1
|
Noori M, Jarrah O, Al Shamsi A. Carbamoly-phosphate synthetase 1 (CPS1) deficiency: A tertiary center retrospective cohort study and literature review. Mol Genet Metab Rep 2024; 41:101156. [PMID: 39469307 PMCID: PMC11513499 DOI: 10.1016/j.ymgmr.2024.101156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Background Protein metabolism and urea production maintain protein and amino acid homeostasis in normal status. Ammonia results from amino acid turnover and is produced by intestinal urease-positive bacteria. Ammonia must be detoxified, and the urea cycle converts ammonia into urea. CPS1 is an enzyme in the urea cycle that catalyzes ammonia and bicarbonate condensation. CPS1 deficiency presents in the neonatal period with hyperammonemia, resulting in death or neurological sequelae if patients survive. Objectives/aims To share the experience of patients with CPS1 deficiency from Tawam Hospital and to shed light on the spectrum of variants found in those patients. Methods A retrospective chart review was done. All patients with CPS1 deficiency admitted to Tawam Hospital from 2010 to 2023 were included. Collected data included age and ammonia level at presentation, the time needed to drop ammonia level below 100 μmol/L, acute management modality provided, long-term neurological sequelae, sequence variants, severity, and duration of hyperammonemia encephalopathy, age at last follow-up, and, if applicable, survival for at least six months. Results Only five patients with CPS1 deficiency over 13 years were found; two males and three females. Three patients are doing relatively well at 18 months, 7, and 9 years of age. The presented age was in the neonatal period except in one patient. One patient was found to have frameshift, resulting in a premature stop codon in the CPS1 gene, had a devastating course that ended with death. One patient had recurrent hyperammonemia episodes in her first year of life, which led to microcephaly and global developmental delay. One patient underwent hemodialysis, and one patient underwent peritoneal dialysis. All patients except one were on Carglumic acid which could contribute to their survival and disease control. All variants reported here are novel except one. Conclusion Although the presentation was different in severity, three patients are doing relatively well and approaching their developmental milestones. Thus, early recognition, prompt actions to drop high ammonia level, and good follow-up plans are emphasized. Further studies are needed to correlate the genotype-phenotype of reported variants here, which can help predict the severity of CPS1 deficiency.
Collapse
Affiliation(s)
- Mahmood Noori
- Pediatrics Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Omar Jarrah
- Pediatrics Department, Tawam Hospital, Al Ain, United Arab Emirates
| | - Aisha Al Shamsi
- Genetic Metabolic Division, Pediatrics Department, Tawam Hospital, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Watson S, Micheloni E, Ngu L, Barnsley KK, Makowski L, Beuning PJ, Ondrechen MJ. Revisiting the Roles of Catalytic Residues in Human Ornithine Transcarbamylase. Biochemistry 2024; 63:1858-1875. [PMID: 38940639 PMCID: PMC11256359 DOI: 10.1021/acs.biochem.4c00206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Human ornithine transcarbamylase (hOTC) is a mitochondrial transferase protein involved in the urea cycle and is crucial for the conversion of toxic ammonia to urea. Structural analysis coupled with kinetic studies of Escherichia coli, rat, bovine, and other transferase proteins has identified residues that play key roles in substrate recognition and conformational changes but has not provided direct evidence for all of the active residues involved in OTC function. Here, computational methods were used to predict the likely active residues of hOTC; the function of these residues was then probed with site-directed mutagenesis and biochemical characterization. This process identified previously reported active residues, as well as distal residues that contribute to activity. Mutation of active site residue D263 resulted in a substantial loss of activity without a decrease in protein stability, suggesting a key catalytic role for this residue. Mutation of predicted second-layer residues H302, K307, and E310 resulted in significant decreases in enzymatic activity relative to that of wild-type (WT) hOTC with respect to l-ornithine. The mutation of fourth-layer residue H107 to produce the hOTC H107N variant resulted in a 66-fold decrease in catalytic efficiency relative to that of WT hOTC with respect to carbamoyl phosphate and a substantial loss of thermal stability. Further investigation identified H107 and to a lesser extent E98Q as key residues involved in maintaining the hOTC quaternary structure. This work biochemically demonstrates the importance of D263 in hOTC catalytic activity and shows that residues remote from the active site also play key roles in activity.
Collapse
Affiliation(s)
- Samantha
S. Watson
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Emily Micheloni
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Lisa Ngu
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Kelly K. Barnsley
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Lee Makowski
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Penny J. Beuning
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Mary Jo Ondrechen
- Department
of Chemistry and Chemical Biology, Northeastern
University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Jalil S, Keskinen T, Juutila J, Sartori Maldonado R, Euro L, Suomalainen A, Lapatto R, Kuuluvainen E, Hietakangas V, Otonkoski T, Hyvönen ME, Wartiovaara K. Genetic and functional correction of argininosuccinate lyase deficiency using CRISPR adenine base editors. Am J Hum Genet 2024; 111:714-728. [PMID: 38579669 PMCID: PMC11023919 DOI: 10.1016/j.ajhg.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024] Open
Abstract
Argininosuccinate lyase deficiency (ASLD) is a recessive metabolic disorder caused by variants in ASL. In an essential step in urea synthesis, ASL breaks down argininosuccinate (ASA), a pathognomonic ASLD biomarker. The severe disease forms lead to hyperammonemia, neurological injury, and even early death. The current treatments are unsatisfactory, involving a strict low-protein diet, arginine supplementation, nitrogen scavenging, and in some cases, liver transplantation. An unmet need exists for improved, efficient therapies. Here, we show the potential of a lipid nanoparticle-mediated CRISPR approach using adenine base editors (ABEs) for ASLD treatment. To model ASLD, we first generated human-induced pluripotent stem cells (hiPSCs) from biopsies of individuals homozygous for the Finnish founder variant (c.1153C>T [p.Arg385Cys]) and edited this variant using the ABE. We then differentiated the hiPSCs into hepatocyte-like cells that showed a 1,000-fold decrease in ASA levels compared to those of isogenic non-edited cells. Lastly, we tested three different FDA-approved lipid nanoparticle formulations to deliver the ABE-encoding RNA and the sgRNA targeting the ASL variant. This approach efficiently edited the ASL variant in fibroblasts with no apparent cell toxicity and minimal off-target effects. Further, the treatment resulted in a significant decrease in ASA, to levels of healthy donors, indicating restoration of the urea cycle. Our work describes a highly efficient approach to editing the disease-causing ASL variant and restoring the function of the urea cycle. This method relies on RNA delivered by lipid nanoparticles, which is compatible with clinical applications, improves its safety profile, and allows for scalable production.
Collapse
Affiliation(s)
- Sami Jalil
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Timo Keskinen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Juhana Juutila
- Faculty of Biological and Environmental Sciences University of Helsinki, Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Rocio Sartori Maldonado
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Liliya Euro
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Risto Lapatto
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Emilia Kuuluvainen
- Faculty of Biological and Environmental Sciences University of Helsinki, Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ville Hietakangas
- Faculty of Biological and Environmental Sciences University of Helsinki, Helsinki, Finland; Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Mervi E Hyvönen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; New Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kirmo Wartiovaara
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Clinical Genetics, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
4
|
Seker Yilmaz B, Baruteau J, Chakrapani A, Champion M, Chronopoulou E, Claridge LC, Daly A, Davies C, Davison J, Dhawan A, Grunewald S, Gupte GL, Heaton N, Lemonde H, McKiernan P, Mills P, Morris AA, Mundy H, Pierre G, Rajwal S, Sivananthan S, Sreekantam S, Stepien KM, Vara R, Yeo M, Gissen P. Liver transplantation in ornithine transcarbamylase deficiency: A retrospective multicentre cohort study. Mol Genet Metab Rep 2023; 37:101020. [PMID: 38053940 PMCID: PMC10694733 DOI: 10.1016/j.ymgmr.2023.101020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
Ornithine transcarbamylase deficiency (OTCD) is an X-linked defect of ureagenesis and the most common urea cycle disorder. Patients present with hyperammonemia causing neurological symptoms, which can lead to coma and death. Liver transplantation (LT) is the only curative therapy, but has several limitations including organ shortage, significant morbidity and requirement of lifelong immunosuppression. This study aims to identify the characteristics and outcomes of patients who underwent LT for OTCD. We conducted a retrospective study for OTCD patients from 5 UK centres receiving LT in 3 transplantation centres between 2010 and 2022. Patients' demographics, family history, initial presentation, age at LT, graft type and pre- and post-LT clinical, metabolic, and neurocognitive profile were collected from medical records. A total of 20 OTCD patients (11 males, 9 females) were enrolled in this study. 6/20 had neonatal and 14/20 late-onset presentation. 2/20 patients had positive family history for OTCD and one of them was diagnosed antenatally and received prospective treatment. All patients were managed with standard of care based on protein-restricted diet, ammonia scavengers and supplementation with arginine and/or citrulline before LT. 15/20 patients had neurodevelopmental problems before LT. The indication for LT was presence (or family history) of recurrent metabolic decompensations occurring despite standard medical therapy leading to neurodisability and quality of life impairment. Median age at LT was 10.5 months (6-24) and 66 months (35-156) in neonatal and late onset patients, respectively. 15/20 patients had deceased donor LT (DDLT) and 5/20 had living related donor LT (LDLT). Overall survival was 95% with one patient dying 6 h after LT. 13/20 had complications after LT and 2/20 patients required re-transplantation. All patients discontinued dietary restriction and ammonia scavengers after LT and remained metabolically stable. Patients who had neurodevelopmental problems before LT persisted to have difficulties after LT. 1/5 patients who was reported to have normal neurodevelopment before LT developed behavioural problems after LT, while the remaining 4 maintained their abilities without any reported issues. LT was found to be effective in correcting the metabolic defect, eliminates the risk of hyperammonemia and prolongs patients' survival.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Anupam Chakrapani
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Michael Champion
- Department of Inherited Metabolic Disease, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, SE1 7EH London, UK
| | - Efstathia Chronopoulou
- Department of Inherited Metabolic Disease, Division of Women's and Children's Services, University Hospitals Bristol NHS Foundation Trust, Bristol BS1 3NU, UK
| | | | - Anne Daly
- Birmingham Women's and Children's Hospital NHS Foundation Trust, B4 6NH, Birmingham, UK
| | - Catherine Davies
- Department of Inherited Metabolic Disease, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, SE1 7EH London, UK
| | - James Davison
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Anil Dhawan
- Paediatric Liver Gastroenterology and Nutrition Centre and Mowat Labs, King's College Hospital NHS Foundation Trust, WC2R 2LS, London, UK
| | - Stephanie Grunewald
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Girish L. Gupte
- Birmingham Women's and Children's Hospital NHS Foundation Trust, B4 6NH, Birmingham, UK
| | - Nigel Heaton
- Institute of Liver Studies, Kings College Hospital, Denmark Hill, WC2R 2LS London, UK
| | - Hugh Lemonde
- Department of Inherited Metabolic Disease, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, SE1 7EH London, UK
| | - Pat McKiernan
- Birmingham Women's and Children's Hospital NHS Foundation Trust, B4 6NH, Birmingham, UK
| | - Philippa Mills
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Andrew A.M. Morris
- Willink Unit, Genetic Medicine, Manchester Academic Health Sciences Centre, Central Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Helen Mundy
- Department of Inherited Metabolic Disease, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, SE1 7EH London, UK
| | - Germaine Pierre
- Department of Inherited Metabolic Disease, Division of Women's and Children's Services, University Hospitals Bristol NHS Foundation Trust, Bristol BS1 3NU, UK
| | - Sanjay Rajwal
- Leeds Teaching Hospitals NHS Trust, LS9 7TF Leeds, UK
| | - Siyamini Sivananthan
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Srividya Sreekantam
- Birmingham Women's and Children's Hospital NHS Foundation Trust, B4 6NH, Birmingham, UK
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, M6 8HD Salford, UK
| | - Roshni Vara
- Department of Inherited Metabolic Disease, Evelina Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, SE1 7EH London, UK
| | - Mildrid Yeo
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- Department of Paediatric Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
5
|
Seker Yilmaz B, Gissen P. Genetic Therapy Approaches for Ornithine Transcarbamylase Deficiency. Biomedicines 2023; 11:2227. [PMID: 37626723 PMCID: PMC10452060 DOI: 10.3390/biomedicines11082227] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle disorder with high unmet needs, as current dietary and medical treatments may not be sufficient to prevent hyperammonemic episodes, which can cause death or neurological sequelae. To date, liver transplantation is the only curative choice but is not widely available due to donor shortage, the need for life-long immunosuppression and technical challenges. A field of research that has shown a great deal of promise recently is gene therapy, and OTCD has been an essential candidate for different gene therapy modalities, including AAV gene addition, mRNA therapy and genome editing. This review will first summarise the main steps towards clinical translation, highlighting the benefits and challenges of each gene therapy approach, then focus on current clinical trials and finally outline future directions for the development of gene therapy for OTCD.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK;
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
6
|
Seker Yilmaz B, Baruteau J, Arslan N, Aydin HI, Barth M, Bozaci AE, Brassier A, Canda E, Cano A, Chronopoulou E, Connolly GM, Damaj L, Dawson C, Dobbelaere D, Douillard C, Eminoglu FT, Erdol S, Ersoy M, Fang S, Feillet F, Gokcay G, Goksoy E, Gorce M, Inci A, Kadioglu B, Kardas F, Kasapkara CS, Kilic Yildirim G, Kor D, Kose M, Marelli C, Mundy H, O’Sullivan S, Ozturk Hismi B, Ramachandran R, Roubertie A, Sanlilar M, Schiff M, Sreekantam S, Stepien KM, Uzun Unal O, Yildiz Y, Zubarioglu T, Gissen P. Three-Country Snapshot of Ornithine Transcarbamylase Deficiency. Life (Basel) 2022; 12:1721. [PMID: 36362876 PMCID: PMC9695856 DOI: 10.3390/life12111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
X-linked ornithine transcarbamylase deficiency (OTCD) is the most common urea cycle defect. The disease severity ranges from asymptomatic carrier state to severe neonatal presentation with hyperammonaemic encephalopathy. We audited the diagnosis and management of OTCD, using an online 12-question-survey that was sent to 75 metabolic centres in Turkey, France and the UK. Thirty-nine centres responded and 495 patients were reported in total. A total of 208 French patients were reported, including 71 (34%) males, 86 (41%) symptomatic and 51 (25%) asymptomatic females. Eighty-five Turkish patients included 32 (38%) males, 39 (46%) symptomatic and 14 (16%) asymptomatic females. Out of the 202 UK patients, 66 (33%) were male, 83 (41%) asymptomatic and 53 (26%) symptomatic females. A total of 19%, 12% and 7% of the patients presented with a neonatal-onset phenotype in France, Turkey and the UK, respectively. Vomiting, altered mental status and encephalopathy were the most common initial symptoms in all three countries. While 69% in France and 79% in Turkey were receiving protein restriction, 42% were on a protein-restricted diet in the UK. A total of 76%, 47% and 33% of patients were treated with ammonia scavengers in Turkey, France and the UK, respectively. The findings of our audit emphasize the differences and similarities in manifestations and management practices in three countries.
