1
|
Mulligan MR, Bicknell LS. The molecular genetics of nELAVL in brain development and disease. Eur J Hum Genet 2023; 31:1209-1217. [PMID: 37697079 PMCID: PMC10620143 DOI: 10.1038/s41431-023-01456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023] Open
Abstract
Embryonic development requires tight control of gene expression levels, activity, and localisation. This control is coordinated by multiple levels of regulation on DNA, RNA and protein. RNA-binding proteins (RBPs) are recognised as key regulators of post-transcriptional gene regulation, where their binding controls splicing, polyadenylation, nuclear export, mRNA stability, translation rate and decay. In brain development, the ELAVL family of RNA binding proteins undertake essential functions across spatiotemporal windows to help regulate and specify transcriptomic programmes for cell specialisation. Despite their recognised importance in neural tissues, their molecular roles and connections to pathology are less explored. Here we provide an overview of the neuronal ELAVL family, noting commonalities and differences amongst different species, their molecular characteristics, and roles in the cell. We bring together the available molecular genetics evidence to link different ELAVL proteins to phenotypes and disease, in both the brain and beyond, including ELAVL2, which is the least studied ELAVL family member. We find that ELAVL-related pathology shares a common neurological theme, but different ELAVL proteins are more strongly connected to different phenotypes, reflecting their specialised expression across time and space.
Collapse
Affiliation(s)
- Meghan R Mulligan
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Louise S Bicknell
- Department of Biochemistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
2
|
Kim HK, Kim CJ, Jang D, Lim DH. MicroRNA miR-274-5p Suppresses Found-in-Neurons Associated with Melanotic Mass Formation and Developmental Growth in Drosophila. INSECTS 2023; 14:709. [PMID: 37623419 PMCID: PMC10456003 DOI: 10.3390/insects14080709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Abstract
The hematopoietic system plays a crucial role in immune defense response and normal development, and it is regulated by various factors from other tissues. The dysregulation of hematopoiesis is associated with melanotic mass formation; however, the molecular mechanisms underlying this process are poorly understood. Here, we observed that the overexpression of miR-274 in the fat body resulted in the formation of melanotic masses. Moreover, abnormal activation of the JNK and JAK/STAT signaling pathways was linked to these consequences. In addition to this defect, miR-274 overexpression in the larval fat body decreased the total tissue size, leading to a reduction in body weight. miR-274-5p was found to directly suppress the expression of found-in-neurons (fne), which encodes an RNA-binding protein. Similar to the effects of miR-274 overexpression, fne depletion led to melanotic mass formation and growth reduction. Collectively, miR-274 plays a regulatory role in the fne-JNK signaling axis in melanotic mass formation and growth control.
Collapse
Affiliation(s)
| | | | | | - Do-Hwan Lim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea; (H.K.K.); (C.J.K.); (D.J.)
| |
Collapse
|
3
|
Hilgers V. Regulation of neuronal RNA signatures by ELAV/Hu proteins. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1733. [PMID: 35429136 DOI: 10.1002/wrna.1733] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/30/2022]
Abstract
The RNA-binding proteins encoded by the highly conserved elav/Hu gene family, found in all metazoans, regulate the expression of a wide range of genes, at both the co-transcriptional and posttranscriptional level. Nervous-system-specific ELAV/Hu proteins are prominent for their essential role in neuron differentiation, and mutations have been associated with human neurodevelopmental and neurodegenerative diseases. Drosophila ELAV, the founding member of the protein family, mediates the synthesis of neuronal RNA signatures by promoting alternative splicing and alternative polyadenylation of hundreds of genes. The recent identification of ELAV's direct RNA targets revealed the protein's central role in shaping the neuronal transcriptome, and highlighted the importance of neuronal transcript signatures for neuron maintenance and organism survival. Animals have evolved multiple cellular mechanisms to ensure robustness of ELAV/Hu function. In Drosophila, elav autoregulates in a 3'UTR-dependent manner to maintain optimal protein levels. A complete absence of ELAV causes the activation and nuclear localization of the normally cytoplasmic paralogue FNE, in a process termed EXon-Activated functional Rescue (EXAR). Other species, including mammals, seem to utilize different strategies, such as protein redundancy, to maintain ELAV protein function and effectively safeguard the identity of the neuronal transcriptome. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Development RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
4
|
Yeung K, Bollepogu Raja KK, Shim YK, Li Y, Chen R, Mardon G. Single cell RNA sequencing of the adult Drosophila eye reveals distinct clusters and novel marker genes for all major cell types. Commun Biol 2022; 5:1370. [PMID: 36517671 PMCID: PMC9751288 DOI: 10.1038/s42003-022-04337-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 12/16/2022] Open
Abstract
The adult Drosophila eye is a powerful model system for phototransduction and neurodegeneration research. However, single cell resolution transcriptomic data are lacking for this tissue. We present single cell RNA-seq data on 1-day male and female, 3-day and 7-day old male adult eyes, covering early to mature adult eyes. All major cell types, including photoreceptors, cone and pigment cells in the adult eye were captured and identified. Our data sets identified novel cell type specific marker genes, some of which were validated in vivo. R7 and R8 photoreceptors form clusters that reflect their specific Rhodopsin expression and the specific Rhodopsin expression by each R7 and R8 cluster is the major determinant to their clustering. The transcriptomic data presented in this report will facilitate a deeper mechanistic understanding of the adult fly eye as a model system.
