1
|
Tamulytė R, Baronaitė I, Šulskis D, Smirnovas V, Jankunec M. Pro-inflammatory S100A8 Protein Exhibits a Detergent-like Effect on Anionic Lipid Bilayers, as Imaged by High-Speed AFM. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2635-2647. [PMID: 39723944 DOI: 10.1021/acsami.4c18749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Neuronal cell death induced by cell membrane damage is one of the major hallmarks of neurodegenerative diseases. Neuroinflammation precedes the loss of neurons; however, whether and how inflammation-related proteins contribute to the loss of membrane integrity remains unknown. We employed a range of biophysical tools, including high-speed atomic force microscopy, fluorescence spectroscopy, and electrochemical impedance spectroscopy, to ascertain whether the pro-inflammatory protein S100A8 induces alterations in biomimetic lipid membranes upon interaction. Our findings underscore the crucial roles played by divalent cations and membrane charge. We found that apo-S100A8 selectively interacts with anionic lipid membranes composed of phosphatidylserine (PS), causing membrane disruption through a detergent-like mechanism, primarily affecting regions where phospholipids are less tightly packed. Interestingly, the introduction of Ca2+ ions inhibited S100A8-induced membrane disruption, suggesting that the disruptive effects of S100A8 are most pronounced under conditions mimicking intracellular compartments, where calcium levels are low, and PS concentrations in the inner leaflet of the membrane are high. Overall, our results present a mechanistic basis for understanding the molecular interactions between S100A8 and the plasma membrane, emphasizing S100A8 as a potential contributor to the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rimgailė Tamulytė
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Ieva Baronaitė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Darius Šulskis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Vytautas Smirnovas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| | - Marija Jankunec
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, Vilnius, LT-10257, Lithuania
| |
Collapse
|
2
|
Wang D, Liu XY, He QF, Zheng FZ, Chen L, Zheng Y, Zeng MH, Lin YH, Lin X, Chen HZ, Lin MT, Wang N, Wang ZQ, Lin F. Comprehensive Proteomic Analysis of Dysferlinopathy Unveiling Molecular Mechanisms and Biomarkers Linked to Pathological Progression. CNS Neurosci Ther 2024; 30:e70065. [PMID: 39350328 PMCID: PMC11442333 DOI: 10.1111/cns.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/23/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
AIMS Previous proteomics studies in dysferlinopathy muscle have been limited in scope, often utilizing 2D-electrophoresis and yielding only a small number of differential expression calls. To address this gap, this study aimed to employ high-resolution proteomics to explore the proteomic landscapes of dysferlinopathy and analyze the correlation between muscle pathological changes and alterations in protein expression in muscle biopsies. METHODS We conducted a comprehensive approach to investigate the proteomic profile and disease-associated changes in the muscle tissue proteome from 15 patients with dysferlinopathy, exhibiting varying degrees of dystrophic pathology, alongside age-matched controls. Our methodology encompasses tandem mass tag (TMT)-labeled liquid chromatography-mass spectrometry (LC-MS/MS)-based proteomics, protein-protein interaction (PPI) network analysis, weighted gene co-expression network analysis, and differential expression analysis. Subsequently, we examined the correlation between the expression of key proteins and the clinical characteristics of the patients to identify pathogenic targets associated with DYSF mutations in dysferlinopathy. RESULTS A total of 1600 differentially expressed proteins were identified, with 1321 showing high expression levels and 279 expressed at lower levels. Our investigation yields a molecular profile delineating the altered protein networks in dysferlinopathy-afflicted skeletal muscle, uncovering dysregulation across numerous cellular pathways and molecular processes, including mRNA metabolic processes, regulated exocytosis, immune response, muscle system processes, energy metabolic processes, and calcium transmembrane transport. Moreover, we observe significant associations between the protein expression of ANXA1, ANXA2, ANXA4, ANXA5, LMNA, PYGM, and the extent of histopathologic changes in muscle biopsies from patients with dysferlinopathy, validated through immunoblotting and immunofluorescence assays. CONCLUSIONS Through the aggregation of expression data from dysferlinopathy-impacted muscles exhibiting a range of pathological alterations, we identified multiple key proteins associated with the dystrophic pathology of patients with dysferlinopathy. These findings provide novel insights into the pathogenesis of dysferlinopathy and propose promising targets for future therapeutic endeavors.
Collapse
Affiliation(s)
- Di Wang
- Department of Molecular Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
- Center for Bioinformatics, National Infrastructures for Translational Medicine, Institute of Clinical Medicine and Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Yi Liu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qi-Fang He
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Fu-Ze Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Long Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ying Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Ming-Hui Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yu-Hua Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xin Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hai-Zhu Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Min-Ting Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Qiang Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Feng Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
- Department of Neurology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Melle C, Hoffmann B, Wiesenburg A, Biskup C. FLIM-FRET-based analysis of S100A11/annexin interactions in living cells. FEBS Open Bio 2024; 14:626-642. [PMID: 38408765 PMCID: PMC10988696 DOI: 10.1002/2211-5463.13782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
Proteins achieve their biological functions in cells by cooperation in protein complexes. In this study, we employed fluorescence lifetime imaging microscopy (FLIM)-based Förster resonance energy transfer (FRET) measurements to investigate protein complexes comprising S100A11 and different members of the annexin (ANX) family, such as ANXA1, ANXA2, ANXA4, ANXA5, and AnxA6, in living cells. Using an S100A11 mutant without the capacity for Ca2+ binding, we found that Ca2+ binding of S100A11 is important for distinct S100A11/ANXA2 complex formation; however, ANXA1-containing complexes were unaffected by this mutant. An increase in the intracellular calcium concentration induced calcium ionophores, which strengthened the ANXA2/S100A11 interaction. Furthermore, we were able to show that S100A11 also interacts with ANXA4 in living cells. The FLIM-FRET approach used here can serve as a tool to analyze interactions between S100A11 and distinct annexins under physiological conditions in living cells.
