086966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Islet culture before clinical transplantation has been adopted by various centers, but its effect on the survival and function of islets relative to the culture conditions and media needs further assessment. Human islets were cultured or preserved under four different conditions and three media options. Parameters such as recovery, viability, function, islet damage, and gene expressions for markers of hypoxia, and inflammation were assessed after 48-h culture or preservation. Preservation of islets was performed at 4°C in Connaught’s Medical Research Lab (CMRL) and University of Wisconsin (UW) media. Islets were cultured at 22°C, 37°C, and 37°C–22°C in CMRL and PRODO culture media. Islets preserved in UW solution had visually good morphology and exhibited higher recovery with less islet damage compared with the rest of the groups, whereas islets preserved in CMRL at 4°C resulted in poor morphology, recovery, viability, and function compared with the rest of the treatment conditions. Culture at 22°C and 37°C demonstrated an increase in the expression of inflammatory and hypoxia-related genes. In conclusion, islets preserved at 4°C in UW solution showed the best overall outcomes after 48 h compared with islets cultured at 22°C, 37°C, or 37°C–22°C in PRODO. Advancement in islet culture media is warranted to reduce inflammatory gene activation and improve recovery of islets for transplantation.
Collapse
Affiliation(s)
- Yoshitaro Shindo
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Jagan Kalivarathan
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Marlon F Levy
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.,Hume-Lee Transplant Center, VCU Health System, Richmond, VA, USA
| | - Mazhar A Kanak
- Department of Surgery, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
15
|
Menger MM, Nalbach L, Roma LP, Laschke MW, Menger MD, Ampofo E. Erythropoietin exposure of isolated pancreatic islets accelerates their revascularization after transplantation. Acta Diabetol 2021; 58:1637-1647. [PMID: 34254190 PMCID: PMC8542558 DOI: 10.1007/s00592-021-01760-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/06/2021] [Indexed: 12/15/2022]
Abstract
AIMS The exposure of isolated pancreatic islets to pro-angiogenic factors prior to their transplantation represents a promising strategy to accelerate the revascularization of the grafts. It has been shown that erythropoietin (EPO), a glycoprotein regulating erythropoiesis, also induces angiogenesis. Therefore, we hypothesized that EPO exposure of isolated islets improves their posttransplant revascularization. METHODS Flow cytometric, immunohistochemical and quantitative real-time (qRT)-PCR analyses were performed to study the effect of EPO on the viability, cellular composition and gene expression of isolated islets. Moreover, islets expressing a mitochondrial or cytosolic H2O2 sensor were used to determine reactive oxygen species (ROS) levels. The dorsal skinfold chamber model in combination with intravital fluorescence microscopy was used to analyze the revascularization of transplanted islets. RESULTS We found that the exposure of isolated islets to EPO (3 units/mL) for 24 h does not affect the viability and the production of ROS when compared to vehicle-treated and freshly isolated islets. However, the exposure of islets to EPO increased the number of CD31-positive cells and enhanced the gene expression of insulin and vascular endothelial growth factor (VEGF)-A. The revascularization of the EPO-cultivated islets was accelerated within the initial phase after transplantation when compared to both controls. CONCLUSION These findings indicate that the exposure of isolated islets to EPO may be a promising approach to improve clinical islet transplantation.
Collapse
Affiliation(s)
- Maximilian M Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
- Department of Trauma and Reconstructive Surgery, Faculty of Medicine, BG Hospital Tuebingen, Eberhard-Karls-University Tuebingen, Tuebingen, Germany
| | - Lisa Nalbach
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Leticia P Roma
- Biophysics Department, Center for Human and Molecular Biology, Saarland University, 66421, Homburg, Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Michael D Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg, Saar, Germany.
| |
Collapse
|
16
|
Mooranian A, Jones M, Ionescu CM, Walker D, Wagle SR, Kovacevic B, Chester J, Foster T, Johnston E, Kuthubutheen J, Brown D, Mikov M, Al-Salami H. Artificial Cell Encapsulation for Biomaterials and Tissue Bio-Nanoengineering: History, Achievements, Limitations, and Future Work for Potential Clinical Applications and Transplantation. J Funct Biomater 2021; 12:68. [PMID: 34940547 PMCID: PMC8704355 DOI: 10.3390/jfb12040068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic β-cell loss and failure with subsequent deficiency of insulin production is the hallmark of type 1 diabetes (T1D) and late-stage type 2 diabetes (T2D). Despite the availability of parental insulin, serious complications of both types are profound and endemic. One approach to therapy and a potential cure is the immunoisolation of β cells via artificial cell microencapsulation (ACM), with ongoing promising results in human and animal studies that do not depend on immunosuppressive regimens. However, significant challenges remain in the formulation and delivery platforms and potential immunogenicity issues. Additionally, the level of impact on key metabolic and disease biomarkers and long-term benefits from human and animal studies stemming from the encapsulation and delivery of these cells is a subject of continuing debate. The purpose of this review is to summarise key advances in this field of islet transplantation using ACM and to explore future strategies, limitations, and hurdles as well as upcoming developments utilising bioengineering and current clinical trials.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| | | | - Daniel Brown
- Curtin Medical School, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia;
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (M.J.); (C.M.I.); (D.W.); (S.R.W.); (B.K.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
17
|
Pharmaceutical formulation and polymer chemistry for cell encapsulation applied to the creation of a lab-on-a-chip bio-microsystem. Ther Deliv 2021; 13:51-65. [PMID: 34821516 DOI: 10.4155/tde-2021-0067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Microencapsulation of formulation designs further expands the field and offers the potential for use in developing bioartificial organs via cell encapsulation. Combining formulation design and encapsulation requires ideal excipients to be determined. In terms of cell encapsulation, an environment which allows growth and functionality is paramount to ensuring cell survival and incorporation into a bioartificial organ. Hence, excipients are examined for both individual properties and benefits, and compatibility with encapsulated active materials. Polymers are commonly used in microencapsulation, offering protection from the immune system. Bile acids are emerging as a tool to enhance delivery, both biologically and pharmaceutically. Therefore, this review will focus on bile acids and polymers in formulation design via microencapsulation, in the field of bioartificial organ development.
Collapse
|
18
|
Kenyon NS, Willman MA, Han D, Leeman RS, Rabassa A, Diaz WL, Geary JC, Poumian-Ruiz E, Griswold AJ, Van Booven DJ, Thompson R, Ordoukhanian P, Head SR, Kenyon NM, McHenry KG, Salomon DR, Bartholomew AM, Berman DM. Extended survival versus accelerated rejection of nonhuman primate islet allografts: Effect of mesenchymal stem cell source and timing. Am J Transplant 2021; 21:3524-3537. [PMID: 34008325 PMCID: PMC9034438 DOI: 10.1111/ajt.16693] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 05/06/2021] [Indexed: 01/25/2023]
Abstract
Mesenchymal stem cells (MSC) have been shown to be immunomodulatory, tissue regenerative, and graft promoting; however, several questions remain with regard to ideal MSC source and timing of administration. In this study, we utilized a rigorous preclinical model of allogeneic islet cell transplantation, incorporating reduced immune suppression and near to complete mismatch of major histocompatibility antigens between the diabetic cynomolgus monkey recipient and the islet donor, to evaluate both the graft promoting impact of MSC source, that is, derived from the islet recipient, the islet donor or an unrelated third party as well as the impact of timing. Co-transplant of MSC and islets on post-operative day 0, followed by additional IV MSC infusions in the first posttransplant month, resulted in prolongation of rejection free and overall islet survival and superior metabolic control for animals treated with recipient as compared to donor or third-party MSC. Immunological analyses demonstrated that infusion of MSC from either source did not prevent alloantibody formation to the islet or MSC donor; however, treatment with recipient MSC resulted in significant downregulation of memory T cells, decreased anti-donor T cell proliferation, and a trend toward increased Tregulatory:Tconventional ratios.
Collapse
Affiliation(s)
- Norma S. Kenyon
- Diabetes Research Institute, University of Miami, Miami, Florida, USA,Department of Surgery, University of Miami, Miami, Florida, USA,Department of Microbiology and Immunology, University of Miami, Miami, Florida, USA,Department of Biomedical Engineering, University of Miami, Miami, Florida, USA
| | | | - Dongmei Han
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - Rachel S. Leeman
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - Alex Rabassa
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - Waldo L. Diaz
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - James C. Geary
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - Ena Poumian-Ruiz
- Diabetes Research Institute, University of Miami, Miami, Florida, USA
| | - Anthony J. Griswold
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA,The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, Florida, USA
| | - Derek J. Van Booven
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Ryan Thompson
- The Scripps Research Institute, La Jolla, California, USA
| | - Philip Ordoukhanian
- The Scripps Research Institute, La Jolla, California, USA,The Scripps Research Institute Genomics Core Facility, La Jolla, California, USA
| | - Steven R. Head
- The Scripps Research Institute, La Jolla, California, USA,The Scripps Research Institute Genomics Core Facility, La Jolla, California, USA
| | - Norman M. Kenyon
- Diabetes Research Institute, University of Miami, Miami, Florida, USA,Department of Surgery, University of Miami, Miami, Florida, USA
| | - Kenton G. McHenry
- National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Chicago, Illinois, USA
| | | | | | - Dora M. Berman
- Diabetes Research Institute, University of Miami, Miami, Florida, USA,Department of Surgery, University of Miami, Miami, Florida, USA
| |
Collapse
|
19
|
Rios P, Baidal D, Lemos J, Camhi SS, Infante M, Padilla N, Gil AMA, Fuenmayor V, Ambut J, Qasmi FA, Mantero AM, Cayetano SM, Ruiz P, Ricordi C, Alejandro R. Long-term Persistence of Allosensitization After Islet Allograft Failure. Transplantation 2021; 105:2490-2498. [PMID: 33481552 PMCID: PMC8289921 DOI: 10.1097/tp.0000000000003635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Allosensitization has been reported after discontinuation of immunosuppression following graft failure in islet transplantation (ITx) recipients, though duration of its persistence is unknown. METHODS We evaluated 35 patients with type 1 diabetes who received ITx, including 17 who developed graft failure (ITx alone, n = 13; ITx plus bone marrow-derived hematopoietic stem cells, n = 4) and 18 with persistent graft function. Panel-reactive antibody (PRA) was measured yearly for the duration of graft function within 1 y after graft failure at enrollment and yearly thereafter. RESULTS In ITx alone graft failure patients, 61% (8/13) were PRA-positive at 6 y postgraft failure, and 46% (6/13) developed donor-specific anti-HLA antibodies (DSA to 2 ± 1 donors) during follow-up. The degree of sensitization was variable (cPRA ranging between 22% and 100% after graft failure). Allosensitization persisted for 7-15 y. Three subjects (3/13) were not allosensitized. In ITx plus bone marrow-derived hematopoietic stem cell recipients, cPRA-positivity (88%-98%) and DSA positivity persisted for 15 y in 75% (3/4) of subjects. CONCLUSIONS Allosensitization was minimal while subjects remained on immunosuppression, but after discontinuation of immunosuppressive therapy, the majority of subjects (77%) became allosensitized with persistence of PRA positivity for up to 15 y. Persistence of allosensitization in this patient population is of clinical importance as it may result in longer transplant waiting list times for identification of a suitable donor in the case of requiring a subsequent transplant.