Collapse
Affiliation(s)
- Kelvin Yeung
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Komal Kumar Bollepogu Raja
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yoon-Kyung Shim
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Structural and Computation Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Structural and Computation Biology and Molecular Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Lin WY, Liu CH, Cheng J, Liu HP. Alterations of RNA-binding protein found in neurons in Drosophila neurons and glia influence synaptic transmission and lifespan. Front Mol Neurosci 2022; 15:1006455. [DOI: 10.3389/fnmol.2022.1006455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
The found in neurons (fne), a paralog of the RNA-binding protein ELAV gene family in Drosophila, is required for post-transcriptional regulation of neuronal development and differentiation. Previous explorations into the functions of the FNE protein have been limited to neurons. The function of fne in Drosophila glia remains unclear. We induced the knockdown or overexpression of fne in Drosophila neurons and glia to determine how fne affects different types of behaviors, neuronal transmission and the lifespan. Our data indicate that changes in fne expression impair associative learning, thermal nociception, and phototransduction. Examination of synaptic transmission at presynaptic and postsynaptic terminals of the larval neuromuscular junction (NMJ) revealed that loss of fne in motor neurons and glia significantly decreased excitatory junction currents (EJCs) and quantal content, while flies with glial fne knockdown facilitated short-term synaptic plasticity. In muscle cells, overexpression of fne reduced both EJC and quantal content and increased short-term synaptic facilitation. In both genders, the lifespan could be extended by the knockdown of fne in neurons and glia; the overexpression of fne shortened the lifespan. Our results demonstrate that disturbances of fne in neurons and glia influence the function of the Drosophila nervous system. Further explorations into the physiological and molecular mechanisms underlying neuronal and glial fne and elucidation of how fne affects neuronal activity may clarify certain brain functions.
Collapse
|
6
|
Carrasco J, Mateos F, Hilgers V. A critical developmental window for ELAV/Hu-dependent mRNA signatures at the onset of neuronal differentiation. Cell Rep 2022; 41:111542. [PMID: 36288718 PMCID: PMC9631114 DOI: 10.1016/j.celrep.2022.111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 12/01/2022] Open
Abstract
Cell-type-specific gene regulatory programs are essential for cell differentiation and function. In animal neurons, the highly conserved ELAV/Hu family of proteins promotes alternative splicing and polyadenylation of mRNA precursors to create unique neuronal transcript isoforms. Here, we assess transcriptome profiles and neurogenesis success in Drosophila models engineered to express differing levels of ELAV activity in the course of development. We show that the ELAV-mediated establishment of a subset of neuronal mRNA isoforms at the onset of neuron differentiation constitutes a developmental bottleneck that cannot be overcome later by the nuclear activation of the paralog found in neurons (FNE). Loss of ELAV function outside of that critical time window results in neurological defects. We find that FNE, when activated early enough, can restore ELAV-dependent neuronal mRNA isoforms and fully rescue development. Our findings demonstrate the essential role of robust cellular strategies to maintain ELAV activity and intact neuronal signatures in neurogenesis and neuronal function.