Collapse
Affiliation(s)
- Christian Melle
- Biomolecular Photonics Group, Jena University HospitalFriedrich Schiller University JenaGermany
| | - Birgit Hoffmann
- Biomolecular Photonics Group, Jena University HospitalFriedrich Schiller University JenaGermany
| | - Annett Wiesenburg
- Biomolecular Photonics Group, Jena University HospitalFriedrich Schiller University JenaGermany
| | - Christoph Biskup
- Biomolecular Photonics Group, Jena University HospitalFriedrich Schiller University JenaGermany
| |
Collapse
|
4
|
Sanchez W, Lindsay S, Li Y. Modeling the Annexin A1-S100A11 heterotetramer: a molecular dynamics investigation of structure and correlated motion. J Biomol Struct Dyn 2024; 42:2825-2833. [PMID: 37194290 PMCID: PMC10654263 DOI: 10.1080/07391102.2023.2212804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Annexin A1 (A1) has been shown to form a tetrameric complex (A1t) with S100A11 which is implicated in calcium homeostasis and EGFR pathways. In this work, a full-length model of the A1t was generated for the first time. Multiple molecular dynamics simulations were performed on the complete A1t model for several hundred nanoseconds each to assess the structure and dynamics of A1t. These simulations yielded three structures for the A1 N-terminus (ND) which were identified via principal component analysis. The orientations and interactions of the first 11 A1-ND residues for all three structures were conserved, and their binding modes were strikingly similar to those of the Annexin A2 N-terminus in the Annexin A2-p11 tetramer. In this study, we provided detailed atomistic information for the A1t. Strong interactions were identified within the A1t between the A1-ND and both S100A11 monomers. Residues M3, V4, S5, E6, L8, K9, W12, E15, and E18 of A1 were the strongest interactions between A1 and the S100A11 dimer. The different conformations of the A1t were attributed to the interaction between W12 of the A1-ND with M63 of S100A11 which caused a kink in the A1-ND. Cross-correlation analysis revealed strong correlated motion throughout the A1t. Strong positive correlation was observed between the ND and S100A11 in all simulations regardless of conformation. This work suggests that the stable binding of the first 11 residues of A1-ND to S100A11 is potentially a theme for Annexin-S100 complexes and that the flexibility of the A1-ND allows for multiple conformations of the A1t.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Wesley Sanchez
- Department of Chemistry, East Carolina University, Greenville, NC, USA
| | - Samuel Lindsay
- Department of Chemistry, East Carolina University, Greenville, NC, USA
| | - Yumin Li
- Department of Chemistry, East Carolina University, Greenville, NC, USA
| |
Collapse
|
5
|
Dudas EF, Tully MD, Foldes T, Kelly G, Tartaglia GG, Pastore A. The structural properties of full-length annexin A11. Front Mol Biosci 2024; 11:1347741. [PMID: 38516187 PMCID: PMC10955470 DOI: 10.3389/fmolb.2024.1347741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 03/23/2024] Open
Abstract
Annexin A11 (ANXA11) is a calcium-dependent phospholipid-binding protein belonging to the annexin protein family and implicated in the neurodegenerative amyotrophic lateral sclerosis. Structurally, ANXA11 contains a conserved calcium-binding C-terminal domain common to all annexins and a putative intrinsically unfolded N-terminus specific for ANXA11. Little is known about the structure and functions of this region of the protein. By analogy with annexin A1, it was suggested that residues 38 to 59 within the ANXA11 N-terminus could form a helical region that would be involved in interactions. Interestingly, this region contains residues that, when mutated, may lead to clinical manifestations. In the present study, we have studied the structural features of the full-length protein with special attention to the N-terminal region using a combination of biophysical techniques which include nuclear magnetic resonance and small angle X-ray scattering. We show that the N-terminus is intrinsically disordered and that the overall features of the protein are not markedly affected by the presence of calcium. We also analyzed the 38-59 helix hypothesis using synthetic peptides spanning both the wild-type sequence and clinically relevant mutations. We show that the peptides have a remarkable character typical of a native helix and that mutations do not alter the behaviour suggesting that they are required for interactions rather than being structurally important. Our work paves the way to a more thorough understanding of the ANXA11 functions.