Collapse
Affiliation(s)
- Paola Rios
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL
| | - David Baidal
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Joana Lemos
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL
| | - Stephanie S. Camhi
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL
| | - Marco Infante
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL
| | - Nathalia Padilla
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL
| | - Ana M. Alvarez Gil
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL
| | - Virginia Fuenmayor
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL
| | - Jonathan Ambut
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL
| | - Fatima A. Qasmi
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL
| | - Alejandro M. Mantero
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL
| | - Shari Messinger Cayetano
- Division of Biostatistics, Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL
| | - Phillip Ruiz
- Department of Surgery and Pathology, University of Miami Miller School of Medicine, University of Miami Miller School of Medicine, Miami, FL
| | - Camillo Ricordi
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL
- Division of Cellular Transplantation, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL
| | - Rodolfo Alejandro
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, University of Miami Miller School of Medicine, Miami, FL
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL
| |
Collapse
|
20
|
Parsons RF, Baquerizo A, Kirchner VA, Malek S, Desai CS, Schenk A, Finger EB, Brennan TV, Parekh KR, MacConmara M, Brayman K, Fair J, Wertheim JA. Challenges, highlights, and opportunities in cellular transplantation: A white paper of the current landscape. Am J Transplant 2021; 21:3225-3238. [PMID: 34212485 DOI: 10.1111/ajt.16740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023]
Abstract
Although cellular transplantation remains a relatively small field compared to solid organ transplantation, the prospects for advancement in basic science and clinical care remain bountiful. In this review, notable historical events and the current landscape of the field of cellular transplantation are reviewed with an emphasis on islets (allo- and xeno-), hepatocytes (including bioartificial liver), adoptive regulatory immunotherapy, and stem cells (SCs, specifically endogenous organ-specific and mesenchymal). Also, the nascent but rapidly evolving field of three-dimensional bioprinting is highlighted, including its major processing steps and latest achievements. To reach its full potential where cellular transplants are a more viable alternative than solid organ transplants, fundamental change in how the field is regulated and advanced is needed. Greater public and private investment in the development of cellular transplantation is required. Furthermore, consistent with the call of multiple national transplant societies for allo-islet transplants, the oversight of cellular transplants should mirror that of solid organ transplants and not be classified under the unsustainable, outdated model that requires licensing as a drug with the Food and Drug Administration. Cellular transplantation has the potential to bring profound benefit through progress in bioengineering and regenerative medicine, limiting immunosuppression-related toxicity, and providing markedly reduced surgical morbidity.
Collapse
Affiliation(s)
- Ronald F Parsons
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, Georgia
| | - Angeles Baquerizo
- Scripps Center for Cell and Organ Transplantation, La Jolla, California
| | - Varvara A Kirchner
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Sayeed Malek
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chirag S Desai
- Division of Transplantation, Department of Surgery, University of North Carolina, Chapel Hill, North Carolina
| | - Austin Schenk
- Division of Transplantation, Department of Surgery, Ohio State University, Columbus, Ohio
| | - Erik B Finger
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, Minnesota
| | - Todd V Brennan
- Department of Surgery, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Kalpaj R Parekh
- Division of Cardiothoracic Surgery, Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Malcolm MacConmara
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kenneth Brayman
- Division of Transplantation, Department of Surgery, University of Virginia, Charlottesville, Virginia
| | - Jeffrey Fair
- Division of Transplant Surgery, Department of Surgery, University of Texas Medical Branch, Galveston, Texas
| | - Jason A Wertheim
- Departments of Surgery and Biomedical Engineering, University of Arizona Health Sciences, Tucson, Arizona
| | | |
Collapse
|
21
|
Olack BJ, Alexander M, Swanson CJ, Kilburn J, Corrales N, Flores A, Heng J, Arulmoli J, Omori K, Chlebeck PJ, Zitur L, Salgado M, Lakey JRT, Niland JC. Optimal Time to Ship Human Islets Post Tissue Culture to Maximize Islet. Cell Transplant 2021; 29:963689720974582. [PMID: 33231091 PMCID: PMC7885128 DOI: 10.1177/0963689720974582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Access to functional high-quality pancreatic human islets is critical to advance diabetes research. The Integrated Islet Distribution Program (IIDP), a major source for human islet distribution for over 15 years, conducted a study to evaluate the most advantageous times to ship islets postisolation to maximize islet recovery. For the evaluation, three experienced IIDP Islet Isolation Centers each provided samples from five human islet isolations, shipping 10,000 islet equivalents (IEQ) at four different time periods postislet isolation (no 37°C culture and shipped within 0 to 18 hours; or held in 37°C culture for 18 to 42, 48 to 96, or 144 to 192 hours). A central evaluation center compared samples for islet quantity, quality, and viability for each experimental condition preshipment and postshipment, as well as post 37°C culture 18 to 24 hours after shipment receipt. Additional evaluations included measures of functional potency by static glucose-stimulated insulin release (GSIR), represented as a stimulation index. Comparing the results of the four preshipment holding periods, the greatest IEQ loss postshipment occurred with the shortest preshipment times. Similar patterns emerged when comparing preshipment to postculture losses. In vitro islet function (GSIR) was not adversely impacted by increased tissue culture time. These data indicate that allowing time for islet recovery postisolation, prior to shipping, yields less islet loss during shipment without decreasing islet function.
Collapse
Affiliation(s)
- Barbara J Olack
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Michael Alexander
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Carol J Swanson
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Julie Kilburn
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| | - Nicole Corrales
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Antonio Flores
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | - Jennifer Heng
- Department of Surgery, University of California Irvine, Orange, CA, USA
| | | | - Keiko Omori
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - Peter J Chlebeck
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Laura Zitur
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Mayra Salgado
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, USA
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange, CA, USA.,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Joyce C Niland
- Integrated Islet Distribution Program, Department of Diabetes & Cancer Discovery Science, City of Hope, Duarte, CA, USA
| |
Collapse
|
22
|
Murray HE, Zafar A, Qureshi KM, Paget MB, Bailey CJ, Downing R. The potential role of multifunctional human amniotic epithelial cells in pancreatic islet transplantation. J Tissue Eng Regen Med 2021; 15:599-611. [PMID: 34216434 DOI: 10.1002/term.3214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/23/2021] [Indexed: 11/08/2022]
Abstract
Pancreatic islet cell transplantation has proven efficacy as a treatment for type 1 diabetes mellitus, chiefly in individuals who are refractory to conventional insulin replacement therapy. At present its clinical use is restricted, firstly by the limited access to suitable donor organs but also due to factors associated with the current clinical transplant procedure which inadvertently impair the long-term functionality of the islet graft. Of note, the physical, biochemical, inflammatory, and immunological stresses to which islets are subjected, either during pretransplant processing or following implantation are detrimental to their sustained viability, necessitating repeated islet infusions to attain adequate glucose control. Progressive decline in functional beta (β)-cell mass leads to graft failure and the eventual re-instatement of exogenous insulin treatment. Strategies which protect and/or preserve optimal islet function in the peri-transplant period would improve clinical outcomes. Human amniotic epithelial cells (HAEC) exhibit both pluripotency and immune-privilege and are ideally suited for use in replacement and regenerative therapies. The HAEC secretome exhibits trophic, anti-inflammatory, and immunomodulatory properties of relevance to islet graft survival. Facilitated by β-cell supportive 3D cell culture systems, HAEC may be integrated with islets bringing them into close spatial arrangement where they may exert paracrine influences that support β-cell function, reduce hypoxia-induced islet injury, and alter islet alloreactivity. The present review details the potential of multifunctional HAEC in the context of islet transplantation, with a focus on the innate capabilities that may counter adverse events associated with the current clinical transplant protocol to achieve long-term islet graft function.