Collapse
Affiliation(s)
- Judit Carrasco
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; Faculty of Biology, Albert Ludwig University, 79104 Freiburg, Germany; International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), 79108 Freiburg, Germany
| | - Fernando Mateos
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
7
|
Grzejda D, Mach J, Schweizer JA, Hummel B, Rezansoff AM, Eggenhofer F, Panhale A, Lalioti ME, Cabezas Wallscheid N, Backofen R, Felsenberg J, Hilgers V. The long noncoding RNA mimi scaffolds neuronal granules to maintain nervous system maturity. SCIENCE ADVANCES 2022; 8:eabo5578. [PMID: 36170367 PMCID: PMC9519039 DOI: 10.1126/sciadv.abo5578] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/15/2022] [Indexed: 05/29/2023]
Abstract
RNA binding proteins and messenger RNAs (mRNAs) assemble into ribonucleoprotein granules that regulate mRNA trafficking, local translation, and turnover. The dysregulation of RNA-protein condensation disturbs synaptic plasticity and neuron survival and has been widely associated with human neurological disease. Neuronal granules are thought to condense around particular proteins that dictate the identity and composition of each granule type. Here, we show in Drosophila that a previously uncharacterized long noncoding RNA, mimi, is required to scaffold large neuronal granules in the adult nervous system. Neuronal ELAV-like proteins directly bind mimi and mediate granule assembly, while Staufen maintains condensate integrity. mimi granules contain mRNAs and proteins involved in synaptic processes; granule loss in mimi mutant flies impairs nervous system maturity and neuropeptide-mediated signaling and causes phenotypes of neurodegeneration. Our work reports an architectural RNA for a neuronal granule and provides a handle to interrogate functions of a condensate independently of those of its constituent proteins.
Collapse
Affiliation(s)
- Dominika Grzejda
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
- Faculty of Biology, Albert Ludwig University of Freiburg, Freiburg 79104, Germany
- International Max Planck Research School for Molecular and Cellular Biology (IMPRS- MCB), Freiburg 79108, Germany
| | - Jana Mach
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Johanna Aurelia Schweizer
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel 4058, Switzerland
- University of Basel, Basel 4001, Switzerland
| | - Barbara Hummel
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | - Florian Eggenhofer
- Department of Computer Science, Albert Ludwig University of Freiburg, Freiburg 79110, Germany
| | - Amol Panhale
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | - Maria-Eleni Lalioti
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
| | | | - Rolf Backofen
- Department of Computer Science, Albert Ludwig University of Freiburg, Freiburg 79110, Germany
- BIOSS and CIBSS Centres for Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| | - Johannes Felsenberg
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel 4058, Switzerland
| | - Valérie Hilgers
- Max-Planck-Institute of Immunobiology and Epigenetics, Freiburg 79108, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg 79104, Germany
| |
Collapse
|
8
|
Wei L, Lai EC. Regulation of the Alternative Neural Transcriptome by ELAV/Hu RNA Binding Proteins. Front Genet 2022; 13:848626. [PMID: 35281806 PMCID: PMC8904962 DOI: 10.3389/fgene.2022.848626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
The process of alternative polyadenylation (APA) generates multiple 3' UTR isoforms for a given locus, which can alter regulatory capacity and on occasion change coding potential. APA was initially characterized for a few genes, but in the past decade, has been found to be the rule for metazoan genes. While numerous differences in APA profiles have been catalogued across genetic conditions, perturbations, and diseases, our knowledge of APA mechanisms and biology is far from complete. In this review, we highlight recent findings regarding the role of the conserved ELAV/Hu family of RNA binding proteins (RBPs) in generating the broad landscape of lengthened 3' UTRs that is characteristic of neurons. We relate this to their established roles in alternative splicing, and summarize ongoing directions that will further elucidate the molecular strategies for neural APA, the in vivo functions of ELAV/Hu RBPs, and the phenotypic consequences of these regulatory paradigms in neurons.
Collapse
Affiliation(s)
- Lu Wei
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Eric C. Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States
| |
Collapse
|
9
|
Salim S, Banu A, Alwa A, Gowda SBM, Mohammad F. The gut-microbiota-brain axis in autism: what Drosophila models can offer? J Neurodev Disord 2021; 13:37. [PMID: 34525941 PMCID: PMC8442445 DOI: 10.1186/s11689-021-09378-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.