Collapse
Affiliation(s)
- Erika F. Dudas
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
- European Synchrotron Radiation Facility, Grenoble, France
| | - Mark D. Tully
- European Synchrotron Radiation Facility, Grenoble, France
| | - Tamas Foldes
- University College London, Department of Physics and Astronomy, University College London, London, United Kingdom
- Institut de Biologie Structurale (IBS), Institut Laue-Langevin, University Grenoble Alpes, Grenoble, France
| | - Geoff Kelly
- MRC Biomedical NMR Centre, The Francis Crick Institute, London, United Kingdom
| | | | - Annalisa Pastore
- Dementia Research Institute at King’s College London, The Wohl Institute, London, United Kingdom
- European Synchrotron Radiation Facility, Grenoble, France
| |
Collapse
|
6
|
Hosawi MM, Cheng J, Fankhaenel M, Przewloka MR, Elias S. Interplay between the plasma membrane and cell-cell adhesion maintains epithelial identity for correct polarised cell divisions. J Cell Sci 2024; 137:jcs261701. [PMID: 37888135 PMCID: PMC10729819 DOI: 10.1242/jcs.261701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Polarised epithelial cell divisions represent a fundamental mechanism for tissue maintenance and morphogenesis. Morphological and mechanical changes in the plasma membrane influence the organisation and crosstalk of microtubules and actin at the cell cortex, thereby regulating the mitotic spindle machinery and chromosome segregation. Yet, the precise mechanisms linking plasma membrane remodelling to cell polarity and cortical cytoskeleton dynamics to ensure accurate execution of mitosis in mammalian epithelial cells remain poorly understood. Here, we manipulated the density of mammary epithelial cells in culture, which led to several mitotic defects. Perturbation of cell-cell adhesion formation impairs the dynamics of the plasma membrane, affecting the shape and size of mitotic cells and resulting in defects in mitotic progression and the generation of daughter cells with aberrant architecture. In these conditions, F- actin-astral microtubule crosstalk is impaired, leading to mitotic spindle misassembly and misorientation, which in turn contributes to chromosome mis-segregation. Mechanistically, we identify S100 Ca2+-binding protein A11 (S100A11) as a key membrane-associated regulator that forms a complex with E-cadherin (CDH1) and the leucine-glycine-asparagine repeat protein LGN (also known as GPSM2) to coordinate plasma membrane remodelling with E-cadherin-mediated cell adhesion and LGN-dependent mitotic spindle machinery. Thus, plasma membrane-mediated maintenance of mammalian epithelial cell identity is crucial for correct execution of polarised cell divisions, genome maintenance and safeguarding tissue integrity.
Collapse
Affiliation(s)
- Manal M. Hosawi
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Jiaoqi Cheng
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Maria Fankhaenel
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Marcin R. Przewloka
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Salah Elias
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
- Institute for Life Sciences, University of Southampton, Southampton SO17 1BJ, UK
| |
Collapse
|
7
|
Gounou C, Rouyer L, Siegfried G, Harté E, Bouvet F, d'Agata L, Darbo E, Lefeuvre M, Derieppe MA, Bouton L, Mélane M, Chapeau D, Martineau J, Prouzet-Mauleon V, Tan S, Souleyreau W, Saltel F, Argoul F, Khatib AM, Brisson AR, Iggo R, Bouter A. Inhibition of the membrane repair protein annexin-A2 prevents tumor invasion and metastasis. Cell Mol Life Sci 2023; 81:7. [PMID: 38092984 PMCID: PMC10719157 DOI: 10.1007/s00018-023-05049-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023]
Abstract
Cancer cells are exposed to major compressive and shearing forces during invasion and metastasis, leading to extensive plasma membrane damage. To survive this mechanical stress, they need to repair membrane injury efficiently. Targeting the membrane repair machinery is thus potentially a new way to prevent invasion and metastasis. We show here that annexin-A2 (ANXA2) is required for membrane repair in invasive breast and pancreatic cancer cells. Mechanistically, we show by fluorescence and electron microscopy that cells fail to reseal shear-stress damaged membrane when ANXA2 is silenced or the protein is inhibited with neutralizing antibody. Silencing of ANXA2 has no effect on proliferation in vitro, and may even accelerate migration in wound healing assays, but reduces tumor cell dissemination in both mice and zebrafish. We expect that inhibiting membrane repair will be particularly effective in aggressive, poor prognosis tumors because they rely on the membrane repair machinery to survive membrane damage during tumor invasion and metastasis. This could be achieved either with anti-ANXA2 antibodies, which have been shown to inhibit metastasis of breast and pancreatic cancer cells, or with small molecule drugs.
Collapse
Affiliation(s)
- C Gounou
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - L Rouyer
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - G Siegfried
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
- XenoFish, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France
| | - E Harté
- CNRS, LOMA, UMR 5798, University of Bordeaux, 33400, Talence, France
| | - F Bouvet
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - L d'Agata
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - E Darbo
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - M Lefeuvre
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - M A Derieppe
- Animalerie Mutualisée, Service Commun des Animaleries, University of Bordeaux, 33000, Bordeaux, France
| | - L Bouton
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - M Mélane
- CNRS, LOMA, UMR 5798, University of Bordeaux, 33400, Talence, France
| | - D Chapeau
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - J Martineau
- Animalerie Mutualisée, Service Commun des Animaleries, University of Bordeaux, 33000, Bordeaux, France
| | - V Prouzet-Mauleon
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
- CRISPRedit, TBMcore, UAR CNRS 3427, Inserm US 005, University of Bordeaux, Bordeaux, France
| | - S Tan
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - W Souleyreau
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - F Saltel
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - F Argoul
- CNRS, LOMA, UMR 5798, University of Bordeaux, 33400, Talence, France
| | - A M Khatib
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
- XenoFish, B2 Ouest, Allée Geoffroy St Hilaire CS50023, 33615, Pessac, France
- Bergonié Institute, Bordeaux, France
| | - A R Brisson
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France
| | - R Iggo
- INSERM, BRIC, U 1312, University of Bordeaux, 33000, Bordeaux, France
| | - A Bouter
- CNRS, Bordeaux INP, CBMN, UMR 5248, University of Bordeaux, Bât. B14, Allée Geoffroy Saint Hilaire, 33600, Pessac, France.