Collapse
Affiliation(s)
- Hilary E Murray
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Ali Zafar
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Khalid M Qureshi
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK.,Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Michelle B Paget
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| | - Clifford J Bailey
- Diabetes Research, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Richard Downing
- The Islet Research Laboratory, Worcester Clinical Research Unit, Worcestershire Acute Hospitals NHS Trust, Worcester, UK
| |
Collapse
|
23
|
Witkowski P, Philipson LH, Kaufman DB, Ratner LE, Abouljoud MS, Bellin MD, Buse JB, Kandeel F, Stock PG, Mulligan DC, Markmann JF, Kozlowski T, Andreoni KA, Alejandro R, Baidal DA, Hardy MA, Wickrema A, Mirmira RG, Fung J, Becker YT, Josephson MA, Bachul PJ, Pyda JS, Charlton M, Millis JM, Gaglia JL, Stratta RJ, Fridell JA, Niederhaus SV, Forbes RC, Jayant K, Robertson RP, Odorico JS, Levy MF, Harland RC, Abrams PL, Olaitan OK, Kandaswamy R, Wellen JR, Japour AJ, Desai CS, Naziruddin B, Balamurugan AN, Barth RN, Ricordi C. The demise of islet allotransplantation in the United States: A call for an urgent regulatory update. Am J Transplant 2021; 21:1365-1375. [PMID: 33251712 PMCID: PMC8016716 DOI: 10.1111/ajt.16397] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 02/06/2023]
Abstract
Islet allotransplantation in the United States (US) is facing an imminent demise. Despite nearly three decades of progress in the field, an archaic regulatory framework has stymied US clinical practice. Current regulations do not reflect the state-of-the-art in clinical or technical practices. In the US, islets are considered biologic drugs and "more than minimally manipulated" human cell and tissue products (HCT/Ps). In contrast, across the world, human islets are appropriately defined as "minimally manipulated tissue" and not regulated as a drug, which has led to islet allotransplantation (allo-ITx) becoming a standard-of-care procedure for selected patients with type 1 diabetes mellitus. This regulatory distinction impedes patient access to islets for transplantation in the US. As a result only 11 patients underwent allo-ITx in the US between 2016 and 2019, and all as investigational procedures in the settings of a clinical trials. Herein, we describe the current regulations pertaining to islet transplantation in the United States. We explore the progress which has been made in the field and demonstrate why the regulatory framework must be updated to both better reflect our current clinical practice and to deal with upcoming challenges. We propose specific updates to current regulations which are required for the renaissance of ethical, safe, effective, and affordable allo-ITx in the United States.
Collapse
Affiliation(s)
- Piotr Witkowski
- Department of Surgery, Transplantation Institute, University of Chicago, Chicago, Illinois, USA
| | | | - Dixon B. Kaufman
- Division of Transplantation, Department of Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Lloyd E. Ratner
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Marwan S. Abouljoud
- Transplant and Hepatobiliary Surgery, Henry Ford Hospital, Detroit, Michigan, USA
| | - Melena D. Bellin
- Schulze Diabetes Institute, Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - John B. Buse
- Division of Endocrinology, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Peter G. Stock
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, California, USA
| | - David C. Mulligan
- Department of Surgery, Transplantation and Immunology, Yale University, New Haven, Connecticut, USA
| | - James F. Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomasz Kozlowski
- Division of Transplantation, Department of Surgery, The University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Kenneth A. Andreoni
- Department of Surgery, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Rodolfo Alejandro
- Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, Florida, USA
| | - David A. Baidal
- Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, Florida, USA
| | - Mark A. Hardy
- Department of Surgery, Columbia University College of Physicians and Surgeons, New York, New York, USA
| | - Amittha Wickrema
- Department of Medicine, Section of Hematology and Oncology, University of Chicago, Chicago, Illinois, USA
| | - Raghavendra G. Mirmira
- Department of Medicine, Translational Research Center, University of Chicago, Chicago, Illinois, USA
| | - John Fung
- Department of Surgery, Transplantation Institute, University of Chicago, Chicago, Illinois, USA
| | - Yolanda T. Becker
- Department of Surgery, Transplantation Institute, University of Chicago, Chicago, Illinois, USA
| | - Michelle A. Josephson
- Department of Surgery, Transplantation Institute, University of Chicago, Chicago, Illinois, USA
| | - Piotr J. Bachul
- Department of Surgery, Transplantation Institute, University of Chicago, Chicago, Illinois, USA
| | - Jordan S. Pyda
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Charlton
- Department of Surgery, Transplantation Institute, University of Chicago, Chicago, Illinois, USA
| | - J. Michael Millis
- Department of Surgery, Transplantation Institute, University of Chicago, Chicago, Illinois, USA
| | - Jason L. Gaglia
- Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert J. Stratta
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Jonathan A. Fridell
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Silke V. Niederhaus
- Department of Surgery, University of Maryland Medical Center, Baltimore, Maryland, USA
| | - Rachael C. Forbes
- Division of Kidney and Pancreas Transplantation, Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kumar Jayant
- Department of Surgery, Transplantation Institute, University of Chicago, Chicago, Illinois, USA
| | - R. Paul Robertson
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Washington, Seattle, Washington, USA
| | - Jon S. Odorico
- Division of Transplantation, Department of Surgery, University of Wisconsin, School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Marlon F. Levy
- Division of Transplantation, Hume-Lee Transplant Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | | - Peter L. Abrams
- MedStar Georgetown Transplant Institute, Washington, District of Columbia, USA
| | | | - Raja Kandaswamy
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason R. Wellen
- Department of Surgery, Washington University, St Louis, Missouri, USA
| | - Anthony J. Japour
- Anthony Japour and Associates, Medical and Scientific Consulting Inc, Miami, FL, USA
| | - Chirag S. Desai
- Department of Surgery, Section of Transplantation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Bashoo Naziruddin
- Transplantation Institute, Baylor University Medical Center, Dallas, Texas, USA
| | - Appakalai N. Balamurugan
- Division of Pediatric General and Thoracic Surgery, Department of Surgery, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Rolf N. Barth
- Department of Surgery, Transplantation Institute, University of Chicago, Chicago, Illinois, USA
| | - Camillo Ricordi
- Diabetes Research Institute and Cell Transplant Center, University of Miami, Miami, Florida, USA
| | | |
Collapse
|
24
|
Nalbach L, Roma LP, Schmitt BM, Becker V, Körbel C, Wrublewsky S, Pack M, Später T, Metzger W, Menger MM, Frueh FS, Götz C, Lin H, EM Fox J, MacDonald PE, Menger MD, Laschke MW, Ampofo E. Improvement of islet transplantation by the fusion of islet cells with functional blood vessels. EMBO Mol Med 2021; 13:e12616. [PMID: 33135383 PMCID: PMC7799357 DOI: 10.15252/emmm.202012616] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic islet transplantation still represents a promising therapeutic strategy for curative treatment of type 1 diabetes mellitus. However, a limited number of organ donors and insufficient vascularization with islet engraftment failure restrict the successful transfer of this approach into clinical practice. To overcome these problems, we herein introduce a novel strategy for the generation of prevascularized islet organoids by the fusion of pancreatic islet cells with functional native microvessels. These insulin-secreting organoids exhibit a significantly higher angiogenic activity compared to freshly isolated islets, cultured islets, and non-prevascularized islet organoids. This is caused by paracrine signaling between the β-cells and the microvessels, mediated by insulin binding to its corresponding receptor on endothelial cells. In vivo, the prevascularized islet organoids are rapidly blood-perfused after transplantation by the interconnection of their autochthonous microvasculature with surrounding blood vessels. As a consequence, a lower number of islet grafts are required to restore normoglycemia in diabetic mice. Thus, prevascularized islet organoids may be used to improve the success rates of clinical islet transplantation.
Collapse
Affiliation(s)
- Lisa Nalbach
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Leticia P Roma
- Biophysics DepartmentCenter for Human and Molecular BiologySaarland UniversityHomburg/SaarGermany
| | - Beate M Schmitt
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Vivien Becker
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Christina Körbel
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Selina Wrublewsky
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Mandy Pack
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Thomas Später
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Wolfgang Metzger
- Department of Trauma, Hand and Reconstructive SurgerySaarland UniversityHomburgGermany
| | - Maximilian M Menger
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
- Departement of Trauma and Reconstructive SurgeryEberhar Karls University TuebingenTuebingenGermany
| | - Florian S Frueh
- Division of Plastic Surgery and Hand SurgeryUniversity Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Claudia Götz
- Medical Biochemistry and Molecular BiologySaarland UniversityHomburgGermany
| | - Haopeng Lin
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Joseline EM Fox
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Patrick E MacDonald
- Department of PharmacologyAlberta Diabetes InstituteUniversity of AlbertaEdmontonABCanada
| | - Michael D Menger
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Matthias W Laschke
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental SurgerySaarland UniversityHomburg/SaarGermany
| |
Collapse
|
25
|
Hypoxia-Preconditioned Wharton's Jelly-Derived Mesenchymal Stem Cells Mitigate Stress-Induced Apoptosis and Ameliorate Human Islet Survival and Function in Direct Contact Coculture System. Stem Cells Int 2021; 2020:8857457. [PMID: 33381188 PMCID: PMC7759420 DOI: 10.1155/2020/8857457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/08/2020] [Accepted: 11/30/2020] [Indexed: 12/17/2022] Open
Abstract
Protection of isolated pancreatic islets against hypoxic and oxidative damage-induced apoptosis is essential during a pretransplantation culture period. A beneficial approach to maintain viable and functional islets is the coculture period with mesenchymal stem cells (MSCs). Hypoxia preconditioning of MSCs (Hpc-MSCs) for a short time stimulates the expression and secretion of antiapoptotic, antioxidant, and prosurvival factors. The aim of the present study was to evaluate the survival and function of human islets cocultured with Hpc-MSCs. Wharton's jelly-derived MSCs were subjected to hypoxia (5% O2: Hpc) or normoxia (20% O2: Nc) for 24 hours and then cocultured with isolated human islets in direct and indirect systems. Assays of viability and apoptosis, along with the production of reactive oxygen species (ROS), hypoxia-inducible factor 1-alpha (HIF-1α), apoptotic pathway markers, and vascular endothelial growth factor (VEGF) in the islets, were performed. Insulin and C-peptide secretions as islet function were also evaluated. Hpc-MSCs and Nc-MSCs significantly reduced the ROS production and HIF-1α protein aggregation, as well as downregulation of proapoptotic proteins and upregulation of antiapoptotic marker along with increment of VEGF secretion in the cocultured islet. However, the Hpc-MSCs groups were better than Nc-MSCs cocultured islets. Hpc-MSCs in both direct and indirect coculture systems improved the islet survival, while promotion of function was only significant in the direct cocultured cells. Hpc potentiated the cytoprotective and insulinotropic effects of MSCs on human islets through reducing stressful markers, inhibiting apoptosis pathway, enhancing prosurvival factors, and promoting insulin secretion, especially in direct coculture system, suggesting the effective strategy to ameliorate the islet quality for better transplantation outcomes.
