1
|
Moseler A, Wagner S, Meyer AJ. Protein persulfidation in plants: mechanisms and functions beyond a simple stress response. Biol Chem 2024:hsz-2024-0038. [PMID: 39303198 DOI: 10.1515/hsz-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Posttranslational modifications (PTMs) can modulate the activity, localization and interactions of proteins and (re)define their biological function. Understanding how changing environments can alter cellular processes thus requires detailed knowledge about the dynamics of PTMs in time and space. A PTM that gained increasing attention in the last decades is protein persulfidation, where a cysteine thiol (-SH) is covalently bound to sulfane sulfur to form a persulfide (-SSH). The precise cellular mechanisms underlying the presumed persulfide signaling in plants are, however, only beginning to emerge. In the mitochondrial matrix, strict regulation of persulfidation and H2S homeostasis is of prime importance for maintaining mitochondrial bioenergetic processes because H2S is a highly potent poison for cytochrome c oxidase. This review summarizes the current knowledge about protein persulfidation and corresponding processes in mitochondria of the model plant Arabidopsis. These processes will be compared to the respective processes in non-plant models to underpin similarities or highlight apparent differences. We provide an overview of mitochondrial pathways that contribute to H2S and protein persulfide generation and mechanisms for H2S fixation and de-persulfidation. Based on current proteomic data, we compile a plant mitochondrial persulfidome and discuss how persulfidation may regulate protein function.
Collapse
Affiliation(s)
- Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
2
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
3
|
Song H, Wan R, Tian Q, Liu Y, Ruan H, Liu P, Wang Y, Liu L. A serial analysis of hydrogen sulfide poisoning: three group accidents. Forensic Sci Med Pathol 2024; 20:1014-1021. [PMID: 38108999 DOI: 10.1007/s12024-023-00743-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/19/2023]
Abstract
Hydrogen sulfide (H2S) is a powerful toxic gas in workplace incidents, and it poses a threat to colleagues or family members involved in rescues, leading to a "domino effect" of multiple deaths. In this report, we describe three incidents in which 10 people died, and we present the results of the analyses performed in different incidents, including paper pulp pit, sewer, and sewage well. We provide the macroscopic and morphological findings of ten victims, which include conjunctival hemorrhage, corneal erosion, pulmonary edema, and pulmonary hemorrhage. Additionally, we observed large amounts of waste paper pulp or black sludge in the upper and lower respiratory tracts or upper and lower gastrointestinal tracts of six victims. Furthermore, we conducted a toxicological examination of the victims' blood sulfide using an alkylation extraction approach combined with gas chromatography/mass spectrometry. The sulfide concentrations in the 10 victims ranged from 0.06 to 6.72 mg/L.
Collapse
Affiliation(s)
- Huaxiong Song
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Ronghui Wan
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Qishuo Tian
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Yong Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China
| | - Hongbin Ruan
- Hubei Chongxin Judicial Expertise Center, F1-2, Zone B, Huazhong International Industrial Park, Yangluo Development Zone, Xinzhou District, Wuhan, Hubei, 430415, China
| | - Pan Liu
- Hubei Chongxin Judicial Expertise Center, F1-2, Zone B, Huazhong International Industrial Park, Yangluo Development Zone, Xinzhou District, Wuhan, Hubei, 430415, China
| | - Yunyun Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
4
|
Liang XY, Wang Y, Zhu YW, Zhang YX, Yuan H, Liu YF, Jin YQ, Gao W, Ren ZG, Ji XY, Wu DD. Role of hydrogen sulfide in dermatological diseases. Nitric Oxide 2024; 150:18-26. [PMID: 38971520 DOI: 10.1016/j.niox.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.
Collapse
Affiliation(s)
- Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Guang Ren
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
5
|
Wang Y, Xia F, Jia S, Yang Y, Zhang X. Exogenous sulfide regulates hypoxia/reoxygenation stress through the intrinsic apoptotic pathway in the blood clam (Tegillarca granosa). Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109953. [PMID: 38852914 DOI: 10.1016/j.cbpc.2024.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/11/2024]
Abstract
The intertidal organism Tegillarca granosa can survive under frequent hypoxia/reoxygenation (H/R) exposure. Sulfides as accompanying products in benthic hypoxic environments, may play an important regulatory role, but the mechanisms are not well understood. This article investigated the physiological and molecular changes of T. granosa after adding different concentrations of sulfides (0.1, 0.5, 1 mM) at 72 h into a 120-h exposure to hypoxia, as well as the recovery state of 24 h of reoxygenation. The results indicated that H/R stress induces ROS production and mild mitochondrial depolarization in clams, and sulfide can participate in its regulation. Among them, a low concentration of sulfide up-regulated glutathione content and alternative oxidase activity, maintained the stability of antioxidant enzymes, and up-regulated the expression of the survival genes XIAP/BCL-xl which mediate cell survival via the NFκB signaling pathway. High concentrations of sulfide had a significant inhibitory effect on the p38/MPAK pathway and inhibited intrinsic apoptosis caused by ROS accumulation during reoxygenation. Taken together, our study suggested that different concentrations of sulfides are involved in regulating the endogenous apoptosis of clams during H/R.
Collapse
Affiliation(s)
- Yihang Wang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Feiyu Xia
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shunan Jia
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yang Yang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiumei Zhang
- Fishery College, Zhejiang Ocean University, Zhoushan 316022, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
6
|
Tan S, Liu L, Jiao JY, Li MM, Hu CJ, Lv AP, Qi YL, Li YX, Rao YZ, Qu YN, Jiang HC, Soo RM, Evans PN, Hua ZS, Li WJ. Exploring the Origins and Evolution of Oxygenic and Anoxygenic Photosynthesis in Deeply Branched Cyanobacteriota. Mol Biol Evol 2024; 41:msae151. [PMID: 39041196 PMCID: PMC11304991 DOI: 10.1093/molbev/msae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth's history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders: Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, vesicle-inducing protein in plastids 1 (Vipp1). Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven AnoxyP by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.
Collapse
Affiliation(s)
- Sha Tan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chao-Jian Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ling Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang-Zhi Rao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yan-Ni Qu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Rochelle M Soo
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD 4072, Australia
| | - Paul N Evans
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD 4072, Australia
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| |
Collapse
|
7
|
Tang SM, Lu GZ, Lei XY, Yang XY, Tang GT, Yu J, Xie ZZ. Sodium thiosulfate: A donor or carrier signaling molecule for hydrogen sulfide? Nitric Oxide 2024; 149:67-74. [PMID: 38897561 DOI: 10.1016/j.niox.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
Sodium thiosulfate has been used for decades in the treatment of calciphylaxis and cyanide detoxification, and has recently shown initial therapeutic promise in critical diseases such as neuronal ischemia, diabetes mellitus, heart failure and acute lung injury. However, the precise mechanism of sodium thiosulfate remains incompletely defined and sometimes contradictory. Although sodium thiosulfate has been widely accepted as a donor of hydrogen sulfide (H2S), emerging findings suggest that it is the executive signaling molecule for H2S and that its effects may not be dependent on H2S. This article presents an overview of the current understanding of sodium thiosulfate, including its synthesis, biological characteristics, and clinical applications of sodium thiosulfate, as well as the underlying mechanisms in vivo. We also discussed the interplay of sodium thiosulfate and H2S. Our review highlights sodium thiosulfate as a key player in sulfide signaling with the broad clinical potential for the future.
Collapse
Affiliation(s)
- Si-Miao Tang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Guo-Zhong Lu
- 922th Hospital of Hengyang, Hunan, 421001, China
| | - Xiao-Yong Lei
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Xiao-Yan Yang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Guo-Tao Tang
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China
| | - Jia Yu
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China.
| | - Zhi-Zhong Xie
- The Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Institute of Pharmacy & Pharmacology, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
8
|
Zhang W, Zhang L, Feng Y, Lin D, Yang Z, Zhang Z, Ma Y. Genome-wide profiling of DNA methylome and transcriptome reveals epigenetic regulation of Urechis unicinctus response to sulfide stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172238. [PMID: 38582121 DOI: 10.1016/j.scitotenv.2024.172238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Sulfide is a well-known environmental pollutant that can have detrimental effects on most organisms. However, few metazoans living in sulfide-rich environments have developed mechanisms to tolerate and adapt to sulfide stress. Epigenetic mechanisms, including DNA methylation, have been shown to play a vital role in environmental stress adaptation. Nevertheless, the precise function of DNA methylation in biological sulfide adaptation remains unclear. Urechis unicinctus, a benthic organism inhabiting sulfide-rich intertidal environments, is an ideal model organism for studying adaptation to sulfide environments. In this study, we conducted a comprehensive analysis of the DNA methylome and transcriptome of U. unicinctus after exposure to 50 μM sulfide. The results revealed dynamic changes in the DNA methylation (5-methylcytosine) landscape in response to sulfide stress, with U. unicinctus exhibiting elevated DNA methylation levels following stress exposure. Integrating differentially expressed genes (DEGs) and differentially methylated regions (DMRs), we identified a crucial role of gene body methylation in predicting gene expression. Furthermore, using a DNA methyltransferase inhibitor, we validated the involvement of DNA methylation in the sulfide stress response and the gene regulatory network influenced by DNA methylation. The results indicated that by modulating DNA methylation levels during sulfide stress, the expression of glutathione S-transferase, glutamyl aminopeptidase, and cytochrome c oxidase could be up-regulated, thereby facilitating the metabolism and detoxification of exogenous sulfides. Moreover, DNA methylation was found to regulate and enhance the oxidative phosphorylation pathway, including NADH dehydrogenase, isocitrate dehydrogenase, and ATP synthase. Additionally, DNA methylation influenced the regulation of Cytochrome P450 and macrophage migration inhibitory factor, both of which are closely associated with oxidative stress and stress resistance. Our findings not only emphasize the role of DNA methylation in sulfide adaptation but also provide novel insights into the potential mechanisms through which marine organisms adapt to environmental changes.
Collapse
Affiliation(s)
- Wenqing Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Long Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Yuxin Feng
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Dawei Lin
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhi Yang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China
| | - Zhifeng Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Ocean Institute, Ocean University of China, Sanya 572000, China; Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
9
|
Yadav S, Koenen M, Bale NJ, Reitsma W, Engelmann JC, Stefanova K, Damsté JSS, Villanueva L. Organic matter degradation in the deep, sulfidic waters of the Black Sea: insights into the ecophysiology of novel anaerobic bacteria. MICROBIOME 2024; 12:98. [PMID: 38797849 PMCID: PMC11129491 DOI: 10.1186/s40168-024-01816-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/15/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Recent studies have reported the identity and functions of key anaerobes involved in the degradation of organic matter (OM) in deep (> 1000 m) sulfidic marine habitats. However, due to the lack of available isolates, detailed investigation of their physiology has been precluded. In this study, we cultivated and characterized the ecophysiology of a wide range of novel anaerobes potentially involved in OM degradation in deep (2000 m depth) sulfidic waters of the Black Sea. RESULTS We have successfully cultivated a diverse group of novel anaerobes belonging to various phyla, including Fusobacteriota (strain S5), Bacillota (strains A1T and A2), Spirochaetota (strains M1T, M2, and S2), Bacteroidota (strains B1T, B2, S6, L6, SYP, and M2P), Cloacimonadota (Cloa-SY6), Planctomycetota (Plnct-SY6), Mycoplasmatota (Izemo-BS), Chloroflexota (Chflx-SY6), and Desulfobacterota (strains S3T and S3-i). These microorganisms were able to grow at an elevated hydrostatic pressure of up to 50 MPa. Moreover, this study revealed that different anaerobes were specialized in degrading specific types of OM. Strains affiliated with the phyla Fusobacteriota, Bacillota, Planctomycetota, and Mycoplasmatota were found to be specialized in the degradation of cellulose, cellobiose, chitin, and DNA, respectively, while strains affiliated with Spirochaetota, Bacteroidota, Cloacimonadota, and Chloroflexota preferred to ferment less complex forms of OM. We also identified members of the phylum Desulfobacterota as terminal oxidizers, potentially involved in the consumption of hydrogen produced during fermentation. These results were supported by the identification of genes in the (meta)genomes of the cultivated microbial taxa which encode proteins of specific metabolic pathways. Additionally, we analyzed the composition of membrane lipids of selected taxa, which could be critical for their survival in the harsh environment of the deep sulfidic waters and could potentially be used as biosignatures for these strains in the sulfidic waters of the Black Sea. CONCLUSIONS This is the first report that demonstrates the cultivation and ecophysiology of such a diverse group of microorganisms from any sulfidic marine habitat. Collectively, this study provides a step forward in our understanding of the microbes thriving in the extreme conditions of the deep sulfidic waters of the Black Sea. Video Abstract.