| |
Collapse
|
8
|
Saito-Sasaki N, Sawada Y. S100 Proteins in the Pathogenesis of Psoriasis and Atopic Dermatitis. Diagnostics (Basel) 2023; 13:3167. [PMID: 37891988 PMCID: PMC10606049 DOI: 10.3390/diagnostics13203167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/29/2023] Open
Abstract
The skin, the outermost layer of the human body, is exposed to various external stimuli that cause inflammatory skin reactions. These external stimulants trigger external epithelial cell damage and the release of intracellular substances. Following cellular damage or death, intracellular molecules are released that enhance tissue inflammation. As an important substance released from damaged cells, the S100 protein is a low-molecular-weight acidic protein with two calcium-binding sites and EF-hand motif domains. S100 proteins are widely present in systemic organs and interact with other proteins. Recent studies revealed the involvement of S100 in cutaneous inflammatory disorders, psoriasis, and atopic dermatitis. This review provides detailed information on the interactions among various S100 proteins in inflammatory diseases.
Collapse
Affiliation(s)
| | - Yu Sawada
- Department of Dermatology, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan;
| |
Collapse
|
9
|
Okura GC, Bharadwaj AG, Waisman DM. Recent Advances in Molecular and Cellular Functions of S100A10. Biomolecules 2023; 13:1450. [PMID: 37892132 PMCID: PMC10604489 DOI: 10.3390/biom13101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
S100A10 (p11, annexin II light chain, calpactin light chain) is a multifunctional protein with a wide range of physiological activity. S100A10 is unique among the S100 family members of proteins since it does not bind to Ca2+, despite its sequence and structural similarity. This review focuses on studies highlighting the structure, regulation, and binding partners of S100A10. The binding partners of S100A10 were collated and summarized.
Collapse
Affiliation(s)
- Gillian C. Okura
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
| | - Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 1X5, Canada; (G.C.O.); (A.G.B.)
- Departments of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 1X5, Canada
| |
Collapse
|
10
|
Becchetti A. Interplay of Ca 2+ and K + signals in cell physiology and cancer. CURRENT TOPICS IN MEMBRANES 2023; 92:15-46. [PMID: 38007266 DOI: 10.1016/bs.ctm.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The cytoplasmic Ca2+ concentration and the activity of K+ channels on the plasma membrane regulate cellular processes ranging from mitosis to oriented migration. The interplay between Ca2+ and K+ signals is intricate, and different cell types rely on peculiar cellular mechanisms. Derangement of these mechanisms accompanies the neoplastic progression. The calcium signals modulated by voltage-gated (KV) and calcium-dependent (KCa) K+ channel activity regulate progression of the cell division cycle, the release of growth factors, apoptosis, cell motility and migration. Moreover, KV channels regulate the cell response to the local microenvironment by assembling with cell adhesion and growth factor receptors. This chapter summarizes the pathophysiological roles of Ca2+ and K+ fluxes in normal and cancer cells, by concentrating on several biological systems in which these functions have been studied in depth, such as early embryos, mammalian cell lines, T lymphocytes, gliomas and colorectal cancer cells. A full understanding of the underlying mechanisms will offer a comprehensive view of the ion channel implication in cancer biology and suggest potential pharmacological targets for novel therapeutic approaches in oncology.
Collapse
Affiliation(s)
- Andrea Becchetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
11
|
Lancaster T, Tabrizi MEA, Repici M, Gupta J, Gross SR. An Extracellular/Membrane-Bound S100P Pool Regulates Motility and Invasion of Human Extravillous Trophoblast Lines and Primary Cells. Biomolecules 2023; 13:1231. [PMID: 37627296 PMCID: PMC10452538 DOI: 10.3390/biom13081231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Whilst S100P has been shown to be a marker for carcinogenesis, we have shown, in non-physio-pathological states, that its expression promotes trophoblast motility and invasion but the mechanisms explaining these cellular processes are unknown. Here we identify the presence of S100P in the plasma membrane/cell surface of all trophoblast cells tested, whether lines, primary extravillous (EVT) cells, or section tissue samples using either biochemical purification of plasma membrane material, cell surface protein isolation through biotinylation, or microscopy analysis. Using extracellular loss of function studies, through addition of a specific S100P antibody, our work shows that inhibiting the cell surface/membrane-bound or extracellular S100P pools significantly reduces, but importantly only in part, both cell motility and cellular invasion in different trophoblastic cell lines, as well as primary EVTs. Interestingly, this loss in cellular motility/invasion did not result in changes to the overall actin organisation and focal adhesion complexes. These findings shed new light on at least two newly characterized pathways by which S100P promotes trophoblast cellular motility and invasion. One where cellular S100P levels involve the remodelling of focal adhesions whilst another, an extracellular pathway, appears to be focal adhesion independent. Both pathways could lead to the identification of novel targets that may explain why significant numbers of confirmed human pregnancies suffer complications through poor placental implantation.