Collapse
|
26
|
Chung WY, Pollard CA, Kumar R, Drogemuller CJ, Naziruddin B, Stover C, Issa E, Isherwood J, Cooke J, Levy MF, Coates PTH, Garcea G, Dennison AR. A comparison of the inflammatory response following autologous compared with allogenic islet cell transplantation. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:98. [PMID: 33569400 PMCID: PMC7867892 DOI: 10.21037/atm-20-3519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The initial response to islet transplantation and the subsequent acute inflammation is responsible for significant attrition of islets following both autologous and allogenic procedures. This multicentre study compares this inflammatory response using cytokine profiles and complement activation. Methods Inflammatory cytokine and complement pathway activity were examined in two cohorts of patients undergoing total pancreatectomy followed either by autologous (n=11) or allogenic (n=6) islet transplantation. Two patients who underwent total pancreatectomy alone (n=2) served as controls. Results The peak of cytokine production occurred immediately following induction of anaesthesia and during surgery. There was found to be a greater elevation of the following cytokines: TNF-alpha (P<0.01), MCP-1 (P=0.0013), MIP-1α (P=0.001), MIP-1β (P=0.00020), IP-10 (P=0.001), IL-8 (P=0.004), IL-1α (P=0.001), IL-1ra (0.0018), IL-10 (P=0.001), GM-CSF (P=0.001), G-CSF (P=0.0198), and Eotaxin (P=0.01) in the allogenic group compared to autografts and controls. Complement activation and consumption was observed in all three pathways, and there were no significant differences in between the groups although following allogenic transplantation ∆IL-10 and ∆VEGF levels were significantly elevated those patients who became insulin-independent compared with those who were insulin-dependent. Conclusions The cytokine profiles following islet transplantation suggests a significantly greater acute inflammatory response following allogenic islet transplantation compared with auto-transplantation although a significant, non-specific inflammatory response occurs following both forms of islet transplantation.
Collapse
Affiliation(s)
- Wen Yuan Chung
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Cristina A Pollard
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Rohan Kumar
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | | | | | - Cordula Stover
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Eyad Issa
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - John Isherwood
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Jill Cooke
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Marlon F Levy
- Baylor Research Institute, Dallas & Fort Worth, TX, USA
| | - P Toby H Coates
- Australian Islet Consortium, Royal Adelaide Hospital, South Australia, Australia
| | - Giuseppe Garcea
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| | - Ashley R Dennison
- Department of Hepatobiliary and Pancreatic Surgery, Leicester General Hospital, Leicester, UK
| |
Collapse
|
27
|
Noguchi H. Pancreatic Islet Purification from Large Mammals and Humans Using a COBE 2991 Cell Processor versus Large Plastic Bottles. J Clin Med 2020; 10:jcm10010010. [PMID: 33374512 PMCID: PMC7793136 DOI: 10.3390/jcm10010010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
The islet purification step in clinical islet isolation is important for minimizing the risks associated with intraportal infusion. Continuous density gradient with a COBE 2991 cell processor is commonly used for clinical islet purification. However, the high shear force involved in the purification method using the COBE 2991 cell processor causes mechanical damage to the islets. We and other groups have shown human/porcine islet purification using large cylindrical plastic bottles. Shear stress can be minimized or eliminated using large cylindrical plastic bottles because the bottles do not have a narrow segment and no centrifugation is required during tissue loading and the collection processes of islet purification. This review describes current advances in islet purification from large mammals and humans using a COBE 2991 cell processor versus large cylindrical plastic bottles.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
28
|
Yang Z, Li X, Zhang C, Sun N, Guo T, Lin J, Li F, Zhang J. Amniotic Membrane Extract Protects Islets From Serum-Deprivation Induced Impairments and Improves Islet Transplantation Outcome. Front Endocrinol (Lausanne) 2020; 11:587450. [PMID: 33363516 PMCID: PMC7753361 DOI: 10.3389/fendo.2020.587450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/04/2020] [Indexed: 11/25/2022] Open
Abstract
Islet culture prior to transplantation is a standard practice in many transplantation centers. Nevertheless, the abundant islet mass loss and function impairment during this serum-deprivation culture period restrain the success of islet transplantation. In the present study, we used a natural biomaterial derived product, amniotic membrane extract (AME), as medium supplementation of islet pretransplant cultivation to investigate its protective effect on islet survival and function and its underlying mechanisms, as well as the engraftment outcome of islets following AME treatment. Results showed that AME supplementation improved islet viability and function, and decreased islet apoptosis and islet loss during serum-deprived culture. This was associated with the increased phosphorylation of PI3K/Akt and MAPK/ERK signaling pathway. Moreover, transplantation of serum-deprivation stressed islets that were pre-treated with AME into diabetic mice revealed better blood glucose control and improved islet graft survival. In conclusion, AME could improve islet survival and function in vivo and in vitro, and was at least partially through increasing phosphorylation of PI3K/Akt and MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jialin Zhang
- Department of Hepatobiliary Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Keshtkar S, Kaviani M, Sarvestani FS, Ghahremani MH, Aghdaei MH, Al-Abdullah IH, Azarpira N. Exosomes derived from human mesenchymal stem cells preserve mouse islet survival and insulin secretion function. EXCLI JOURNAL 2020; 19:1064-1080. [PMID: 33013264 PMCID: PMC7527509 DOI: 10.17179/excli2020-2451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022]
Abstract
Islet cell death and loss of function after isolation and before transplantation is considered a key barrier to successful islet transplantation outcomes. Mesenchymal stem cells (MSCs) have been used to protect isolated islets owing to their paracrine potential partially through the secretion of vascular endothelial growth factor (VEGF). The paracrine functions of MSCs are also mediated, at least in part, by the release of extracellular vesicles including exosomes. In the present study, we examined (i) the effect of exosomes from human MSCs on the survival and function of isolated mouse islets and (ii) whether exosomes contain VEGF and the potential impact of exosomal VEGF on the survival of mouse islets. Isolated mouse islets were cultured for three days with MSC-derived exosomes (MSC-Exo), MSCs, or MSC-conditioned media without exosomes (MSC-CM-without-Exo). We investigated the effects of the exosomes, MSCs, and conditioned media on islet viability, apoptosis and function. Besides the expression of apoptotic and pro-survival genes, the production of human and mouse VEGF proteins was evaluated. The MSCs and MSC-Exo, but not the MSC-CM-without-Exo, significantly decreased the percentage of apoptotic cells and increased islet viability following the downregulation of pro-apoptotic genes and the upregulation of pro-survival factors, as well as the promotion of insulin secretion. Human VEGF was observed in the isolated exosomes, and the gene expression and protein production of mouse VEGF significantly increased in islets cultured with MSC-Exo. MSC-derived exosomes are as efficient as parent MSCs for mitigating cell death and improving islet survival and function. This cytoprotective effect was probably mediated by VEGF transfer, suggesting a pivotal strategy for ameliorating islet transplantation outcomes.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA/USA
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Keshtkar S, Kaviani M, Jabbarpour Z, Al-Abdullah IH, Aghdaei MH, Nikeghbalian S, Shamsaeefar A, Geramizadeh B, Azarpira N, Ghahremani MH. Significant reduction of apoptosis induced via hypoxia and oxidative stress in isolated human islet by resveratrol. Nutr Metab Cardiovasc Dis 2020; 30:1216-1226. [PMID: 32482454 DOI: 10.1016/j.numecd.2020.04.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/06/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Successful islet transplantation as a promising treatment of diabetes type 1 is threatened with the loss of islets during the pre-transplant culture due to hypoxia and oxidative stress-induced apoptosis. Therefore, optimization of culture in order to preserve the islets is a critical point. In this study, we investigated the effect of resveratrol, as a cytoprotective agent, on the cultured human islets. METHODS AND RESULTS Isolated islets were treated with different concentrations of resveratrol for 24 and 72 h. Islets' viability, apoptosis, apoptosis markers, and insulin and C-peptide secretion, along with the production of reactive oxygen species (ROS), hypoxia inducible factor 1 alpha (HIF-1α), and its target genes in the islets were investigated. Our findings showed that the islets were exposed to hypoxia and oxidative stress after isolation and during culture. This insult induced apoptosis and decreased viability during 72 h. The presence of resveratrol significantly attenuated HIF-1α and ROS production, reduced apoptosis, promoted the VEGF secretion, and increased the insulin and C-peptide secretion. In this regard, resveratrol improved the islet's survival and function in the culture period. CONCLUSIONS Using resveratrol can attenuate the stressful condition for the islets in the pre-transplant culture and subsequently ameliorate their viability and functionality that lead to successful outcome after clinical transplantation.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Jabbarpour
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, USA
| | - Mahdokht H Aghdaei
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saman Nikeghbalian
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shamsaeefar
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Shiraz Institute of Stem Cell and Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad H Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
31
|
Maffi P, Lundgren T, Tufveson G, Rafael E, Shaw JAM, Liew A, Saudek F, Witkowski P, Golab K, Bertuzzi F, Gustafsson B, Daffonchio L, Ruffini PA, Piemonti L. Targeting CXCR1/2 Does Not Improve Insulin Secretion After Pancreatic Islet Transplantation: A Phase 3, Double-Blind, Randomized, Placebo-Controlled Trial in Type 1 Diabetes. Diabetes Care 2020; 43:710-718. [PMID: 32019854 PMCID: PMC7876579 DOI: 10.2337/dc19-1480] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Reparixin is an inhibitor of CXCR1/2 chemokine receptor shown to be an effective anti-inflammatory adjuvant in a pilot clinical trial in allotransplant recipients. RESEARCH DESIGN AND METHODS A phase 3, multicenter, randomized, double-blind, parallel-assignment study (NCT01817959) was conducted in recipients of islet allotransplants randomized (2:1) to reparixin or placebo in addition to immunosuppression. Primary outcome was the area under the curve (AUC) for C-peptide during the mixed-meal tolerance test at day 75 ± 5 after the first and day 365 ± 14 after the last transplant. Secondary end points included insulin independence and standard measures of glycemic control. RESULTS The intention-to-treat analysis did not show a significant difference in C-peptide AUC at both day 75 (27 on reparixin vs. 18 on placebo, P = 0.99) and day 365 (24 on reparixin vs. 15 on placebo, P = 0.71). There was no statistically significant difference between treatment groups at any time point for any secondary variable. Analysis of patient subsets showed a trend for a higher percentage of subjects retaining insulin independence for 1 year after a single islet infusion in patients receiving reparixin as compared with patients receiving placebo (26.7% vs. 0%, P = 0.09) when antithymocyte globulin was used as induction immunosuppression. CONCLUSIONS In this first double-blind randomized trial, islet transplantation data obtained with reparixin do not support a role of CXCR1/2 inhibition in preventing islet inflammation-mediated damage.