Collapse
Affiliation(s)
- Subhash Yadav
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
| | - Wietse Reitsma
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
| | - Julia C Engelmann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
| | - Kremena Stefanova
- Institute of Oceanology "Fridtjof Nansen", Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797AB Den Burg, P.O. Box 59, Texel, The Netherlands.
- Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.021, 3508 TA, Utrecht, The Netherlands.
| |
Collapse
|
10
|
Benchoam D, Cuevasanta E, Roman JV, Banerjee R, Alvarez B. Acidity of persulfides and its modulation by the protein environments in sulfide quinone oxidoreductase and thiosulfate sulfurtransferase. J Biol Chem 2024; 300:107149. [PMID: 38479599 PMCID: PMC11039317 DOI: 10.1016/j.jbc.2024.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/12/2024] [Accepted: 02/28/2024] [Indexed: 04/23/2024] Open
Abstract
Persulfides (RSSH/RSS-) participate in sulfur metabolism and are proposed to transduce hydrogen sulfide (H2S) signaling. Their biochemical properties are poorly understood. Herein, we studied the acidity and nucleophilicity of several low molecular weight persulfides using the alkylating agent, monobromobimane. The different persulfides presented similar pKa values (4.6-6.3) and pH-independent rate constants (3.2-9.0 × 103 M-1 s-1), indicating that the substituents in persulfides affect properties to a lesser extent than in thiols because of the larger distance to the outer sulfur. The persulfides had higher reactivity with monobromobimane than analogous thiols and putative thiols with the same pKa, providing evidence for the alpha effect (enhanced nucleophilicity by the presence of a contiguous atom with high electron density). Additionally, we investigated two enzymes from the human mitochondrial H2S oxidation pathway that form catalytic persulfide intermediates, sulfide quinone oxidoreductase and thiosulfate sulfurtransferase (TST, rhodanese). The pH dependence of the activities of both enzymes was measured using sulfite and/or cyanide as sulfur acceptors. The TST half-reactions were also studied by stopped-flow fluorescence spectroscopy. Both persulfidated enzymes relied on protonated groups for reaction with the acceptors. Persulfidated sulfide quinone oxidoreductase appeared to have a pKa of 7.8 ± 0.2. Persulfidated TST presented a pKa of 9.38 ± 0.04, probably due to a critical active site residue rather than the persulfide itself. The TST thiol reacted in the anionic state with thiosulfate, with an apparent pKa of 6.5 ± 0.1. Overall, our study contributes to a fundamental understanding of persulfide properties and their modulation by protein environments.
Collapse
Affiliation(s)
- Dayana Benchoam
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay; Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Ernesto Cuevasanta
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay; Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Joseph V Roman
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
11
|
Sun X, Mao C, Xie Y, Zhong Q, Zhang R, Jiang D, Song Y. Therapeutic Potential of Hydrogen Sulfide in Reproductive System Disorders. Biomolecules 2024; 14:540. [PMID: 38785947 PMCID: PMC11117696 DOI: 10.3390/biom14050540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/28/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Hydrogen sulfide (H2S), previously regarded as a toxic exhaust and atmospheric pollutant, has emerged as the third gaseous signaling molecule following nitric oxide (NO) and carbon monoxide (CO). Recent research has revealed significant biological effects of H2S in a variety of systems, such as the nervous, cardiovascular, and digestive systems. Additionally, H2S has been found to impact reproductive system function and may have therapeutic implications for reproductive disorders. This paper explores the relationship between H2S and male reproductive disorders, specifically erectile dysfunction, prostate cancer, male infertility, and testicular damage. Additionally, it examines the impact of H2S regulation on the pathophysiology of the female reproductive system, including improvements in preterm birth, endometriosis, pre-eclampsia, fetal growth restriction, unexplained recurrent spontaneous abortion, placental oxidative damage, embryo implantation, recovery of myometrium post-delivery, and ovulation. The study delves into the regulatory functions of H2S within the reproductive systems of both genders, including its impact on the NO/cGMP pathway, the activation of K+ channels, and the relaxation mechanism of the spongy smooth muscle through the ROCK pathway, aiming to broaden the scope of potential therapeutic strategies for treating reproductive system disorders in clinical settings.
Collapse
Affiliation(s)
- Xutao Sun
- Department of Typhoid, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Caiyun Mao
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Ying Xie
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Qing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| | - Deyou Jiang
- Department of Synopsis of the Golden Chamber, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China;
| | - Yunjia Song
- Department of Pharmacology, School of Basic Medical Sciences, Heilongjiang University of Chinese Medicine, No. 24, Heping Street, Harbin 150040, China; (C.M.); (Q.Z.); (R.Z.)
| |
Collapse
|
12
|
Qiao L, Ou Y, Li L, Wu S, Guo Y, Liu M, Yu D, Chen Q, Yuan J, Wei C, Ou C, Li H, Cheng D, Yu Z, Li Z. H 2S-driven chemotherapy and mild photothermal therapy induced mitochondrial reprogramming to promote cuproptosis. J Nanobiotechnology 2024; 22:205. [PMID: 38658965 PMCID: PMC11044430 DOI: 10.1186/s12951-024-02480-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
The elevated level of hydrogen sulfide (H2S) in colon cancer hinders complete cure with a single therapy. However, excessive H2S also offers a treatment target. A multifunctional cascade bioreactor based on the H2S-responsive mesoporous Cu2Cl(OH)3-loaded hypoxic prodrug tirapazamine (TPZ), in which the outer layer was coated with hyaluronic acid (HA) to form TPZ@Cu2Cl(OH)3-HA (TCuH) nanoparticles (NPs), demonstrated a synergistic antitumor effect through combining the H2S-driven cuproptosis and mild photothermal therapy. The HA coating endowed the NPs with targeting delivery to enhance drug accumulation in the tumor tissue. The presence of both the high level of H2S and the near-infrared II (NIR II) irradiation achieved the in situ generation of photothermic agent copper sulfide (Cu9S8) from the TCuH, followed with the release of TPZ. The depletion of H2S stimulated consumption of oxygen, resulting in hypoxic state and mitochondrial reprogramming. The hypoxic state activated prodrug TPZ to activated TPZ (TPZ-ed) for chemotherapy in turn. Furthermore, the exacerbated hypoxia inhibited the synthesis of adenosine triphosphate, decreasing expression of heat shock proteins and subsequently improving the photothermal therapy. The enriched Cu2+ induced not only cuproptosis by promoting lipoacylated dihydrolipoamide S-acetyltransferase (DLAT) heteromerization but also performed chemodynamic therapy though catalyzing H2O2 to produce highly toxic hydroxyl radicals ·OH. Therefore, the nanoparticles TCuH offer a versatile platform to exert copper-related synergistic antitumor therapy.
Collapse
Affiliation(s)
- Lihong Qiao
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China
- Department of Laboratory Medicine Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, People's Republic of China
| | - Yijing Ou
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China
| | - Lin Li
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China
| | - Shuzhen Wu
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China
| | - Yanxian Guo
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China
| | - Mu Liu
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China
| | - Dongsheng Yu
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, People's Republic of China
| | - Qinghua Chen
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, People's Republic of China
| | - Jianmin Yuan
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, People's Republic of China
| | - Chuanqi Wei
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, People's Republic of China
| | - Chiyi Ou
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, People's Republic of China
| | - Haowen Li
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, People's Republic of China
| | - Du Cheng
- Key Laboratory for Polymeric Composite & Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, People's Republic of China.
| | - Zhiqiang Yu
- Department of Laboratory Medicine Dongguan Institute of Clinical Cancer Research, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China.
| | - Zhongjun Li
- Department of Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China.
- Dongguan Key Laboratory of Major Diseases in Obstetrics and Gynecology, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, People's Republic of China.
| |
Collapse
|
13
|
Cai F, Li D, Xie Y, Wang X, Ma H, Xu H, Cheng J, Zhuang H, Hua ZC. Sulfide:quinone oxidoreductase alleviates ferroptosis in acute kidney injury via ameliorating mitochondrial dysfunction of renal tubular epithelial cells. Redox Biol 2024; 69:102973. [PMID: 38052107 PMCID: PMC10746537 DOI: 10.1016/j.redox.2023.102973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/07/2023] Open
Abstract
Ferroptosis is iron-dependent and regulates necrosis caused by lipid peroxidation and mitochondrial damage. Recent evidence has revealed an emerging role for ferroptosis in the pathophysiology of acute kidney injury (AKI). Sulfide:quinone oxidoreductase (SQOR) is a mitochondrial inner membrane protein highly expressed in the renal cortex. However, the effects of SQOR on ferroptosis and AKI have not been elucidated. In this study, we evaluated the effects of SQOR in several AKI models. We observed a rapid decrease in SQOR expression after cisplatin stimulation in both in vivo and in vitro models. SQOR-deletion mice exhibit exacerbated kidney impairment and ferroptosis in renal tubular epithelial cells following cisplatin injury. Additionally, our results showed that the overexpression of SQOR or ADT-OH (the slow-releasing H2S donor) preserved renal function in the three AKI mouse models. These effects were evidenced by lower levels of serum creatinine (SCr), blood urea nitrogen (BUN), renal neutrophil gelatinase-associated lipocalin (NGAL), and kidney injury molecule 1 (KIM-1). Importantly, SQOR knockout significantly aggravates cisplatin-induced ferroptosis by promoting mitochondrial dysfunction in renal tubular epithelial cells (RTECs). Moreover, online database analysis combined with our study revealed that SYVN1, an upregulated E3 ubiquitin ligase, may mediate the ubiquitin-mediated degradation of SQOR in AKI. Consequently, our results suggest that SYVN1-mediated ubiquitination degradation of SQOR may induce mitochondrial dysfunction in RTECs, exacerbating ferroptosis and thereby promoting the occurrence and development of AKI. Hence, targeting the SYVN1-SQOR axis could be a potential therapeutic strategy for AKI treatment.
Collapse
Affiliation(s)
- Fangfang Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China; School of Biopharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Dangran Li
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Yawen Xie
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Xiaoyang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Hailin Ma
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Huangru Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China
| | - Jian Cheng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases & Institute of Neuroscience, Soochow University, Suzhou, PR China.
| | - Hongqin Zhuang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China.
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing, PR China; School of Biopharmacy, China Pharmaceutical University, Nanjing, PR China; Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou 213164, PR China; Faculty of Pharmaceutical Sciences, Xinxiang Medical University, Xinxiang, PR China.
| |
Collapse
|
14
|
Leleiwi I, Kokkinias K, Kim Y, Baniasad M, Shaffer M, Sabag-Daigle A, Daly RA, Flynn RM, Wysocki VH, Ahmer BMM, Borton MA, Wrighton KC. Gut microbiome carbon and sulfur metabolisms support Salmonella during pathogen infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575907. [PMID: 38293109 PMCID: PMC10827160 DOI: 10.1101/2024.01.16.575907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Salmonella enterica serovar Typhimurium is a pervasive enteric pathogen and an ongoing global threat to public health. Ecological studies in the Salmonella impacted gut remain underrepresented in the literature, discounting the microbiome mediated interactions that may inform Salmonella physiology during colonization and infection. To understand the microbial ecology of Salmonella remodeling of the gut microbiome, here we performed multi-omics approaches on fecal microbial communities from untreated and Salmonella -infected mice. Reconstructed genomes recruited metatranscriptomic and metabolomic data providing a strain-resolved view of the expressed metabolisms of the microbiome during Salmonella infection. This data informed possible Salmonella interactions with members of the gut microbiome that were previously uncharacterized. Salmonella- induced inflammation significantly reduced the diversity of transcriptionally active members in the gut microbiome, yet increased gene expression was detected for 7 members, with Luxibacter and Ligilactobacillus being the most active. Metatranscriptomic insights from Salmonella and other persistent taxa in the inflamed microbiome further expounded the necessity for oxidative tolerance mechanisms to endure the host inflammatory responses to infection. In the inflamed gut lactate was a key metabolite, with microbiota production and consumption reported amongst transcriptionally active members. We also showed that organic sulfur sources could be converted by gut microbiota to yield inorganic sulfur pools that become oxidized in the inflamed gut, resulting in thiosulfate and tetrathionate that supports Salmonella respiration. Advancement of pathobiome understanding beyond inferences from prior amplicon-based approaches can hold promise for infection mitigation, with the active community outlined here offering intriguing organismal and metabolic therapeutic targets.
