1
|
Ningoo M, Cruz-Encarnación P, Khilnani C, Heeger PS, Fribourg M. T-cell receptor sequencing reveals selected donor-reactive CD8 + T cell clones resist antithymocyte globulin depletion after kidney transplantation. Am J Transplant 2024; 24:755-764. [PMID: 38141722 PMCID: PMC11070313 DOI: 10.1016/j.ajt.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
High frequencies of donor-reactive memory T cells in the periphery of transplant candidates prior to transplantation are linked to the development of posttransplant acute rejection episodes and reduced allograft function. Rabbit antithymocyte globulin (rATG) effectively depletes naïve CD4+ and CD8+ T cells for >6 months posttransplant, but rATG's effects on human donor-reactive T cells have not been carefully determined. To address this, we performed T cell receptor β-chain sequencing on peripheral blood mononuclear cells aliquots collected pretransplant and serially posttransplant in 7 kidney transplant recipients who received rATG as induction therapy. We tracked the evolution of the donor-reactive CD4+ and CD8+ T cell repertoires and identified stimulated pretransplant, CTV-(surface dye)-labeled, peripheral blood mononuclear cells from each patient with donor cells or third-party cells. Our analyses showed that while rATG depleted CD4+ T cells in all tested subjects, a subset of donor-reactive CD8+ T cells that were present at high frequencies pretransplant, consistent with expanded memory cells, resisted rATG depletion, underwent posttransplant expansion and were functional. Together, our data support the conclusion that a subset of human memory CD8+ T cells specifically reactive to donor antigens expand in vivo despite induction therapy with rATG and thus have the potential to mediate allograft damage.
Collapse
Affiliation(s)
- Mehek Ningoo
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Pamela Cruz-Encarnación
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Calla Khilnani
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter S Heeger
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Miguel Fribourg
- Translational Transplant Research Center, Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
2
|
Zhu JQ, Wang J, Li XL, Xu WL, Lv SC, Zhao X, Lang R, He Q. A combination of the percentages of IFN-γ +CD4 +T cells and granzyme B +CD19 +B cells is associated with acute hepatic rejection: a case control study. J Transl Med 2021; 19:187. [PMID: 33933100 PMCID: PMC8088570 DOI: 10.1186/s12967-021-02855-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/21/2021] [Indexed: 12/22/2022] Open
Abstract
Background T cells and B cells play a key role in alloimmune responses. We aimed to characterize the shift of T cell subsets and B cell subsets during acute hepatic rejection, and further determine whether they could serve as a prognostic marker. Methods Blood samples together with the clinical data from liver transplant recipients with and without acute hepatic rejection were collected and analyzed as well as from a validation cohort. Results Upon activation the expression of TGF-β and granzyme B in CD19+B cells, and the expression of IL-2 and IFN-γ in CD4+T cells were higher in acute hepatic rejection. However, only the frequencies of granzyme B+CD19+B cells and IFN-γ+CD4+T cells correlated with liver function in addition to with each other. A combination of the two cell subsets as a novel marker could classify rejection versus non-rejection (area under the curve 0.811, p = 0.001) with the cut-off value of 62.93%, which was more sensitive for worse histological changes (p = 0.027). Moreover, the occurrence rate of acute rejection was higher in the group with the novel marker > 62.93% (p = 0.000). The role of the novel marker was further confirmed in a validation cohort, which was identified to be the only significant independent risk factor for acute rejection (odds ratio: 0.923; 95% CI confidence interval: 0.885–0.964; p = 0.000). Conclusions A combination of the percentages of IFN-γ+CD4+T cells and granzyme B+CD19+B cells can distinguish rejection from non-rejection, which can be used as a potential prognostic marker for acute rejection in liver transplant recipients. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02855-w.
Collapse
Affiliation(s)
- Ji-Qiao Zhu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Medical Research Center, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Jing Wang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Medical Research Center, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Xian-Liang Li
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Medical Research Center, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Wen-Li Xu
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Medical Research Center, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Shao-Cheng Lv
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Medical Research Center, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Xin Zhao
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Medical Research Center, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, China
| | - Ren Lang
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Medical Research Center, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, China.