Collapse
Affiliation(s)
- Berna Seker Yilmaz
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Julien Baruteau
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - Nur Arslan
- Paediatric Metabolic Medicine Department, Dokuz Eylul University Faculty of Medicine, Izmir 35340, Turkey
| | - Halil Ibrahim Aydin
- Paediatric Metabolic Medicine Department, Baskent University Faculty of Medicine, Ankara 06490, Turkey
| | - Magalie Barth
- Centre de Référence des Maladies Héréditaires du Métabolisme, CHU Angers, 4 rue Larrey, CEDEX 9, 49933 Angers, France
| | - Ayse Ergul Bozaci
- Paediatric Metabolic Medicine Department, Diyarbakir Children’s Hospital, Diyarbakir 21100, Turkey
| | - Anais Brassier
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, APHP and University of Paris Cité, 75015 Paris, France
| | - Ebru Canda
- Paediatric Metabolic Medicine Department, Ege University Faculty of Medicine, Izmir 35100, Turkey
| | - Aline Cano
- Reference Center of Inherited Metabolic Disorders, Timone Enfants Hospital, 264 rue Saint-Pierre, 13005 Marseille, France
| | - Efstathia Chronopoulou
- Department of Inherited Metabolic Disease, Division of Women’s and Children’s Services, University Hospitals Bristol NHS Foundation Trust, Bristol BS1 3NU, UK
| | | | - Lena Damaj
- Centre de Compétence Maladies Héréditaires du Métabolisme, CHU Hôpital Sud, CEDEX 2, 35203 Rennes, France
| | - Charlotte Dawson
- Metabolic Medicine Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2GW, UK
| | - Dries Dobbelaere
- Medical Reference Center for Inherited Metabolic Diseases, Jeanne de Flandre University Hospital and RADEME Research Team for Rare Metabolic and Developmental Diseases, EA 7364 CHRU Lille, 59000 Lille, France
| | - Claire Douillard
- Medical Reference Center for Inherited Metabolic Diseases, Jeanne de Flandre University Hospital and RADEME Research Team for Rare Metabolic and Developmental Diseases, EA 7364 CHRU Lille, 59000 Lille, France
| | - Fatma Tuba Eminoglu
- Paediatric Metabolic Medicine Department, Ankara University Faculty of Medicine, Ankara 06080, Turkey
| | - Sahin Erdol
- Paediatric Metabolic Medicine Department, Uludag University Faculty of Medicine, Bursa 16059, Turkey
| | - Melike Ersoy
- Paediatric Metabolic Medicine Department, Dr Sadi Konuk Reseach & Training Hospital, Istanbul 34450, Turkey
| | - Sherry Fang
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| | - François Feillet
- Centre de Référence des Maladies Métaboliques de Nancy, CHU Brabois Enfants, 5 Rue du Morvan, 54500 Vandœuvre-lès-Nancy, France
| | - Gulden Gokcay
- Paediatric Metabolic Medicine Department, Istanbul University Istanbul Faculty of Medicine, Istanbul 34093, Turkey
| | - Emine Goksoy
- Paediatric Metabolic Medicine Department, Cengiz Gokcek Children’s Hospital, Gaziantep 27010, Turkey
| | - Magali Gorce
- Centre de Référence des Maladies Rares du Métabolisme, Hôpital des Enfants—CHU Toulouse, 330 Avenue de Grande-Bretagne, CEDEX 9, 31059 Toulouse, France
| | - Asli Inci
- Paediatric Metabolic Medicine Department, Gazi University Faculty of Medicine, Ankara 06500, Turkey
| | - Banu Kadioglu
- Paediatric Metabolic Medicine Department, Konya City Hospital, Konya 42020, Turkey
| | - Fatih Kardas
- Paediatric Metabolic Medicine Department, Erciyes University Faculty of Medicine, Kayseri 38030, Turkey
| | - Cigdem Seher Kasapkara
- Paediatric Metabolic Medicine Department, Ankara Yildirim Beyazit University Faculty of Medicine, Ankara 06800, Turkey
| | - Gonca Kilic Yildirim
- Paediatric Metabolic Medicine Department, Osmangazi University Faculty of Medicine, Eskisehir 26480, Turkey
| | - Deniz Kor
- Paediatric Metabolic Medicine Department, Cukurova University Faculty of Medicine, Adana 01250, Turkey
| | - Melis Kose
- Paediatric Metabolic Medicine Department, Faculty of Medicine, Izmir Katip Celebi University, Izmir 35620, Turkey
| | - Cecilia Marelli
- MMDN, University Montpellier, EPHE, INSERM, 34090 Montpellier, France
- Expert Center for Metabolic and Neurogenetic Diseases, Centre Hospitalier Universitaire (CHU), 34090 Montpellier, France
| | - Helen Mundy
- Evelina Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 7EH, UK
| | | | - Burcu Ozturk Hismi
- Paediatric Metabolic Medicine Department, Marmara University Faculty of Medicine, Istanbul 34854, Turkey
| | | | - Agathe Roubertie
- MMDN, University Montpellier, EPHE, INSERM, 34090 Montpellier, France
- Expert Center for Metabolic and Neurogenetic Diseases, Centre Hospitalier Universitaire (CHU), 34090 Montpellier, France
| | - Mehtap Sanlilar
- Paediatric Metabolic Medicine Department, Antalya Training and Research Hospital, Antalya 07100, Turkey
| | - Manuel Schiff
- Reference Center for Inborn Errors of Metabolism, Necker University Hospital, APHP and University of Paris Cité, 75015 Paris, France
| | - Srividya Sreekantam
- Birmingham Women’s and Children’s Hospital NHS Foundation Trust, Birmingham B4 6NH, UK
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Ozlem Uzun Unal
- Paediatric Metabolic Medicine Department, Kocaeli University Faculty of Medicine, Kocaeli 41380, Turkey
| | - Yilmaz Yildiz
- Paediatric Metabolic Medicine Department, Hacettepe University Faculty of Medicine, Ankara 06230, Turkey
| | - Tanyel Zubarioglu
- Paediatric Metabolic Medicine Department, Istanbul University-Cerrahpasa Faculty of Medicine, Istanbul 34096, Turkey
| | - Paul Gissen
- Genetics and Genomic Medicine Department, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
- National Institute of Health Research Great Ormond Street Biomedical Research Centre, London WC1N 1EH, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London WC1N 3JH, UK
| |
Collapse
|
7
|
Kido J, Sugawara K, Sawada T, Matsumoto S, Nakamura K. Pathogenic variants of ornithine transcarbamylase deficiency: Nation-wide study in Japan and literature review. Front Genet 2022; 13:952467. [PMID: 36303552 PMCID: PMC9593096 DOI: 10.3389/fgene.2022.952467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/25/2022] [Indexed: 11/29/2022] Open
Abstract
Ornithine transcarbamylase deficiency (OTCD) is an X-linked disorder. Several male patients with OTCD suffer from severe hyperammonemic crisis in the neonatal period, whereas others develop late-onset manifestations, including hyperammonemic coma. Females with heterozygous pathogenic variants in the OTC gene may develop a variety of clinical manifestations, ranging from asymptomatic conditions to severe hyperammonemic attacks, owing to skewed lyonization. We reported the variants of CPS1, ASS, ASL and OTC detected in the patients with urea cycle disorders through a nation-wide survey in Japan. In this study, we updated the variant data of OTC in Japanese patients and acquired information regarding genetic variants of OTC from patients with OTCD through an extensive literature review. The 523 variants included 386 substitution (330 missense, 53 nonsense, and 3 silent), eight deletion, two duplication, one deletion-insertion, 55 frame shift, two extension, and 69 no category (1 regulatory and 68 splice site error) mutations. We observed a genotype-phenotype relation between the onset time (neonatal onset or late onset), the severity, and genetic mutation in male OTCD patients because the level of deactivation of OTC significantly depends on the pathogenic OTC variants. In conclusion, genetic information about OTC may help to predict long-term outcomes and determine specific treatment strategies, such as liver transplantation, in patients with OTCD.
Collapse
Affiliation(s)
- Jun Kido
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Keishin Sugawara
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takaaki Sawada
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University Hospital, Kumamoto, Japan
- Department of Pediatrics, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
8
|
Bin Sawad A, Jackimiec J, Bechter M, Trucillo A, Lindsley K, Bhagat A, Uyei J, Diaz GA. Epidemiology, methods of diagnosis, and clinical management of patients with arginase 1 deficiency (ARG1-D): A systematic review. Mol Genet Metab 2022; 137:153-163. [PMID: 36049366 DOI: 10.1016/j.ymgme.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Arginase 1 Deficiency (ARG1-D) is a rare, progressive, metabolic disorder that is characterized by devastating manifestations driven by elevated plasma arginine levels. It typically presents in early childhood with spasticity (predominately affecting the lower limbs), mobility impairment, seizures, developmental delay, and intellectual disability. This systematic review aims to identify and describe the published evidence outlining the epidemiology, diagnosis methods, measures of disease progression, clinical management, and outcomes for ARG1-D patients. METHODS A comprehensive literature search across multiple databases such as MEDLINE, Embase, and a review of clinical studies in ClinicalTrials.gov (with results reported) was carried out per PRISMA guidelines on 20 April 2020 with no date restriction. Pre-defined eligibility criteria were used to identify studies with data specific to patients with ARG1-D. Two independent reviewers screened records and extracted data from included studies. Quality was assessed using the modified Newcastle-Ottawa Scale for non-comparative studies. RESULTS Overall, 55 records reporting 40 completed studies and 3 ongoing studies were included. Ten studies reported the prevalence of ARG1-D in the general population, with a median of 1 in 1,000,000. Frequently reported diagnostic methods included genetic testing, plasma arginine levels, and red blood cell arginase activity. However, routine newborn screening is not universally available, and lack of disease awareness may prevent early diagnosis or lead to misdiagnosis, as the disease has overlapping symptomology with other diseases, such as cerebral palsy. Common manifestations reported at time of diagnosis and assessed for disease progression included spasticity (predominately affecting the lower limbs), mobility impairment, developmental delay, intellectual disability, and seizures. Severe dietary protein restriction, essential amino acid supplementation, and nitrogen scavenger administration were the most commonly reported treatments among patients with ARG1-D. Only a few studies reported meaningful clinical outcomes of these interventions on intellectual disability, motor function and adaptive behavior assessment, hospitalization, or death. The overall quality of included studies was assessed as good according to the Newcastle-Ottawa Scale. CONCLUSIONS Although ARG1-D is a rare disease, published evidence demonstrates a high burden of disease for patients. The current standard of care is ineffective at preventing disease progression. There remains a clear need for new treatment options as well as improved access to diagnostics and disease awareness to detect and initiate treatment before the onset of clinical manifestations to potentially enable more normal development, improve symptomatology, or prevent disease progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - George A Diaz
- Division of Medical Genetics and Genomics in the Department of Genetics and Genomic Sciences at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Gobin-Limballe S, Ottolenghi C, Reyal F, Arnoux JB, Magen M, Simon M, Brassier A, Jabot-Hanin F, Lonlay PD, Pontoizeau C, Guirat M, Rio M, Gesny R, Gigarel N, Royer G, Steffann J, Munnich A, Bonnefont JP. OTC deficiency in females: Phenotype-genotype correlation based on a 130-family cohort. J Inherit Metab Dis 2021; 44:1235-1247. [PMID: 34014569 DOI: 10.1002/jimd.12404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/30/2022]
Abstract
OTC deficiency, an inherited urea cycle disorder, is caused by mutations in the X-linked OTC gene. Phenotype-genotype correlations are well understood in males but still poorly known in females. Taking advantage of a cohort of 130 families (289 females), we assessed the relative contribution of OTC enzyme activity, X chromosome inactivation, and OTC gene sequencing to genetic counseling in heterozygous females. Twenty two percent of the heterozygous females were clinically affected, with episodic (11%), chronic (7.5%), or neonatal forms of the disease (3.5%). Overall mortality rate was 4%. OTC activity, ranging from 0% to 60%, did not correlate with phenotype at the individual level. Analysis of multiple samples from 4 mutant livers showed intra-hepatic variability of OTC activity and X inactivation profile (range of variability: 30% and 20%, respectively) without correlation between both parameters for 3 of the 4 livers. Ninety disease-causing variants were found, 27 of which were novel. Mutations were classified as "mild" or "severe," based on male phenotypes and/or in silico prediction. In our cohort, a serious disease occurred in 32% of females with a severe mutation, compared to 4% in females with a mild mutation (odds ratio = 1.365; P = 1.6e-06). These data should help prenatal diagnosis for heterozygous females and genetic counseling after fortuitous findings of OTC variants in pangenomic sequencing.