Collapse
Affiliation(s)
- Safa Salim
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Amira Alwa
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, 34110, Qatar.
| |
Collapse
|
10
|
Sun X, Zhang K, Gu J, Yang J, Huang Q, Yan R, Qin S, Hou C, Zhang G, Wang S, Li M. The biological characters of Bmelav-like genes in the development of Bombyx mori. INSECT MOLECULAR BIOLOGY 2021; 30:9-17. [PMID: 32940384 DOI: 10.1111/imb.12668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
The ELAV/Hu family is a conserved multigene family of pan-neuronal RNA-binding protein involved in post-transcriptional regulation in metazoans. In Drosophila, three members of this family, ELAV, RBP9 and FNE, are involved in neuronal differentiation, gene expression regulation and so on. This family is less well characterized in Bombyx mori. Two orthologs BmELAV-like-1 (BmEL-1) and BmELAV-like-2 (BmEL-2) share 55%-71% and 47%-62% identity with that of in Drosophila and humans, respectively. Bmel-1 is ubiquitously expressed while Bmel-2 is expressed in the head and ovaries specifically. Proteins encoded by both genes are localized in nuclear and cytoplasm. The weight of body, cocoon, pupae and cocoon shell are differently affected in Bmel-1- /-2- mutants created using CRISPR/Cas9 technology. Mutations of both genes increase the expression of four silk protein genes, Fib-L, Fib-H, P25 and Ser-1. In addition, the oviposition ability of Bmel-2- females is decreased. This study not only provides valuable insights into the functional roles of Bmelav-like genes in the growth, cocoon characters and regulation of silk protein genes expression, but also provides useful information for silkworm variety breeding.
Collapse
Affiliation(s)
- X Sun
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - K Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - J Gu
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - J Yang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - Q Huang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - R Yan
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
| | - S Qin
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - C Hou
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - G Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - S Wang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| | - M Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, China
- The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Science, Zhenjiang, Jiangsu, China
| |
Collapse
|
11
|
Abstract
Drosophila melanogaster males reduce courtship behaviour after mating failure. In the lab, such conditioned courtship suppression, aka 'courtship conditioning', serves as a complex learning and memory assay. Interestingly, variations in the courtship conditioning assay can establish different types of memory. Here, we review research investigating the underlying cellular and molecular mechanisms that allow male flies to form memories of previous mating failures.
Collapse
Affiliation(s)
- Nicholas Raun
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Spencer Jones
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jamie M Kramer
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
12
|
Alizzi RA, Xu D, Tenenbaum CM, Wang W, Gavis ER. The ELAV/Hu protein Found in neurons regulates cytoskeletal and ECM adhesion inputs for space-filling dendrite growth. PLoS Genet 2020; 16:e1009235. [PMID: 33370772 PMCID: PMC7793258 DOI: 10.1371/journal.pgen.1009235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 01/08/2021] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Dendritic arbor morphology influences how neurons receive and integrate extracellular signals. We show that the ELAV/Hu family RNA-binding protein Found in neurons (Fne) is required for space-filling dendrite growth to generate highly branched arbors of Drosophila larval class IV dendritic arborization neurons. Dendrites of fne mutant neurons are shorter and more dynamic than in wild-type, leading to decreased arbor coverage. These defects result from both a decrease in stable microtubules and loss of dendrite-substrate interactions within the arbor. Identification of transcripts encoding cytoskeletal regulators and cell-cell and cell-ECM interacting proteins as Fne targets using TRIBE further supports these results. Analysis of one target, encoding the cell adhesion protein Basigin, indicates that the cytoskeletal defects contributing to branch instability in fne mutant neurons are due in part to decreased Basigin expression. The ability of Fne to coordinately regulate the cytoskeleton and dendrite-substrate interactions in neurons may shed light on the behavior of cancer cells ectopically expressing ELAV/Hu proteins. Different types of neurons have different sizes and shapes that are tailored to their particular functions. In the fruit fly larva, a set of sensory neurons called class IV da neurons have highly branched trees of dendrites that cover the epidermis to sense potentially harmful stimuli. Neurons whose dendrites completely fill the territory they sample are also found in zebrafish, worms, mice and humans. We show that an RNA-binding protein called Fne plays an important role in coordinating different contributions to dendrite branching in class IV da neurons by impacting the organization of the cytoskeleton within the neuron and the ability of the dendrite to contact the substratum outside of it. The identification of mRNAs that code for cytoskeleton regulators and adhesive proteins as targets of Fne using a genome-wide approach further supports these results. While the ability of Fne to exert control over such proteins is crucial to generating the space-filling growth of neurons, it can be deleterious if not properly employed, such as when the homologs of Fne are expressed in cancer cells.