Collapse
Affiliation(s)
- Tara Lancaster
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (T.L.); (M.E.A.T.); (M.R.)
| | - Maral E. A. Tabrizi
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (T.L.); (M.E.A.T.); (M.R.)
| | - Mariaelena Repici
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (T.L.); (M.E.A.T.); (M.R.)
| | - Janesh Gupta
- Institute of Metabolism and Systems Research, The University of Birmingham, Birmingham B15 2TT, UK;
- Fetal Medicine Centre, Birmingham Women’s NHS Foundation Trust, Birmingham B15 2TT, UK
| | - Stephane R. Gross
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK; (T.L.); (M.E.A.T.); (M.R.)
| |
Collapse
|
12
|
Hu K, Onintsoa Diarimalala R, Yao C, Li H, Wei Y. EV-A71 Mechanism of Entry: Receptors/Co-Receptors, Related Pathways and Inhibitors. Viruses 2023; 15:785. [PMID: 36992493 PMCID: PMC10051052 DOI: 10.3390/v15030785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Enterovirus A71, a non-enveloped single-stranded (+) RNA virus, enters host cells through three stages: attachment, endocytosis and uncoating. In recent years, receptors/co-receptors anchored on the host cell membrane and involved in this process have been continuously identified. Among these, hSCARB-2 was the first receptor revealed to specifically bind to a definite site of the EV-A71 viral capsid and plays an indispensable role during viral entry. It actually acts as the main receptor due to its ability to recognize all EV-A71 strains. In addition, PSGL-1 is the second EV-A71 receptor discovered. Unlike hSCARB-2, PSGL-1 binding is strain-specific; only 20% of EV-A71 strains isolated to date are able to recognize and bind it. Some other receptors, such as sialylated glycan, Anx 2, HS, HSP90, vimentin, nucleolin and fibronectin, were discovered successively and considered as "co-receptors" because, without hSCARB-2 or PSGL-1, they are not able to mediate entry. For cypA, prohibitin and hWARS, whether they belong to the category of receptors or of co-receptors still needs further investigation. In fact, they have shown to exhibit an hSCARB-2-independent entry. All this information has gradually enriched our knowledge of EV-A71's early stages of infection. In addition to the availability of receptors/co-receptors for EV-A71 on host cells, the complex interaction between the virus and host proteins and various intracellular signaling pathways that are intricately connected to each other is critical for a successful EV-A71 invasion and for escaping the attack of the immune system. However, a lot remains unknown about the EV-A71 entry process. Nevertheless, researchers have been continuously interested in developing EV-A71 entry inhibitors, as this study area offers a large number of targets. To date, important progress has been made toward the development of several inhibitors targeting: receptors/co-receptors, including their soluble forms and chemically designed compounds; virus capsids, such as capsid inhibitors designed on the VP1 capsid; compounds potentially interfering with related signaling pathways, such as MAPK-, IFN- and ATR-inhibitors; and other strategies, such as siRNA and monoclonal antibodies targeting entry. The present review summarizes these latest studies, which are undoubtedly of great significance in developing a novel therapeutic approach against EV-A71.
Collapse
Affiliation(s)
| | | | | | | | - Yanhong Wei
- Sino-German Biomedical Center, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China; (K.H.); (R.O.D.); (C.Y.); (H.L.)
| |
Collapse
|
13
|
Wu Y, Wu S, Li F, Zeng T, Luo X. Association between serum S100A11 levels and glucose metabolism in diabetic process. Diabetol Metab Syndr 2023; 15:36. [PMID: 36872321 PMCID: PMC9987151 DOI: 10.1186/s13098-023-01004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/19/2023] [Indexed: 03/07/2023] Open
Abstract
BACKGROUND Diabetes mellitus (DM) is a prevalent non-communicable metabolic disease, and S100A11 is a newly identified gene closely related to metabolism. The association of S100A11 with diabetes is unclear. This study aimed to assess the relationship between S100A11 and markers of glucose metabolism in patients with different glucose tolerance and gender. METHODS This study included 97 participants. Baseline data were obtained, and the serum levels of S100A11 and metabolic markers (glycated hemoglobin [HbA1c], insulin release test, and oral glucose tolerance test) were measured. Linear and nonlinear correlations between serum S100A11 levels and HOMA-IR, HOMA of β, HbA1c, insulin sensitivity index (ISI), corrected insulin response (CIR), and oral disposition index (DIo) were analyzed. The expression of S100A11 was also detected in mice. RESULTS Serum S100A11 levels increased in patients with impaired glucose tolerance (IGT) of both genders. S100A11 mRNA and protein expression increased in obese mice. There were nonlinear correlations between S10011 levels and CIR, FPI, HOMA-IR, whole-body ISI in the IGT group. S100A11 was nonlinearly correlated with HOMA-IR, hepatic ISI, FPG, FPI, and HbA1c in the DM group. In the male group, S100A11 was linearly correlated with HOMA-IR and nonlinearly correlated with DIo (derived from hepatic ISI) and HbA1c. In the female population, S100A11 was nonlinearly correlated with CIR. CONCLUSIONS Serum S100A11 levels were highly expressed in patients with IGT and in the liver of obese mice. In addition, there were linear and nonlinear correlations between S100A11 and markers of glucose metabolism, demonstrating that S100A11 has a role in diabetes. Trial registration ChiCTR1900026990.