| | - Qiang He
- Department of Hepatobiliary and Pancreaticosplenic Surgery, Medical Research Center, Beijing Organ Transplant Center, Beijing Chaoyang Hospital, Capital Medical University, No. 8 Gongtinan Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
3
|
Merino D, San Segundo D, Medina JM, Rodrigo E, Asensio E, Irure J, Fernández-Fresnedo G, Arias MA, López-Hoyos M. Different in vitro proliferation and cytokine-production inhibition of memory T-cell subsets after calcineurin and mammalian target of rapamycin inhibitors treatment. Immunology 2016; 148:206-15. [PMID: 26931075 DOI: 10.1111/imm.12603] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/10/2016] [Accepted: 02/24/2016] [Indexed: 12/14/2022] Open
Abstract
Calcineurin inhibitors (CNI) and mammalian target of rapamycin inhibitors (mTORi) are the main immunosuppressants used for long-term maintenance therapy in transplant recipients to avoid acute rejection episodes. Both groups of immunosuppressants have wide effects and are focused against the T cells, although different impacts on specific T-cell subsets, such as regulatory T cells, have been demonstrated. A greater knowledge of the impact of immunosuppression on the cellular components involved in allograft rejection could facilitate decisions for individualized immunosuppression when an acute rejection event is suspected. Memory T cells have recently gained focus because they might induce a more potent response compared with naive cells. The impact of immunosuppressants on different memory T-cell subsets remains unclear. In the present study, we have studied the specific impact of CNI (tacrolimus) and mTORi (rapamycin and everolimus) over memory and naive CD4(+) T cells. To do so, we have analysed the proliferation, phenotypic changes and cytokine synthesis in vitro in the presence of these immunosuppressants. The present work shows a more potent effect of CNI on proliferation and cytokine production in naive and memory T cells. However, the mTORi permit the differentiation of naive T cells to the memory phenotype and allow the production of interleukin-2. Taken together, our data show evidence to support the combined use of CNI and mTORi in transplant immunosuppression.
Collapse
Affiliation(s)
- David Merino
- Autoimmunity and Transplant Group-IDIVAL, Santander, Spain
| | - David San Segundo
- Immunology Service Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Juan M Medina
- Autoimmunity and Transplant Group-IDIVAL, Santander, Spain
| | - Emilio Rodrigo
- Nephrology Service Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Esther Asensio
- Immunology Service Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Juan Irure
- Immunology Service Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | | | - Manuel A Arias
- Nephrology Service Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Marcos López-Hoyos
- Immunology Service Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| |
Collapse
|
4
|
Yan G, Xi Y, Xu S, Lin Y, Chen J, Dai H, Xia J, Li C, Li Q, Li Z, Qi Z. Inhibition of accelerated rejection mediated by alloreactive CD4⁺ memory T cells and prolonged allograft survival by arsenic trioxide. Immunol Invest 2014; 42:438-54. [PMID: 23802174 DOI: 10.3109/08820139.2013.801986] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The aim of this study was to evaluate and determine the potential mechanisms of As₂O₃ in accelerated rejection mediated by alloreactive CD4⁺ memory T cells. Vascularized heterotopic cardiac transplantation from C57BL/6 mice to nude mice (pre-transferred CD4⁺ memory T cells) was performed on Day 0, and As₂O₃ was administered to recipient mice from Day 0 to 10. As a result, As₂O₃ could reduce the proliferation of allo-primed CD4⁺ memory T cells in vitro in MLR and the baseline rate of proliferation was restored by the addition of exogenous IL-2. In vivo, compared with the control[+] group, the mean survival time of cardiac allografts in the As₂O₃ group was prolonged from 5.8 ± 0.7 to 14.2 ± 2.5 days. Five days after transplantation, the relative gene expression of IL-2, IFN-γ and Foxp3 was reduced in the grafts by As₂O₃ treatment, but the expression of IL-10 and TGF-β was increased. Correspondingly, the proportions of CD4⁺ T cells, CD4⁺ memory T cells and regulatory T cells (Tregs), both in recipient spleens and lymph nodes, were lowered. These results indicate the potential of As2O3 as a novel immunosuppressant targeting CD4⁺ memory T cells.