Collapse
Affiliation(s)
| | - Chris Ottolenghi
- Metabolomic and Proteomic Biochemistry Department, Necker Hospital, APHP Centre- Paris University, Paris, France
- INSERM UMR1163, Institut Imagine, Paris University, Paris, France
| | - Fabien Reyal
- Molecular Genetics Department, Necker Hospital, APHP Centre-Paris University, Paris, France
- Breast Gynecologic Cancer Reconstructive Team, Institut Curie, Paris University, Paris, France
| | - Jean-Baptiste Arnoux
- Inherited Metabolic Disease Department and National Reference Centre for Inherited Metabolic diseases, Necker Hospital, APHP Centre-Paris University, Paris, France
- INSERM U1151, INEM, Paris University, Paris, France
| | - Maryse Magen
- Molecular Genetics Department, Necker Hospital, APHP Centre-Paris University, Paris, France
| | - Marie Simon
- Molecular Genetics Department, Necker Hospital, APHP Centre-Paris University, Paris, France
| | - Anaïs Brassier
- Inherited Metabolic Disease Department and National Reference Centre for Inherited Metabolic diseases, Necker Hospital, APHP Centre-Paris University, Paris, France
- INSERM U1151, INEM, Paris University, Paris, France
| | - Fabienne Jabot-Hanin
- Bioinformatics Platform, Paris University, INSERM UMR1163, Institut Imagine, Paris, France
- Structure Federative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Pascale De Lonlay
- Inherited Metabolic Disease Department and National Reference Centre for Inherited Metabolic diseases, Necker Hospital, APHP Centre-Paris University, Paris, France
- INSERM U1151, INEM, Paris University, Paris, France
| | - Clement Pontoizeau
- Metabolomic and Proteomic Biochemistry Department, Necker Hospital, APHP Centre- Paris University, Paris, France
- INSERM UMR1163, Institut Imagine, Paris University, Paris, France
| | - Manel Guirat
- Molecular Genetics Department, Necker Hospital, APHP Centre-Paris University, Paris, France
| | - Marlene Rio
- Clinical Genetics Department, Necker Hospital, APHP Centre-Paris University, Paris, France
| | - Roselyne Gesny
- Molecular Genetics Department, Necker Hospital, APHP Centre-Paris University, Paris, France
| | - Nadine Gigarel
- Molecular Genetics Department, Necker Hospital, APHP Centre-Paris University, Paris, France
| | - Ghislaine Royer
- Molecular Genetics Department, Necker Hospital, APHP Centre-Paris University, Paris, France
| | - Julie Steffann
- Molecular Genetics Department, Necker Hospital, APHP Centre-Paris University, Paris, France
- INSERM UMR1163, Institut Imagine, Paris University, Paris, France
| | - Arnold Munnich
- INSERM UMR1163, Institut Imagine, Paris University, Paris, France
- Clinical Genetics Department, Necker Hospital, APHP Centre-Paris University, Paris, France
| | - Jean-Paul Bonnefont
- Molecular Genetics Department, Necker Hospital, APHP Centre-Paris University, Paris, France
- INSERM UMR1163, Institut Imagine, Paris University, Paris, France
| |
Collapse
|
10
|
Selen A, Müllertz A, Kesisoglou F, Ho RJY, Cook JA, Dickinson PA, Flanagan T. Integrated Multi-stakeholder Systems Thinking Strategy: Decision-making with Biopharmaceutics Risk Assessment Roadmap (BioRAM) to Optimize Clinical Performance of Drug Products. AAPS JOURNAL 2020; 22:97. [PMID: 32719954 DOI: 10.1208/s12248-020-00470-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Decision-making in drug development benefits from an integrated systems approach, where the stakeholders identify and address the critical questions for the system through carefully designed and performed studies. Biopharmaceutics Risk Assessment Roadmap (BioRAM) is such a systems approach for application of systems thinking to patient focused and timely decision-making, suitable for all stages of drug discovery and development. We described the BioRAM therapy-driven drug delivery framework, strategic roadmap, and integrated risk assessment instrument (BioRAM Scoring Grid) in previous publications (J Pharm Sci 103:3377-97, 2014; J Pharm Sci 105:3243-55, 2016). Integration of systems thinking with pharmaceutical development, manufacturing, and clinical sciences and health care is unique to BioRAM where the developed strategy identifies the system and enables risk characterization and balancing for the entire system. Successful decision-making process in BioRAM starts with the Blueprint (BP) meetings. Through shared understanding of the system, the program strategy is developed and captured in the program BP. Here, we provide three semi-hypothetical examples for illustrating risk-based decision-making in high and moderate risk settings. In the high-risk setting, which is a rare disease area, two completely alternate development approaches are considered (gene therapy and small molecule). The two moderate-risk examples represent varied knowledge levels and drivers for the programs. In one moderate-risk example, knowledge leveraging opportunities are drawn from the manufacturing knowledge and clinical performance of a similar drug substance. In the other example, knowledge on acute tolerance patterns for a similar mechanistic pathway is utilized for identifying markers to inform the drug release profile from the dosage form with the necessary "flexibility" for dosing. All examples illustrate implementation of the BioRAM strategy for leveraging knowledge and decision-making to optimize the clinical performance of drug products for patient benefit.
Collapse
Affiliation(s)
- Arzu Selen
- US Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, 10903 New Hampshire Ave., Silver Spring, Maryland, 20993, USA.
| | - Anette Müllertz
- Bioneer: FARMA, Department of Pharmacy, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Filippos Kesisoglou
- Biopharmaceutics, Pharmaceutical Sciences and Clinical Supply, Merck & Co, Inc., West Point, Pennsylvania, 19486, USA
| | - Rodney J Y Ho
- University of Washington, Seattle, Washington, 98195, USA
| | - Jack A Cook
- Clinical Pharmacology Department, Global Product Development, Pfizer, Inc., Groton, Connecticut, 06340, USA
| | - Paul A Dickinson
- Seda Pharmaceutical Development Services, Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Talia Flanagan
- UCB Pharma S.A., Avenue de l'Industrie, 1420, Braine - l'Alleud, Belgium
| |
Collapse
|
11
|
Waisbren SE, Stefanatos AK, Kok TMY, Ozturk‐Hismi B. Neuropsychological attributes of urea cycle disorders: A systematic review of the literature. J Inherit Metab Dis 2019; 42:1176-1191. [PMID: 31268178 PMCID: PMC7250134 DOI: 10.1002/jimd.12146] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/30/2022]
Abstract
Urea cycle disorders (UCDs) are rare inherited metabolic conditions that impair the effectiveness of the urea cycle responsible for removing excess ammonia from the body. The estimated incidence of UCDs is 1:35 000 births, or approximately 113 new patients with UCD per year. This review summarizes neuropsychological outcomes among patients with the eight UCDs in reports published since 1980. Rates of intellectual disabilities published before (and including) 2000 and after 2000 were pooled and compared for each UCD. Since diagnoses for UCDs tended to occur earlier and better treatments became more readily available after the turn of the century, this assessment will characterize the extent that current management strategies have improved neuropsychological outcomes. The pooled sample included data on cognitive abilities of 1649 individuals reported in 58 citations. A total of 556 patients (34%) functioned in the range of intellectual disabilities. The decline in the proportion of intellectual disabilities in six disorders, ranged from 7% to 41%. Results from various studies differed and the cohorts varied with respect to age at symptom onset, age at diagnosis and treatment initiation, current age, severity of the metabolic deficiency, management strategies, and ethnic origins. The proportion of cases with intellectual disabilities ranged from 9% to 65% after 2000 in the seven UCDs associated with cognitive deficits. Positive outcomes from some studies suggest that it is possible to prevent or reverse the adverse impact of UCDs on neuropsychological functioning. It is time to "raise the bar" in terms of expectations for treatment effectiveness.
Collapse
Affiliation(s)
- Susan E. Waisbren
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's HospitalBostonMassachusetts
- Department of Medicine, Harvard Medical SchoolBostonMassachusetts
| | - Arianna K. Stefanatos
- Department of Child & Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of PhiladelphiaPhiladelphiaPennsylvania
| | | | - Burcu Ozturk‐Hismi
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children's HospitalBostonMassachusetts
- Tepecik Education and Research HospitalIzmirTurkey
| |
Collapse
|
12
|
Khoja S, Nitzahn M, Truong B, Lambert J, Willis B, Allegri G, Rüfenacht V, Häberle J, Lipshutz GS. A constitutive knockout of murine carbamoyl phosphate synthetase 1 results in death with marked hyperglutaminemia and hyperammonemia. J Inherit Metab Dis 2019; 42:1044-1053. [PMID: 30835861 PMCID: PMC6728231 DOI: 10.1002/jimd.12048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/31/2018] [Indexed: 12/25/2022]
Abstract
The enzyme carbamoyl phosphate synthetase 1 (CPS1; EC 6.3.4.16) forms carbamoyl phosphate from bicarbonate, ammonia, and adenosine triphosphate (ATP) and is activated allosterically by N-acetylglutamate. The neonatal presentation of bi-allelic mutations of CPS1 results in hyperammonemia with reduced citrulline and is reported as the most challenging nitrogen metabolism disorder to treat. As therapeutic interventions are limited, patients often develop neurological injury or die from hyperammonemia. Survivors remain vulnerable to nitrogen overload, being at risk for repetitive neurological injury. With transgenic technology, our lab developed a constitutive Cps1 mutant mouse and reports its characterization herein. Within 24 hours of birth, all Cps1 -/- mice developed hyperammonemia and expired. No CPS1 protein by Western blot or immunostaining was detected in livers nor was Cps1 mRNA present. CPS1 enzymatic activity was markedly decreased in knockout livers and reduced in Cps1+/- mice. Plasma analysis found markedly reduced citrulline and arginine and markedly increased glutamine and alanine, both intermolecular carriers of nitrogen, along with elevated ammonia, taurine, and lysine. Derangements in multiple other amino acids were also detected. While hepatic amino acids also demonstrated markedly reduced citrulline, arginine, while decreased, was not statistically significant; alanine and lysine were markedly increased while glutamine was trending towards significance. In conclusion we have determined that this constitutive neonatal mouse model of CPS1 deficiency replicates the neonatal human phenotype and demonstrates the key biochemical features of the disorder. These mice will be integral for addressing the challenges of developing new therapeutic approaches for this, at present, poorly treated disorder.
Collapse
Affiliation(s)
- Suhail Khoja
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Matthew Nitzahn
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Brian Truong
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Jenna Lambert
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Brandon Willis
- Mouse Biology Program, University of California, Davis, California
| | - Gabriella Allegri
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Gerald S Lipshutz
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Molecular Biology Institute, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, California
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, California
- Intellectual and Developmental Disabilities Research Center at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California
- Semel Institute for Neuroscience, David Geffen School of Medicine at UCLA, Los Angeles, California
| |
Collapse
|
13
|
Baruteau J, Diez-Fernandez C, Lerner S, Ranucci G, Gissen P, Dionisi-Vici C, Nagamani S, Erez A, Häberle J. Argininosuccinic aciduria: Recent pathophysiological insights and therapeutic prospects. J Inherit Metab Dis 2019; 42:1147-1161. [PMID: 30723942 DOI: 10.1002/jimd.12047] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 12/20/2018] [Indexed: 12/30/2022]
Abstract
The first patients affected by argininosuccinic aciduria (ASA) were reported 60 years ago. The clinical presentation was initially described as similar to other urea cycle defects, but increasing evidence has shown overtime an atypical systemic phenotype with a paradoxical observation, that is, a higher rate of neurological complications contrasting with a lower rate of hyperammonaemic episodes. The disappointing long-term clinical outcomes of many of the patients have challenged the current standard of care and therapeutic strategy, which aims to normalize plasma ammonia and arginine levels. Interrogations have raised about the benefit of newborn screening or liver transplantation on the neurological phenotype. Over the last decade, novel discoveries enabled by the generation of new transgenic argininosuccinate lyase (ASL)-deficient mouse models have been achieved, such as, a better understanding of ASL and its close interaction with nitric oxide metabolism, ASL physiological role outside the liver, and the pathophysiological role of oxidative/nitrosative stress or excessive arginine treatment. Here, we present a collaborative review, which highlights these recent discoveries and novel emerging concepts about ASL role in human physiology, ASA clinical phenotype and geographic prevalence, limits of current standard of care and newborn screening, pathophysiology of the disease, and emerging novel therapies. We propose recommendations for monitoring of ASA patients. Ongoing research aims to better understand the underlying pathogenic mechanisms of the systemic disease to design novel therapies.