Collapse
|
15
|
Leleiwi I, Kokkinias K, Kim Y, Baniasad M, Shaffer M, Sabag-Daigle A, Daly RA, Flynn RM, Wysocki VH, Ahmer BMM, Borton MA, Wrighton KC. Gut microbiota carbon and sulfur metabolisms support Salmonella infections. THE ISME JOURNAL 2024; 18:wrae187. [PMID: 39404095 PMCID: PMC11482014 DOI: 10.1093/ismejo/wrae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/15/2024] [Indexed: 10/18/2024]
Abstract
Salmonella enterica serovar Typhimurium is a pervasive enteric pathogen and ongoing global threat to public health. Ecological studies in the Salmonella impacted gut remain underrepresented in the literature, discounting microbiome mediated interactions that may inform Salmonella physiology during colonization and infection. To understand the microbial ecology of Salmonella remodeling of the gut microbiome, we performed multi-omics on fecal microbial communities from untreated and Salmonella-infected mice. Reconstructed genomes recruited metatranscriptomic and metabolomic data providing a strain-resolved view of the expressed metabolisms of the microbiome during Salmonella infection. These data informed possible Salmonella interactions with members of the gut microbiome that were previously uncharacterized. Salmonella-induced inflammation significantly reduced the diversity of genomes that recruited transcripts in the gut microbiome, yet increased transcript mapping was observed for seven members, among which Luxibacter and Ligilactobacillus transcript read recruitment was most prevalent. Metatranscriptomic insights from Salmonella and other persistent taxa in the inflamed microbiome further expounded the necessity for oxidative tolerance mechanisms to endure the host inflammatory responses to infection. In the inflamed gut lactate was a key metabolite, with microbiota production and consumption reported amongst members with detected transcript recruitment. We also showed that organic sulfur sources could be converted by gut microbiota to yield inorganic sulfur pools that become oxidized in the inflamed gut, resulting in thiosulfate and tetrathionate that support Salmonella respiration. This research advances physiological microbiome insights beyond prior amplicon-based approaches, with the transcriptionally active organismal and metabolic pathways outlined here offering intriguing intervention targets in the Salmonella-infected intestine.
Collapse
Affiliation(s)
- Ikaia Leleiwi
- Department of Cell and Molecular Biology, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Katherine Kokkinias
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
- Department of Microbiology, Immunology, and Pathology, Microbiology Building, 1682 Campus Delivery Colorado State University, Fort Collins, CO 80523, United States
| | - Yongseok Kim
- Department of Chemistry and Biochemistry, The Ohio State University, 200 CBEC Building 151 W. Woodruff Ave. Columbus, OH 43210, United States
| | - Maryam Baniasad
- Department of Chemistry and Biochemistry, The Ohio State University, 200 CBEC Building 151 W. Woodruff Ave. Columbus, OH 43210, United States
| | - Michael Shaffer
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Anice Sabag-Daigle
- Department of Microbial Infection and immunity, The Ohio State University, 776 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH 43210-2210, United States
| | - Rebecca A Daly
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Rory M Flynn
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Vicki H Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, 200 CBEC Building 151 W. Woodruff Ave. Columbus, OH 43210, United States
- Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, 280 Biomedical Research Tower 460 W. 12th Ave. Columbus, OH 43210, United States
| | - Brian M M Ahmer
- Department of Microbial Infection and immunity, The Ohio State University, 776 Biomedical Research Tower, 460 W. 12th Avenue, Columbus, OH 43210-2210, United States
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
| | - Kelly C Wrighton
- Department of Cell and Molecular Biology, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
- Department of Soil and Crop Sciences, Colorado State University, Plant Sciences Bldg. 307 University Ave, Fort Collins, CO 80523, United States
- Department of Microbiology, Immunology, and Pathology, Microbiology Building, 1682 Campus Delivery Colorado State University, Fort Collins, CO 80523, United States
| |
Collapse
|
16
|
Chai G, Li J, Li Z. The interactive effects of ocean acidification and warming on bioeroding sponge Spheciospongia vesparium microbiome indicated by metatranscriptomics. Microbiol Res 2024; 278:127542. [PMID: 37979302 DOI: 10.1016/j.micres.2023.127542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/20/2023]
Abstract
Global climate change will cause coral reefs decline and is expected to increase the reef erosion potential of bioeroding sponges. Microbial symbionts are essential for the overall fitness and survival of sponge holobionts in changing ocean environments. However, we rarely know about the impacts of ocean warming and acidification on bioeroding sponge microbiome. Here, the structural and functional changes of the bioeroding sponge Spheciospongia vesparium microbiome, as well as its recovery potential, were investigated at the RNA level in a laboratory system simulating 32 °C and pH 7.7. Based on metatranscriptome analysis, acidification showed no significant impact, while warming or simultaneous warming and acidification disrupted the sponge microbiome. Warming caused microbial dysbiosis and recruited potentially opportunistic and pathogenic members of Nesiotobacter, Oceanospirillaceae, Deltaproteobacteria, Epsilonproteobacteria, Bacteroidetes and Firmicutes. Moreover, warming disrupted nutrient exchange and molecular interactions in the sponge holobiont, accompanied by stimulation of virulence activity and anaerobic metabolism including denitrification and dissimilatory reduction of nitrate and sulfate to promote sponge necrosis. Particularly, the interaction between acidification and warming alleviated the negative effects of warming and enhanced the Rhodobacteraceae-driven ethylmalonyl-CoA pathway and sulfur-oxidizing multienzyme system. The microbiome could not recover during the experiment period after warming or combined stress was removed. This study suggests that warming or combined warming and acidification will irreversibly destabilize the S. vesparium microbial community structure and function, and provides insight into the molecular mechanisms of the interactive effects of acidification and warming on the sponge microbiome.
Collapse
Affiliation(s)
- Guangjun Chai
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jinlong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
17
|
Luo Y, Chatre L, Melhem S, Al-Dahmani ZM, Homer NZM, Miedema A, Deelman LE, Groves MR, Feelisch M, Morton NM, Dolga A, van Goor H. Thiosulfate sulfurtransferase deficiency promotes oxidative distress and aberrant NRF2 function in the brain. Redox Biol 2023; 68:102965. [PMID: 38000344 PMCID: PMC10701433 DOI: 10.1016/j.redox.2023.102965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Thiosulfate sulfurtransferase (TST, EC 2.8.1.1) was discovered as an enzyme that detoxifies cyanide by conversion to thiocyanate (rhodanide) using thiosulfate as substrate; this rhodanese activity was subsequently identified to be almost exclusively located in mitochondria. More recently, the emphasis regarding its function has shifted to hydrogen sulfide metabolism, antioxidant defense, and mitochondrial function in the context of protective biological processes against oxidative distress. While TST has been described to play an important role in liver and colon, its function in the brain remains obscure. In the present study, we therefore sought to address its potential involvement in maintaining cerebral redox balance in a murine model of global TST deficiency (Tst-/- mice), primarily focusing on characterizing the biochemical phenotype of TST loss in relation to neuronal activity and sensitivity to oxidative stress under basal conditions. Here, we show that TST deficiency is associated with a perturbation of the reactive species interactome in the brain cortex secondary to altered ROS and RSS (specifically, polysulfide) generation as well as mitochondrial OXPHOS remodeling. These changes were accompanied by aberrant Nrf2-Keap1 expression and thiol-dependent antioxidant function. Upon challenging mice with the redox-active herbicide paraquat (25 mg/kg i.p. for 24 h), Tst-/- mice displayed a lower antioxidant capacity compared to wildtype controls (C57BL/6J mice). These results provide a first glimpse into the molecular and metabolic changes of TST deficiency in the brain and suggest that pathophysiological conditions associated with aberrant TST expression and/or activity renders neurons more susceptible to oxidative stress-related malfunction.
Collapse
Affiliation(s)
- Yang Luo
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands; University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Laurent Chatre
- Université de Caen Normandie, CNRS, Normandie University, ISTCT UMR6030, GIP Cyceron, F-14000 Caen, France
| | - Shaden Melhem
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Zayana M Al-Dahmani
- University of Groningen, Department of Pharmacy, Drug Design, Groningen, the Netherlands
| | - Natalie Z M Homer
- Mass Spectrometry Core, Edinburgh Clinical Research Facility, University of Edinburgh/BHF Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburghh, United Kingdom
| | - Anneke Miedema
- University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Leo E Deelman
- University of Groningen, University Medical Center Groningen, Department of Clinical Pharmacy and Pharmacology, Groningen, the Netherlands
| | - Matthew R Groves
- University of Groningen, Department of Pharmacy, Drug Design, Groningen, the Netherlands
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Nicholas M Morton
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom; Centre for Systems Health and Integrated Metabolic Research, School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Amalia Dolga
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy, Faculty of Science and Engineering, Groningen, the Netherlands
| | - Harry van Goor
- University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands.
| |
Collapse
|
18
|
Liu Z, Huang Y, Chen H, Liu C, Wang M, Bian C, Wang L, Song L. Chromosome-level genome assembly of the deep-sea snail Phymorhynchus buccinoides provides insights into the adaptation to the cold seep habitat. BMC Genomics 2023; 24:679. [PMID: 37950158 PMCID: PMC10638732 DOI: 10.1186/s12864-023-09760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/22/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The deep-sea snail Phymorhynchus buccinoides belongs to the genus Phymorhynchus (Neogastropoda: Raphitomidae), and it is a dominant specie in the cold seep habitat. As the environment of the cold seep is characterized by darkness, hypoxia and high concentrations of toxic substances such as hydrogen sulfide (H2S), exploration of the diverse fauna living around cold seeps will help to uncover the adaptive mechanisms to this unique habitat. In the present study, a chromosome-level genome of P. buccinoides was constructed and a series of genomic and transcriptomic analyses were conducted to explore its molecular adaptation mechanisms to the cold seep environments. RESULTS The assembled genome size of the P. buccinoides was approximately 2.1 Gb, which is larger than most of the reported snail genomes, possibly due to the high proportion of repetitive elements. About 92.0% of the assembled base pairs of contigs were anchored to 34 pseudo-chromosomes with a scaffold N50 size of 60.0 Mb. Compared with relative specie in the shallow water, the glutamate regulative and related genes were expanded in P. buccinoides, which contributes to the acclimation to hypoxia and coldness. Besides, the relatively high mRNA expression levels of the olfactory/chemosensory genes in osphradium indicate that P. buccinoides might have evolved a highly developed and sensitive olfactory organ for its orientation and predation. Moreover, the genome and transcriptome analyses demonstrate that P. buccinoides has evolved a sulfite-tolerance mechanism by performing H2S detoxification. Many genes involved in H2S detoxification were highly expressed in ctenidium and hepatopancreas, suggesting that these tissues might be critical for H2S detoxification and sulfite tolerance. CONCLUSIONS In summary, our report of this chromosome-level deep-sea snail genome provides a comprehensive genomic basis for the understanding of the adaptation strategy of P. buccinoides to the extreme environment at the deep-sea cold seeps.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuting Huang
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hao Chen
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chang Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Minxiao Wang
- Center of Deep Sea Research, and CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China.
- Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China.
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China.
- Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
19
|
Iciek M, Bilska-Wilkosz A, Kozdrowicki M, Górny M. Reactive Sulfur Species in Human Diseases. Antioxid Redox Signal 2023; 39:1000-1023. [PMID: 37440317 DOI: 10.1089/ars.2023.0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Significance: Reactive sulfur species (RSS) have been recently recognized as redox molecules no less important than reactive oxygen species or reactive nitrogen species. They possess regulatory and protective properties and are involved in various metabolic processes, thereby contributing to the maintenance of human health. It has been documented that many disorders, including neurological, cardiovascular, and respiratory diseases, diabetes mellitus (DM), and cancer, are related to the disruption of RSS homeostasis. Recent Advances: There is still a growing interest in the role of RSS in human diseases. Since a decrease in hydrogen sulfide or other RSS has been reported in many disorders, safe and efficient RSS donors have been developed and tested under in vitro conditions or on animal models. Critical Issues: Cardiovascular diseases and DM are currently the most common chronic diseases worldwide due to stressful and unhealthy lifestyles. In addition, because of high prevalence and aging of the population, neurological disorders including Parkinson's disease and Alzheimer's disease as well as respiratory diseases are a formidable challenge for health care systems. From this point of view, the knowledge of the role of RSS in these disorders and RSS modulation options are important and could be useful in therapeutic strategies. Future Directions: Improvement and standardization of analytical methods used for RSS estimation are crucial for the use of RSS as diagnostic biomarkers. Finding good, safe RSS donors applicable for therapeutic purposes could be useful as primary or adjunctive therapy in many common diseases. Antioxid. Redox Signal. 39, 1000-1023.
Collapse
Affiliation(s)
- Małgorzata Iciek
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Bilska-Wilkosz
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Michał Kozdrowicki
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Górny
- Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
20
|
Furuie H, Kimura Y, Akaishi T, Yamada M, Miyasaka Y, Saitoh A, Shibuya N, Watanabe A, Kusunose N, Mashimo T, Yoshikawa T, Yamada M, Abe K, Kimura H. Hydrogen sulfide and polysulfides induce GABA/glutamate/D-serine release, facilitate hippocampal LTP, and regulate behavioral hyperactivity. Sci Rep 2023; 13:17663. [PMID: 37907526 PMCID: PMC10618189 DOI: 10.1038/s41598-023-44877-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Hydrogen sulfide (H2S) and polysulfides (H2Sn, n ≥ 2) are signaling molecules produced by 3-mercaptopyruvate sulfurtransferase (3MST) that play various physiological roles, including the induction of hippocampal long-term potentiation (LTP), a synaptic model of memory formation, by enhancing N-methyl-D-aspartate (NMDA) receptor activity. However, the presynaptic action of H2S/H2Sn on neurotransmitter release, regulation of LTP induction, and animal behavior are poorly understood. Here, we showed that H2S/H2S2 applied to the rat hippocampus by in vivo microdialysis induces the release of GABA, glutamate, and D-serine, a co-agonist of NMDA receptors. Animals with genetically knocked-out 3MST and the target of H2S2, transient receptor potential ankyrin 1 (TRPA1) channels, revealed that H2S/H2S2, 3MST, and TRPA1 activation play a critical role in LTP induction, and the lack of 3MST causes behavioral hypersensitivity to NMDA receptor antagonism, as in schizophrenia. H2S/H2Sn, 3MST, and TRPA1 channels have therapeutic potential for psychiatric diseases and cognitive deficits.
Collapse
Affiliation(s)
- Hiroki Furuie
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yuka Kimura
- Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Tatsuhiro Akaishi
- Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Nishi-Tokyo, Tokyo, Japan
| | - Misa Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Yoshiki Miyasaka
- Departement of Medicine, Institute of Experimental Animal Sciences, Osaka University, Suita, Osaka, Japan
| | - Akiyoshi Saitoh
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Norihiro Shibuya
- Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Akiko Watanabe
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Naoki Kusunose
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Nobeoka, Miyazaki, Japan
| | - Tomoji Mashimo
- Departement of Medicine, Institute of Experimental Animal Sciences, Osaka University, Suita, Osaka, Japan
- Division of Animal Genetics, Laboratiry Animal Research Center, Institute of Medical Science, The Universtiry of Tokyo, Tokyo, Japan
| | - Takeo Yoshikawa
- Laboratory of Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Mitsuhiko Yamada
- Department of Neuropsychopharmacology, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
- Department of Pathophysiology, Faculty of Human Nutrition, Tokyo Kasei Gakuin University, Chiyoda-ku, Tokyo, Japan
| | - Kazuho Abe
- Laboratory of Pharmacology, Faculty of Pharmacy and Research Institute of Pharmaceutical Sciences, Musashino University, Nishi-Tokyo, Tokyo, Japan
| | - Hideo Kimura
- Department of Pharmacology, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan.
| |
Collapse
|
21
|
Liu X, Zhou H, Zhang H, Jin H, He Y. Advances in the research of sulfur dioxide and pulmonary hypertension. Front Pharmacol 2023; 14:1282403. [PMID: 37900169 PMCID: PMC10602757 DOI: 10.3389/fphar.2023.1282403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023] Open
Abstract
Pulmonary hypertension (PH) is a fatal disease caused by progressive pulmonary vascular remodeling (PVR). Currently, the mechanisms underlying the occurrence and progression of PVR remain unclear, and effective therapeutic approaches to reverse PVR and PH are lacking. Since the beginning of the 21st century, the endogenous sulfur dioxide (SO2)/aspartate transaminase system has emerged as a novel research focus in the fields of PH and PVR. As a gaseous signaling molecule, SO2 metabolism is tightly regulated in the pulmonary vasculature and is associated with the development of PH as it is involved in the regulation of pathological and physiological activities, such as pulmonary vascular cellular inflammation, proliferation and collagen metabolism, to exert a protective effect against PH. In this review, we present an overview of the studies conducted to date that have provided a theoretical basis for the development of SO2-related drug to inhibit or reverse PVR and effectively treat PH-related diseases.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - He Zhou
- Departments of Medicine and Physiology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Hongsheng Zhang
- Department of Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Yan He
- Department of Pediatric Cardiac Center, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Benchoam D, Cuevasanta E, Semelak JA, Mastrogiovanni M, Estrin DA, Möller MN, Alvarez B. Disulfides form persulfides at alkaline pH leading to potential overestimations in the cold cyanolysis method. Free Radic Biol Med 2023; 207:63-71. [PMID: 37421993 DOI: 10.1016/j.freeradbiomed.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
It is well established that proteins and peptides can release sulfur under alkaline treatment, mainly through the β-elimination of disulfides with the concomitant formation of persulfides and dehydroalanine derivatives. In this study, we evaluated the formation of glutathione persulfide (GSSH/GSS-) by exposure of glutathione disulfide (GSSG) to alkaline conditions. The kinetics of the reaction between GSSG and HO- was investigated by UV-Vis absorbance, reaction with 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB), and cold cyanolysis, obtaining an apparent second-order rate constant of ∼10-3 M-1 s-1 at 25 °C. The formation of GSSH and the dehydroalanine derivative was confirmed by HPLC and/or mass spectrometry. However, the mixtures did not equilibrate in a timescale of hours, and additional species, including thiol and diverse sulfane sulfur compounds were also formed, probably through further reactions of the persulfide. Cold cyanolysis is frequently used to quantify persulfides, since it measures sulfane sulfur. This method involves a step in which the sample to be analyzed is incubated with cyanide at alkaline pH. When cold cyanolysis was applied to samples containing GSSG, sulfane sulfur products that were not present in the original sample were measured. Thus, our results reveal the risk of overestimating the amount of sulfane sulfur compounds in samples that contain disulfides due to their decay to persulfides and other sulfane sulfur compounds at alkaline pH. Overall, our study highlights that the β-elimination of disulfides is a potential source of persulfides, although we do not recommend the preparation of GSSH from incubation of GSSG in alkali. Our study also highlights the importance of being cautious when doing and interpreting cold cyanolysis experiments.
Collapse
Affiliation(s)
- Dayana Benchoam
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay; Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Ernesto Cuevasanta
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay; Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | - Jonathan A Semelak
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, 1428, Argentina
| | - Mauricio Mastrogiovanni
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, Buenos Aires, 1428, Argentina
| | - Matías N Möller
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay; Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| |
Collapse
|
23
|
Palermo JC, Carllinni Colombo M, Semelak JA, Scocozza MF, Boubeta FM, Murgida DH, Estrin DA, Bari SE. Autocatalytic Mechanism in the Anaerobic Reduction of Metmyoglobin by Sulfide Species. Inorg Chem 2023; 62:11304-11317. [PMID: 37439562 DOI: 10.1021/acs.inorgchem.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The mechanism of the metal centered reduction of metmyoglobin (MbFeIII) by sulfide species (H2S/HS-) under an argon atmosphere has been studied by a combination of spectroscopic, kinetic, and computational methods. Asymmetric S-shaped time-traces for the formation of MbFeII at varying ratios of excess sulfide were observed at pH 5.3 < pH < 8.0 and 25 °C, suggesting an autocatalytic reaction mechanism. An increased rate at more alkaline pHs points to HS- as relevant reactive species for the reduction. The formation of the sulfanyl radical (HS•) in the slow initial phase was assessed using the spin-trap phenyl N-tert-butyl nitrone. This radical initiates the formation of S-S reactive species as disulfanuidyl/ disulfanudi-idyl radical anions and disulfide (HSSH•-/HSS•2- and HSS-, respectively). The autocatalysis has been ascribed to HSS-, formed after HSSH•-/HSS•2- disproportionation, which behaves as a fast reductant toward the intermediate complex MbFeIII(HS-). We propose a reaction mechanism for the sulfide-mediated reduction of metmyoglobin where only ferric heme iron initiates the oxidation of sulfide species. Beside the chemical interest, this insight into the MbFeIII/sulfide reaction under an argon atmosphere is relevant for the interpretation of biochemical aspects of ectopic myoglobins found on hypoxic tissues toward reactive sulfur species.
Collapse
Affiliation(s)
- Juan Cruz Palermo
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Melisa Carllinni Colombo
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Jonathan A Semelak
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Magalí F Scocozza
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando M Boubeta
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Daniel H Murgida
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Darío A Estrin
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Sara E Bari
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
24
|
Hanna DA, Vitvitsky V, Banerjee R. A growth chamber for chronic exposure of mammalian cells to H 2S. Anal Biochem 2023; 673:115191. [PMID: 37207973 PMCID: PMC10668543 DOI: 10.1016/j.ab.2023.115191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/30/2023] [Accepted: 05/17/2023] [Indexed: 05/21/2023]
Abstract
H2S is a redox-active signaling molecule that exerts an array of cellular and physiological effects. While intracellular H2S concentrations are estimated to be in the low nanomolar range, intestinal luminal concentrations can be significantly higher due to microbial metabolism. Studies assessing H2S effects are typically conducted with a bolus treatment with sulfide salts or slow releasing sulfide donors, which are limited by the volatility of H2S, and by potential off-target effects of the donor molecules. To address these limitations, we describe the design and performance of a mammalian cell culture incubator for sustained exposure to 20-500 ppm H2S (corresponding to a dissolved sulfide concentrations of ∼4-120 μM in the cell culture medium). We report that colorectal adenocarcinoma HT29 cells tolerate prolonged exposure to H2S with no effect on cell viability after 24 h although ≥50 ppm H2S (∼10 μM) restricts cell proliferation. Even the lowest concentration of H2S used in this study (i.e. ∼4 μM) significantly enhanced glucose consumption and lactate production, revealing a much lower threshold for impacting cellular energy metabolism and activating aerobic glycolysis than has been previously appreciated from studies with bolus H2S treatment regimens.
Collapse
Affiliation(s)
- David A Hanna
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0600, USA
| | - Victor Vitvitsky
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0600, USA; Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 109029, Russia
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0600, USA.
| |
Collapse
|
25
|
Lajin B, Obermayer-Pietsch B, Somma R, Goessler W. A time-course investigation of the human urinary excretion of the hydrogen sulfide biomarker trimethylsulfonium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104162. [PMID: 37245608 DOI: 10.1016/j.etap.2023.104162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023]
Abstract
Hydrogen sulfide is a toxic gas but also recognized as an endogenously produced metabolite in humans playing key roles. We previously identified trimethylsulfonium, which can be a methylation product of hydrogen sulfide but the stability in the production of trimethylsulfonium has not been investigated. In the present work, the intra- and inter-individual variability in the excretion of trimethylsulfonium over 2 months in a group of healthy volunteers was investigated. Urinary levels of trimethylsulfonium (mean: 56 nM, 95% CI: 48-68 nM) were > 100-fold lower than the conventional hydrogen sulfide biomarker thiosulfate (13 µM, 12-15 µM) and the precursor for endogenous hydrogen sulfide production cystine (47 µM, 44-50 µM). There was no correlation between urinary trimethylsulfonium and thiosulfate. Higher intra-individual variability in the excretion of trimethylsulfonium (generally 2-8 fold) than that for cystine (generally 2-3 fold) was found. Trimethylsulfonium displayed significant inter-individual variability with two concentration clusters at 117 nM (97-141) and 27 nM (22-34). In conclusion, the observed inter- and intra-individual variability must be considered when using urinary trimethylsulfonium as a biomarker.