Collapse
Affiliation(s)
- Guoliang Yan
- Basic Medical Department of Medical College, Xiamen University, Xiamen City, Fujian Province, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Turner DL, Gordon CL, Farber DL. Tissue-resident T cells,in situimmunity and transplantation. Immunol Rev 2014; 258:150-66. [DOI: 10.1111/imr.12149] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Damian L. Turner
- Columbia Center for Translational Immunology; Columbia University Medical Center; New York NY USA
- Department of Medicine; Columbia University Medical Center; New York NY USA
| | - Claire L. Gordon
- Columbia Center for Translational Immunology; Columbia University Medical Center; New York NY USA
- Department of Medicine; Columbia University Medical Center; New York NY USA
- Department of Medicine; University of Melbourne; Melbourne Vic. Australia
| | - Donna L. Farber
- Columbia Center for Translational Immunology; Columbia University Medical Center; New York NY USA
- Department of Surgery; Columbia University Medical Center; New York NY USA
- Department of Microbiology and Immunology; Columbia University Medical Center; New York NY USA
| |
Collapse
|
6
|
Human CD4(+) effector T lymphocytes generated upon TCR engagement with self-peptides respond defectively to IL-7 in their transition to memory cells. Cell Mol Immunol 2013; 10:261-74. [PMID: 23454917 DOI: 10.1038/cmi.2012.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The peripheral repertoire of CD4(+) T lymphocytes contains autoreactive cells that remain tolerant through several mechanisms. However, nonspecific CD4(+) T cells can be activated in physiological conditions as in the course of an ongoing immune response, and their outcome is not yet fully understood. Here, we investigate the fate of human naive CD4(+) lymphocytes activated by dendritic cells (DCs) presenting endogenous self-peptides in comparison with lymphocytes involved in alloresponses. We generated memory cells (Tmem) from primary effectors activated with mature autologous DCs plus interleukin (IL)-2 (Tmauto), simulating the circumstances of an active immune response, or allogeneic DCs (Tmallo). Tmem were generated from effector cells that were rested in the absence of antigenic stimuli, with or without IL-7. Tmem were less activated than effectors (demonstrated by CD25 downregulation) particularly with IL-7, suggesting that this cytokine may favour the transition to quiescence. Tmauto and Tmallo showed an effector memory phenotype, and responded similarly to polyclonal and antigen-specific stimuli. Biochemically, IL-7-treated Tmallo were closely related to conventional memory lymphocytes based on Erk-1/2 activation, whereas Tmauto were more similar to effectors. Autologous effectors exhibited lower responses to IL-7 than allogeneic cells, which were reflected in their reduced proliferation and higher cell death. This was not related to IL-7 receptor expression but rather to signalling deficiencies, according to STAT5 activation These results suggest that ineffective responses to IL-7 could impair the transition to memory cells of naive CD4(+) T lymphocytes recognizing self-peptides in the setting of strong costimulation.
Collapse
|
7
|
Anderson BE, Tang AL, Wang Y, Froicu M, Rothstein D, McNiff JM, Jain D, Demetris AJ, Farber DL, Shlomchik WD, Shlomchik MJ. Enhancing alloreactivity does not restore GVHD induction but augments skin graft rejection by CD4⁺ effector memory T cells. Eur J Immunol 2011; 41:2782-92. [PMID: 21660940 DOI: 10.1002/eji.201141678] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/18/2011] [Accepted: 06/07/2011] [Indexed: 11/09/2022]
Abstract
Graft-versus-host disease (GVHD) caused by donor T cells attacking recipient tissues is a major cause of morbidity and mortality following allogeneic hematopoietic stem cell transplantation (alloSCT). Studies have shown that effector memory T (T(EM) ) cells do not cause GVHD but are capable of immune functions post-transplant, including graft-versus-leukemia (GVL) effects, but the reasons for this are unclear. In mice, the T(EM) pool may have a less diverse T-cell receptor (TCR) repertoire than naive T (T(N) ) cells with fewer alloreactive clones. We therefore tested whether enhancing the alloreactivity of T(EM) cells would restore their ability to cause GVHD. In an MHC-matched system, alloreactive T(EM) cells were created by transferring GVHD effector cells into syngeneic recipients and allowing conversion to T(EM) cells. Upon retransfer to freshly transplanted recipients, these cells caused only mild GVHD. Similarly, in an MHC-mismatched system, T(EM) cells with a proven increased precursor frequency of alloreactive clones only caused limited GVHD. Nonetheless, these same cells mounted strong in vitro alloresponses and caused rapid skin graft rejection. T(EM) cells created from CD4(+) T cells that had undergone lymphopenia-induced proliferation (LIP) also caused only mild GVHD. Our findings establish that conversion to T(EM) cells significantly reduces GVHD potency, even in cells with a substantially enhanced alloreactive repertoire.