Collapse
Affiliation(s)
- Yao Wu
- Department of Laboratory Medicine, School of Medicine, Chongqing University Three Gorges Hospital, Chongqing University, No.165, Xincheng Avenue, Wanzhou District, Chongqing, 404000, China
| | - Shaobo Wu
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, 404100, China
- Department of Endocrinology, Chongqing University Three Gorges Hospital, Chongqing, 404100, China
| | - Fang Li
- Department of Laboratory Medicine, School of Medicine, Chongqing University Three Gorges Hospital, Chongqing University, No.165, Xincheng Avenue, Wanzhou District, Chongqing, 404000, China
| | - Ting Zeng
- Department of Laboratory Medicine, School of Medicine, Chongqing University Three Gorges Hospital, Chongqing University, No.165, Xincheng Avenue, Wanzhou District, Chongqing, 404000, China
| | - Xiaohe Luo
- Department of Laboratory Medicine, School of Medicine, Chongqing University Three Gorges Hospital, Chongqing University, No.165, Xincheng Avenue, Wanzhou District, Chongqing, 404000, China.
- The Center of Clinical Research of Endocrinology and Metabolic Diseases in Chongqing, Chongqing University Three Gorges Hospital, Chongqing, 404100, China.
| |
Collapse
|
14
|
Fankhaenel M, Hashemi FSG, Mourao L, Lucas E, Hosawi MM, Skipp P, Morin X, Scheele CLGJ, Elias S. Annexin A1 is a polarity cue that directs mitotic spindle orientation during mammalian epithelial morphogenesis. Nat Commun 2023; 14:151. [PMID: 36631478 PMCID: PMC9834401 DOI: 10.1038/s41467-023-35881-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Oriented cell divisions are critical for the formation and maintenance of structured epithelia. Proper mitotic spindle orientation relies on polarised anchoring of force generators to the cell cortex by the evolutionarily conserved protein complex formed by the Gαi subunit of heterotrimeric G proteins, the Leucine-Glycine-Asparagine repeat protein (LGN) and the nuclear mitotic apparatus protein. However, the polarity cues that control cortical patterning of this ternary complex remain largely unknown in mammalian epithelia. Here we identify the membrane-associated protein Annexin A1 (ANXA1) as an interactor of LGN in mammary epithelial cells. Annexin A1 acts independently of Gαi to instruct the accumulation of LGN and nuclear mitotic apparatus protein at the lateral cortex to ensure cortical anchoring of Dynein-Dynactin and astral microtubules and thereby planar alignment of the mitotic spindle. Loss of Annexin A1 randomises mitotic spindle orientation, which in turn disrupts epithelial architecture and luminogenesis in three-dimensional cultures of primary mammary epithelial cells. Our findings establish Annexin A1 as an upstream cortical cue that regulates LGN to direct planar cell divisions during mammalian epithelial morphogenesis.
Collapse
Affiliation(s)
- Maria Fankhaenel
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Farahnaz S Golestan Hashemi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Larissa Mourao
- VIB-KULeuven Center for Cancer Biology, Herestraat 49, 3000, Leuven, Belgium
| | - Emily Lucas
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Manal M Hosawi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Centre for Proteomic Research, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xavier Morin
- Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| | | | - Salah Elias
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. .,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
15
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Ca 2+ and Annexins - Emerging Players for Sensing and Transferring Cholesterol and Phosphoinositides via Membrane Contact Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:393-438. [PMID: 36988890 DOI: 10.1007/978-3-031-21547-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Maintaining lipid composition diversity in membranes from different organelles is critical for numerous cellular processes. However, many lipids are synthesized in the endoplasmic reticulum (ER) and require delivery to other organelles. In this scenario, formation of membrane contact sites (MCS) between neighbouring organelles has emerged as a novel non-vesicular lipid transport mechanism. Dissecting the molecular composition of MCS identified phosphoinositides (PIs), cholesterol, scaffolding/tethering proteins as well as Ca2+ and Ca2+-binding proteins contributing to MCS functioning. Compelling evidence now exists for the shuttling of PIs and cholesterol across MCS, affecting their concentrations in distinct membrane domains and diverse roles in membrane trafficking. Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) not only controls endo-/exocytic membrane dynamics but is also critical in autophagy. Cholesterol is highly concentrated at the PM and enriched in recycling endosomes and Golgi membranes. MCS-mediated cholesterol transfer is intensely researched, identifying MCS dysfunction or altered MCS partnerships to correlate with de-regulated cellular cholesterol homeostasis and pathologies. Annexins, a conserved family of Ca2+-dependent phospholipid binding proteins, contribute to tethering and untethering events at MCS. In this chapter, we will discuss how Ca2+ homeostasis and annexins in the endocytic compartment affect the sensing and transfer of cholesterol and PIs across MCS.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel⋅lular, Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
16
|
Zhang H, Zhang Z, Guo T, Chen G, Liu G, Song Q, Li G, Xu F, Dong X, Yang F, Cao C, Zhong D, Li S, Li Y, Wang M, Li B, Yang L. Annexin A protein family: Focusing on the occurrence, progression and treatment of cancer. Front Cell Dev Biol 2023; 11:1141331. [PMID: 36936694 PMCID: PMC10020606 DOI: 10.3389/fcell.2023.1141331] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