Collapse
Affiliation(s)
- Julien Baruteau
- UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Metabolic Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Carmen Diez-Fernandez
- Division of Metabolism and Children Research Centre (CRC), University Children's Hospital, Zurich, Switzerland
| | - Shaul Lerner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israël
| | - Giusy Ranucci
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Paul Gissen
- UCL Great Ormond Street Institute of Child Health, NIHR Great Ormond Street Hospital Biomedical Research Centre, London, UK
- Metabolic Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sandesh Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israël
| | - Johannes Häberle
- Division of Metabolism and Children Research Centre (CRC), University Children's Hospital, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology (ZIHP) and Neuroscience Center Zurich (ZNZ), Zurich, Switzerland
| |
Collapse
|
14
|
Häberle J, Burlina A, Chakrapani A, Dixon M, Karall D, Lindner M, Mandel H, Martinelli D, Pintos-Morell G, Santer R, Skouma A, Servais A, Tal G, Rubio V, Huemer M, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders: First revision. J Inherit Metab Dis 2019; 42:1192-1230. [PMID: 30982989 DOI: 10.1002/jimd.12100] [Citation(s) in RCA: 249] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 02/06/2023]
Abstract
In 2012, we published guidelines summarizing and evaluating late 2011 evidence for diagnosis and therapy of urea cycle disorders (UCDs). With 1:35 000 estimated incidence, UCDs cause hyperammonemia of neonatal (~50%) or late onset that can lead to intellectual disability or death, even while effective therapies do exist. In the 7 years that have elapsed since the first guideline was published, abundant novel information has accumulated, experience on newborn screening for some UCDs has widened, a novel hyperammonemia-causing genetic disorder has been reported, glycerol phenylbutyrate has been introduced as a treatment, and novel promising therapeutic avenues (including gene therapy) have been opened. Several factors including the impact of the first edition of these guidelines (frequently read and quoted) may have increased awareness among health professionals and patient families. However, under-recognition and delayed diagnosis of UCDs still appear widespread. It was therefore necessary to revise the original guidelines to ensure an up-to-date frame of reference for professionals and patients as well as for awareness campaigns. This was accomplished by keeping the original spirit of providing a trans-European consensus based on robust evidence (scored with GRADE methodology), involving professionals on UCDs from nine countries in preparing this consensus. We believe this revised guideline, which has been reviewed by several societies that are involved in the management of UCDs, will have a positive impact on the outcomes of patients by establishing common standards, and spreading and harmonizing good practices. It may also promote the identification of knowledge voids to be filled by future research.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
| | - Alberto Burlina
- Division of Inborn Metabolic Disease, Department of Pediatrics, University Hospital Padua, Padova, Italy
| | - Anupam Chakrapani
- Department of Metabolic Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Marjorie Dixon
- Dietetics, Great Ormond Street Hospital for Children, NHS Trust, London, UK
| | - Daniela Karall
- Clinic for Pediatrics, Division of Inherited Metabolic Disorders, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Lindner
- University Children's Hospital, Frankfurt am Main, Germany
| | - Hanna Mandel
- Institute of Human Genetics and metabolic disorders, Western Galilee Medical Center, Nahariya, Israel
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, Rome, Italy
| | - Guillem Pintos-Morell
- Centre for Rare Diseases, University Hospital Vall d'Hebron, Barcelona, Spain
- CIBERER_GCV08, Research Institute IGTP, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anastasia Skouma
- Institute of Child Health, Agia Sofia Children's Hospital, Athens, Greece
| | - Aude Servais
- Service de Néphrologie et maladies métaboliques adulte Hôpital Necker 149, Paris, France
| | - Galit Tal
- The Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), Valencia, Spain
| | - Martina Huemer
- University Children's Hospital Zurich and Children's Research Centre, Zurich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | | |
Collapse
|
15
|
Torkzaban M, Haddad A, Baxter JK, Berghella V, Gahl WA, Al-Kouatly HB. Maternal ornithine transcarbamylase deficiency, a genetic condition associated with high maternal and neonatal mortality every clinician should know: A systematic review. Am J Med Genet A 2019; 179:2091-2100. [PMID: 31441224 DOI: 10.1002/ajmg.a.61329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 12/30/2022]
Abstract
Ornithine transcarbamylase deficiency (OTCD) is a rare X-linked urea cycle disorder. Maternal OTCD can lead to life-threatening hyperammonemia if untreated. We aimed to compare the outcomes of maternal OTCD when diagnosis is known prior to pregnancy to when diagnosis is made during pregnancy. We performed a systematic literature review on maternal OTCD using the databases Ovid MEDLINE and PubMed from 1982 through 2018. Studies were included if addressed maternal OTCD signs, symptoms, and detailed pregnancy outcomes. We calculated the median or the mean for continuous variables and percentages for categorical variables. Of 36 cases of maternal OTCD, 20 (55%) were diagnosed prior to pregnancy while 16 (45%) were not. In the 20 patients diagnosed prior to pregnancy, 7 (35%) had either a neurologic or psychiatric presentation during pregnancy or postpartum. Two hyperammonemic patients (11%) experienced ICU admission, dialysis, and coma with no maternal deaths. All had a favorable outcome. In the 16 patients not known to have maternal OTCD prior to pregnancy, 13 (81%) had neurologic or psychiatric presentation during pregnancy or postpartum. Four presented with hyperemesis gravidarum. Eleven (69%) hyperammonemic patients had ICU admission and coma and 7 (47%) of them had dialysis. There were 5 (31%) maternal deaths. Three patients (19%) had prolonged hospitalization course. Overall, three male neonatal deaths were reported. Three other male children had liver transplant. Maternal OTCD is associated with high maternal and neonatal morbidity and mortality when diagnosis is made during pregnancy compared to when diagnosis is known prior to pregnancy.
Collapse
Affiliation(s)
- Mehnoosh Torkzaban
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Andrew Haddad
- Department of Obstetrics & Gynecology, Medstar Washington Hospital Center, Washington, District of Columbia.,Medical Genetics Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland
| | - Jason K Baxter
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vincenzo Berghella
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| | - William A Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, National Institute of Health, Bethesda, Maryland
| | - Huda B Al-Kouatly
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Urea cycle disorders-update. J Hum Genet 2019; 64:833-847. [PMID: 31110235 DOI: 10.1038/s10038-019-0614-4] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
The urea cycle is a metabolic pathway for the disposal of excess nitrogen, which arises primarily as ammonia. Nitrogen is essential for growth and life-maintenance, but excessive ammonia leads to life-threatening conditions. The urea cycle disorders (UCDs) comprise diseases presenting with hyperammonemia that arise in either the neonatal period (about 50% of cases) or later. Congenital defects of the enzymes or transporters of the urea cycle cause the disease. This cycle utilizes five enzymes, two of which, carbamoylphosphate synthetase 1 and ornithine transcarbamylase are present in the mitochondrial matrix, whereas the others (argininosuccinate synthetase, argininosuccinate lyase and arginase 1) are present in the cytoplasm. In addition, N-acetylglutamate synthase and at least two transporter proteins are essential to urea cycle function. Severity and age of onset depend on residual enzyme or transporter function and are related to the respective gene mutations. The strategy for therapy is to prevent the irreversible toxicity of high-ammonia exposure to the brain. The pathogenesis and natural course are poorly understood because of the rarity of the disease, so an international registry system and novel clinical trials are much needed. We review here the current concepts of the pathogenesis, diagnostics, including genetics and treatment of UCDs.
Collapse
|
17
|
Posset R, Gropman AL, Nagamani SCS, Burrage LC, Bedoyan JK, Wong D, Berry GT, Baumgartner MR, Yudkoff M, Zielonka M, Hoffmann GF, Burgard P, Schulze A, McCandless SE, Garcia-Cazorla A, Seminara J, Garbade SF, Kölker S. Impact of Diagnosis and Therapy on Cognitive Function in Urea Cycle Disorders. Ann Neurol 2019; 86:116-128. [PMID: 31018246 DOI: 10.1002/ana.25492] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/02/2019] [Accepted: 04/21/2019] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Individuals with urea cycle disorders (UCDs) often present with intellectual and developmental disabilities. The major aim of this study was to evaluate the impact of diagnostic and therapeutic interventions on cognitive outcomes in UCDs. METHODS This prospective, observational, multicenter study includes data from 503 individuals with UCDs who had comprehensive neurocognitive testing with a cumulative follow-up of 702 patient-years. RESULTS The mean cognitive standard deviation score (cSDS) was lower in symptomatic than in asymptomatic (p < 0.001, t test) individuals with UCDs. Intellectual disability (intellectual quotient < 70, cSDS < -2.0) was associated with the respective subtype of UCD and early disease onset, whereas height of the initial peak plasma ammonium concentration was inversely associated with neurocognitive outcomes in mitochondrial (proximal) rather than cytosolic (distal) UCDs. In ornithine transcarbamylase and argininosuccinate synthetase 1 deficiencies, we did not find evidence that monoscavenger therapy with sodium or glycerol phenylbutyrate was superior to sodium benzoate in providing cognitive protection. Early liver transplantation appears to be beneficial for UCDs. It is noteworthy that individuals with argininosuccinate synthetase 1 and argininosuccinate lyase deficiencies identified by newborn screening had better neurocognitive outcomes than those diagnosed after the manifestation of first symptoms. INTERPRETATION Cognitive function is related to interventional and non-interventional variables. Early detection by newborn screening and early liver transplantation appear to offer greater cognitive protection, but none of the currently used nitrogen scavengers was superior with regard to long-term neurocognitive outcome. Further confirmation could determine these variables as important clinical indicators of neuroprotection for individuals with UCDs. ANN NEUROL 2019.
Collapse
Affiliation(s)
- Roland Posset
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrea L Gropman
- Children's National Health System and George Washington School of Medicine, Washington, DC
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Jirair K Bedoyan
- Center for Human Genetics and Department of Genetics and Genome Sciences, University Hospitals Cleveland Medical Center and Case Western Reserve University, Cleveland, OH
| | - Derek Wong
- David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA
| | - Gerard T Berry
- Harvard Medical School and Boston Children's Hospital, Boston, MA
| | - Matthias R Baumgartner
- University Children's Hospital Zurich and Children's Research Center, Zurich, Switzerland
| | - Marc Yudkoff
- University of Pennsylvania School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Matthias Zielonka
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany.,Heidelberg Research Center for Molecular Medicine, Heidelberg, Germany
| | - Georg F Hoffmann
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Burgard
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Schulze
- Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| | - Shawn E McCandless
- Children's Hospital Colorado and University of Colorado, School of Medicine, Aurora, CO
| | - Angeles Garcia-Cazorla
- Hospital San Joan de Deu, Institut Pediàtric de Recerca. Servicio de Neurologia and CIBERER, ISCIII, Barcelona, Spain
| | - Jennifer Seminara
- Children's National Health System and George Washington School of Medicine, Washington, DC
| | - Sven F Garbade
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Kölker
- Center for Pediatric and Adolescent Medicine, Division of Pediatric Neurology and Metabolic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
18
|
Buerger C, Garbade SF, Alber FD, Waisbren SE, McCarter R, Kölker S, Burgard P. Impairment of cognitive function in ornithine transcarbamylase deficiency is global rather than domain-specific and is associated with disease onset, sex, maximum ammonium, and number of hyperammonemic events. J Inherit Metab Dis 2019; 42:243-253. [PMID: 30671983 PMCID: PMC7439789 DOI: 10.1002/jimd.12013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 10/18/2018] [Accepted: 11/12/2018] [Indexed: 12/15/2022]
Abstract
Beginning in 2006, the Urea Cycle Disorders Consortium (UCDC) has conducted a longitudinal study of eight inherited deficiencies of enzymes and transporters of the urea cycle, including 444 individuals with ornithine transcarbamylase deficiency (OTCD), of whom 300 (67 males, 233 females) received psychological evaluation. In a cross-sectional study (age range, 3-71 years), analysis of covariance (ANCOVA) determined the association between outcomes in five cognitive domains (global intelligence, executive functions, memory, visuomotor integration, visual perception) and sex, age at testing and timing of disease onset defined as early onset (≤28 days; EO), late onset (LO), or asymptomatic (AS). The dataset of 183 subjects with complete datasets (31 males, 152 females) revealed underrepresentation of EO subjects (2 males, 4 females), who were excluded from the ANCOVA. Although mean scores of LO and AS individuals were within 1 SD of the population norm, AS subjects attained significantly higher scores than LO subjects and males higher scores than females. Correlations between cognitive domains were high, particularly intelligence proved to be a distinguished indicator for cognitive functioning. Maximum plasma ammonium concentration and intelligence correlated significantly higher in EO (r = -0.47) than in LO subjects (r = 0.04). Correlation between the number of hyperammonemic events and intelligence scores were similar for EO (r = -0.30) and LO (r = -0.26) individuals. The number of clinical symptoms was significantly associated with intelligence (r = -0.28) but not with scores in other domains. Results suggest that OTCD has a global impact on cognitive functioning rather than a specific effect on distinct cognitive domains.
Collapse
Affiliation(s)
- Corinna Buerger
- Division of Neuropaediatrics and Inherited Metabolic Diseases, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sven F. Garbade
- Division of Neuropaediatrics and Inherited Metabolic Diseases, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Fabienne Dietrich Alber
- Division of Metabolism and Children’s Research Centre, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Susan E. Waisbren
- Division of Genetics and Genomics, Children’s Hospital and Harvard Medical School, Boston, Massachusetts
| | - Robert McCarter
- Center for Translational Sciences, Children’s National Health System, The George Washington University, Washington, District of Columbia
| | - Stefan Kölker
- Division of Neuropaediatrics and Inherited Metabolic Diseases, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Burgard
- Division of Neuropaediatrics and Inherited Metabolic Diseases, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
19
|
Bijarnia-Mahay S, Häberle J, Jalan AB, Puri RD, Kohli S, Kudalkar K, Rüfenacht V, Gupta D, Maurya D, Verma J, Shigematsu Y, Yamaguchi S, Saxena R, Verma IC. Urea cycle disorders in India: clinical course, biochemical and genetic investigations, and prenatal testing. Orphanet J Rare Dis 2018; 13:174. [PMID: 30285816 PMCID: PMC6167905 DOI: 10.1186/s13023-018-0908-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023] Open
Abstract
Background Urea cycle disorders (UCDs) are inherited metabolic disorders that present with hyperammonemia, and cause significant mortality and morbidity in infants and children. These disorders are not well reported in the Indian population, due to lack of a thorough study of the clinical and molecular profile. Results We present data from two major metabolic centres in India, including 123 cases of various UCDs. The majority of them (72/123, 58%) presented in the neonatal period (before 30 days of age) with 88% on or before day 7 of life (classical presentation), and had a high mortality (64/72, 88%). Citrullinemia type 1 was the most common UCD, observed in 61/123 patients. Ornithine transcarbamylase (OTC) deficiency was the next most common, seen in 24 cases. Argininosuccinic aciduria was diagnosed in 20 cases. Deficiencies of arginase, N-acetylglutamate synthase, carbamoyl phosphate synthetase, citrin, and lysinuric protein intolerance were also observed. Molecular genetic analysis revealed two common ASS1 mutations: c.470G > A (p.Arg157His) and c.1168G > A (p.Gly390Arg) (36 of 55 tested patients). In addition, few recurrent point mutations in ASL gene, and a deletion of the whole OTC gene were also noted. A total of 24 novel mutations were observed in the various genes studied. We observed a poor clinical outcome with an overall all time mortality of 63% (70/110 cases with a known follow-up), and disability in 70% (28/40) among the survivors. Prenatal diagnosis was performed in 30 pregnancies in 25 families, including one pre-implantation genetic diagnosis. Conclusions We report the occurrence of UCDs in India and the spectrum that may be different from the rest of the world. Citrullinemia type 1 was the most common UCD observed in the cohort. Increasing awareness amongst clinicians will improve outcomes through early diagnosis and timely treatment. Genetic diagnosis in the proband will enable prenatal/pre-implantation diagnosis in subsequent pregnancies. Electronic supplementary material The online version of this article (10.1186/s13023-018-0908-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunita Bijarnia-Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.