Collapse
Affiliation(s)
- Bassam Lajin
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria; Institute of Chemistry, ChromICP, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria.
| | - Barbara Obermayer-Pietsch
- Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Department of Internal Medicine and Gynecology and Obstetrics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Renato Somma
- Istituto Nazionale di Geofisica e Vulcanologia Sezione di Napoli Osservatorio Vesuviano, 80124 Napoli, Italy; Consiglio Nazionale delle Ricerche ISMAR Istituto di Scienze Marine Napoli Calata Porta Di Massa, Porto Di Napoli 80, 80133 Napoli, Italy; Consiglio Nazionale delle Ricerche IRISS Istituto di Ricerca su Innovazione e Servizi per lo Sviluppo, Via Guglielmo Sanfelice, 8, 80134 Napoli, Italy
| | - Walter Goessler
- Institute of Chemistry, Analytical Chemistry for the Health and Environment, University of Graz, Universitaetsplatz 1, 8010 Graz, Austria
| |
Collapse
|
26
|
Yu Q, Ran M, Xin Y, Liu H, Liu H, Xia Y, Xun L. The Rhodanese PspE Converts Thiosulfate to Cellular Sulfane Sulfur in Escherichia coli. Antioxidants (Basel) 2023; 12:antiox12051127. [PMID: 37237993 DOI: 10.3390/antiox12051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Hydrogen sulfide (H2S) and its oxidation product zero-valent sulfur (S0) play important roles in animals, plants, and bacteria. Inside cells, S0 exists in various forms, including polysulfide and persulfide, which are collectively referred to as sulfane sulfur. Due to the known health benefits, the donors of H2S and sulfane sulfur have been developed and tested. Among them, thiosulfate is a known H2S and sulfane sulfur donor. We have previously reported that thiosulfate is an effective sulfane sulfur donor in Escherichia coli; however, it is unclear how it converts thiosulfate to cellular sulfane sulfur. In this study, we showed that one of the various rhodaneses, PspE, in E. coli was responsible for the conversion. After the thiosulfate addition, the ΔpspE mutant did not increase cellular sulfane sulfur, but the wild type and the complemented strain ΔpspE::pspE increased cellular sulfane sulfur from about 92 μM to 220 μM and 355 μM, respectively. LC-MS analysis revealed a significant increase in glutathione persulfide (GSSH) in the wild type and the ΔpspE::pspE strain. The kinetic analysis supported that PspE was the most effective rhodanese in E. coli in converting thiosulfate to glutathione persulfide. The increased cellular sulfane sulfur alleviated the toxicity of hydrogen peroxide during E. coli growth. Although cellular thiols might reduce the increased cellular sulfane sulfur to H2S, increased H2S was not detected in the wild type. The finding that rhodanese is required to convert thiosulfate to cellular sulfane sulfur in E. coli may guide the use of thiosulfate as the donor of H2S and sulfane sulfur in human and animal tests.
Collapse
Affiliation(s)
- Qiaoli Yu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Mingxue Ran
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yuping Xin
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Honglei Liu
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao 266237, China
- School of Molecular Biosciences, Washington State University, Pullman, WA 991647520, USA
| |
Collapse
|
27
|
Lazado CC, Voldvik V, Timmerhaus G, Andersen Ø. Fast and slow releasing sulphide donors engender distinct transcriptomic alterations in Atlantic salmon hepatocytes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106574. [PMID: 37244121 DOI: 10.1016/j.aquatox.2023.106574] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/29/2023]
Abstract
Hydrogen sulphide (H2S) is a naturally occurring compound generated either endogenously or exogenously and serves both as a gaseous signalling molecule and an environmental toxicant. Though it has been extensively investigated in mammalian systems, the biological function of H2S in teleost fish is poorly identified. Here we demonstrate how exogenous H2S regulates cellular and molecular processes in Atlantic salmon (Salmo salar) using a primary hepatocyte culture as a model. We employed two forms of sulphide donors: the fast-releasing salt form, sodium hydrosulphide (NaHS) and the slow-releasing organic analogue, morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate (GYY4137). Hepatocytes were exposed to either a low (LD, 20 µg/L) or high (HD, 100 µg/L) dose of the sulphide donors for 24 hrs, and the expression of key sulphide detoxification and antioxidant defence genes were quantified by qPCR. The key sulphide detoxification genes sulfite oxidase 1 (soux) and the sulfide: quinone oxidoreductase 1 and 2 (sqor) paralogs in salmon showed pronounced expression in the liver and likewise responsive to the sulphide donors in the hepatocyte culture. These genes were ubiquitously expressed in different organs of salmon as well. HD-GYY4137 upregulated the expression of antioxidant defence genes, particularly glutathione peroxidase, glutathione reductase and catalase, in the hepatocyte culture. To explore the influence of exposure duration, hepatocytes were exposed to the sulphide donors (i.e., LD versus HD) either transient (1h) or prolonged (24h). Prolonged but not transient exposure significantly reduced hepatocyte viability, and the effects were not dependent on concentration or form. The proliferative potential of the hepatocytes was only affected by prolonged NaHS exposure, and the impact was not concentration dependent. Microarray analysis revealed that GYY4137 caused more substantial transcriptomic changes than NaHS. Moreover, transcriptomic alterations were more marked following prolonged exposure. Genes involved in mitochondrial metabolism were downregulated by the sulphide donors, primarily in NaHS-exposed cells. Both sulphide donors influenced the immune functions of hepatocytes: genes involved in lymphocyte-mediated response were affected by NaHS, whereas inflammatory response was targeted by GYY4137. In summary, the two sulphide donors impacted the cellular and molecular processes of teleost hepatocytes, offering new insights into the mechanisms underlying H2S interactions in fish.
Collapse
Affiliation(s)
- Carlo C Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway.
| | - Vibeke Voldvik
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Gerrit Timmerhaus
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| | - Øivind Andersen
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås 1433, Norway
| |
Collapse
|
28
|
Larraufie P, Haroun K, Fleury C, Andriamihaja M, Blachier F. Regulation of enteroendocrine cell respiration by the microbial metabolite hydrogen sulfide. Front Endocrinol (Lausanne) 2023; 14:1123364. [PMID: 37229450 PMCID: PMC10203461 DOI: 10.3389/fendo.2023.1123364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/12/2023] [Indexed: 05/27/2023] Open
Abstract
Endocrine functions of the gut are supported by a scattered population of cells, the enteroendocrine cells (EECs). EECs sense their environment to secrete hormones in a regulated manner. Distal EECs are in contact with various microbial compounds including hydrogen sulfide (H2S) which modulate cell respiration with potential consequences on EEC physiology. However, the effect of H2S on gut hormone secretion remains discussed and the importance of the modulation of cell metabolism on EEC functions remains to be deciphered. The aim of this project was to characterize the metabolic response of EECs to H2S and the consequences on GLP-1 secretion. We used cell line models of EECs to assess their capacity to metabolize H2S at low concentration and the associated modulation of cell respiration. We confirmed that like what is observed in colonocytes, colonic EEC model, NCI-h716 cell line rapidly metabolizes H2S at low concentrations, resulting in transient increased respiration. Higher concentrations of H2S inhibited this respiration, with the concentration threshold for inhibition depending on cell density. However, increased or inhibited oxidative respiration had little effect on acute GLP-1 secretion. Overall, we present here a first study showing the EEC capacity to detoxify low concentrations of H2S and used this model to acutely address the importance of cell respiration on secretory activity.
Collapse
Affiliation(s)
- Pierre Larraufie
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Kenza Haroun
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France
| | - Carla Fleury
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France
| | | | - François Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Palaiseau, France
| |
Collapse
|
29
|
Prabhakaran P, Raethong N, Thananusak R, Nazir MYM, Sapkaew C, Soommat P, Kingkaw A, Hamid AA, Vongsangnak W, Song Y. Revealing holistic metabolic responses associated with lipid and docosahexaenoic acid (DHA) production in Aurantiochytrium sp. SW1. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159306. [PMID: 36907245 DOI: 10.1016/j.bbalip.2023.159306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/02/2023] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
Aurantiochytrium sp. SW1, a marine thraustochytrid, has been regarded as a potential candidate as a docosahexaenoic acid (DHA) producer. Even though the genomics of Aurantiochytrium sp. are available, the metabolic responses at a systems level are largely unknown. Therefore, this study aimed to investigate the global metabolic responses to DHA production in Aurantiochytrium sp. through transcriptome and genome-scale network-driven analysis. Of a total of 13,505 genes, 2527 differentially expressed genes (DEGs) were identified in Aurantiochytrium sp., unravelling the transcriptional regulations behinds lipid and DHA accumulation. The highest number of DEG were found for pairwise comparison between growth phase and lipid accumulating phase where a total of 1435 genes were down-regulated with 869 genes being up-regulated. These uncovered several metabolic pathways that contributing in DHA and lipid accumulation including amino acid and acetate metabolism which involve in the generation of crucial precursors. Upon applying network-driven analysis, hydrogen sulphide was found as potential reporter metabolite that could be associated with the genes related to acetyl-CoA synthesis for DHA production. Our findings suggest that the transcriptional regulation of these pathways is a ubiquitous feature in response to specific cultivation phases during DHA overproduction in Aurantiochytrium sp. SW1.
Collapse
Affiliation(s)
- Pranesha Prabhakaran
- Colin Ratledge Centre for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China; Interdisciplinary Graduate Programs in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Nachon Raethong
- Institute of Nutrition, Mahidol University, Nakhon Pathom, Thailand
| | - Roypim Thananusak
- Interdisciplinary Graduate Programs in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Mohamed Yusuf Mohamed Nazir
- Colin Ratledge Centre for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China; Department of Food Sciences, Faculty of Science and Technology, University Kebangsaan Malaysia, UKM, Bangi, Malaysia
| | - Chakkapan Sapkaew
- Interdisciplinary Graduate Programs in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand; Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Panyawarin Soommat
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Genetic Engineering and Bioinformatic Program, Graduate School, Kasetsart University, Bangkok, Thailand
| | - Amornthep Kingkaw
- Interdisciplinary Graduate Programs in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Aidil Abdul Hamid
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, National University of Malaysia, Bangi, Malaysia.
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, Thailand; Omics Center for Agriculture, Bioresources, Food, and Health, Kasetsart University (OmiKU), Bangkok, Thailand.
| | - Yuanda Song
- Colin Ratledge Centre for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, Zibo, China.
| |
Collapse
|
30
|
Combi Z, Potor L, Nagy P, Sikura KÉ, Ditrói T, Jurányi EP, Galambos K, Szerafin T, Gergely P, Whiteman M, Torregrossa R, Ding Y, Beke L, Hendrik Z, Méhes G, Balla G, Balla J. Hydrogen sulfide as an anti-calcification stratagem in human aortic valve: Altered biogenesis and mitochondrial metabolism of H 2S lead to H 2S deficiency in calcific aortic valve disease. Redox Biol 2023; 60:102629. [PMID: 36780769 PMCID: PMC9947110 DOI: 10.1016/j.redox.2023.102629] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Hydrogen sulfide (H2S) was previously revealed to inhibit osteoblastic differentiation of valvular interstitial cells (VICs), a pathological feature in calcific aortic valve disease (CAVD). This study aimed to explore the metabolic control of H2S levels in human aortic valves. Lower levels of bioavailable H2S and higher levels of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) were detected in aortic valves of CAVD patients compared to healthy individuals, accompanied by higher expression of cystathionine γ-lyase (CSE) and same expression of cystathionine β-synthase (CBS). Increased biogenesis of H2S by CSE was found in the aortic valves of CAVD patients which is supported by increased production of lanthionine. In accordance, healthy human aortic VICs mimic human pathology under calcifying conditions, as elevated CSE expression is associated with low levels of H2S. The expression of mitochondrial enzymes involved in H2S catabolism including sulfide quinone oxidoreductase (SQR), the key enzyme in mitochondrial H2S oxidation, persulfide dioxygenase (ETHE1), sulfite oxidase (SO) and thiosulfate sulfurtransferase (TST) were up-regulated in calcific aortic valve tissues, and a similar expression pattern was observed in response to high phosphate levels in VICs. AP39, a mitochondria-targeting H2S donor, rescued VICs from an osteoblastic phenotype switch and reduced the expression of IL-1β and TNF-α in VICs. Both pro-inflammatory cytokines aggravated calcification and osteoblastic differentiation of VICs derived from the calcific aortic valves. In contrast, IL-1β and TNF-α provided an early and transient inhibition of VICs calcification and osteoblastic differentiation in healthy cells and that effect was lost as H2S levels decreased. The benefit was mediated via CSE induction and H2S generation. We conclude that decreased levels of bioavailable H2S in human calcific aortic valves result from an increased H2S metabolism that facilitates the development of CAVD. CSE/H2S represent a pathway that reverses the action of calcifying stimuli.