Collapse
Affiliation(s)
- Britt E Anderson
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06520-8035, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
A repertoire-independent and cell-intrinsic defect in murine GVHD induction by effector memory T cells. Blood 2011; 118:6209-19. [PMID: 21768295 DOI: 10.1182/blood-2011-01-330035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Effector memory T cells (T(EM)) do not cause graft-versus-host disease (GVHD), though why this is has not been elucidated. To compare the fates of alloreactive naive (T(N)) or memory (T(M)) T cells, we developed a model of GVHD in which donor T cells express a transgene-encoded TCR specific for an antigenic peptide that is ubiquitously expressed in the recipient. Small numbers of naive TCR transgenic (Tg) T cells induced a robust syndrome of GVHD in transplanted recipients. We then used an established method to convert TCR Tg cells to T(M) and tested these for GVHD induction. This allowed us to control for the potentially different frequencies of alloreactive T cells among T(N) and T(M), and to track fates of alloreactive T cells after transplantation. T(EM) caused minimal, transient GVHD whereas central memory T cells (T(CM)) caused potent GVHD. Surprisingly, T(EM) were not inert: they, engrafted, homed to target tissues, and proliferated extensively, but they produced less IFN-γ and their expansion in target tissues was limited at later time points, and local proliferation was reduced. Thus, cell-intrinsic properties independent of repertoire explain the impairment of T(EM), which can initiate but cannot sustain expansion and tissue damage.
Collapse
|
9
|
Moore TV, Clay BS, Ferreira CM, Williams JW, Rogozinska M, Cannon JL, Shilling RA, Marzo AL, Sperling AI. Protective effector memory CD4 T cells depend on ICOS for survival. PLoS One 2011; 6:e16529. [PMID: 21364749 PMCID: PMC3041765 DOI: 10.1371/journal.pone.0016529] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/25/2010] [Indexed: 12/16/2022] Open
Abstract
Memory CD4 T cells play a vital role in protection against re-infection by pathogens as diverse as helminthes or influenza viruses. Inducible costimulator (ICOS) is highly expressed on memory CD4 T cells and has been shown to augment proliferation and survival of activated CD4 T cells. However, the role of ICOS costimulation on the development and maintenance of memory CD4 T cells remains controversial. Herein, we describe a significant defect in the number of effector memory (EM) phenotype cells in ICOS−/− and ICOSL−/− mice that becomes progressively more dramatic as the mice age. This decrease was not due to a defect in the homeostatic proliferation of EM phenotype CD4 T cells in ICOS−/− or ICOSL−/− mice. To determine whether ICOS regulated the development or survival of EM CD4 T cells, we utilized an adoptive transfer model. We found no defect in development of EM CD4 T cells, but long-term survival of ICOS−/− EM CD4 T cells was significantly compromised compared to wild-type cells. The defect in survival was specific to EM cells as the central memory (CM) ICOS−/− CD4 T cells persisted as well as wild type cells. To determine the physiological consequences of a specific defect in EM CD4 T cells, wild-type and ICOS−/− mice were infected with influenza virus. ICOS−/− mice developed significantly fewer influenza-specific EM CD4 T cells and were more susceptible to re-infection than wild-type mice. Collectively, our findings demonstrate a role for ICOS costimulation in the maintenance of EM but not CM CD4 T cells.
Collapse
Affiliation(s)
- Tamson V Moore
- Committee on Immunology & Section of Pulmonary and Critical Care Medicine, Department of Medicine, The University of Chicago, Chicago, Illinois, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Xia J, Chen J, Shao W, Lan T, Wang Y, Xie B, Thorlacius H, Tian F, Huang R, Qi Z. Suppressing memory T cell activation induces islet allograft tolerance in alloantigen-primed mice. Transpl Int 2011; 23:1154-63. [PMID: 20536791 DOI: 10.1111/j.1432-2277.2010.01106.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Memory T cells are known to play a key role in prevention of allograft tolerance in alloantigen-primed mice. Here, we used an adoptively transferred memory T cell model and an alloantigen-primed model to evaluate the abilities of different combinations of monoclonal antibodies (mAb) to block key signaling pathways involved in activation of effector and memory T cells. In the adoptively transferred model, the use of anti-CD134L mAb effectively prevented activation of CD4(+) memory T cells and significantly prolonged islet survival, similar to the action of anti-CD122 mAb to CD8(+) memory T cells. In the alloantigen-primed model, use of anti-CD134L and anti-CD122 mAbs in addition to co-stimulatory blockade with anti-CD154 and anti-LFA-1 prolonged secondary allograft survival and significantly reduced the proportion of memory T cells; meanwhile, this combination therapy increased the proportion of regulatory T cells (Tregs) in the spleen, inhibited lymphocyte infiltration in the graft, and suppressed alloresponse of recipient splenic T cells. However, we also detected high levels of alloantibodies in the serum which caused high levels of damage to the allogeneic spleen cells. Our results suggest that combination of four mAbs can significantly suppress the function of memory T cells and prolong allograft survival in alloantigen primed animals.