| | - Johannes Häberle
- University Children's Hospital Zurich and Children's Research Centre, Steinwiesstr 75, CH-8032, Zurich, Switzerland
| | - Anil B Jalan
- Navi Mumbai Institute of Research In Mental And Neurological Handicap (NIRMAN), Navi Mumbai, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sudha Kohli
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ketki Kudalkar
- Navi Mumbai Institute of Research In Mental And Neurological Handicap (NIRMAN), Navi Mumbai, India
| | - Véronique Rüfenacht
- University Children's Hospital Zurich and Children's Research Centre, Steinwiesstr 75, CH-8032, Zurich, Switzerland
| | - Deepti Gupta
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Deepshikha Maurya
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Jyotsna Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Yosuke Shigematsu
- Department of Pediatrics, Faculty of Medical Science, University of Fukui, Fukui, Japan
| | - Seiji Yamaguchi
- Department of Pediatrics, Shimane University Faculty of Medicine, 89-1 En-ya-cho Izumo, Shimane, 693-8501, Japan
| | - Renu Saxena
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar C Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| |
Collapse
|
20
|
Hediger N, Landolt MA, Diez-Fernandez C, Huemer M, Häberle J. The impact of ammonia levels and dialysis on outcome in 202 patients with neonatal onset urea cycle disorders. J Inherit Metab Dis 2018. [PMID: 29520739 DOI: 10.1007/s10545-018-0157-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neonatal onset hyperammonemia in patients with urea cycle disorders (UCDs) is still associated with high morbidity and mortality. Current protocols consistently recommend emergency medical and dietary management. In case of increasing or persistent hyperammonemia, with continuous or progressive neurological signs, dialysis is performed, mostly as ultima ratio. It is presently unknown whether the currently defined ammonia threshold (e.g., at 500 μmol/L) to start dialysis is useful to improve clinical outcome. A systematic review of clinical and biochemical data from published neonatal onset UCD patients was performed to identify factors determining clinical outcome and to investigate in which clinical and biochemical setting dialysis was most effective. A total of 202 patients (118 proximal and 84 distal UCDs) described in 90 case reports or case series were included according to predefined inclusion/exclusion criteria. Median age at onset was three days and mean ammonia that triggered start of dialysis was 1199 μmol/L. Seventy-one percent of all patients received any form of dialysis. Total mortality was 25% and only 20% of all patients had a "normal" outcome. In general, patients with higher ammonia levels were more likely to receive dialysis, but this had for most patients no influence on outcome. In conclusion, in severe neonatal onset hyperammonemia, the current practice of dialysis, which effectively clears ammonia, had no impact on outcome. It may be essential for improving outcome to initiate all available treatment options, including dialysis, as early as possible.
Collapse
Affiliation(s)
- Nina Hediger
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Markus A Landolt
- Department of Psychosomatics and Psychiatry, University Children's Hospital Zurich, 8032, Zurich, Switzerland
- Division of Child and Adolescent Health Psychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Carmen Diez-Fernandez
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Martina Huemer
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland
- Department of Paediatrics, Landeskrankenhaus Bregenz, Bregenz, Austria
| | - Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, 8032, Zurich, Switzerland.
| |
Collapse
|
21
|
Talebi M, Yahya Vahidi Mehrjardi M, Kalhor K, Dehghani M. Is there any relationship between mutation in CPS1 Gene and pregnancy loss? Int J Reprod Biomed 2018; 17. [PMID: 31435610 PMCID: PMC6653490 DOI: 10.18502/ijrm.v17i5.4604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/03/2018] [Accepted: 10/17/2018] [Indexed: 12/27/2022] Open
Abstract
Background Carbamoyl phosphate synthetase 1 (CPS1) is a liver-specific enzyme with the lowest enzymatic rate, which determines the overall rate of the other reactions in the pathway that converts ammonia to carbamoyl phosphate in the first step of the urea cycle. Carbamoyl phosphate synthetase 1 deficiency (CPS1D), which usually presents as lethal hyperammonemia, is a rare autosomal recessive hereditary disease. Case We report a case of a two-day-old female neonate with lethal hyperammonemia. The newborn infant was presented with hyperammonemia (34.7 μg/ml; reference range 1.1–1.9). In Plasma amino acid analysis, there was a significant elevated levels of alanine (3,004 μmol/L; reference range, 236–410 μmol/L), glutamine (2,256 μmol/L; reference range, 20–107 μmol/L), asparagine (126 μmol/L; reference range, 30–69 μmol/L), glutamic acid (356 μmol/L; reference range, 14–192 μmol/L), aspartic acid (123 μmol/L; reference range, 0–24 μmol/L), and lysine (342 μmol/L; reference range, 114–269 μmol/L). We cannot diagnose the urea cycle disorder (UCD) CPS1D properly only based on the quantity of biochemical intermediary metabolites to exclude other UCDs with similar symptoms. Following next generation sequencing determined one homozygous mutation in CPS1 gene and also this mutation was determined in her parents. The identified mutation was c.2758G > C; p.Asp920His, in the 23 exon of CPS1. This novel homozygous mutation had not been reported previously. Conclusion We applied whole exome sequencing successfully to diagnose the patient with CPS1D in a clinical setting. This result supports the clinical applicability of whole exome sequencing for cost-effective molecular diagnosis of UCDs.
Collapse
Affiliation(s)
- Mehrdad Talebi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | - Kambiz Kalhor
- Department of Biological Science, Faculty of Science, University of Kordestan, Sanandaj, Iran
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Reproductive and Genetic Unit, Yazd Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
22
|
Merritt JL, Brody LL, Pino G, Rinaldo P. Newborn screening for proximal urea cycle disorders: Current evidence supporting recommendations for newborn screening. Mol Genet Metab 2018; 124:109-113. [PMID: 29703588 DOI: 10.1016/j.ymgme.2018.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/31/2022]
Abstract
Current newborn screening (NBS) for urea cycle disorders (UCD) is incomplete as only distal UCDs are included in most NBS programs by measuring elevated amino acid concentrations. NBS for the proximal UCDs involves the detection in NBS spots of low citrulline values, a finding which is often overlooked because it is considered to be inadequate. We retrospectively analyzed NBS blood spots from known UCD patients comparing the utility of the Region 4 Stork (R4S) interpretive tools to conventional cutoff based interpretation. This study shows the utility of R4S tools in detecting all UCDs, and provides evidence to support the nomination to add proximal UCDs to the recommended uniform screening panel.
Collapse
Affiliation(s)
- J Lawrence Merritt
- Pediatrics, University of Washington, Seattle, WA, USA; Seattle Children's Research Institute, Seattle, WA, USA.
| | | | - Gisele Pino
- Biochemical Genetics Laboratory, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Piero Rinaldo
- Biochemical Genetics Laboratory, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
23
|
Kim D, Ko JM, Kim YM, Seo GH, Kim GH, Lee BH, Yoo HW. Low prevalence of argininosuccinate lyase deficiency among inherited urea cycle disorders in Korea. J Hum Genet 2018; 63:911-917. [DOI: 10.1038/s10038-018-0467-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/04/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022]
|
24
|
Oxidative stress in urea cycle disorders: Findings from clinical and basic research. Clin Chim Acta 2018; 477:121-126. [DOI: 10.1016/j.cca.2017.11.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/26/2022]
|
25
|
Bigot A, Tchan MC, Thoreau B, Blasco H, Maillot F. Liver involvement in urea cycle disorders: a review of the literature. J Inherit Metab Dis 2017; 40:757-769. [PMID: 28900784 DOI: 10.1007/s10545-017-0088-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/13/2017] [Accepted: 08/29/2017] [Indexed: 12/20/2022]
Abstract
Urea cycle disorders (UCDs) are inborn errors of metabolism of the nitrogen detoxification pathway and encompass six principal enzymatic deficiencies. The aging of UCD patients leads to a better knowledge of the long-term natural history of the condition and to the reporting of previously unnoticed manifestations. Despite historical evidence of liver involvement in UCDs, little attention has been paid to this organ until recently. Hence, we reviewed the available scientific evidence on acute and chronic liver dysfunction and liver carcinogenesis in UCDs and discuss their pathophysiology. Overall, liver involvement, such as acute liver failure or steatotic-like disease, which may evolve toward cirrhosis, has been reported in all six main UCDs. Excessive glycogen storage is also a prominent histologic feature, and hypoglycemia has been reported in citrin deficiency. Hepatocarcinomas seem frequent in some UCDs, such as in citrin deficiency, and can sometimes occur in non-cirrhotic patients. UCDs may differ in liver involvement according to the enzymatic deficiency. Ornithine transcarbamylase deficiency may be associated more with acute liver failure and argininosuccinic aciduria with chronic liver failure and cirrhosis. Direct toxicity of metabolites, downstream metabolic deficiencies, impaired tricarboxylic acid cycle, oxidative stress, mitochondrial dysfunction, energy deficit, and putative toxicity of therapies combine in various ways to cause the different liver diseases reported.
Collapse
Affiliation(s)
- Adrien Bigot
- CHRU de Tours, service médecine interne, Tours, France.
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France.
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia.
- Service de Médecine Interne, Hôpital Bretonneau, 2, boulevard Tonnelle, 37044, Tours, France.
| | - Michel C Tchan
- Department of Genetic Medicine, Westmead Hospital, Sydney, Australia
| | - Benjamin Thoreau
- CHRU de Tours, service médecine interne, Tours, France
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- UMR INSERM U 1069, Tours, France
| | - Hélène Blasco
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- CHRU de Tours, service de biochimie-biologie moléculaire, Tours, France
- UMR INSERM U930, 37000, Tours, France
| | - François Maillot
- CHRU de Tours, service médecine interne, Tours, France
- CHRU de Tours, centre de référence des maladies héréditaires du métabolisme, Tours, France
- Université François Rabelais, Tours, France
- UMR INSERM U 1069, Tours, France
| |
Collapse
|
26
|
Nettesheim S, Kölker S, Karall D, Häberle J, Posset R, Hoffmann GF, Heinrich B, Gleich F, Garbade SF. Incidence, disease onset and short-term outcome in urea cycle disorders -cross-border surveillance in Germany, Austria and Switzerland. Orphanet J Rare Dis 2017; 12:111. [PMID: 28619060 PMCID: PMC5472961 DOI: 10.1186/s13023-017-0661-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/30/2017] [Indexed: 12/30/2022] Open
Abstract
Background Urea cycle disorders (UCDs) are a group of rare inherited metabolic disorders. Affected individuals often present with hyperammonemic encephalopathy (HE) and have an increased risk of severe neurologic disease and early death. The study aims to provide epidemiologic data and to describe the disease manifestation and short-term outcome. Method Cross-border surveillance of newly diagnosed patients with UCDs - below 16 years of age - was performed from July 2012 to June 2015 in Germany and Austria and from January 2012 to December 2015 in Switzerland. Inquiries were sent monthly to all Pediatric Departments in Germany and Switzerland, and quarterly to the Austrian Metabolic Group. In addition, data were collected via a second source (metabolic laboratories) in all three countries. Results Between July 2012 and June 2015, fifty patients (Germany: 39, Austria: 7, Switzerland: 4) with newly diagnosed UCDs were reported and later confirmed resulting in an estimated cumulative incidence of 1 in 51,946 live births. At diagnosis, thirty-nine patients were symptomatic and 11 asymptomatic [10 identified by newborn screening (NBS), 1 by high-risk-family screening (HRF)]. The majority of symptomatic patients (30 of 39 patients) developed HE with (n = 25) or without coma (n = 5), 28 of them with neonatal onset. Despite emergency treatment 15 of 30 patients with HE already died during the newborn period. Noteworthy, 10 of 11 patients diagnosed by NBS or HRF remained asymptomatic. Comparison with the European registry and network for intoxication type metabolic diseases (E-IMD) demonstrated that cross-national surveillance identified a higher number of clinically severe UCD patients characterized by earlier onset of symptoms, higher peak ammonium concentrations in plasma and higher mortality. Conclusion Cross-border surveillance is a powerful tool to identify patients with UCDs demonstrating that (1) the cumulative incidence of UCDs is lower than originally suggested, (2) the mortality rate is still high in patients with neonatal onset of symptoms, and (3) onset type and peak plasma ammonium concentration predict mortality.
Collapse
Affiliation(s)
- Susanne Nettesheim
- Division of Neuropediatrics and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Stefan Kölker
- Division of Neuropediatrics and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Daniela Karall
- Medical University of Innsbruck, Clinic for Pediatrics I, Inherited Metabolic Disorders, Innsbruck, Austria
| | - Johannes Häberle
- University Children's Hospital Zurich, Division of Metabolism and Children's Research Center, Zurich, Switzerland
| | - Roland Posset
- Division of Neuropediatrics and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Georg F Hoffmann
- Division of Neuropediatrics and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Beate Heinrich
- Erhebungseinheit für Seltene Pädiatrische Erkrankungen in Deutschland, Coordination Center for Clinical Studies, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Florian Gleich
- Division of Neuropediatrics and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Sven F Garbade
- Division of Neuropediatrics and Metabolic Medicine, Center for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
| | | |
Collapse
|
27
|
Baruteau J, Jameson E, Morris AA, Chakrapani A, Santra S, Vijay S, Kocadag H, Beesley CE, Grunewald S, Murphy E, Cleary M, Mundy H, Abulhoul L, Broomfield A, Lachmann R, Rahman Y, Robinson PH, MacPherson L, Foster K, Chong WK, Ridout DA, Bounford KM, Waddington SN, Mills PB, Gissen P, Davison JE. Expanding the phenotype in argininosuccinic aciduria: need for new therapies. J Inherit Metab Dis 2017; 40:357-368. [PMID: 28251416 PMCID: PMC5393288 DOI: 10.1007/s10545-017-0022-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVES This UK-wide study defines the natural history of argininosuccinic aciduria and compares long-term neurological outcomes in patients presenting clinically or treated prospectively from birth with ammonia-lowering drugs. METHODS Retrospective analysis of medical records prior to March 2013, then prospective analysis until December 2015. Blinded review of brain MRIs. ASL genotyping. RESULTS Fifty-six patients were defined as early-onset (n = 23) if symptomatic < 28 days of age, late-onset (n = 23) if symptomatic later, or selectively screened perinatally due to a familial proband (n = 10). The median follow-up was 12.4 years (range 0-53). Long-term outcomes in all groups showed a similar neurological phenotype including developmental delay (48/52), epilepsy (24/52), ataxia (9/52), myopathy-like symptoms (6/52) and abnormal neuroimaging (12/21). Neuroimaging findings included parenchymal infarcts (4/21), focal white matter hyperintensity (4/21), cortical or cerebral atrophy (4/21), nodular heterotopia (2/21) and reduced creatine levels in white matter (4/4). 4/21 adult patients went to mainstream school without the need of additional educational support and 1/21 lives independently. Early-onset patients had more severe involvement of visceral organs including liver, kidney and gut. All early-onset and half of late-onset patients presented with hyperammonaemia. Screened patients had normal ammonia at birth and received treatment preventing severe hyperammonaemia. ASL was sequenced (n = 19) and 20 mutations were found. Plasma argininosuccinate was higher in early-onset compared to late-onset patients. CONCLUSIONS Our study further defines the natural history of argininosuccinic aciduria and genotype-phenotype correlations. The neurological phenotype does not correlate with the severity of hyperammonaemia and plasma argininosuccinic acid levels. The disturbance in nitric oxide synthesis may be a contributor to the neurological disease. Clinical trials providing nitric oxide to the brain merit consideration.