Collapse
Affiliation(s)
- Paola Maffi
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Torbjörn Lundgren
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Karolinska, Sweden
| | | | | | - James A M Shaw
- Institute of Cellular Medicine, Newcastle University, and Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, U.K
| | - Aaron Liew
- Institute of Cellular Medicine, Newcastle University, and Freeman Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, U.K
| | - Frantisek Saudek
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Piotr Witkowski
- Transplantation Institute, University of Chicago Medicine, Chicago, IL
| | - Karolina Golab
- Transplantation Institute, University of Chicago Medicine, Chicago, IL
| | | | | | - Luisa Daffonchio
- Research and Development Department, Dompé farmaceutici S.p.A., Milan, Italy
| | | | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
32
|
Stabler CL, Giraldo JA, Berman DM, Gattás-Asfura KM, Willman MA, Rabassa A, Geary J, Diaz W, Kenyon NM, Kenyon NS. Transplantation of PEGylated islets enhances therapeutic efficacy in a diabetic nonhuman primate model. Am J Transplant 2020; 20:689-700. [PMID: 31597005 PMCID: PMC7042048 DOI: 10.1111/ajt.15643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/19/2019] [Accepted: 09/29/2019] [Indexed: 01/25/2023]
Abstract
Islet cell transplantation can lead to insulin independence, reduced hypoglycemia, and amelioration of diabetes complications in patients with type 1 diabetes. The systemic delivery of anti-inflammatory agents, while considered crucial to limit the early loss of islets associated with intrahepatic infusion, increases the burden of immunosuppression. In an effort to decrease the pharmaceutical load to the patient, we modified the pancreatic islet surface with long-chain poly(ethylene glycol) (PEG) to mitigate detrimental host-implant interactions. The effect of PEGylation on islet engraftment and long-term survival was examined in a robust nonhuman primate model via three paired transplants of dosages 4300, 8300, and 10 000 islet equivalents per kg body weight. A reduced immunosuppressive regimen of anti-thymocyte globulin induction plus tacrolimus in the first posttransplant month followed by maintenance with sirolimus monotherapy was employed. To limit transplant variability, two of the three pairs were closely MHC-matched recipients and received MHC-disparate PEGylated or untreated islets isolated from the same donors. Recipients of PEGylated islets exhibited significantly improved early c-peptide levels, reduced exogenous insulin requirements, and superior glycemic control, as compared to recipients of untreated islets. These results indicate that this simple islet modification procedure may improve islet engraftment and survival in the setting of reduced immunosuppression.
Collapse
Affiliation(s)
- CL Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL USA,Diabetes Research Institute, University of Miami, Miami, FL USA,Corresponding Authors: Prof Cherie Stabler, ; Prof Norma Kenyon,
| | - JA Giraldo
- Diabetes Research Institute, University of Miami, Miami, FL USA
| | - DM Berman
- Diabetes Research Institute, University of Miami, Miami, FL USA,Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - KM Gattás-Asfura
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL USA,Diabetes Research Institute, University of Miami, Miami, FL USA
| | - MA Willman
- Diabetes Research Institute, University of Miami, Miami, FL USA
| | - A Rabassa
- Diabetes Research Institute, University of Miami, Miami, FL USA
| | - J Geary
- Diabetes Research Institute, University of Miami, Miami, FL USA
| | - W Diaz
- Diabetes Research Institute, University of Miami, Miami, FL USA
| | - NM Kenyon
- Diabetes Research Institute, University of Miami, Miami, FL USA
| | - NS Kenyon
- Diabetes Research Institute, University of Miami, Miami, FL USA,Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136,Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136,Biomedical Engineering, University of Miami, Miami, FL 33136,Corresponding Authors: Prof Cherie Stabler, ; Prof Norma Kenyon,
| |
Collapse
|
33
|
Loganathan G, Balamurugan AN, Venugopal S. Human pancreatic tissue dissociation enzymes for islet isolation: Advances and clinical perspectives. Diabetes Metab Syndr 2020; 14:159-166. [PMID: 32088647 DOI: 10.1016/j.dsx.2020.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Successful clinical human allo or auto-islet transplantation requires the recovery of a sufficient number of functional islets from either brain-dead or chronic pancreatitis pancreases respectively. METHODS In the last two decades (2000-2019), significant progress has been made in improving the human islet isolation procedures and in standardizing the use of different tissue dissociation enzyme (TDE; a mixture of collagenase and protease enzymes) blends to recover higher islet yields. RESULTS AND CONCLUSIONS This review presents information focusing on properties and role of TDE blends during the islet isolation process, particularly emphasizing on the current developments, associated challenges and future perspectives within the field.
Collapse
Affiliation(s)
- Gopalakrishnan Loganathan
- Clinical Islet Cell Laboratory, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY, USA; School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Appakalai N Balamurugan
- Clinical Islet Cell Laboratory, Cardiovascular Innovation Institute, Department of Surgery, University of Louisville, Louisville, KY, USA
| | - Subhashree Venugopal
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India.
| |
Collapse
|
34
|
Najdahmadi A, Smink AM, de Vos P, Lakey JR, Botvinick E. Non-Invasive Monitoring of Oxygen Tension and Oxygen Transport Inside Subcutaneous Devices After H 2S Treatment. Cell Transplant 2020; 29:963689719893936. [PMID: 32024377 PMCID: PMC7444232 DOI: 10.1177/0963689719893936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 10/21/2019] [Accepted: 11/08/2019] [Indexed: 12/17/2022] Open
Abstract
Medical devices for cell therapy can be improved through prevascularization. In this work we study the vascularization of a porous polymer device, previously used by our group for pancreatic islet transplantation with results indicating improved glycemic control. Oxygen partial pressure within such devices was monitored non-invasively using an optical technique. Oxygen-sensitive tubes were fabricated and placed inside devices prior to subcutaneous implantation in nude mice. We tested the hypothesis that vascularization will be enhanced by administration of the pro-angiogenic factor hydrogen sulfide (H2S). We found that oxygen dynamics were unique to each implant and that the administration of H2S does not result in significant changes in perfusion of the devices as compared with control. These observations suggest that vascular perfusion and density are not necessarily correlated, and that the rate of vascularization was not enhanced by the pro-angiogenic agent.
Collapse
Affiliation(s)
- Avid Najdahmadi
- Department of Materials Science and Engineering, University of
California Irvine, Irvine, CA, USA
| | - Alexandra M. Smink
- Department of Pathology and Medical Biology, University Medical
Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical
Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jonathan R.T. Lakey
- Department of Biomedical Engineering, University of California
Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA,
USA
| | - Elliot Botvinick
- Department of Materials Science and Engineering, University of
California Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California
Irvine, Irvine, CA, USA
- Department of Surgery, University of California Irvine, Irvine, CA,
USA
| |
Collapse
|
35
|
Infante M, Ricordi C, Padilla N, Alvarez A, Linetsky E, Lanzoni G, Mattina A, Bertuzzi F, Fabbri A, Baidal D, Alejandro R. The Role of Vitamin D and Omega-3 PUFAs in Islet Transplantation. Nutrients 2019; 11:E2937. [PMID: 31816979 PMCID: PMC6950335 DOI: 10.3390/nu11122937] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022] Open
Abstract
Recurrence of autoimmunity and allograft rejection represent major challenges that impact the success of islet transplantation. Despite the remarkable improvements achieved in immunosuppression strategies after the publication of the Edmonton protocol, long-term data of intra-hepatic islet transplantation show a gradual decline in beta-cell function. Therefore, there is a growing interest in the investigation of novel, safe and effective anti-inflammatory and immunomodulatory strategies able to promote long-term islet graft survival and notable improvements in clinical outcomes of islet transplant recipients. Vitamin D has been shown to exert anti-inflammatory and immunomodulatory effects. Pre-clinical studies investigating the use of vitamin D and its analogs (alone or in combination with immunosuppressive agents and/or other anti-inflammatory agents, such as omega-3 polyunsaturated fatty acids) showed beneficial results in terms of islet graft survival and prevention of recurrence of autoimmunity/allograft rejection in animal models of syngeneic and allogeneic islet transplantation. Moreover, epidemiologic studies demonstrated that vitamin D deficiency is highly prevalent after solid organ transplantation (e.g., heart, liver or kidney transplantation). However, studies that critically assess the prevalence of vitamin D deficiency among islet transplant recipients have yet to be conducted. In addition, prospective studies aimed to address the safety and efficacy of vitamin D supplementation as an adjuvant immunomodulatory strategy in islet transplant recipients are lacking and are therefore awaited in the future.