The annexin A (ANXA) protein family is a well-known tissue-specific multigene family that encodes Ca2+ phospholipid-binding proteins. A considerable amount of literature is available on the abnormal expression of ANXA proteins in various malignant diseases, including cancer, atherosclerosis and diabetes. As critical regulatory molecules in cancer, ANXA proteins play an essential role in cancer progression, proliferation, invasion and metastasis. Recent studies about their structure, biological properties and functions in different types of cancers are briefly summarised in this review. We further discuss the use of ANXA as new class of targets in the clinical diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Huhu Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Zhe Zhang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Tingting Guo
- Health Science Center, Qingdao University, Qingdao, China
| | - Guang Chen
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Guoxiang Liu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Qinghang Song
- Health Science Center, Qingdao University, Qingdao, China
| | - Guichun Li
- Department of Traditional Chinese Medicine, The People’s Hospital of Zhaoyuan City, Yantai, China
| | - Fenghua Xu
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Xiaolei Dong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Fanghao Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Can Cao
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Shuang Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Ya Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Mengjun Wang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
| | - Bing Li
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Lina Yang, ; Bing Li,
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao, China
- *Correspondence: Lina Yang, ; Bing Li,
| |
Collapse
|
17
|
Matía A, Lorenzo MM, Romero-Estremera YC, Sánchez-Puig JM, Zaballos A, Blasco R. Identification of β2 microglobulin, the product of B2M gene, as a Host Factor for Vaccinia Virus Infection by Genome-Wide CRISPR genetic screens. PLoS Pathog 2022; 18:e1010800. [PMID: 36574441 PMCID: PMC9829182 DOI: 10.1371/journal.ppat.1010800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/09/2023] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Genome-wide genetic screens are powerful tools to identify genes that act as host factors of viruses. We have applied this technique to analyze the infection of HeLa cells by Vaccinia virus, in an attempt to find genes necessary for infection. Infection of cell populations harboring single gene inactivations resulted in no surviving cells, suggesting that no single gene knock-out was able to provide complete resistance to Vaccinia virus and thus allow cells to survive infection. In the absence of an absolute infection blockage, we explored if some gene inactivations could provide partial protection leading to a reduced probability of infection. Multiple experiments using modified screening procedures involving replication restricted viruses led to the identification of multiple genes whose inactivation potentially increase resistance to infection and therefore cell survival. As expected, significant gene hits were related to proteins known to act in virus entry, such as ITGB1 and AXL as well as genes belonging to their downstream related pathways. Additionally, we consistently found β2-microglobulin, encoded by the B2M gene, among the screening top hits, a novel finding that was further explored. Inactivation of B2M resulted in 54% and 91% reduced VV infection efficiency in HeLa and HAP1 cell lines respectively. In the absence of B2M, while virus binding to the cells was unaffected, virus internalization and early gene expression were significantly diminished. These results point to β2-microglobulin as a relevant factor in the Vaccinia virus entry process.
Collapse
Affiliation(s)
- Alejandro Matía
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Maria M. Lorenzo
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Yolimar C. Romero-Estremera
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Juana M. Sánchez-Puig
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
| | - Angel Zaballos
- Unidad de Genómica, Centro Nacional de Microbiología-ISCIII, Madrid, Spain
| | - Rafael Blasco
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria–Consejo Superior de Investigaciones Científicas (INIA–CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
18
|
Prieto-Fernández L, Menéndez ST, Otero-Rosales M, Montoro-Jiménez I, Hermida-Prado F, García-Pedrero JM, Álvarez-Teijeiro S. Pathobiological functions and clinical implications of annexin dysregulation in human cancers. Front Cell Dev Biol 2022; 10:1009908. [PMID: 36247003 PMCID: PMC9554710 DOI: 10.3389/fcell.2022.1009908] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Annexins are an extensive superfamily of structurally related calcium- and phospholipid-binding proteins, largely conserved and widely distributed among species. Twelve human annexins have been identified, referred to as Annexin A1-13 (A12 remains as of yet unassigned), whose genes are spread throughout the genome on eight different chromosomes. According to their distinct tissue distribution and subcellular localization, annexins have been functionally implicated in a variety of biological processes relevant to both physiological and pathological conditions. Dysregulation of annexin expression patterns and functions has been revealed as a common feature in multiple cancers, thereby emerging as potential biomarkers and molecular targets for clinical application. Nevertheless, translation of this knowledge to the clinic requires in-depth functional and mechanistic characterization of dysregulated annexins for each individual cancer type, since each protein exhibits varying expression levels and phenotypic specificity depending on the tumor types. This review specifically and thoroughly examines the current knowledge on annexin dysfunctions in carcinogenesis. Hence, available data on expression levels, mechanism of action and pathophysiological effects of Annexin A1-13 among different cancers will be dissected, also further discussing future perspectives for potential applications as biomarkers for early diagnosis, prognosis and molecular-targeted therapies. Special attention is devoted to head and neck cancers (HNC), a complex and heterogeneous group of aggressive malignancies, often lately diagnosed, with high mortality, and scarce therapeutic options.