Collapse
Affiliation(s)
- Julien Baruteau
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, UK
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Elisabeth Jameson
- Metabolic Medicine Department, Royal Manchester Children Hospital NHS Foundation Trust, Manchester, UK
| | - Andrew A. Morris
- Metabolic Medicine Department, Royal Manchester Children Hospital NHS Foundation Trust, Manchester, UK
| | - Anupam Chakrapani
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
- Metabolic Medicine Department, Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Saikat Santra
- Metabolic Medicine Department, Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Suresh Vijay
- Metabolic Medicine Department, Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Huriye Kocadag
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, UK
| | - Clare E. Beesley
- North East Thames Regional Genetic Services, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Stephanie Grunewald
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
| | - Elaine Murphy
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Maureen Cleary
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
| | - Helen Mundy
- Metabolic Medicine Department, Evelina Children’s Hospital, London, UK
| | - Lara Abulhoul
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
| | - Alexander Broomfield
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
- Metabolic Medicine Department, Royal Manchester Children Hospital NHS Foundation Trust, Manchester, UK
| | - Robin Lachmann
- Charles Dent Metabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK
| | - Yusof Rahman
- Metabolic Medicine Department, St Thomas Hospital, London, UK
| | - Peter H. Robinson
- Paediatric Metabolic Medicine, Royal Hospital for Sick Children, Glasgow, UK
| | - Lesley MacPherson
- Neuroradiology Department, Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - Katharine Foster
- Neuroradiology Department, Birmingham Children’s Hospital NHS Foundation Trust, Birmingham, UK
| | - W. Kling Chong
- Neuroradiology Department, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Deborah A. Ridout
- Population, Policy and Practice Programme, UCL Institute of Child Health, London, UK
| | | | - Simon N. Waddington
- Gene Transfer Technology Group, Institute for Women’s Health, University College London, London, UK
- Wits/SAMRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Philippa B. Mills
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Paul Gissen
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
- Genetics and Genomic Medicine Programme, Great Ormond Street Institute of Child Health, University College London, London, UK
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - James E. Davison
- Metabolic Medicine Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, WC1N 3JH London, UK
| |
Collapse
|
28
|
Tan A, Florman SS, Schiano TD. Genetic, hematological, and immunological disorders transmissible with liver transplantation. Liver Transpl 2017; 23:663-678. [PMID: 28240807 DOI: 10.1002/lt.24755] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/14/2017] [Indexed: 12/08/2022]
Abstract
It is well recognized that solid organ transplantation can transmit bacterial infection and chronic viral hepatitis as well as certain cancers. As indications for liver transplantation (LT) have expanded, it has been used to treat and even cure certain genetic cholestatic disorders, urea cycle defects, and coagulation abnormalities; many of these conditions are potentially transmissible with LT as well. It is important for clinicians and transplant patients to be aware of these potentially transmissible conditions as unexplained post-LT complications can sometimes be related to donor transmission of disease and thus should prompt a thorough exploration of the donor allograft history. Herein, we will review the reported genetic, metabolic, hematologic, and immunological disorders that are transmissible with LT and describe clinical scenarios in which these cases have occurred, such as in inadvertent or recognized transplantation of a diseased organ, domino transplantation, and with living related liver donation. Liver Transplantation 23 663-678 2017 AASLD.
Collapse
Affiliation(s)
- Amy Tan
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sander S Florman
- Recanati/Miller Transplantation Institute, Mount Sinai Medical Center, New York, NY
| | - Thomas D Schiano
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY.,Division of Liver Diseases, Mount Sinai Medical Center, New York, NY.,Recanati/Miller Transplantation Institute, Mount Sinai Medical Center, New York, NY
| |
Collapse
|
29
|
Tanaka K, Nakamura K, Matsumoto S, Kido J, Mitsubuchi H, Ohura T, Endo F. Citrulline for urea cycle disorders in Japan. Pediatr Int 2017; 59:422-426. [PMID: 27613354 DOI: 10.1111/ped.13163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 08/13/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND The amino acid l-citrulline is used as a therapeutic agent for urea cycle disorders (UCD) including ornithine transcarbamylase deficiency (OTCD), carbamoyl phosphate synthetase I deficiency (CPSD), and N-acetylglutamate synthase deficiency. There are few reports, however, on the use of l-citrulline in Japan and little consensus regarding the effects of l-citrulline. METHODS We conducted a questionnaire survey of patients undergoing l-citrulline treatment for a UCD to evaluate the current status of this therapy. The survey included patient background, details of l-citrulline treatment, clinical examination data, treatment, frequency of vomiting, and liver transplantation. RESULTS We retrospectively investigated 43 questionnaire respondents (OTCD, n = 33; CPSD, n = 10). The weight of male OTCD patients improved by +0.79 SD, and the ammonia level decreased by a mean of 44.3 μmol/L in all patients. The protein intake of all patients and of male OTCD patients increased by 0.14 g/kg/day and 0.17 g/kg/day, respectively. CONCLUSIONS l-Citrulline effectively reduced ammonia level, increased protein intake, and improved weight gain in UCD patients. l-Citrulline should be considered a standard therapy in OTCD and CPSD patients.
Collapse
Affiliation(s)
- Kenichi Tanaka
- Department of Pediatrics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Kimitoshi Nakamura
- Department of Pediatrics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Shirou Matsumoto
- Department of Pediatrics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Jun Kido
- Department of Pediatrics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Hiroshi Mitsubuchi
- Department of Pediatrics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Toshihiro Ohura
- Department of Pediatrics, Sendai City Hospital, Sendai, Japan
| | - Fumio Endo
- Department of Pediatrics, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| |
Collapse
|
30
|
Urea Cycle Defects: Early-Onset Disease Associated with A208T Mutation in OTC Gene-Expanding the Clinical Phenotype. Case Rep Genet 2017; 2017:1048717. [PMID: 28261508 PMCID: PMC5316440 DOI: 10.1155/2017/1048717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 01/17/2017] [Indexed: 12/30/2022] Open
Abstract
Ornithine transcarbamylase deficiency (OMIM: 311250) is the most common disorder of urea cycle disorders, accounting for nearly 50% of all cases. We report a case of a two-month- old male patient, who attends our medical genetics consultation because of low citrulline levels and elevated glutamine to citrulline ratio detected by expanded newborn screening with tandem mass spectrometry. He is an asymptomatic male with a normal physical examination and appropriate neurodevelopmental milestones. The patient has a family history of one older brother who died at 18 months old from severe and sudden hyperammonemia and a maternal aunt who suddenly died at two years old. He had high plasma ammonium concentration and a confirmed OTC mutation (p.A208T). Usually, this mutation causes OTC deficiency of late onset in adult males. However, this report raises awareness about mutations previously described as a late-onset causing disease, which can cause severe hyperammonemia and high risk of dying at an early age.
Collapse
|
31
|
Natesan V, Mani R, Arumugam R. Clinical aspects of urea cycle dysfunction and altered brain energy metabolism on modulation of glutamate receptors and transporters in acute and chronic hyperammonemia. Biomed Pharmacother 2016; 81:192-202. [PMID: 27261594 DOI: 10.1016/j.biopha.2016.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/12/2022] Open
Abstract
In living organisms, nitrogen arise primarily as ammonia (NH3) and ammonium (NH4(+)), which is a main component of the nucleic acid pool and proteins. Although nitrogen is essential for growth and maintenance in animals, but when the nitrogenous compounds exceeds the normal range which can quickly lead to toxicity and death. Urea cycle is the common pathway for the disposal of excess nitrogen through urea biosynthesis. Hyperammonemia is a consistent finding in many neurological disorders including congenital urea cycle disorders, reye's syndrome and acute liver failure leads to deleterious effects. Hyperammonemia and liver failure results in glutamatergic neurotransmission which contributes to the alteration in the function of the glutamate-nitric oxide-cGMP pathway, modulates the important cerebral process. Even though ammonia is essential for normal functioning of the central nervous system (CNS), in particular high concentrations of ammonia exposure to the brain leads to the alterations of glutamate transport by the transporters. Several glutamate transporters have been recognized in the central nervous system and each has a unique physiological property and distribution. The loss of glutamate transporter activity in brain during acute liver failure and hyperammonemia is allied with increased extracellular brain glutamate concentrations which may be conscientious for the cerebral edema and ultimately cell death.
Collapse
Affiliation(s)
- Vijayakumar Natesan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu 608002, India.
| | - Renuka Mani
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| | - Ramakrishnan Arumugam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu 608002, India
| |
Collapse
|
32
|
Burgard P, Kölker S, Haege G, Lindner M, Hoffmann GF. Neonatal mortality and outcome at the end of the first year of life in early onset urea cycle disorders--review and meta-analysis of observational studies published over more than 35 years. J Inherit Metab Dis 2016; 39:219-29. [PMID: 26634836 DOI: 10.1007/s10545-015-9901-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 12/15/2022]
Abstract
BACKGROUND For urea cycle disorders (UCD), proportions and mortality of early onset (EO) patients, as well as outcome at one year of life show large variability. We aimed to integrate available evidence to create benchmarks for new diagnostic and therapeutic strategies. METHODS Medline search for reports published between 1978 and Dec 22, 2014 was completed by hand search. Random effects meta-analysis was done for four UCDs, deficiency of carbamylphosphate synthetase 1 (CPS1D), male/female ornithine transcarbamylase (OTCDm/f), argininosuccinate synthetase (ASSD) and lyase (ASLD). Effects of publication year and geographic area were analysed by meta-regression. RESULTS Twenty-four publications report onset time (n = 1542 patients), survival of EO (n = 665 patients) and outcome at one year of life (n = 172 patients). Proportions for EO manifestation (95% confidence interval) were: CPS1D = 0.75 (0.61;0.88); OTCDm = 0.52 (0.39;0.65); OTCDf = 0.07 (0.03;0.11); ASSD = 0.65 (0.57;0.73); ASLD = 0.60 (0.44;0.77); for surviving EO patients: CPS1D = 0.64 (0.50;0.79); OTCDm = 0.40 (0.16;0.64); OTCDf = 0.57 (0.29;0.85); ASSD = 0.67 (0.48;0.86); ASLD = 0.81 (0.68;0.94); and for normal outcome at one year for survivors: CPS1D = 0.20 (0.07;0.38); OTCDm = 0.15 (0.00;0.39); OTCDf no data; ASSD = 0.36 (0.13;0.60); ASLD = 0.36 (0.17;0.58). Between study variation was large. Year of publication had no effect. Studies from Europe showed lower survival rates than those from Japan or USA. CONCLUSIONS UCDs, except for OTCDf, have high risks of EO disease manifestation and, except for ASLD, of neonatal death. No improvement of survival was observed over more than three decades. Geographic variation remains to be explained. This comprehensive description of the natural history of EO UCDs should be considered by scientists, clinicians, health policy makers and guideline developers.
Collapse
Affiliation(s)
- Peter Burgard
- Centre for Paediatric and Adolescent Medicine, Division for Neuropaediatrics and Metabolic Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany.
| | - Stefan Kölker
- Centre for Paediatric and Adolescent Medicine, Division for Neuropaediatrics and Metabolic Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Gisela Haege
- Centre for Paediatric and Adolescent Medicine, Division for Neuropaediatrics and Metabolic Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| | - Martin Lindner
- University Hospital Frankfurt, Children's Hospital, Theodor-Stern-Kai 7, D-60590, Frankfurt am Main, Germany
| | - Georg F Hoffmann
- Centre for Paediatric and Adolescent Medicine, Division for Neuropaediatrics and Metabolic Medicine, Heidelberg University Hospital, Im Neuenheimer Feld 430, D-69120, Heidelberg, Germany
| |
Collapse
|
33
|
Genotype-Phenotype Correlations in Ornithine Transcarbamylase Deficiency: A Mutation Update. J Genet Genomics 2015; 42:181-94. [PMID: 26059767 DOI: 10.1016/j.jgg.2015.04.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/05/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022]
Abstract
Ornithine transcarbamylase (OTC) deficiency is an X-linked trait that accounts for nearly half of all inherited disorders of the urea cycle. OTC is one of the enzymes common to both the urea cycle and the bacterial arginine biosynthesis pathway; however, the role of OTC has changed over evolution. For animals with a urea cycle, defects in OTC can trigger hyperammonemic episodes that can lead to brain damage and death. This is the fifth mutation update for human OTC with previous updates reported in 1993, 1995, 2002, and 2006. In the 2006 update, 341 mutations were reported. This current update contains 417 disease-causing mutations, and also is the first report of this series to incorporate information about natural variation of the OTC gene in the general population through examination of publicly available genomic data and examination of phenotype/genotype correlations from patients participating in the Urea Cycle Disorders Consortium Longitudinal Study and the first to evaluate the suitability of systematic computational approaches to predict severity of disease associated with different types of OTC mutations.