Collapse
Affiliation(s)
- Junjie Xia
- Organ Transplantation Institute of Xiamen University, Xiamen City, Fujian Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Jones ND, Brook MO, Carvalho-Gaspar M, Luo S, Wood KJ. Regulatory T cells can prevent memory CD8+ T-cell-mediated rejection following polymorphonuclear cell depletion. Eur J Immunol 2010; 40:3107-16. [PMID: 20865790 PMCID: PMC3021718 DOI: 10.1002/eji.201040671] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 07/12/2010] [Accepted: 08/17/2010] [Indexed: 01/01/2023]
Abstract
Accumulating evidence suggests that alloreactive memory T cells (Tm) may form a barrier to tolerance induction in large animals and humans due in part to a resistance to suppression by Treg. However, why Tm are resistant to regulation and how the Tm response to an allograft differs from that of naïve T cells, which are amenable to suppression by Treg, remains unknown. Here, we show that accelerated graft rejection mediated by CD8+ Tm was due to the enhanced recruitment of PMN to allografts in a mouse skin allograft model. Importantly, depletion of PMN slowed the kinetics of (but did not prevent) rejection mediated by Tm and created a window of opportunity that allowed subsequent suppression of rejection by Treg. Taken together, we conclude that CD8+ Tm are not intrinsically resistant to suppression by Treg but may rapidly inflict substantial graft damage before the establishment of regulatory mechanisms. These data suggest that if Tm responses can be attenuated transiently following transplantation, Treg may be able to maintain tolerance through the suppression of both memory and naïve alloreactive T-cell responses in the long term.
Collapse
Affiliation(s)
- Nick D Jones
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | | | | | | | | |
Collapse
|
12
|
Abstract
The development of immune memory mediated by T lymphocytes is central to durable, long-lasting protective immunity. A key issue in the field is how to direct the generation and persistence of memory T cells to elicit the appropriate secondary response to provide protection to a specific pathogen. Two prevailing views have emerged; that cellular and molecular regulators control the lineage fate and functional capacities of memory T cells early after priming, or alternatively, that populations of memory T cells are inherently plastic and subject to alterations in function and/or survival at many stages during their long-term maintenance. Here, we will review current findings in CD4 T-cell memory that suggest inherent plasticity in populations of memory CD4 T cells at all stages of their development--originating with their generation from multiple types of primed CD4 T cells, during their persistence and homeostatic turnover in response to T-cell receptor signals, and also following secondary challenge. These multiple aspects of memory CD4 T-cell flexibility contrast the more defined lineages and functions ascribed to memory CD8 T cells, suggesting a dynamic nature to memory CD4 T-cell populations and responses. The flexible attributes of CD4 T-cell memory suggest opportunities and mechanisms for therapeutic manipulation at all phases of immune memory development, maintenance and recall.
Collapse
Affiliation(s)
- Jason R Lees
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
13
|
Sener A, Tang AL, Farber DL. Memory T-cell predominance following T-cell depletional therapy derives from homeostatic expansion of naive T cells. Am J Transplant 2009; 9:2615-23. [PMID: 19775313 DOI: 10.1111/j.1600-6143.2009.02820.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
T-cell depletion reportedly leads to alterations in the T-cell compartment with predominant survival of memory phenotype CD4 T cells. Here, we asked whether the prevalence of memory T cells postdepletion results from their inherent resistance to depletion and/or to the homeostatic expansion of naive T cells and their phenotypic conversion to memory, which is known to occur in lymphopenic conditions. Using a 'mosaic memory' mouse model with trackable populations of alloreactive memory T cells, we found that treatment with murine antithymocyte globulin (mATG) or antilymphocyte serum (ALS) effectively depleted alloreactive memory CD4 T cells, followed by rapid homeostatic proliferation of endogenous CD4 T cells peaking at 4 days postdepletion, with no homeostatic advantage to the antigen-specific memory population. Interestingly, naive (CD44lo) CD4 T cells exhibited the greatest increase in homeostatic proliferation following mATG treatment, divided more extensively compared to memory (CD44hi) CD4 T cells and converted to a memory phenotype. Our results provide novel evidence that memory CD4 T cells are susceptible to lymphodepletion and that the postdepletional T-cell compartment is repopulated to a significant extent by homeostatically expanded naive T cells in a mouse model, with important important implications for immune alterations triggered by induction therapy.