Collapse
Affiliation(s)
- Rebecca A. Alizzi
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Derek Xu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Conrad M. Tenenbaum
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Wei Wang
- Lewis-Sigler Institute, Princeton University, Princeton, New Jersey, United States of America
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
13
|
Wei L, Lee S, Majumdar S, Zhang B, Sanfilippo P, Joseph B, Miura P, Soller M, Lai EC. Overlapping Activities of ELAV/Hu Family RNA Binding Proteins Specify the Extended Neuronal 3' UTR Landscape in Drosophila. Mol Cell 2020; 80:140-155.e6. [PMID: 33007254 DOI: 10.1016/j.molcel.2020.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
The tissue-specific deployment of highly extended neural 3' UTR isoforms, generated by alternative polyadenylation (APA), is a broad and conserved feature of metazoan genomes. However, the factors and mechanisms that control neural APA isoforms are not well understood. Here, we show that three ELAV/Hu RNA binding proteins (Elav, Rbp9, and Fne) have similar capacities to induce a lengthened 3' UTR landscape in an ectopic setting. These factors promote accumulation of chromatin-associated, 3' UTR-extended, nascent transcripts, through inhibition of proximal polyadenylation site (PAS) usage. Notably, Elav represses an unannotated splice isoform of fne, switching the normally cytoplasmic Fne toward the nucleus in elav mutants. We use genomic profiling to reveal strong and broad loss of neural APA in elav/fne double mutant CNS, the first genetic background to largely abrogate this distinct APA signature. Overall, we demonstrate how regulatory interplay and functionally overlapping activities of neural ELAV/Hu RBPs drives the neural APA landscape.
Collapse
Affiliation(s)
- Lu Wei
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Seungjae Lee
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Sonali Majumdar
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Binglong Zhang
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA
| | - Piero Sanfilippo
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Brian Joseph
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA; Louis V. Gerstner, Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pedro Miura
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA; Department of Biology, University of Nevada, Reno, Reno, NV 89557, USA
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Eric C Lai
- Department of Developmental Biology, Sloan Kettering Institute, New York, NY 10065, USA.
| |
Collapse
|
14
|
Abstract
Sexual size dimorphism (SSD), a sex difference in body size, is widespread throughout the animal kingdom, raising the question of how sex influences existing growth regulatory pathways to bring about SSD. In insects, somatic sexual differentiation has long been considered to be controlled strictly cell-autonomously. Here, we discuss our surprising finding that in Drosophila larvae, the sex determination gene Sex-lethal (Sxl) functions in neurons to non-autonomously specify SSD. We found that Sxl is required in specific neuronal subsets to upregulate female body growth, including in the neurosecretory insulin producing cells, even though insulin-like peptides themselves appear not to be involved. SSD regulation by neuronal Sxl is also independent of its known splicing targets, transformer and msl-2, suggesting that it involves a new molecular mechanism. Interestingly, SSD control by neuronal Sxl is selective for larval, not imaginal tissue types, and operates in addition to cell-autonomous effects of Sxl and Tra, which are present in both larval and imaginal tissues. Overall, our findings add to a small but growing number of studies reporting non-autonomous, likely hormonal, control of sex differences in Drosophila, and suggest that the principles of sexual differentiation in insects and mammals may be more similar than previously thought.