Collapse
|
34
|
Brassier A, Gobin S, Arnoux JB, Valayannopoulos V, Habarou F, Kossorotoff M, Servais A, Barbier V, Dubois S, Touati G, Barouki R, Lesage F, Dupic L, Bonnefont JP, Ottolenghi C, De Lonlay P. Long-term outcomes in Ornithine Transcarbamylase deficiency: a series of 90 patients. Orphanet J Rare Dis 2015; 10:58. [PMID: 25958381 PMCID: PMC4443534 DOI: 10.1186/s13023-015-0266-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 04/13/2015] [Indexed: 12/11/2022] Open
Abstract
Background The principal aim of this study was to investigate the long-term outcomes of a large cohort of patients with ornithine transcarbamylase deficiency (OTCD) who were followed up at a single medical center. Methods We analyzed clinical, biochemical and genetic parameters of 90 patients (84 families, 48 males and 42 females) with OTCD between 1971 and 2011. Results Twenty-seven patients (22 boys, 5 girls) had a neonatal presentation; 52 patients had an “intermediate” late-onset form of the disease (21 boys, 31 girls) that was revealed between 1 month and 16 years; and 11 patients (5 boys, 6 girls) presented in adulthood (16 to 55 years). Patients with a neonatal presentation had increased mortality (90% versus 13% in late-onset forms) and peak plasma ammonium (mean value: 960 μmol/L versus 500 μmol/L) and glutamine (mean value: 4110 μmol/L versus 1000 μmol/L) levels at diagnosis. All of the neonatal forms displayed a greater number of acute decompensations (mean value: 6.2/patient versus 2.5 and 1.4 in infants and adults, respectively). In the adult group, some patients even recently died at the time of presentation during their first episode of coma. Molecular analyses identified a deleterious mutation in 59/68 patients investigated. Single base substitutions were detected more frequently than deletions (69% and 12%, respectively), with a recurrent mutation identified in the late-onset groups (pArg40 His; 13% in infants, 57% in adults); inherited mutations represented half of the cases. The neurological score did not differ significantly between the patients who were alive in the neonatal or late-onset groups and did not correlate with the peak ammonia and plasma glutamine concentrations at diagnosis. However, in late-onset forms of the disease, ammonia levels adjusted according to the glutamine/citrulline ratio at diagnosis were borderline predictors of low IQ (p = 0.12 by logistic regression; area under the receiver operating characteristic curve of 76%, p <0.05). Conclusions OTCD remains a severe disease, even in adult-onset patients for whom the prevention of metabolic decompensations is crucial. The combination of biochemical markers warrants further investigations to provide additional prognostic information regarding the neurological outcomes of patients with OTCD.
Collapse
Affiliation(s)
- Anais Brassier
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France. .,Université Paris Descartes, Institut Imagine, Hôpital Necker-Enfants Malades, APHP, Paris, France.
| | - Stephanie Gobin
- Service de Génétique, Paris, France. .,Université Paris Descartes, Institut Imagine, Hôpital Necker-Enfants Malades, APHP, Paris, France.
| | - Jean Baptiste Arnoux
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France.
| | - Vassili Valayannopoulos
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France.
| | - Florence Habarou
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France. .,Service de Biochimie Métabolique, Paris, France. .,Université Paris Descartes, Institut Imagine, Hôpital Necker-Enfants Malades, APHP, Paris, France.
| | - Manoelle Kossorotoff
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France.
| | - Aude Servais
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France.
| | - Valerie Barbier
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France.
| | - Sandrine Dubois
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France.
| | - Guy Touati
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France.
| | - Robert Barouki
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France. .,Service de Biochimie Métabolique, Paris, France. .,Université Paris Descartes, Institut Imagine, Hôpital Necker-Enfants Malades, APHP, Paris, France.
| | - Fabrice Lesage
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France. .,Service de Réanimation pédiatrique, Paris, France.
| | - Laurent Dupic
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France. .,Service de Réanimation pédiatrique, Paris, France.
| | - Jean Paul Bonnefont
- Service de Génétique, Paris, France. .,Université Paris Descartes, Institut Imagine, Hôpital Necker-Enfants Malades, APHP, Paris, France.
| | - Chris Ottolenghi
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France. .,Service de Biochimie Métabolique, Paris, France. .,Université Paris Descartes, Institut Imagine, Hôpital Necker-Enfants Malades, APHP, Paris, France.
| | - Pascale De Lonlay
- Reference Center of Inherited Metabolic Diseases and units of metabolism and neurology, 149 rue de Sèvres, 75015, Paris, France. .,Université Paris Descartes, Institut Imagine, Hôpital Necker-Enfants Malades, APHP, Paris, France.
| |
Collapse
|
35
|
Martín-Hernández E, Aldámiz-Echevarría L, Castejón-Ponce E, Pedrón-Giner C, Couce ML, Serrano-Nieto J, Pintos-Morell G, Bélanger-Quintana A, Martínez-Pardo M, García-Silva MT, Quijada-Fraile P, Vitoria-Miñana I, Dalmau J, Lama-More RA, Bueno-Delgado MA, Del Toro-Riera M, García-Jiménez I, Sierra-Córcoles C, Ruiz-Pons M, Peña-Quintana LJ, Vives-Piñera I, Moráis A, Balmaseda-Serrano E, Meavilla S, Sanjurjo-Crespo P, Pérez-Cerdá C. Urea cycle disorders in Spain: an observational, cross-sectional and multicentric study of 104 cases. Orphanet J Rare Dis 2014; 9:187. [PMID: 25433810 PMCID: PMC4258263 DOI: 10.1186/s13023-014-0187-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/07/2014] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Advances in the diagnosis and treatment of urea cycle disorders (UCDs) have led to a higher survival rate. The purpose of this study is to describe the characteristics of patients with urea cycle disorders in Spain. METHODS Observational, cross-sectional and multicenter study. Clinical, biochemical and genetic data were collected from patients with UCDs, treated in the metabolic diseases centers in Spain between February 2012 and February 2013, covering the entire Spanish population. Heterozygous mothers of patients with OTC deficiency were only included if they were on treatment due to being symptomatic or having biochemistry abnormalities. RESULTS 104 patients from 98 families were included. Ornithine transcarbamylase deficiency was the most frequent condition (64.4%) (61.2% female) followed by type 1 citrullinemia (21.1%) and argininosuccinic aciduria (9.6%). Only 13 patients (12.5%) were diagnosed in a pre-symptomatic state. 63% of the cases presented with type intoxication encephalopathy. The median ammonia level at onset was 298 μmol/L (169-615). The genotype of 75 patients is known, with 18 new mutations having been described. During the data collection period four patients died, three of them in the early days of life. The median current age is 9.96 years (5.29-18), with 25 patients over 18 years of age. Anthropometric data, expressed as median and z-score for the Spanish population is shown. 52.5% of the cases present neurological sequelae, which have been linked to the type of disease, neonatal onset, hepatic failure at diagnosis and ammonia values at diagnosis. 93 patients are following a protein restrictive diet, 0.84 g/kg/day (0.67-1.10), 50 are receiving essential amino acid supplements, 0.25 g/kg/day (0.20-0.45), 58 arginine, 156 mg/kg/day (109-305) and 45 citrulline, 150 mg/kg/day (105-199). 65 patients are being treated with drugs: 4 with sodium benzoate, 50 with sodium phenylbutyrate, 10 with both drugs and 1 with carglumic acid. CONCLUSIONS Studies like this make it possible to analyze the frequency, natural history and clinical practices in the area of rare diseases, with the purpose of knowing the needs of the patients and thus planning their care.
Collapse
Affiliation(s)
- Elena Martín-Hernández
- Pediatric Rares Diseases Unit, Metabolic and Mitochondrial Diseases, Pediatric Department, Hospital Universitario 12 de Octubre. Research Institute (i +12), Madrid, Spain, Avda de Córdoba s/n, 28041, Madrid, Spain.
| | | | | | | | | | | | | | | | | | - María Teresa García-Silva
- Pediatric Rares Diseases Unit, Metabolic and Mitochondrial Diseases, Pediatric Department, Hospital Universitario 12 de Octubre. Research Institute (i +12), Madrid, Spain, Avda de Córdoba s/n, 28041, Madrid, Spain.
| | - Pilar Quijada-Fraile
- Pediatric Rares Diseases Unit, Metabolic and Mitochondrial Diseases, Pediatric Department, Hospital Universitario 12 de Octubre. Research Institute (i +12), Madrid, Spain, Avda de Córdoba s/n, 28041, Madrid, Spain.
| | | | | | | | | | | | | | | | - Mónica Ruiz-Pons
- H.U. Ntra. Sra. de la Candelaria, Santa Cruz de Tenerife, Spain.
| | | | | | | | | | | | | | - Celia Pérez-Cerdá
- CEDEM. Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
36
|
High-throughput tandem mass spectrometry multiplex analysis for newborn urinary screening of creatine synthesis and transport disorders, Triple H syndrome and OTC deficiency. Clin Chim Acta 2014; 436:249-55. [DOI: 10.1016/j.cca.2014.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 11/23/2022]
|
37
|
Adeva MM, Souto G, Blanco N, Donapetry C. Ammonium metabolism in humans. Metabolism 2012; 61:1495-511. [PMID: 22921946 DOI: 10.1016/j.metabol.2012.07.007] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/27/2012] [Accepted: 07/16/2012] [Indexed: 12/13/2022]
Abstract
Free ammonium ions are produced and consumed during cell metabolism. Glutamine synthetase utilizes free ammonium ions to produce glutamine in the cytosol whereas glutaminase and glutamate dehydrogenase generate free ammonium ions in the mitochondria from glutamine and glutamate, respectively. Ammonia and bicarbonate are condensed in the liver mitochondria to yield carbamoylphosphate initiating the urea cycle, the major mechanism of ammonium removal in humans. Healthy kidney produces ammonium which may be released into the systemic circulation or excreted into the urine depending predominantly on acid-base status, so that metabolic acidosis increases urinary ammonium excretion while metabolic alkalosis induces the opposite effect. Brain and skeletal muscle neither remove nor produce ammonium in normal conditions, but they are able to seize ammonium during hyperammonemia, releasing glutamine. Ammonia in gas phase has been detected in exhaled breath and skin, denoting that these organs may participate in nitrogen elimination. Ammonium homeostasis is profoundly altered in liver failure resulting in hyperammonemia due to the deficient ammonium clearance by the diseased liver and to the development of portal collateral circulation that diverts portal blood with high ammonium content to the systemic blood stream. Although blood ammonium concentration is usually elevated in liver disease, a substantial role of ammonium causing hepatic encephalopathy has not been demonstrated in human clinical studies. Hyperammonemia is also produced in urea cycle disorders and other situations leading to either defective ammonium removal or overproduction of ammonium that overcomes liver clearance capacity. Most diseases resulting in hyperammonemia and cerebral edema are preceded by hyperventilation and respiratory alkalosis of unclear origin that may be caused by the intracellular acidosis occurring in these conditions.
Collapse
|
38
|
Häberle J, Boddaert N, Burlina A, Chakrapani A, Dixon M, Huemer M, Karall D, Martinelli D, Crespo PS, Santer R, Servais A, Valayannopoulos V, Lindner M, Rubio V, Dionisi-Vici C. Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis 2012; 7:32. [PMID: 22642880 PMCID: PMC3488504 DOI: 10.1186/1750-1172-7-32] [Citation(s) in RCA: 362] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/06/2012] [Indexed: 12/11/2022] Open
Abstract
Urea cycle disorders (UCDs) are inborn errors of ammonia detoxification/arginine synthesis due to defects affecting the catalysts of the Krebs-Henseleit cycle (five core enzymes, one activating enzyme and one mitochondrial ornithine/citrulline antiporter) with an estimated incidence of 1:8.000. Patients present with hyperammonemia either shortly after birth (~50%) or, later at any age, leading to death or to severe neurological handicap in many survivors. Despite the existence of effective therapy with alternative pathway therapy and liver transplantation, outcomes remain poor. This may be related to underrecognition and delayed diagnosis due to the nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity. These guidelines aim at providing a trans-European consensus to: guide practitioners, set standards of care and help awareness campaigns. To achieve these goals, the guidelines were developed using a Delphi methodology, by having professionals on UCDs across seven European countries to gather all the existing evidence, score it according to the SIGN evidence level system and draw a series of statements supported by an associated level of evidence. The guidelines were revised by external specialist consultants, unrelated authorities in the field of UCDs and practicing pediatricians in training. Although the evidence degree did hardly ever exceed level C (evidence from non-analytical studies like case reports and series), it was sufficient to guide practice on both acute and chronic presentations, address diagnosis, management, monitoring, outcomes, and psychosocial and ethical issues. Also, it identified knowledge voids that must be filled by future research. We believe these guidelines will help to: harmonise practice, set common standards and spread good practices with a positive impact on the outcomes of UCD patients.
Collapse
Affiliation(s)
- Johannes Häberle
- University Children’s Hospital Zurich and Children’s Research Centre, Zurich, 8032, Switzerland
| | - Nathalie Boddaert
- Radiologie Hopital Necker, Service Radiologie Pediatrique, 149 Rue De Sevres, Paris 15, 75015, France
| | - Alberto Burlina
- Department of Pediatrics, Division of Inborn Metabolic Disease, University Hospital Padua, Via Giustiniani 3, Padova, 35128, Italy
| | - Anupam Chakrapani
- Birmingham Children’s Hospital NHS Foundation Trust, Steelhouse Lane, Birmingham, B4 6NH, United Kingdom
| | - Marjorie Dixon
- Dietetic Department, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, WC1N 3JH, United Kingdom
| | - Martina Huemer
- Kinderabteilung, LKH Bregenz, Carl-Pedenz-Strasse 2, Bregenz, A-6900, Austria
| | - Daniela Karall
- University Children’s Hospital, Medical University Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, Rome, I-00165, Italy
| | | | - René Santer
- Universitätsklinikum Hamburg Eppendorf, Klinik für Kinder- und Jugendmedizin, Martinistr. 52, Hamburg, 20246, Germany
| | - Aude Servais
- Service de Néphrologie et maladies métaboliques adulte Hôpital Necker 149, rue de Sèvres, Paris, 75015, France
| | - Vassili Valayannopoulos
- Reference Center for Inherited Metabolic Disorders (MaMEA), Hopital Necker-Enfants Malades, 149 Rue de Sevres, Paris, 75015, France
| | - Martin Lindner
- University Children’s Hospital, Im Neuenheimer Feld 430, Heidelberg, 69120, Germany
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC) and Centro de Investigación Biomédica en Red para Enfermedades Raras (CIBERER), C/ Jaume Roig 11, Valencia, 46010, Spain
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children’s Hospital, IRCCS, Piazza S. Onofrio 4, Rome, I-00165, Italy
| |
Collapse
|
39
|
Abstract
The urea cycle consists of six consecutive enzymatic reactions that convert waste nitrogen into urea. Deficiencies of any of these enzymes of the cycle result in urea cycle disorders (UCDs), a group of inborn errors of hepatic metabolism that often result in life-threatening hyperammonemia. Argininosuccinate lyase (ASL) catalyzes the fourth reaction in this cycle, resulting in the breakdown of argininosuccinic acid to arginine and fumarate. ASL deficiency (ASLD) is the second most common UCD, with a prevalence of ~1 in 70,000 live births. ASLD can manifest as either a severe neonatal-onset form with hyperammonemia within the first few days after birth or as a late-onset form with episodic hyperammonemia and/or long-term complications that include liver dysfunction, neurocognitive deficits, and hypertension. These long-term complications can occur in the absence of hyperammonemic episodes, implying that ASL has functions outside of its role in ureagenesis and the tissue-specific lack of ASL may be responsible for these manifestations. The biochemical diagnosis of ASLD is typically established with elevation of plasma citrulline together with elevated argininosuccinic acid in the plasma or urine. Molecular genetic testing of ASL and assay of ASL enzyme activity are helpful when the biochemical findings are equivocal. However, there is no correlation between the genotype or enzyme activity and clinical outcome. Treatment of acute metabolic decompensations with hyperammonemia involves discontinuing oral protein intake, supplementing oral intake with intravenous lipids and/or glucose, and use of intravenous arginine and nitrogen-scavenging therapy. Dietary restriction of protein and dietary supplementation with arginine are the mainstays in long-term management. Orthotopic liver transplantation (OLT) is best considered only in patients with recurrent hyperammonemia or metabolic decompensations resistant to conventional medical therapy.