Collapse
Affiliation(s)
- A Sener
- Division of Transplantation, Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
14
|
Oberbarnscheidt MH, Ng YH, Chalasani G. The roles of CD8 central and effector memory T-cell subsets in allograft rejection. Am J Transplant 2008; 8:1809-18. [PMID: 18671680 PMCID: PMC4872301 DOI: 10.1111/j.1600-6143.2008.02335.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The contribution of secondary lymphoid tissue-homing central memory T cells (T(CM)) and peripheral tissue-homing effector memory T cells (T(EM)) to allograft rejection is not known. We tested whether T(EM) is the principal subset responsible for allograft rejection due to the nonlymphoid location of target antigens. Skin allograft rejection was studied after transferring either CD8 T(CM) or T(EM) to wild-type mice and to mice that lack secondary lymphoid tissues. We found that CD8 T(CM) and T(EM) were equally effective at rejecting allografts in wild-type hosts. However, CD8 T(EM) were significantly better than T(CM) at rejecting allografts in the absence of secondary lymphoid tissues. CD8 T(CM) were dependent upon secondary lymphoid tissues more than T(EM) for optimal differentiation into effectors that migrate into the allograft. Recall of either CD8 T(CM) or T(EM) led to accumulation of T(EM) after allograft rejection. These findings indicate that either CD8 T(CM) or T(EM) mediate allograft rejection but T(EM) have an advantage over T(CM) in immune surveillance of peripheral tissues, including transplanted organs.
Collapse
Affiliation(s)
| | - Yue-Harn Ng
- Departments of Medicine (Renal-Electrolyte) and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Geetha Chalasani
- Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261,Address correspondence and reprint requests to Dr. Geetha Chalasani, University of Pittsburgh School of Medicine, W1554 BST, 200 Lothrop Street, Pittsburgh, PA 15261.
| |
Collapse
|
15
|
Shiao SL, Kirkiles-Smith NC, Shepherd BR, McNiff JM, Carr EJ, Pober JS. Human effector memory CD4+ T cells directly recognize allogeneic endothelial cells in vitro and in vivo. THE JOURNAL OF IMMUNOLOGY 2007; 179:4397-404. [PMID: 17878335 DOI: 10.4049/jimmunol.179.7.4397] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The frequency of circulating alloreactive human memory T cells correlates with allograft rejection. Memory T cells may be divided into effector memory (T(EM)) and central memory (T(CM)) cell subsets, but their specific roles in allograft rejection are unknown. We report that CD4+ T(EM) (CD45RO+ CCR7- CD62L-) can be adoptively transferred readily into C.B-17 SCID/bg mice and mediate the destruction of human endothelial cells (EC) in vascularized human skin grafts allogeneic to the T cell donor. In contrast, CD4+ T(CM) (CD45RO+ CCR7+ CD62L+) are inefficiently transferred and do not mediate EC injury. In vitro, CD4+ T(EM) secrete more IFN-gamma within 48 h in response to allogeneic ECs than do T(CM). In contrast, T(EM) and T(CM) secrete comparable amounts of IFN-gamma in response to allogeneic monocytes (Mo). In the same cultures, both T(EM) and T(CM) produce IL-2 and proliferate in response to IFN-gamma-treated allogeneic human EC or Mo, but T(CM) respond more vigorously in both assays. Blockade of LFA-3 strongly inhibits both IL-2 and IFN-gamma secretion by CD4+ T(EM) cultured with allogeneic EC but only minimally inhibits responses to allogeneic Mo. Blockade of CD80 and CD86 strongly inhibits IL-2 but not IFN-gamma production by in response to allogeneic EC or Mo. Transduction of EC to express B7-2 enhances allogeneic T(EM) production of IL-2 but not IFN-gamma. We conclude that human CD4+ T(EM) directly recognize and respond to allogeneic EC in vitro by secreting IFN-gamma and that this response depends on CD2 but not CD28. Consistent with EC activation of effector functions, human CD4+ T(EM) can mediate allogeneic EC injury in vivo.
Collapse
Affiliation(s)
- Stephen L Shiao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Generation, homeostasis, and regulation of memory T cells in transplantation. Curr Opin Organ Transplant 2007; 12:23-29. [DOI: 10.1097/mot.0b013e328012b293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|