Collapse
Affiliation(s)
- Annick Sawala
- a Physiology & Metabolism Laboratory , The Francis Crick Institute , London , UK
| | - Alex P Gould
- a Physiology & Metabolism Laboratory , The Francis Crick Institute , London , UK
| |
Collapse
|
15
|
Sxl-Dependent, tra/tra2-Independent Alternative Splicing of the Drosophila melanogaster X-Linked Gene found in neurons. G3-GENES GENOMES GENETICS 2015; 5:2865-74. [PMID: 26511498 PMCID: PMC4683657 DOI: 10.1534/g3.115.023721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Somatic sexual determination and behavior in Drosophila melanogaster are under the control of a genetic cascade initiated by Sex lethal (Sxl). In the female soma, SXL RNA-binding protein regulates the splicing of transformer (tra) transcripts into a female-specific form. The RNA-binding protein TRA and its cofactor TRA2 function in concert in females, whereas SXL, TRA, and TRA2 are thought to not function in males. To better understand sex-specific regulation of gene expression, we analyzed male and female head transcriptome datasets for expression levels and splicing, quantifying sex-biased gene expression via RNA-Seq and qPCR. Our data uncouple the effects of Sxl and tra/tra2 in females in the-sex-biased alternative splicing of head transcripts from the X-linked locus found in neurons (fne), encoding a pan-neuronal RNA-binding protein of the ELAV family. We show that FNE protein levels are downregulated by Sxl in female heads, also independently of tra/tra2. We argue that this regulation may have important sexually dimorphic consequences for the regulation of nervous system development or function.
Collapse
|
16
|
Concentration and Localization of Coexpressed ELAV/Hu Proteins Control Specificity of mRNA Processing. Mol Cell Biol 2015; 35:3104-15. [PMID: 26124284 DOI: 10.1128/mcb.00473-15] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/10/2015] [Indexed: 01/25/2023] Open
Abstract
Neuronally coexpressed ELAV/Hu proteins comprise a family of highly related RNA binding proteins which bind to very similar cognate sequences. How this redundancy is linked to in vivo function and how gene-specific regulation is achieved have not been clear. Analysis of mutants in Drosophila ELAV/Hu family proteins ELAV, FNE, and RBP9 and of genetic interactions among them indicates that they have mostly independent roles in neuronal development and function but have converging roles in the regulation of synaptic plasticity. Conversely, ELAV, FNE, RBP9, and human HuR bind ELAV target RNA in vitro with similar affinities. Likewise, all can regulate alternative splicing of ELAV target genes in nonneuronal wing disc cells and substitute for ELAV in eye development upon artificially increased expression; they can also substantially restore ELAV's biological functions when expressed under the control of the elav gene. Furthermore, ELAV-related Sex-lethal can regulate ELAV targets, and ELAV/Hu proteins can interfere with sexual differentiation. An ancient relationship to Sex-lethal is revealed by gonadal expression of RBP9, providing a maternal fail-safe for dosage compensation. Our results indicate that highly related ELAV/Hu RNA binding proteins select targets for mRNA processing through alteration of their expression levels and subcellular localization but only minimally by altered RNA binding specificity.
Collapse
|
17
|
Abstract
Post-transcriptional pre-mRNA splicing has emerged as a critical step in the gene expression cascade greatly influencing diversification and spatiotemporal control of the proteome in many developmental processes. The percentage of genes targeted by alternative splicing (AS) is shown to be over 95% in humans and 60% in Drosophila. Therefore, it is evident that deregulation of this process underlies many genetic diseases. Among all tissues, the brain shows the highest transcriptome diversity, which is not surprising in view of the complex inter- and intracellular networks underlying the development of this organ. Reports of isoforms known to function at different steps during Drosophila nervous system development are rapidly increasing as well as knowledge on their regulation and function, highlighting the role of AS during neuronal development in Drosophila.
Collapse
Affiliation(s)
- Carmen Mohr
- Institute of Human Genetics, University Medical Center Freiburg , Freiburg , Germany
| | | |
Collapse
|
18
|
Watanabe T, Aonuma H. Tissue-specific promoter usage and diverse splicing variants of found in neurons, an ancestral Hu/ELAV-like RNA-binding protein gene of insects, in the direct-developing insect Gryllus bimaculatus. INSECT MOLECULAR BIOLOGY 2014; 23:26-41. [PMID: 24382152 DOI: 10.1111/imb.12057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Hu/ELAV-like RNA-binding proteins (RBPs) are involved in the post-transcriptional regulation of RNA metabolism including splicing, transport, translational control and turnover. The Hu/ELAV-like RBP genes are predominantly expressed in neurons, and are therefore used as common neuronal markers in many animals. Although the expression patterns and functions of the Hu/ELAV-like RBP genes have been extensively studied in the model insect Drosophila melanogaster, little is known in basal direct-developing insects. In the present study, we performed an identification and expression analysis of the found in neurons (fne) gene, an ancestral insect Hu/ELAV-like RBP gene, in the cricket Gryllus bimaculatus. Contrary to expectation that the Gryllus fne transcript would be predominantly expressed in the nervous system, expression analysis revealed that the Gryllus fne gene is expressed broadly. In addition, we discovered that alternative promoter usage directs tissue-specific and embryonic stage-dependent regulation of fne expression, and that alternative splicing contributes to the generation of diverse sets of fne transcripts. Our data provide novel insights into the evolutionary diversification of the Hu/ELAV-like RBP gene family in insects.