Collapse
Affiliation(s)
- Marco Infante
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - Camillo Ricordi
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
| | - Nathalia Padilla
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
| | - Ana Alvarez
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
| | - Elina Linetsky
- Diabetes Research Institute (DRI) and Cell Transplant Center, cGMP Cell Processing Facility, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Giacomo Lanzoni
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
| | - Alessandro Mattina
- Diabetes and Islet Transplantation Unit, Department of Diagnostic and Therapeutic Services, IRCCS-ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad alta specializzazione), UPMC, 90127 Palermo, Italy;
| | | | - Andrea Fabbri
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | - David Baidal
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
| | - Rodolfo Alejandro
- Diabetes Research Institute (DRI) and Clinical Cell Transplant Program, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (C.R.); (N.P.); (A.A.); (G.L.); (D.B.); (R.A.)
| |
Collapse
|
36
|
Zhan Y, Wu Y, Chen J. Carbogen gas-challenge BOLD fMRI in assessment of liver hypoxia after portal microcapsules implantation. PLoS One 2019; 14:e0225665. [PMID: 31774857 PMCID: PMC6881018 DOI: 10.1371/journal.pone.0225665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022] Open
Abstract
Background Hypoxia is one of the key factors affecting the survival of islet cells transplanted via the portal vein. Blood oxygen level dependent functional magnetic resonance imaging (BOLD-fMRI) is the only imaging technique that can detect the level of blood oxygen level in vivo. However, so far no study has indicated that BOLD-fMRI can be applied to monitor the liver oxygen level after islet transplantation. Objective To evaluate the value of Carbogen-challenge BOLD MRI in assessing the level of hypoxia in liver tissue after portal microcapsules implanted. Methods Fifty-one New Zealand rabbits were randomly divided into three experimental groups (15 in each group) were transplanted microencapsulated 1000 microbeads/kg (PV1 group), 3000 microbeads/kg (PV2 group), 5000 microbeads/kg (PV3 group), and 6 rabbits were injected with the same amount of saline as the control group, BOLD-fMRI was performed following carbogen breathing in each group after transplantation on 1d, 2d, 3d and 7d, T2* weighted image, R2* value and ΔR2* value parameters for the liver tissue. Pathological examinations including liver gross pathology, H&E staining and pimonidazole immunohistochemistry were performed after BOLD-fMRI. The differences of pathological results among each group were compared. The ΔR2* values and transplanted doses were analyzed. Results and conclusions ΔR2* values at the 1-3d and 7d after transplantation were significantly different in each groups (P<0.05). ΔR2* values decreased gradually with the increase of transplanted dose, and was negatively correlated with transplant dose at 3d after transplantation (r = -0.929, P <0.001). Liver histopathological examination showed that the degree of hypoxia of liver tissue increased with the increase of transplanted doses, Carbogen-challenge BOLD-fMRI can assess the degree of liver hypoxia after portal microcapsules implanted, which provided a monitoring method for early intervention.
Collapse
Affiliation(s)
- Yuefu Zhan
- Department of Radiology, Maternal and Child Health Hospital of Hainan Province, Haikou, Hainan, China
| | - Yehua Wu
- Hainan General Hospital, Haikou, China
| | - Jianqiang Chen
- Department of Radiology, Xiangya School of Medicine Affiliated Haikou Hospital, Central South University, Haikou, Hainan, China
- * E-mail:
| |
Collapse
|
37
|
Vantyghem MC, de Koning EJP, Pattou F, Rickels MR. Advances in β-cell replacement therapy for the treatment of type 1 diabetes. Lancet 2019; 394:1274-1285. [PMID: 31533905 PMCID: PMC6951435 DOI: 10.1016/s0140-6736(19)31334-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022]
Abstract
The main goal of treatment for type 1 diabetes is to control glycaemia with insulin therapy to reduce disease complications. For some patients, technological approaches to insulin delivery are inadequate, and allogeneic islet transplantation is a safe alternative for those patients who have had severe hypoglycaemia complicated by impaired hypoglycaemia awareness or glycaemic lability, or who already receive immunosuppressive drugs for a kidney transplant. Since 2000, intrahepatic islet transplantation has proven efficacious in alleviating the burden of labile diabetes and preventing complications related to diabetes, whether or not a previous kidney transplant is present. Age, body-mass index, renal status, and cardiopulmonary status affect the choice between pancreas or islet transplantation. Access to transplantation is limited by the number of deceased donors and the necessity of immunosuppression. Future approaches might include alternative sources of islets (eg, xenogeneic tissue or human stem cells), extrahepatic sites of implantation (eg, omental, subcutaneous, or intramuscular), and induction of immune tolerance or encapsulation of islets.
Collapse
Affiliation(s)
- Marie-Christine Vantyghem
- University of Lille, European Genomic Institute for Diabetes, Lille, France; Department of Endocrinology, Diabetology and Metabolism, Centre Hospitalier Universitaire de Lille, Lille, France; Inserm, Translational Research for Diabetes, Lille, France.
| | - Eelco J P de Koning
- Department of Medicine, Leiden University Medical Center, Leiden, Netherlands; Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, Netherlands
| | - François Pattou
- University of Lille, European Genomic Institute for Diabetes, Lille, France; Department of General and Endocrine Surgery Centre, Centre Hospitalier Universitaire de Lille, Lille, France; Inserm, Translational Research for Diabetes, Lille, France
| | - Michael R Rickels
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA; Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
38
|
Keshtkar S, Kaviani M, Jabbarpour Z, Geramizadeh B, Motevaseli E, Nikeghbalian S, Shamsaeefar A, Motazedian N, Al-Abdullah IH, Ghahremani MH, Azarpira N. Protective effect of nobiletin on isolated human islets survival and function against hypoxia and oxidative stress-induced apoptosis. Sci Rep 2019; 9:11701. [PMID: 31406275 PMCID: PMC6690971 DOI: 10.1038/s41598-019-48262-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/31/2019] [Indexed: 12/29/2022] Open
Abstract
Islets transplantation, as a treatment of type 1 diabetes, faces challenges, including the loss of islets in the process of isolation and pre-transplantation due to cellular stresses-induced apoptosis. Accordingly, the optimization of culture plays a decisive role in the transplantation success. In this study, we evaluated the effect of nobiletin on the cultured human islets. Isolated human islets were treated by different concentrations of nobiletin and cultured for 24 and 72 hours. Then, the islets viability, apoptosis, insulin and C-peptide secretion, and apoptosis markers were evaluated. Also, the production of reactive oxygen species (ROS), hypoxia inducible factor 1 alpha (HIF-1α), and its target genes in the islets were examined. Our findings showed that the islets were encountered with hypoxia and oxidative stress after isolation and during culture. These insults induced apoptosis and reduced viability during culture period. Moreover, the secretion of insulin and C-peptide decreased. Nobiletin treatments significantly improved the islets survival through reduction of HIF-1α and ROS production and suppression of apoptosis, along with increased islets function. Islet protective effect of nobiletin might be related to its anti-oxidant, anti-apoptotic and insulinotropic properties. Hence, in order to achieve viable and functional islets for clinical transplantation, the application of nobiletin during pre-transplantation period is useful.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Jabbarpour
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Geramizadeh
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Nikeghbalian
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shamsaeefar
- Shiraz Organ Transplant Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nasrin Motazedian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, USA
| | - Mohammad Hossein Ghahremani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Pharmacology-Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Shiraz Institute of Stem Cell and Regenerative Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
39
|
Abuid NJ, Gattás-Asfura KM, Schofield EA, Stabler CL. Layer-by-Layer Cerium Oxide Nanoparticle Coating for Antioxidant Protection of Encapsulated Beta Cells. Adv Healthc Mater 2019; 8:e1801493. [PMID: 30633854 PMCID: PMC6625950 DOI: 10.1002/adhm.201801493] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/21/2018] [Indexed: 01/15/2023]
Abstract
In type 1 diabetes, the replacement of the destroyed beta cells could restore physiological glucose regulation and eliminate the need for exogenous insulin. Immunoisolation of these foreign cellular transplants via biomaterial encapsulation is widely used to prevent graft rejection. While highly effective in blocking direct cell-to-cell contact, nonspecific inflammatory reactions to the implant lead to the overproduction of reactive oxygen species, which contribute to foreign body reaction and encapsulated cell loss. For antioxidant protection, cerium oxide nanoparticles (CONPs) are a self-renewable, ubiquitous, free radical scavenger currently explored in several biomedical applications. Herein, 2-12 alternating layers of CONP/alginate are assembled onto alginate microbeads containing beta cells using a layer-by-layer (LbL) technique. The resulting nanocomposite coatings demonstrate robust antioxidant activity. The degree of cytoprotection correlates with layer number, indicating tunable antioxidant protection. Coating of alginate beads with 12 layers of CONP/alginate provides complete protection to the entrapped beta cells from exposure to 100 × 10-6 m H2 O2 , with no significant changes in cellular metabolic activity, oxidant capacity, or insulin secretion dynamics, when compared to untreated controls. The flexibility of this LbL method, as well as its nanoscale profile, provides a versatile approach for imparting antioxidant protection to numerous biomedical implants, including beta cell transplantation.