Collapse
|
40
|
Engel K, Vuissoz JM, Eggimann S, Groux M, Berning C, Hu L, Klaus V, Moeslinger D, Mercimek-Mahmutoglu S, Stöckler S, Wermuth B, Häberle J, Nuoffer JM. Bacterial expression of mutant argininosuccinate lyase reveals imperfect correlation of in-vitro enzyme activity with clinical phenotype in argininosuccinic aciduria. J Inherit Metab Dis 2012; 35:133-40. [PMID: 21667091 DOI: 10.1007/s10545-011-9357-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 05/20/2011] [Accepted: 05/25/2011] [Indexed: 11/25/2022]
Abstract
BACKGROUND The urea cycle defect argininosuccinate lyase (ASL) deficiency has a large spectrum of presentations from highly severe to asymptomatic. Enzyme activity assays in red blood cells or fibroblasts, although diagnostic of the deficiency, fail to discriminate between severe, mild or asymptomatic cases. Mutation/phenotype correlation studies are needed to characterize the effects of individual mutations on the activity of the enzyme. METHODS Bacterial in-vitro expression studies allowed the enzyme analysis of purified mutant ASL proteins p.I100T (c.299 T > C), p.V178M (c.532 G > A), p.E189G (c.566A > G), p.Q286R (c.857A > G), p.K315E (c.943A > G), p.R379C (c.1135 C > T) and p.R385C (c.1153 C > T) in comparison to the wildtype protein. RESULTS In the bacterial in-vitro expression system, ASL wild-type protein was successfully expressed. The known classical p.Q286R, the novel classical p.K315E and the known mutations p.I100T, p.E189G and p.R385C, which all have been linked to a mild phenotype, showed no significant residual activity. There was some enzyme activity detected with the p.V178M (5 % of wild-type) and p.R379C (10 % of wild-type) mutations in which K(m) values for argininosuccinic acid differed significantly from the wild-type ASL protein. CONCLUSION The bacterially expressed enzymes proved that the mutations found in patients and studied here indeed are detrimental. However, as in the case of red cell ASL activity assays, some mutations found in genetically homozygous patients with mild presentations resulted in virtual loss of enzyme activity in the bacterial system, suggesting a more protective environment for the mutant enzyme in the liver than in the heterologous expression system and/or in the highly dilute assays utilized here.
Collapse
Affiliation(s)
- Katharina Engel
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Münster, Albert-Schweitzer-Str. 33, 48149 Muenster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Headache and neuropsychic disorders in the puerperium: a case report with suspected deficiency of urea cycle enzymes. Neurol Sci 2011; 32 Suppl 1:S157-9. [PMID: 21533735 DOI: 10.1007/s10072-011-0518-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An enzymatic abnormality of the urea cycle is a metabolic disorder occasionally seen in adults, but particularly in the puerperium. The main risk is acute hyperammoniemic encephalopathy, leading to psychosis, coma and even death if not diagnosed promptly and treated appropriately. Headache is frequent in the puerperium normally manifesting between 3 and 6 days after delivery. We describe here a 39-year-old woman, who 3 days after delivery presented diffuse tension-type headache and depression, followed by behavioral disorders, psychomotor agitation, epileptic seizures, and finally coma 2 days later. Pregnancy and normal delivery: routine blood chemistry findings, CT scan, MR imaging, angio-MR of the brain, and lumbar puncture were normal. EEG when seizures started, it showed diffuse slowing, as in the case of metabolic encephalopathy. This led us to assay blood ammonia, which was high at >400 mmol. Liver function and abdominal US were normal; hence, we suspected a urea cycle enzymatic abnormality, and requested for genetic tests. These confirmed a congenital primary metabolic deficiency of arginine succinate synthetase, with high citrullinemia (type II, adult form). Dialysis was started promptly, with initially iv arginine, then orally, plus medical therapy for the hyperammoniemia and a low protein diet; plasma ammonia dropped swiftly to normal, and her state of consciousness gradually improved until all the clinical symptoms had resolved. Ammonia assay should always be considered in the first few days of the puerperium in women with headache and behavioral disorders, to exclude an inborn deficiency of the urea cycle, which may have gone unnoticed until then.
Collapse
|
42
|
de Groot MJ, Cuppen M, Eling M, Verheijen FW, Rings EHHM, Reijngoud DJ, de Vries MMC, van Spronsen FJ. Metabolic investigations prevent liver transplantation in two young children with citrullinemia type I. J Inherit Metab Dis 2010; 33 Suppl 3:S413-6. [PMID: 20852933 PMCID: PMC3757263 DOI: 10.1007/s10545-010-9207-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/17/2010] [Accepted: 08/27/2010] [Indexed: 11/25/2022]
Abstract
Acute liver failure may be caused by a variety of disorders including inborn errors of metabolism. In those cases, rapid metabolic investigations and adequate treatment may avoid the need for liver transplantation. We report two patients who presented with acute liver failure and were referred to our center for liver transplantation work-up. Urgent metabolic investigations revealed citrullinemia type I. Treatment for citrullinemia type I avoided the need for liver transplantation. Acute liver failure as a presentation of citrullinemia type I has not previously been reported in young children. Although acute liver failure has occasionally been described in other urea cycle disorders, these disorders may be underestimated as a cause. Timely diagnosis and treatment of these disorders may avoid liver transplantation and improve clinical outcome. Therefore, urea cycle disorders should be included in the differential diagnosis in young children presenting with acute liver failure.
Collapse
MESH Headings
- Administration, Oral
- Arginine/administration & dosage
- Biomarkers/blood
- Cells, Cultured
- Citrullinemia/blood
- Citrullinemia/complications
- Citrullinemia/diagnosis
- Citrullinemia/therapy
- Diagnosis, Differential
- Diet, Protein-Restricted
- Drug Therapy, Combination
- Female
- Glucose/administration & dosage
- Humans
- Infant
- Infusions, Intravenous
- Liver Failure, Acute/blood
- Liver Failure, Acute/diagnosis
- Liver Failure, Acute/etiology
- Liver Failure, Acute/therapy
- Liver Transplantation
- Male
- Predictive Value of Tests
- Sodium Benzoate/administration & dosage
- Treatment Outcome
- Unnecessary Procedures
Collapse
Affiliation(s)
- Martijn J. de Groot
- Department of Pediatrics, Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
- Center for Liver, Digestive and Metabolic Diseases, GUIDE Graduate School for Drug Exploration, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marcel Cuppen
- Department of Pediatrics, Slingeland Hospital, Doetinchem, The Netherlands
| | - Marc Eling
- Department of Pediatrics, Slingeland Hospital, Doetinchem, The Netherlands
| | - Frans W. Verheijen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
- Center for Liver, Digestive and Metabolic Diseases, GUIDE Graduate School for Drug Exploration, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Reijngoud
- Center for Liver, Digestive and Metabolic Diseases, GUIDE Graduate School for Drug Exploration, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maaike M. C. de Vries
- Department of Metabolic Diseases, Nijmegen Center for Mitochondrial Disorders, University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Francjan J. van Spronsen
- Department of Pediatrics, Division of Metabolic Diseases, Beatrix Children’s Hospital, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
- Center for Liver, Digestive and Metabolic Diseases, GUIDE Graduate School for Drug Exploration, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
Martínez AI, Pérez-Arellano I, Pekkala S, Barcelona B, Cervera J. Genetic, structural and biochemical basis of carbamoyl phosphate synthetase 1 deficiency. Mol Genet Metab 2010; 101:311-23. [PMID: 20800523 DOI: 10.1016/j.ymgme.2010.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/02/2010] [Accepted: 08/02/2010] [Indexed: 01/28/2023]
Abstract
Carbamoyl phosphate synthetase 1 (CPS1) plays a paramount role in liver ureagenesis since it catalyzes the first and rate-limiting step of the urea cycle, the major pathway for nitrogen disposal in humans. CPS1 deficiency (CPS1D) is an autosomal recessive inborn error which leads to hyperammonemia due to mutations in the CPS1 gene, or is caused secondarily by lack of its allosteric activator NAG. Proteolytic, immunological and structural data indicate that human CPS1 resembles Escherichia coli CPS in structure, and a 3D model of CPS1 has been presented for elucidating the pathogenic role of missense mutations. Recent availability of CPS1 expression systems also can provide valuable tools for structure-function analysis and pathogenicity-testing of mutations in CPS1. In this paper, we provide a comprehensive compilation of clinical CPS1 mutations, and discuss how structural knowledge of CPS enzymes in combination with in vitro analyses can be a useful tool for diagnosis of CPS1D.
Collapse
Affiliation(s)
- Ana Isabel Martínez
- Molecular Recognition Laboratory, Centro de Investigación Príncipe Felipe (CIPF) Valencia, Spain
| | | | | | | | | |
Collapse
|
44
|
Campeau PM, Pivalizza PJ, Miller G, McBride K, Karpen S, Goss J, Lee BH. Early orthotopic liver transplantation in urea cycle defects: follow up of a developmental outcome study. Mol Genet Metab 2010; 100 Suppl 1:S84-7. [PMID: 20223690 PMCID: PMC2867349 DOI: 10.1016/j.ymgme.2010.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/15/2010] [Indexed: 01/24/2023]
Abstract
Patients with neonatal urea cycle defects (UCDs) typically have high mortality and poor neurological outcome unless they receive liver transplantation. Neurologic outcome may be better with liver transplantation before age one year. We report on a follow up on an initial prospective study performed to assess developmental outcome after early liver transplant using the Griffiths Scales. Developmental testing up to 7years after transplantation showed average developmental quotients (DQs) of 69 for four children who underwent transplantation before one year of age (latest DQs were 47, 63, 95 and 96), and 80 for a patient who underwent transplantation at 3years of age (latest DQ was 88). We conclude that a combination of early liver transplantation, aggressive metabolic management and early childhood intervention improve the neurologic outcome of children with UCDs.
Collapse
Affiliation(s)
- Philippe M Campeau
- Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Arbeiter AK, Kranz B, Wingen AM, Bonzel KE, Dohna-Schwake C, Hanssler L, Neudorf U, Hoyer PF, Büscher R. Continuous venovenous haemodialysis (CVVHD) and continuous peritoneal dialysis (CPD) in the acute management of 21 children with inborn errors of metabolism. Nephrol Dial Transplant 2009; 25:1257-65. [PMID: 19934086 DOI: 10.1093/ndt/gfp595] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Newborns with inborn errors of metabolism often present with hyperammonaemic coma, requiring prompt diagnosis and specific medical therapy, nutritional support and efficient toxin removal. Little information regarding the efficacy and safety of continuous venovenous haemodialysis (CVVHD) as an option for extracorporal ammonia detoxification in children is available. METHODS Twenty-one patients with hyperammonaemia [19 neonates (mean age 4.1 +/- 2.4 days) and two children 1 and 7 years of age, respectively] were admitted to our hospital for dialysis between 1996 and 2008. Seventeen children (15 neonates), received CVVHD. Four neonates received continuous peritoneal dialysis (CPD). All started medical treatment with sodium benzoate, l-arginine hydrochloride and carnitine as well as protein-restricted parenteral diets with high caloric intake before dialysis. RESULTS Plasma ammonia levels (range 464-7267 microg/dl before dialysis and 27-3317 microg/dl after dialysis) were significantly reduced by 50% within 4.7 +/- 2.5 h with CVVHD compared with 13.5 +/- 6.2 h with CPD (P < 0.0001). Plasma ammonia levels <200 microg/dl critical range were achieved within 22.4 +/- 18.1 h in CVVHD patients compared with 35.0 +/- 24.1 h with CPD. Depending on the weight and blood pressure stability of the patients, mean blood flow velocities of 9.8 +/- 3.4 ml/kg/min and mean dialysate flow rates of 3925 +/- 2398 ml/min/1.73 m(2) were employed. Blood and dialysate flows significantly correlated with ammonia clearance and decay of ammonia in vivo. Because of the severe underlying disease, 18% of CVVHD patients died compared with 50% undergoing CPD. In total, 82% of CVVHD patients survived the first 6 months after dialysis. Among these, 43% were without sequelae, 43% developed moderate mental retardation, and two (14%) developed severe mental retardation. CONCLUSION CVVHD effectively and quickly eliminates plasma ammonia. To optimize long-term mental outcome, rapid identification and appropriate treatment of the underlying disease as well as starting dialysis early are of enormous therapeutic value.
Collapse
Affiliation(s)
- Anja K Arbeiter
- Children's Hospital, University of Duisburg-Essen, Department of Paediatrics II, Hufelandstr. 55, 45122 Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|