Collapse
Affiliation(s)
- Zsolt Combi
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - László Potor
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Institute of Chemistry, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary; Department of Anatomy and Histology, ELKH Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary
| | - Katalin Éva Sikura
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Eszter Petra Jurányi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Doctoral School of Molecular Medicine, Semmelweis University, Budapest, Hungary
| | - Klaudia Galambos
- Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary; Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Tamás Szerafin
- Department of Cardiac Surgery, Faculty of Medicine, University of Debrecen, Hungary
| | - Péter Gergely
- Institute of Forensic Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Matthew Whiteman
- University of Exeter Medical School, St. Luke's Campus, Magdalen Road, Exeter, EX1 2LU, UK
| | - Roberta Torregrossa
- University of Exeter Medical School, St. Luke's Campus, Magdalen Road, Exeter, EX1 2LU, UK
| | - Yuchao Ding
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary
| | - Lívia Beke
- Institute of Pathology, Faculty of Medicine, University of Debrecen, Hungary
| | - Zoltán Hendrik
- Institute of Forensic Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Gábor Méhes
- Institute of Pathology, Faculty of Medicine, University of Debrecen, Hungary
| | - György Balla
- ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary; Department of Pediatrics, Faculty of Medicine, University of Debrecen, Hungary
| | - József Balla
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, Hungary; ELKH-UD Vascular Pathophysiology Research Group, University of Debrecen, 11003, Hungary; Kálmán Laki Doctoral School, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
31
|
Sokolova IM. Ectotherm mitochondrial economy and responses to global warming. Acta Physiol (Oxf) 2023; 237:e13950. [PMID: 36790303 DOI: 10.1111/apha.13950] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/24/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Temperature is a key abiotic factor affecting ecology, biogeography, and evolution of species. Alterations of energy metabolism play an important role in adaptations and plastic responses to temperature shifts on different time scales. Mitochondrial metabolism affects cellular bioenergetics and redox balance making these organelles an important determinant of organismal performances such as growth, locomotion, or development. Here I analyze the impacts of environmental temperature on the mitochondrial functions (including oxidative phosphorylation, proton leak, production of reactive oxygen species(ROS), and ATP synthesis) of ectotherms and discuss the mechanisms underlying negative shifts in the mitochondrial energy economy caused by supraoptimal temperatures. Owing to the differences in the thermal sensitivity of different mitochondrial processes, elevated temperatures (beyond the species- and population-specific optimal range) cause reallocation of the electron flux and the protonmotive force (Δp) in a way that decreases ATP synthesis efficiency, elevates the relative cost of the mitochondrial maintenance, causes excessive production of ROS and raises energy cost for antioxidant defense. These shifts in the mitochondrial energy economy might have negative consequences for the organismal fitness traits such as the thermal tolerance or growth. Correlation between the thermal sensitivity indices of the mitochondria and the whole organism indicate that these traits experience similar selective pressures but further investigations are needed to establish whether there is a cause-effect relationship between the mitochondrial failure and loss of organismal performance during temperature change.
Collapse
Affiliation(s)
- Inna M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Department of Maritime Systems, Interdisciplinary Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
32
|
Santana Maldonado C, Weir A, Rumbeiha WK. A comprehensive review of treatments for hydrogen sulfide poisoning: past, present, and future. Toxicol Mech Methods 2023; 33:183-196. [PMID: 36076319 DOI: 10.1080/15376516.2022.2121192] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Hydrogen sulfide (H2S) poisoning remains a significant source of occupational fatalities and is the second most common cause of toxic gas-induced deaths. It is a rapidly metabolized systemic toxicant targeting the mitochondria, among other organelles. Intoxication is mostly acute, but chronic or in-between exposure scenarios also occur. Some genetic defects in H2S metabolism lead to lethal chronic H2S poisoning. In acute exposures, the neural, respiratory, and cardiovascular systems are the primary target organs resulting in respiratory distress, convulsions, hypotension, and cardiac irregularities. Some survivors of acute poisoning develop long-term sequelae, particularly in the central nervous system. Currently, treatment for H2S poisoning is primarily supportive care as there are no FDA-approved drugs. Besides hyperbaric oxygen treatment, drugs in current use for the management of H2S poisoning are controversial. Novel potential drugs are under pre-clinical research development, most of which target binding the H2S. However, there is an acute need to discover new drugs to prevent and treat H2S poisoning, including reducing mortality and morbidity, preventing sequalae from acute exposures, and for treating cumulative pathology from chronic exposures. In this paper, we perform a comprehensive review of H2S poisoning including perspectives on past, present, and future.
Collapse
Affiliation(s)
| | - Abigail Weir
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| | - Wilson K Rumbeiha
- Molecular Biosciences, University of California, Davis, Davis, CA, USA
| |
Collapse
|
33
|
Hydrogen Sulphide-Based Therapeutics for Neurological Conditions: Perspectives and Challenges. Neurochem Res 2023; 48:1981-1996. [PMID: 36764968 PMCID: PMC10182124 DOI: 10.1007/s11064-023-03887-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
Central nervous system (CNS)-related conditions are currently the leading cause of disability worldwide, posing a significant burden to health systems, individuals and their families. Although the molecular mechanisms implicated in these disorders may be varied, neurological conditions have been increasingly associated with inflammation and/or impaired oxidative response leading to further neural cell damages. Therefore, therapeutic approaches targeting these defective molecular mechanisms have been vastly explored. Hydrogen sulphide (H2S) has emerged as a modulator of both inflammation and oxidative stress with a neuroprotective role, therefore, has gained interest in the treatment of neurological disorders. H2S, produced by endogenous sources, is maintained at low levels in the CNS. However, defects in the biosynthetic and catabolic routes for H2S metabolism have been identified in CNS-related disorders. Approaches to restore H2S availability using H2S-donating compounds have been recently explored in many models of neurological conditions. Nonetheless, we still need to elucidate the potential for these compounds not only to ameliorate defective biological routes, but also to better comprehend the implications on H2S delivery, dosage regimes and feasibility to successfully target CNS tissues. Here, we highlight the molecular mechanisms of H2S-dependent restoration of neurological functions in different models of CNS disease whilst summarising current administration approaches for these H2S-based compounds. We also address existing barriers in H2S donor delivery by showcasing current advances in mediating these constrains through novel biomaterial-based carriers for H2S donors.
Collapse
|
34
|
Hydrogen sulfide as a neuromodulator of the vascular tone. Eur J Pharmacol 2023; 940:175455. [PMID: 36549499 DOI: 10.1016/j.ejphar.2022.175455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/29/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is a unique signaling molecule that, along with carbon monoxide and nitric oxide, belongs to the gasotransmitters family. H2S is endogenously synthesized by enzymatic and non-enzymatic pathways. Three enzymatic pathways involving cystathionine-γ-lyase, cystathionine-β-synthetase, and 3-mercaptopyruvate sulfurtransferase are known as endogenous sources of H2S. This gaseous molecule has recently emerged as a regulator of many systems and physiological functions, including the cardiovascular system where it controls the vascular tone of small arteries. In this context, H2S leads to vasorelaxation by regulating the activity of vascular smooth muscle cells, endothelial cells, and perivascular nerves. Specifically, H2S modulates the functionality of different ion channels to inhibit the autonomic sympathetic outflow-by either central or peripheral mechanisms-or to stimulate perivascular sensory nerves. These mechanisms are particularly relevant for those pathological conditions associated with impaired neuromodulation of vascular tone. In this regard, exogenous H2S administration efficiently attenuates the increased activity of the sympathetic nervous system often seen in patients with certain pathologies. These effects of H2S on the autonomic sympathetic outflow will be the primary focus of this review. Thereafter, we will discuss the central and peripheral regulatory effects of H2S on vascular tone. Finally, we will provide the audience with a detailed summary of the current pathological implications of H2S modulation on the neural regulation of vascular tone.
Collapse
|
35
|
Xin Y, Wang Y, Zhang H, Wu Y, Xia Y, Li H, Qu X. Cupriavidus pinatubonensis JMP134 Alleviates Sulfane Sulfur Toxicity after the Loss of Sulfane Dehydrogenase through Oxidation by Persulfide Dioxygenase and Hydrogen Sulfide Release. Metabolites 2023; 13:metabo13020218. [PMID: 36837837 PMCID: PMC9959259 DOI: 10.3390/metabo13020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
An incomplete Sox system lacking sulfane dehydrogenase SoxCD may produce and accumulate sulfane sulfur when oxidizing thiosulfate. However, how bacteria alleviate the pressure of sulfane sulfur accumulation remains largely unclear. In this study, we focused on the bacterium Cupriavidus pinatubonensis JMP134, which contains a complete Sox system. When soxCD was deleted, this bacterium temporarily produced sulfane sulfur when oxidizing thiosulfate. Persulfide dioxygenase (PDO) in concert with glutathione oxidizes sulfane sulfur to sulfite. Sulfite can spontaneously react with extra persulfide glutathione (GSSH) to produce thiosulfate, which can feed into the incomplete Sox system again and be oxidized to sulfate. Furthermore, the deletion strain lacking PDO and SoxCD produced volatile H2S gas when oxidizing thiosulfate. By comparing the oxidized glutathione (GSSG) between the wild-type and deletion strains, we speculated that H2S is generated during the interaction between sulfane sulfur and the glutathione/oxidized glutathione (GSH/GSSG) redox couple, which may reduce the oxidative stress caused by the accumulation of sulfane sulfur in bacteria. Thus, PDO and H2S release play a critical role in alleviating sulfane sulfur toxicity after the loss of soxCD in C. pinatubonensis JMP134.
Collapse
Affiliation(s)
- Yufeng Xin
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
- Correspondence: (Y.X.); (X.Q.); Tel.: +86-15562345068 (Y.X.)
| | - Yaxin Wang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Honglin Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yu Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Yongzhen Xia
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Huanjie Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Xiaohua Qu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
- Correspondence: (Y.X.); (X.Q.); Tel.: +86-15562345068 (Y.X.)
| |
Collapse
|
36
|
The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells. Biomolecules 2023; 13:biom13010144. [PMID: 36671528 PMCID: PMC9856076 DOI: 10.3390/biom13010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics.
Collapse
|
37
|
Hanna D, Kumar R, Banerjee R. A Metabolic Paradigm for Hydrogen Sulfide Signaling via Electron Transport Chain Plasticity. Antioxid Redox Signal 2023; 38:57-67. [PMID: 35651282 PMCID: PMC9885546 DOI: 10.1089/ars.2022.0067] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/24/2022] [Indexed: 02/03/2023]
Abstract
Significance: A burgeoning literature has attributed varied physiological effects to hydrogen sulfide (H2S), which is a product of eukaryotic sulfur amino acid metabolism. Protein persulfidation represents a major focus of studies elucidating the mechanism underlying H2S signaling. On the contrary, the capacity of H2S to induce reductive stress by targeting the electron transport chain (ETC) and signal by reprogramming redox metabolism has only recently begun to be elucidated. Recent Advances: In contrast to the nonspecific reaction of H2S with oxidized cysteines to form protein persulfides, its inhibition of complex IV represents a specific mechanism of action. Studies on the dual impact of H2S as an ETC substrate and an inhibitor have led to the exciting discovery of ETC plasticity and the use of fumarate as a terminal electron acceptor. H2S oxidation combined with complex IV targeting generates mitochondrial reductive stress, which is signaled through the metabolic network, leading to increased aerobic glycolysis, glutamine-dependent reductive carboxylation, and lipogenesis. Critical Issues: Insights into H2S-induced metabolic reprogramming are ushering in a paradigm shift for understanding the mechanism of its cellular action. It will be critical to reevaluate the physiological effects of H2S, for example, cytoprotection against ischemia-reperfusion injury, through the framework of metabolic reprogramming and ETC remodeling by H2S. Future Directions: The metabolic ramifications of H2S in other cellular compartments, for example, the endoplasmic reticulum and the nucleus, as well as the intersections between hypoxia and H2S signaling are important future directions that merit elucidation. Antioxid. Redox Signal. 38, 57-67.