Collapse
Affiliation(s)
- Nicholas J Abuid
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Kerim M Gattás-Asfura
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Emily A Schofield
- Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL, 32610, USA
| | - Cherie L Stabler
- Department of Biomedical Engineering, UF Diabetes Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
40
|
Rickels MR, Robertson RP. Pancreatic Islet Transplantation in Humans: Recent Progress and Future Directions. Endocr Rev 2019; 40:631-668. [PMID: 30541144 PMCID: PMC6424003 DOI: 10.1210/er.2018-00154] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/26/2018] [Indexed: 12/11/2022]
Abstract
Pancreatic islet transplantation has become an established approach to β-cell replacement therapy for the treatment of insulin-deficient diabetes. Recent progress in techniques for islet isolation, islet culture, and peritransplant management of the islet transplant recipient has resulted in substantial improvements in metabolic and safety outcomes for patients. For patients requiring total or subtotal pancreatectomy for benign disease of the pancreas, isolation of islets from the diseased pancreas with intrahepatic transplantation of autologous islets can prevent or ameliorate postsurgical diabetes, and for patients previously experiencing painful recurrent acute or chronic pancreatitis, quality of life is substantially improved. For patients with type 1 diabetes or insulin-deficient forms of pancreatogenic (type 3c) diabetes, isolation of islets from a deceased donor pancreas with intrahepatic transplantation of allogeneic islets can ameliorate problematic hypoglycemia, stabilize glycemic lability, and maintain on-target glycemic control, consequently with improved quality of life, and often without the requirement for insulin therapy. Because the metabolic benefits are dependent on the numbers of islets transplanted that survive engraftment, recipients of autoislets are limited to receive the number of islets isolated from their own pancreas, whereas recipients of alloislets may receive islets isolated from more than one donor pancreas. The development of alternative sources of islet cells for transplantation, whether from autologous, allogeneic, or xenogeneic tissues, is an active area of investigation that promises to expand access and indications for islet transplantation in the future treatment of diabetes.
Collapse
Affiliation(s)
- Michael R Rickels
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - R Paul Robertson
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
- Division of Endocrinology, Department of Medicine, University of Minnesota, Minneapolis, Minnesota
- Pacific Northwest Diabetes Research Institute, Seattle, Washington
| |
Collapse
|
41
|
Szempruch KR, Banerjee O, McCall RC, Desai CS. Use of anti-inflammatory agents in clinical islet cell transplants: A qualitative systematic analysis. Islets 2019; 11:65-75. [PMID: 31149871 PMCID: PMC6548473 DOI: 10.1080/19382014.2019.1601543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immunologic and non-immunologic loss of islet cells upon their transplantation into the liver leads to suboptimal outcomes. Anti-inflammatory agents are used during autologous and allogeneic transplantation. The aim of this qualitative systematic literature review is to evaluate their clinical use and safety. Electronic databases Embase, PubMed, Cumulative Index for Nursing and Allied Health Literature, ClinicalTrials.gov, and EU Clinical Trials Register were searched. Of the 216 unique citations, 10 with tumor necrosis factor (TNF) blockers [etanercept (ETA) or infliximab] and 3 with both TNF blockers and an interluekin-1 receptor antagonist [anakinra (ANA)]) were included. Of these, 12 were in allogeneic and one in autologous transplant. Insulin independence with decreased islet cells and number of transfusions were reported with their use. One infection was reported in a group receiving ETA. Analysis suggested that the use of ETA ± ANA have the potential to improve outcomes in islet cell transplant.
Collapse
Affiliation(s)
| | - Oyshik Banerjee
- Department of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. McCall
- Health Sciences Library University of North Carolina, Chapel Hill, USA
| | - Chirag S. Desai
- Department of Surgery, Abdominal Transplant, University of North Carolina, Chapel Hill, NC, USA
- CONTACT Chirag S. Desai Department of Surgery, Abdominal Transplant, University of North Carolina Medical Center, 4021 Burnett-Womack CB 7211, Chapel Hill, NC 27599
| |
Collapse
|
42
|
Perez-Basterrechea M, Esteban MM, Vega JA, Obaya AJ. Tissue-engineering approaches in pancreatic islet transplantation. Biotechnol Bioeng 2018; 115:3009-3029. [PMID: 30144310 DOI: 10.1002/bit.26821] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/15/2022]
Abstract
Pancreatic islet transplantation is a promising alternative to whole-pancreas transplantation as a treatment of type 1 diabetes mellitus. This technique has been extensively developed during the past few years, with the main purpose of minimizing the complications arising from the standard protocols used in organ transplantation. By using a variety of strategies used in tissue engineering and regenerative medicine, pancreatic islets have been successfully introduced in host patients with different outcomes in terms of islet survival and functionality, as well as the desired normoglycemic control. Here, we describe and discuss those strategies to transplant islets together with different scaffolds, in combination with various cell types and diffusible factors, and always with the aim of reducing host immune response and achieving islet survival, regardless of the site of transplantation.
Collapse
Affiliation(s)
- Marcos Perez-Basterrechea
- Unidad de Terapia Celular y Medicina Regenerativa, Servicio de Hematología y Hemoterapia, Hospital Universitario Central de Asturias (HUCA), Oviedo, Spain.,Plataforma de Terapias Avanzadas, Instituto de Investigación Biosanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Manuel M Esteban
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - Jose A Vega
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, Oviedo, Spain.,Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Alvaro J Obaya
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
43
|
Anti-Inflammatory Strategies in Intrahepatic Islet Transplantation: A Comparative Study in Preclinical Models. Transplantation 2018; 102:240-248. [PMID: 28902069 DOI: 10.1097/tp.0000000000001925] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The identification of pathway(s) playing a pivotal role in peritransplant detrimental inflammatory events represents the crucial step toward a better management and outcome of pancreatic islet transplanted patients. Recently, we selected the CXCR1/2 inhibition as a relevant strategy in enhancing pancreatic islet survival after transplantation. METHODS Here, the most clinically used anti-inflammatory compounds (IL1-receptor antagonist, steroids, and TNF-α inhibitor) alone or in combination with a CXCR1/2 inhibitor were evaluated in their ability to improve engraftment or delay graft rejection. To rule out bias related to transplantation site, we used well-established preclinical syngeneic (250 C57BL/6 equivalent islets in C57BL/6) and allogeneic (400 Balb/c equivalent islets in C57BL6) intrahepatic islet transplantation platforms. RESULTS In mice, we confirmed that targeting the CXCR1/2 pathway is crucial in preserving islet function and improving engraftment. In the allogeneic setting, CXCR1/2 inhibitor alone could reduce the overall recruitment of transplant-induced leukocytes and significantly prolong the time to graft rejection both as a single agent and in combination with immunosuppression. No other anti-inflammatory compounds tested (IL1-receptor antagonist, steroids, and TNF-α inhibitor) alone or in combination with CXCR1/2 inhibitor improve islet engraftment and significantly delay graft rejection in the presence of MMF + FK-506 immunosuppressive treatment. CONCLUSIONS These findings indicate that only the CXCR1/2-mediated axis plays a crucial role in controlling the islet damage and should be a target for intervention to improve the efficiency of islet transplantation.
Collapse
|
44
|
Miyagi-Shiohira C, Nakashima Y, Ebi N, Hamada E, Tamaki Y, Kuwae K, Kobayashi N, Saitoh I, Watanabe M, Kinjo T, Noguchi H. Comparison of Tissue Loading Before and After the Creation of a Continuous Density Gradient in Porcine Islet Purification. CELL MEDICINE 2018; 10:2155179018781343. [PMID: 32634190 PMCID: PMC6172984 DOI: 10.1177/2155179018781343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/04/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022]
Abstract
The purification step is one of the most important and difficult procedures in islet isolation for pancreatic islet transplantation. We previously reported that a purification method using large plastic bottles effectively achieved a high yield of islets from the porcine pancreas. In this study, we evaluated the impact of the timing of tissue loading on porcine islet purification using large plastic bottles. One method involved loading digested tissue after creating a continuous density gradient (tissue after gradient [TAG]). The other method involved loading digested tissue before creating a continuous density gradient (tissue before gradient [TBG]). There were no significant differences between TAG and TBG in terms of the islet yield, rates of viability and purity, score, and in the stimulation index after purification. Furthermore, there were no marked differences in the attainability or suitability of post-transplantation normoglycemia. Our study shows the equivalency of these two methods of islet purification.
Collapse
Affiliation(s)
- Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Nana Ebi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Eri Hamada
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshihito Tamaki
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kazuho Kuwae
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Naoya Kobayashi
- Department of Surgery, Okayama Saidaiji Hospital, Okayama, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Takao Kinjo
- Division of Morphological Pathology, Department of Basic Laboratory Sciences, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
45
|
Ebi N, Miyagi-Shiohira C, Hamada E, Tamaki Y, Masamoto M, Makishi E, Nakashima Y, Kobayashi N, Saitoh I, Watanabe M, Noguchi Y, Kinjo T, Noguchi H. Evaluation of Islet Purification Methods for Making a Continuous Density Gradient and Loading Tissue. CELL MEDICINE 2018; 10:2155179017733090. [PMID: 32634178 PMCID: PMC6172999 DOI: 10.1177/2155179017733090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/05/2017] [Accepted: 04/27/2017] [Indexed: 12/05/2022]
Abstract
Islet purification is one of the most important steps of islet isolation for pancreatic
islet transplantation. We previously reported that a purification method using large
plastic bottles effectively achieved a high yield of islets from porcine pancreas. In this
study, we evaluated the methods for making a continuous density gradient and loading
tissue. One method involved loading digested tissue on top of a continuous density
gradient (top loading). The other method involved mixing digested tissue with low-density
solution and then making a continuous gradient (mixed loading). There were no significant
differences between the 2 purification methods in terms of the islet yield, rate of
viability or purity, score, or in the stimulation index after purification. Furthermore,
there were no marked differences in the attainability or suitability of
posttransplantation normoglycemia. Our study shows the equivalency of these 2 methods of
islet purification.