Collapse
Affiliation(s)
- T Watanabe
- Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | | |
Collapse
|
19
|
Sturgill D, Malone JH, Sun X, Smith HE, Rabinow L, Samson ML, Oliver B. Design of RNA splicing analysis null models for post hoc filtering of Drosophila head RNA-Seq data with the splicing analysis kit (Spanki). BMC Bioinformatics 2013; 14:320. [PMID: 24209455 PMCID: PMC3827500 DOI: 10.1186/1471-2105-14-320] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 10/30/2013] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND The production of multiple transcript isoforms from one gene is a major source of transcriptome complexity. RNA-Seq experiments, in which transcripts are converted to cDNA and sequenced, allow the resolution and quantification of alternative transcript isoforms. However, methods to analyze splicing are underdeveloped and errors resulting in incorrect splicing calls occur in every experiment. RESULTS We used RNA-Seq data to develop sequencing and aligner error models. By applying these error models to known input from simulations, we found that errors result from false alignment to minor splice motifs and antisense stands, shifted junction positions, paralog joining, and repeat induced gaps. By using a series of quantitative and qualitative filters, we eliminated diagnosed errors in the simulation, and applied this to RNA-Seq data from Drosophila melanogaster heads. We used high-confidence junction detections to specifically interrogate local splicing differences between transcripts. This method out-performed commonly used RNA-seq methods to identify known alternative splicing events in the Drosophila sex determination pathway. We describe a flexible software package to perform these tasks called Splicing Analysis Kit (Spanki), available at http://www.cbcb.umd.edu/software/spanki. CONCLUSIONS Splice-junction centric analysis of RNA-Seq data provides advantages in specificity for detection of alternative splicing. Our software provides tools to better understand error profiles in RNA-Seq data and improve inference from this new technology. The splice-junction centric approach that this software enables will provide more accurate estimates of differentially regulated splicing than current tools.
Collapse
Affiliation(s)
- David Sturgill
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Colombrita C, Silani V, Ratti A. ELAV proteins along evolution: back to the nucleus? Mol Cell Neurosci 2013; 56:447-55. [PMID: 23439364 DOI: 10.1016/j.mcn.2013.02.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 12/16/2022] Open
Abstract
The complex interplay of post-transcriptional regulatory mechanisms mediated by RNA-binding proteins (RBP) at different steps of RNA metabolism is pivotal for the development of the nervous system and the maintenance of adult brain activities. In this review, we will focus on the highly conserved ELAV gene family encoding for neuronal-specific RBPs which are necessary for proper neuronal differentiation and important for synaptic plasticity process. In the evolution from Drosophila to man, ELAV proteins seem to have changed their biological functions in relation to their different subcellular localization. While in Drosophila, they are localized in the nuclear compartment of neuronal cells and regulate splicing and polyadenylation, in mammals, the neuronal ELAV proteins are mainly present in the cytoplasm where they participate in regulating mRNA target stability, translation and transport into neurites. However, recent data indicate that the mammalian ELAV RBPs also have nuclear activities, similarly to their fly counterpart, being them able to continuously shuttle between the cytoplasm and the nucleus. Here, we will review and comment on all the biological functions associated with neuronal ELAV proteins along evolution and will show that the post-transcriptional regulatory network mediated by these RBPs in the brain is highly complex and only at an initial stage of being fully understood. This article is part of a Special Issue entitled 'RNA and splicing regulation in neurodegeneration'.
Collapse
Affiliation(s)
- Claudia Colombrita
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Zucchi, 18, 20095 Cusano Milanino (Milan), Italy; Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, "Dino Ferrari" Center, Università degli Studi di Milano, Via Sforza, 35, 20122 Milan, Italy
| | | | | |
Collapse
|