Collapse
Affiliation(s)
- David Hanna
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Roshan Kumar
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
38
|
Alipio HRD, Albaladejo-Riad N, Lazado CC. Sulphide donors affect the expression of mucin and sulphide detoxification genes in the mucosal organs of Atlantic salmon ( Salmo salar). Front Physiol 2022; 13:1083672. [PMID: 36582361 PMCID: PMC9792478 DOI: 10.3389/fphys.2022.1083672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Hydrogen sulphide (H2S) is a gas that affects mucosal functions in mammals. However, its detrimental effects are less understood in fish despite being known to cause mass mortality. Here we used explant models to demonstrate the transcriptional responses of Atlantic salmon (Salmo salar) mucosa to the sulphide donor sodium hydrosulphide (NaHS). The study focused on two groups of genes: those encoding for sulphide detoxification and those for mucins. Moreover, we performed pharmacological studies by exposing the organ explants to mucus-interfering compounds and consequently exposed them to a sulphide donor. Exposure to NaHS significantly affected the expression of sulphide:quinone oxidoreductase (sqor1, sqor2) and mucin-encoding genes (muc5ac, muc5b). The general profile indicated that NaHS upregulated the expression of sulphide detoxification genes while a significant downregulation was observed with mucins. These expression profiles were seen in both organ explant models. Pharmacological stimulation and inhibition of mucus production used acetylcholine (ACh) and niflumic acid (NFA), respectively. This led to a significant regulation of the two groups of marker genes in the gills and olfactory rosette explants. Treatment of the mucosal organ explants with the mucus-interfering compounds showed that low dose NFA triggered more substantial changes while a dose-dependent response could not be established with ACh. Pharmacological interference demonstrated that mucins played a crucial role in mucosal protection against H2S toxicity. These results offer insights into how a sulphide donor interfered with mucosal responses of Atlantic salmon and are expected to contribute to our understanding of the least explored H2S-fish interactions-particularly at the mucosa.
Collapse
Affiliation(s)
- Hanna Ross D. Alipio
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
- Aquaculture and Fisheries Group, Wageningen University and Research, Wageningen, Netherlands
| | - Nora Albaladejo-Riad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Murcia, Spain
| | - Carlo C. Lazado
- Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| |
Collapse
|
39
|
Soldatov VO, Kubekina MV, Skorkina MY, Belykh AE, Egorova TV, Korokin MV, Pokrovskiy MV, Deykin AV, Angelova PR. Current advances in gene therapy of mitochondrial diseases. J Transl Med 2022; 20:562. [PMID: 36471396 PMCID: PMC9724384 DOI: 10.1186/s12967-022-03685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.
Collapse
Affiliation(s)
- Vladislav O Soldatov
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia.
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia.
| | - Marina V Kubekina
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Skorkina
- Department of Biochemistry, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Andrei E Belykh
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail V Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Pokrovskiy
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
40
|
Lajin B. Variability in Background Urinary Concentrations of the Hydrogen Sulfide Biomarker Thiosulfate. ACS OMEGA 2022; 7:38622-38626. [PMID: 36340101 PMCID: PMC9631904 DOI: 10.1021/acsomega.2c04112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/07/2022] [Indexed: 06/01/2023]
Abstract
Hydrogen sulfide is a toxic gas at high concentrations but has recently attracted attention as a naturally produced gaseous signaling molecule in various tissues of the human body, playing key physiological roles at low nanomolar concentrations. This has wide implications for chronic exposure to this gas in air at low levels far below toxicity. Thiosulfate is the currently used biomarker for exposure to hydrogen sulfide via inhalation but has been mainly employed for acute exposure. It is unknown how background thiosulfate concentrations vary on an intraindividual and interindividual basis in humans at normal ambient hydrogen sulfide levels (<1 μg m-3), which is key for the interpretation of its levels as biomarker for low-level hydrogen sulfide exposure. In the current work, the variability in thiosulfate urinary excretion in a total of 168 urine samples collected from eight volunteers over a period of 8 weeks was investigated. The determination of thiosulfate in urine was carried out by UHPLC-MS/MS. The total average concentration ± SD was 16 ± 6 μM (n = 168). Average urinary thiosulfate concentrations in the studied volunteers were within the range of 10-20 μM, but it was found that urinary thiosulfate can show significant day-to-day and week-to-week variability in some individuals (up to 10-fold), despite adjusting for urine specific gravity. In light of the presented variability data and previous studies about the lack of consistent response of thiosulfate to low levels of hydrogen sulfide inhalation exposure, and based on a review of the biochemistry of the production of thiosulfate and its various biological sources, it can be argued that thiosulfate might not be suitable as a biomarker for chronic environmental exposure to low levels of hydrogen sulfide via inhalation.
Collapse
|
41
|
Kožich V, Schwahn BC, Sokolová J, Křížková M, Ditroi T, Krijt J, Khalil Y, Křížek T, Vaculíková-Fantlová T, Stibůrková B, Mills P, Clayton P, Barvíková K, Blessing H, Sykut-Cegielska J, Dionisi-Vici C, Gasperini S, García-Cazorla Á, Haack TB, Honzík T, Ješina P, Kuster A, Laugwitz L, Martinelli D, Porta F, Santer R, Schwarz G, Nagy P. Human ultrarare genetic disorders of sulfur metabolism demonstrate redundancies in H 2S homeostasis. Redox Biol 2022; 58:102517. [PMID: 36306676 PMCID: PMC9615310 DOI: 10.1016/j.redox.2022.102517] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Regulation of H2S homeostasis in humans is poorly understood. Therefore, we assessed the importance of individual enzymes in synthesis and catabolism of H2S by studying patients with respective genetic defects. We analyzed sulfur compounds (including bioavailable sulfide) in 37 untreated or insufficiently treated patients with seven ultrarare enzyme deficiencies and compared them to 63 controls. Surprisingly, we observed that patients with severe deficiency in cystathionine β-synthase (CBS) or cystathionine γ-lyase (CSE) - the enzymes primarily responsible for H2S synthesis - exhibited increased and normal levels of bioavailable sulfide, respectively. However, an approximately 21-fold increase of urinary homolanthionine in CBS deficiency strongly suggests that lacking CBS activity is compensated for by an increase in CSE-dependent H2S synthesis from accumulating homocysteine, which suggests a control of H2S homeostasis in vivo. In deficiency of sulfide:quinone oxidoreductase - the first enzyme in mitochondrial H2S oxidation - we found normal H2S concentrations in a symptomatic patient and his asymptomatic sibling, and elevated levels in an asymptomatic sibling, challenging the requirement for this enzyme in catabolizing H2S under physiological conditions. Patients with ethylmalonic encephalopathy and sulfite oxidase/molybdenum cofactor deficiencies exhibited massive accumulation of thiosulfate and sulfite with formation of large amounts of S-sulfocysteine and S-sulfohomocysteine, increased renal losses of sulfur compounds and concomitant strong reduction in plasma total cysteine. Our results demonstrate the value of a comprehensive assessment of sulfur compounds in severe disorders of homocysteine/cysteine metabolism and provide evidence for redundancy and compensatory mechanisms in the maintenance of H2S homeostasis. Cystathionine γ-lyase can compensate for decreased H2S synthesis in cystathionine β-synthase deficiency. Sulfide:quinone oxidoreductase deficiency is compatible with normal H2S plasma levels under non-stressed conditions. Persulfide dioxygenase deficiency (ethylmalonic encephalopathy) causes the largest accumulation of H2S among disorders of sulfur metabolism. Excess sulfite forms S-sulfocysteine and S-sulfohomocysteine, and interferes with vitamin B6 metabolism. S-sulfocysteine correlates directly with sulfite and is a stable biomarker of sulfite accumulation.
Collapse
Affiliation(s)
- Viktor Kožich
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic,Corresponding author. Department of Pediatrics and Inherited Metabolic Disorders, Charles University, Medicine and General University Hospital in Prague, Ke Karlovu 2, 128 08, Praha 2, Czech Republic.
| | - Bernd C Schwahn
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, United Kingdom
| | - Jitka Sokolová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Michaela Křížková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Tamas Ditroi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Jakub Krijt
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Youssef Khalil
- Genetics & Genomic Medicine Department, UCL GOS Institute of Child Health, London, UK
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Vaculíková-Fantlová
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Blanka Stibůrková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic,Institute of Rheumatology, Prague, Czech Republic
| | - Philippa Mills
- Genetics & Genomic Medicine Department, UCL GOS Institute of Child Health, London, UK
| | - Peter Clayton
- Genetics & Genomic Medicine Department, UCL GOS Institute of Child Health, London, UK
| | - Kristýna Barvíková
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Holger Blessing
- Kinder- und Jugendklinik, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jolanta Sykut-Cegielska
- Department of Inborn Errors of Metabolism and Pediatrics, The Institute of Mother and Child, Warsaw, Poland
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Serena Gasperini
- Metabolic Rare Diseases Unit, Department of Pediatrics, Fondazione MBBM, San Gerardo Hospital, Monza, Italy
| | - Ángeles García-Cazorla
- Inborn Errors of Metabolism Unit, Institut de Recerca Sant Joan de Déu and CIBERER-ISCIII, Barcelona, Spain
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Tomáš Honzík
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Pavel Ješina
- Department of Pediatrics and Inherited Metabolic Disorders, Charles University-First Faculty of Medicine and General University Hospital in Prague, Prague, Czech Republic
| | - Alice Kuster
- Center for Inborn Errors of Metabolism, Pediatric Intensive Care Unit, University Hospital of Nantes, Nantes, France
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany,Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francesco Porta
- Department of Pediatrics, Metabolic diseases, AOU Città della Salute e della Scienza, University of Torino, Torino, Italy
| | - René Santer
- Department of Pediatrics, University Medical Centre Eppendorf, Hamburg, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, University of Cologne, Cologne, Germany,Corresponding author. Institute of Biochemistry, Department of Chemistry, University of Cologne, Zuelpicher Str. 4750674, Koeln, Germany.
| | - Peter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary,Department of Anatomy and Histology, ELKH-ÁTE Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary,Chemistry Institute, University of Debrecen, Debrecen, Hungary,Corresponding author. Department of Molecular Immunology and Toxicology, National Institute of Oncology, 1122 Budapest, Ráth György u. 7-9., Hungary.
| |
Collapse
|
42
|
Hydrogen Sulfide and Its Donors: Keys to Unlock the Chains of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms232012202. [PMID: 36293058 PMCID: PMC9603526 DOI: 10.3390/ijms232012202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Hydrogen sulfide (H2S) has emerged as the third “gasotransmitters” and has a crucial function in the diversity of physiological functions in mammals. In particular, H2S is considered indispensable in preventing the development of liver inflammation in the case of excessive caloric ingestion. Note that the concentration of endogenous H2S was usually low, making it difficult to discern the precise biological functions. Therefore, exogenous delivery of H2S is conducive to probe the physiological and pathological roles of this gas in cellular and animal studies. In this review, the production and metabolic pathways of H2S in vivo, the types of donors currently used for H2S release, and study evidence of H2S improvement effects on nonalcoholic fatty liver disease are systematically introduced.