Collapse
Affiliation(s)
- Nana Ebi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Eri Hamada
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshihito Tamaki
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Mariko Masamoto
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Erika Makishi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata, Japan
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasufumi Noguchi
- Department of Socio-environmental Design, Hiroshima International University, Hiroshima, Japan
| | - Takao Kinjo
- Division of Morphological Pathology, Department of Basic Laboratory Sciences, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
46
|
Venturini M, Sallemi C, Marra P, Palmisano A, Agostini G, Lanza C, Balzano G, Falconi M, Secchi A, Fiorina P, Piemonti L, Maffi P, Esposito A, De Cobelli F, Del Maschio A. Allo- and auto-percutaneous intra-portal pancreatic islet transplantation (PIPIT) for diabetes cure and prevention: the role of imaging and interventional radiology. Gland Surg 2018; 7:117-131. [PMID: 29770308 DOI: 10.21037/gs.2017.11.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the life expectancy of patients with type 1 diabetes mellitus (T1DM) has improved since the introduction of insulin therapy, the acute life-threatening and long-term complications from diabetes mellitus are significant causes of both mortality and morbidity. Percutaneous intra-portal pancreatic islet transplantation (PIPIT) is a minimally invasive, repeatable procedure which allows a β-cell replacement therapy through a liver islet engraftment, leading to insulin release and glycaemic control restoration in patients with diabetes. Allo-PIPIT, in which isolated and purified islets from cadaveric donor are used, does not require major surgery, and is potentially less expensive for the recipient. In case of long-term T1DM, islet-after-kidney (IAK) transplantation can simultaneously cure diabetes and chronic renal failure, while islet-transplant-alone (ITA) is performed in brittle, short-term T1DM, based on the infusion of an adequate islet mass and on a steroid-free immunosuppressive regimen according to the Edmonton protocol. Results of the Collaborative Islet Transplant Registry (CITR) demonstrate that allo-PIPIT reduces episodes of hypoglycemia and diabetic complications, and improves quality of life of diabetic patients. Auto-PIPIT, in which the own patient's islets are used, has been investigated as a preventive treatment for pancreatogenic diabetes in patients who undergo extensive pancreatectomy for malignant and non-malignant disease. This Review outlines the role of imaging and interventional radiology in allo- and auto-PIPIT.
Collapse
Affiliation(s)
- Massimo Venturini
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Claudio Sallemi
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Marra
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Palmisano
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Agostini
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Carolina Lanza
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy
| | - Gianpaolo Balzano
- Department of Pancreatic Surgery, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Falconi
- Department of Pancreatic Surgery, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Secchi
- Vita-Salute San Raffaele University, Milan, Italy.,Department of Internal Medicine, Transplant Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Fiorina
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lorenzo Piemonti
- Vita-Salute San Raffaele University, Milan, Italy.,Diabetes Research Institute, San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maffi
- Department of Internal Medicine, Transplant Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Esposito
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco De Cobelli
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandro Del Maschio
- Department of Radiology, San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
47
|
Khiatah B, Tucker A, Chen KT, Perez R, Bilbao S, Valiente L, Medrano L, Rawson J, Forouhar E, Omori K, Kandeel F, Qi M, Al-Abdullah IH. Evaluation of collagenase gold plus BP protease in isolating islets from human pancreata. Islets 2018; 10:51-59. [PMID: 29381419 PMCID: PMC5895173 DOI: 10.1080/19382014.2017.1417716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Selection of enzymes for optimal pancreas digestion is essential for successful human islet isolations. The aim of this study was to evaluate the efficacy and outcome of using Collagenase Gold plus BP protease (VitaCyte) (n = 8) by comparing it to two commercially available enzymes, Liberase MTF C/T (Roche) (n = 48) and Collagenase NB1/NP (Serva) (n = 15). The isolation outcomes were assessed by islet counting, viability, glucose-stimulated oxygen consumption rate (OCR), and successful graft-rate following transplantation in diabetic NOD scid mice. The pancreas donor characteristics were not significantly different between the tested enzyme groups regarding their BMI, pancreas weight, cold ischemia time (CIT) and HbA1c. The results show that digested tissue volume was not statistically significant between the VitaCyte enzyme (34.25 ± 5.4 mL) and the Roche enzyme (55.25 ± 3.42 mL, p = 0.073), however, this was significant with Serva enzyme (64.07 ± 7.95 mL, p = 0.020). Interestingly, the islet yields were not statistically different between all enzyme groups. Moreover, when islets were transplanted into NOD scid mice, the reversal rate of diabetes for the VitaCyte enzyme group was similar to all enzyme groups. In conclusion, the effectiveness of Collagenase Gold plus BP protease is comparable to the MTF C/T and the Collagenase NB1/NP enzymes; the low cost could facilitate the use of more pancreata for islet isolations.
Collapse
Affiliation(s)
- Bashar Khiatah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Amber Tucker
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Kuan-Tsen Chen
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Rachel Perez
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Shiela Bilbao
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Luis Valiente
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Leonard Medrano
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Elena Forouhar
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Keiko Omori
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ismail H. Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, USA
- CONTACT Ismail H. Al-Abdullah Department of Translational Research and Cellular Therapeutics, Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010
| |
Collapse
|
48
|
Age and Early Graft Function Relate With Risk-Benefit Ratio of Allogenic Islet Transplantation Under Antithymocyte Globulin-Mycophenolate Mofetil-Tacrolimus Immune Suppression. Transplantation 2017; 101:2218-2227. [DOI: 10.1097/tp.0000000000001543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Froud T, Baidal DA, Ponte G, Ferreira JV, Ricordi C, Alejandro R. Resolution of Neurotoxicity and β-Cell Toxicity in an Islet Transplant Recipient following Substitution of Tacrolimus with MMF. Cell Transplant 2017; 15:613-20. [PMID: 17176613 DOI: 10.3727/000000006783981639] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Calcineurin inhibitors such as tacrolimus have well-recognized efficacy in organ transplantation but side effects of nephrotoxicity, neurotoxicity, and β-cell toxicity that can be particularly detrimental in islet transplantation. Neuro- and nephrotoxicity have been demonstrated in multiple islet transplant recipients despite the relatively low serum maintenance levels typically used (3–5 ng/ml). We describe a single patient in whom symptoms and signs of neurotoxicity necessitated substitution of tacrolimus with mycophenolate mofetil (MMF), which resulted in complete symptom resolution over the subsequent 9 months. Concomitantly noted were an almost immediate improvement in glycemic control and an improved response to stimulation testing, suggesting remission of tacrolimus-induced β-cell toxicity and insulin resistance. At 18 months post-“switch,” 30 months posttransplant, the patient remains insulin independent with good glycemic control. The goal to remove calcineurin inhibitors from regimens of islet transplantation is a worthy one.
Collapse
Affiliation(s)
- Tatiana Froud
- Diabetes Research Institute, University of Miami School of Medicine, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
50
|
Smink AM, Li S, Swart DH, Hertsig DT, de Haan BJ, Kamps JAAM, Schwab L, van Apeldoorn AA, de Koning E, Faas MM, Lakey JRT, de Vos P. Stimulation of vascularization of a subcutaneous scaffold applicable for pancreatic islet-transplantation enhances immediate post-transplant islet graft function but not long-term normoglycemia. J Biomed Mater Res A 2017; 105:2533-2542. [PMID: 28470672 PMCID: PMC5575460 DOI: 10.1002/jbm.a.36101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/20/2017] [Accepted: 04/26/2017] [Indexed: 12/22/2022]
Abstract
The liver as transplantation site for pancreatic islets is associated with significant loss of islets, which can be prevented by grafting in a prevascularized, subcutaneous scaffold. Supporting vascularization of a scaffold to limit the period of ischemia is challenging and was developed here by applying liposomes for controlled release of angiogenic factors. The angiogenic capacity of platelet-derived growth factor, vascular endothelial growth factor, acidic fibroblast growth factor (aFGF), and basic FGF were compared in a tube formation assay. Furthermore, the release kinetics of different liposome compositions were tested. aFGF and L-α-phosphatidylcholine/cholesterol liposomes were selected to support vascularization. Two dosages of aFGF-liposomes (0.5 and 1.0 μg aFGF per injection) were administered weekly for a month after which islets were transplanted. We observed enhanced efficacy in the immediate post-transplant period compared to the untreated scaffolds. However, on the long-term, glucose levels of the aFGF treated animals started to increase to diabetic levels. These results suggest that injections with aFGF liposomes do improve vascularization and the immediate restoration of blood glucose levels but does not facilitate the long-term survival of islets. Our data emphasize the need for long-term studies to evaluate potential beneficial and adverse effects of vascularization protocols of scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2533-2542, 2017.
Collapse
Affiliation(s)
- Alexandra M Smink
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Shiri Li
- Department of Surgery, University of California Irvine, Orange
| | - Daniël H Swart
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Bart J de Haan
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan A A M Kamps
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | - Aart A van Apeldoorn
- Department of Developmental BioEngineering, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Eelco de Koning
- Department of Nephrology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marijke M Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, Orange.,Department of Biomedical Engineering, University of California Irvine, Irvine
| | - Paul de Vos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|