Collapse
|
43
|
Zhang J, Ma L, Liu Y, Tong X, Zhou Y. Hydrogen sulfide poisoning in forensic pathology and toxicology: mechanism and metabolites quantification analysis. Crit Rev Toxicol 2022; 52:742-756. [PMID: 36803204 DOI: 10.1080/10408444.2023.2168177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Historically, hydrogen sulfide (H2S) poisoning has extremely high and irreparable mortality. Currently, the identification of H2S poisoning needs to combine with the case scene analysis in forensic medicine. The anatomy of the deceased seldom had obvious features. There are also a few reports about H2S poisoning in detail. As a result, we give a comprehensive analysis of the related knowledge on the forensic aspect of H2S poisoning. Furthermore, we provide the analytical methods of H2S and its metabolite-which may assist in H2S poisoning identification.
Collapse
Affiliation(s)
- Jiaxin Zhang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Longda Ma
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tong
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Yiwu Zhou
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Cuevasanta E, Benchoam D, Semelak JA, Möller MN, Zeida A, Trujillo M, Alvarez B, Estrin DA. Possible molecular basis of the biochemical effects of cysteine-derived persulfides. Front Mol Biosci 2022; 9:975988. [PMID: 36213129 PMCID: PMC9538486 DOI: 10.3389/fmolb.2022.975988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/15/2022] [Indexed: 12/03/2022] Open
Abstract
Persulfides (RSSH/RSS−) are species closely related to thiols (RSH/RS−) and hydrogen sulfide (H2S/HS−), and can be formed in biological systems in both low and high molecular weight cysteine-containing compounds. They are key intermediates in catabolic and biosynthetic processes, and have been proposed to participate in the transduction of hydrogen sulfide effects. Persulfides are acidic, more acidic than thiols, and the persulfide anions are expected to be the predominant species at neutral pH. The persulfide anion has high nucleophilicity, due in part to the alpha effect, i.e., the increased reactivity of a nucleophile when the neighboring atom has high electron density. In addition, persulfides have electrophilic character, a property that is absent in both thiols and hydrogen sulfide. In this article, the biochemistry of persulfides is described, and the possible ways in which the formation of a persulfide could impact on the properties of the biomolecule involved are discussed.
Collapse
Affiliation(s)
- Ernesto Cuevasanta
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Dayana Benchoam
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| | - Jonathan A. Semelak
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
| | - Matías N. Möller
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ari Zeida
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Darío A. Estrin
- Departamento de Química Inorgánica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET, Buenos Aires, Argentina
- *Correspondence: Darío A. Estrin,
| |
Collapse
|
45
|
Reactive sulfur species and their significance in health and disease. Biosci Rep 2022; 42:231692. [PMID: 36039860 PMCID: PMC9484011 DOI: 10.1042/bsr20221006] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/23/2022] Open
Abstract
Reactive sulfur species (RSS) have been recognized in the last two decades as very important molecules in redox regulation. They are involved in metabolic processes and, in this way, they are responsible for maintenance of health. This review summarizes current information about the essential biological RSS, including H2S, low molecular weight persulfides, protein persulfides as well as organic and inorganic polysulfides, their synthesis, catabolism and chemical reactivity. Moreover, the role of RSS disturbances in various pathologies including vascular diseases, chronic kidney diseases, diabetes mellitus Type 2, neurological diseases, obesity, chronic obstructive pulmonary disease and in the most current problem of COVID-19 is presented. The significance of RSS in aging is also mentioned. Finally, the possibilities of using the precursors of various forms of RSS for therapeutic purposes are discussed.
Collapse
|
46
|
Decomposition kinetics and postmortem production of hydrogen sulfide and its metabolites. Forensic Sci Int 2022; 340:111426. [PMID: 36007360 DOI: 10.1016/j.forsciint.2022.111426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/13/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hydrogen sulfide (H2S), an endogenous gas, can also be generated from organics putrefaction. It is difficult for suspected cases of H2S poisoning to determine whether H2S in specimens is ingested by antemortem poisoning or generated from organics putrefaction. The aim of this study was to find the biomarkers of acute H2S poisoning via comparing the concentrations of H2S and its metabolites over time in specimens. METHODS The H2S-spiked blood and blank blood group were established. The decomposition kinetics and the postmortem production of H2S were studied due to organics putrefaction. The specimens were placed under 4 conditions of 37, 20, 4 and - 20 ℃. The content of H2S in specimens was quantified by gas chromatography-mass spectrometry, and the contents of its metabolites (thiosulfate and trimethylsulfonium) were measured by liquid chromatography-mass spectrometry, and the variation of its concentration was evaluated. RESULTS In H2S-spiked blood, H2S decreased sharply in the initial stage at 37, 20 and 4 °C, and increased first and then decreased later; but it was relatively stable at - 20 °C. In spiked blood, thiosulfate was 9-fold higher than endogenous concentrations, which increased at first and then decreased during storage. Except for thiosulfate at 37 °C, H2S and thiosulfate in blank blood both increased at first and then decreased in storage; but trimethylsulfonium (TMS) gradually decreased over time in both groups. CONCLUSIONS Thiosulfate is a reliable biomarker of acute H2S poisoning at - 20℃ within 7 days. But H2S, because of instability and volatility, is not an ideal poisoning marker. TMS is not an appropriate biomarker due to extremely low concentration in blood.
Collapse
|
47
|
Pose M, Dillon KM, Denicola A, Alvarez B, Matson JB, Möller MN, Cuevasanta E. Fluorescent detection of hydrogen sulfide (H 2S) through the formation of pyrene excimers enhances H 2S quantification in biochemical systems. J Biol Chem 2022; 298:102402. [PMID: 35988644 PMCID: PMC9493391 DOI: 10.1016/j.jbc.2022.102402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/09/2022] Open
Abstract
Hydrogen sulfide (H2S) is produced endogenously by several enzymatic pathways and modulates physiological functions in mammals. Quantification of H2S in biochemical systems remains challenging because of the presence of interferents with similar reactivity, particularly thiols. Herein, we present a new quantification method based on the formation of pyrene excimers in solution. We synthesized the probe 2-(maleimido)ethyl 4-pyrenylbutanoate (MEPB) and determined that MEPB reacted with H2S in a two-step reaction to yield the thioether-linked dimer (MEPB)2S, which formed excimers upon excitation, with a broad peak of fluorescence emission centered at 480 nm. In contrast, we found that the products formed with thiols showed peaks at 378 and 398 nm. The difference in emission between the products prevented the interference. Furthermore, we showed that the excimer fluorescence signal yielded a linear response to H2S, with a limit of detection of 54 nM in a fluorometer. Our quantification method with MEPB was successfully applied to follow the reaction of H2S with glutathione disulfide and to quantify the production of H2S from cysteine by Escherichia coli. In conclusion, this method represents an addition to the toolkit of biochemists to quantify H2S specifically and sensitively in biochemical systems.
Collapse
Affiliation(s)
- Manuela Pose
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Kearsley M Dillon
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay
| | - John B Matson
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay.
| | - Ernesto Cuevasanta
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, Uruguay; Unidad de Bioquímica Analítica, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
48
|
Chen SM, Tang XQ. Homocysteinylation and Sulfhydration in Diseases. Curr Neuropharmacol 2022; 20:1726-1735. [PMID: 34951391 PMCID: PMC9881069 DOI: 10.2174/1570159x20666211223125448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/02/2021] [Accepted: 12/18/2021] [Indexed: 11/22/2022] Open
Abstract
Homocysteine (Hcy) is an important intermediate in methionine metabolism and generation of one-carbon units, and its dysfunction is associated with many pathological states. Although Hcy is a non-protein amino acid, many studies have demonstrated protein-related homocysteine metabolism and possible mechanisms underlying homocysteinylation. Homocysteinylated proteins lose their original biological function and have a negative effect on the various disease phenotypes. Hydrogen sulfide (H2S) has been recognized as an important gaseous signaling molecule with mounting physiological properties. H2S modifies small molecules and proteins via sulfhydration, which is supposed to be essential in the regulation of biological functions and signal transduction in human health and disorders. This review briefly introduces Hcy and H2S, further discusses pathophysiological consequences of homocysteine modification and sulfhydryl modification, and ultimately makes a prediction that H2S might exert a protective effect on the toxicity of homocysteinylation of target protein via sulfhydration. The highlighted information here yields new insights into the role of protein modification by Hcy and H2S in diseases.
Collapse
Affiliation(s)
- Si-Min Chen
- Emergency Intensive Care Unit, Department of Emergency, Xiangtan Central Hospital, Xiangtan, 411100, Hunan, P.R. China; ,The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China; ,Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China
| | - Xiao-Qing Tang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China; ,Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, P.R. China,Address correspondence to this author at the The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China 69 Chuanshan Road, Hengyang 421001, Hunan Province, P.R. China; E-mails: ;
| |
Collapse
|
49
|
Buonvino S, Arciero I, Melino S. Thiosulfate-Cyanide Sulfurtransferase a Mitochondrial Essential Enzyme: From Cell Metabolism to the Biotechnological Applications. Int J Mol Sci 2022; 23:ijms23158452. [PMID: 35955583 PMCID: PMC9369223 DOI: 10.3390/ijms23158452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Thiosulfate: cyanide sulfurtransferase (TST), also named rhodanese, is an enzyme widely distributed in both prokaryotes and eukaryotes, where it plays a relevant role in mitochondrial function. TST enzyme is involved in several biochemical processes such as: cyanide detoxification, the transport of sulfur and selenium in biologically available forms, the restoration of iron–sulfur clusters, redox system maintenance and the mitochondrial import of 5S rRNA. Recently, the relevance of TST in metabolic diseases, such as diabetes, has been highlighted, opening the way for research on important aspects of sulfur metabolism in diabetes. This review underlines the structural and functional characteristics of TST, describing the physiological role and biomedical and biotechnological applications of this essential enzyme.
Collapse
|
50
|
Al-Dahmani ZM, Li X, Wiggenhauser LM, Ott H, Kruithof PD, Lunev S, A Batista F, Luo Y, Dolga AM, Morton NM, Groves MR, Kroll J, van Goor H. Thiosulfate sulfurtransferase prevents hyperglycemic damage to the zebrafish pronephros in an experimental model for diabetes. Sci Rep 2022; 12:12077. [PMID: 35840638 PMCID: PMC9287301 DOI: 10.1038/s41598-022-16320-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Thiosulfate sulfurtransferase (TST, EC 2.8.1.1), also known as Rhodanese, was initially discovered as a cyanide detoxification enzyme. However, it was recently also found to be a genetic predictor of resistance to obesity-related type 2 diabetes. Diabetes type 2 is characterized by progressive loss of adequate β-cell insulin secretion and onset of insulin resistance with increased insulin demand, which contributes to the development of hyperglycemia. Diabetic complications have been replicated in adult hyperglycemic zebrafish, including retinopathy, nephropathy, impaired wound healing, metabolic memory, and sensory axonal degeneration. Pancreatic and duodenal homeobox 1 (Pdx1) is a key component in pancreas development and mature beta cell function and survival. Pdx1 knockdown or knockout in zebrafish induces hyperglycemia and is accompanied by organ alterations similar to clinical diabetic retinopathy and diabetic nephropathy. Here we show that pdx1-knockdown zebrafish embryos and larvae survived after incubation with thiosulfate and no obvious morphological alterations were observed. Importantly, incubation with hTST and thiosulfate rescued the hyperglycemic phenotype in pdx1-knockdown zebrafish pronephros. Activation of the mitochondrial TST pathway might be a promising option for therapeutic intervention in diabetes and its organ complications.
Collapse
Affiliation(s)
- Zayana M Al-Dahmani
- Department of Pharmacy and Drug Design, University of Groningen, Groningen, The Netherlands
| | - Xiaogang Li
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Lucas M Wiggenhauser
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany.,Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Hannes Ott
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Paul D Kruithof
- Department of Pharmacy and Drug Design, University of Groningen, Groningen, The Netherlands
| | - Sergey Lunev
- Department of Pharmacy and Drug Design, University of Groningen, Groningen, The Netherlands
| | - Fernando A Batista
- Department of Pharmacy and Drug Design, University of Groningen, Groningen, The Netherlands
| | - Yang Luo
- Department of Pharmacy, Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Amalia M Dolga
- Department of Pharmacy, Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Nicholas M Morton
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Matthew R Groves
- Department of Pharmacy and Drug Design, University of Groningen, Groningen, The Netherlands. .,XB20 Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, 9700 AD, Groningen, The Netherlands.
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands. .,Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
| |
Collapse
|