Collapse
Affiliation(s)
- Llara Prieto-Fernández
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sofía T. Menéndez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - María Otero-Rosales
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Irene Montoro-Jiménez
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Hermida-Prado
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Juana M. García-Pedrero
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Saúl Álvarez-Teijeiro
- Department of Otolaryngology, Hospital Universitario Central de Asturias and Instituto de Investigación Sanitaria Del Principado de Asturias (ISPA), Instituto Universitario de Oncología Del Principado de Asturias (IUOPA), University of Oviedo, Oviedo, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
19
|
Ashraf APK, Gerke V. The resealing factor S100A11 interacts with annexins and extended synaptotagmin-1 in the course of plasma membrane wound repair. Front Cell Dev Biol 2022; 10:968164. [PMID: 36200035 PMCID: PMC9527316 DOI: 10.3389/fcell.2022.968164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
After damage, cells repair their plasma membrane in an active process that is driven by Ca2+ entering through the wound. This triggers a range of Ca2+-regulated events such as the translocation of different Ca2+-binding proteins to the wound site which likely function in the repair process. The translocated proteins include Ca2+/phospholipid binding proteins of the annexin (ANX) family and S100A11, an EF hand-type Ca2+-binding protein which can interact with ANX. The molecular mechanism by which S100A11 mediates PM wound repair remains poorly understood although it likely involves interactions with ANX. Here, using S100A11 knockout endothelial cells and expression of S100A11 mutants, we show that endothelial S100A11 is essential for efficient plasma membrane wound repair and engages in Ca2+-dependent interactions with ANXA1 and ANXA2 through its C-terminal extension (residues 93–105). ANXA2 but not ANXA1 translocation to the wound is substantially inhibited in the absence of S100A11; however, the repair defect in S100A11 knockout cells is rescued by ectopic expression of an ANX interaction-defective S100A11 mutant, suggesting an ANX-independent role of S100A11 in membrane wound repair. In search for other interaction partners that could mediate this action of S100A11 we identify extended synaptotagmin 1 (E-Syt1), a protein tether that regulates endoplasmic reticulum-plasma membrane contact sites. E-Syt1 binds to S100A11 in the presence of Ca2+ and depletion of E-Syt1 interferes with wound site recruitment of S100A11 and proper membrane resealing. Thus, the role of S100A11 in membrane wound repair does not exclusively dependent on ANX interactions and a Ca2+-regulated S100A11-E-Syt1 complex acts as a yet unrecognized component of the membrane resealing machinery.
Collapse
|
20
|
Lin L, Hu K. Annexin A2 and Kidney Diseases. Front Cell Dev Biol 2022; 10:974381. [PMID: 36120574 PMCID: PMC9478026 DOI: 10.3389/fcell.2022.974381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Annexin A2 is a Ca2+- and phospholipid-binding protein which is widely expressed in various types of cells and tissues. As a multifunctional molecule, annexin A2 is found to be involved in diverse cell functions and processes, such as cell exocytosis, endocytosis, migration and proliferation. As a receptor of plasminogen and tissue plasminogen activator, annexin A2 promotes plasmin generation and regulates the homeostasis of blood coagulation, fibrinolysis and matrix degradation. As an antigen expressed on cell membranes, annexin A2 initiates local inflammation and damage through binding to auto-antibodies. Annexin A2 also mediates multiple signaling pathways induced by various growth factors and oxidative stress. Aberrant expression of annexin A2 has been found in numerous kidney diseases. Annexin A2 has been shown to act as a co-receptor of integrin CD11b mediating NF-kB-dependent kidney inflammation, which is further amplified through annexin A2/NF-kB-triggered macrophage M2 to M1 phenotypic change. It also modulates podocyte cytoskeleton rearrangement through Cdc42 and Rac1/2/3 Rho pathway causing proteinuria. Thus, annexin A2 is implicated in the pathogenesis and progression of various kidney diseases. In this review, we focus on the current understanding of the role of annexin A2 in kidney diseases.
Collapse
Affiliation(s)
- Ling Lin
- *Correspondence: Ling Lin, ; Kebin Hu,
| | - Kebin Hu
- *Correspondence: Ling Lin, ; Kebin Hu,
| |
Collapse
|
21
|
Abstract
The transformation of a single fertilised egg into an adult human consisting of tens of trillions of highly diverse cell types is a marvel of biology. The expansion is largely achieved by cell duplication through the process of mitosis. Mitosis is essential for normal growth, development, and tissue repair and is one of the most tightly regulated biological processes studied. This regulation is designed to ensure accurate segregation of chromosomes into each new daughter cell since errors in this process can lead to genetic imbalances, aneuploidy, that can lead to diseases including cancer. Understanding how mitosis operates and the molecular mechanisms that ensure its fidelity are therefore not only of significant intellectual value but provide unique insights into disease pathology. The purpose of this review is to revisit historical evidence that mitosis can be influenced by the ubiquitous second messenger calcium and to discuss this in the context of new findings revealing exciting new information about its role in cell division.
Collapse
Affiliation(s)
- Charlotte Nugues
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Nordine Helassa
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lee P. Haynes
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
22
|
Enrich C, Lu A, Tebar F, Rentero C, Grewal T. Annexins Bridging the Gap: Novel Roles in Membrane Contact Site Formation. Front Cell Dev Biol 2022; 9:797949. [PMID: 35071237 PMCID: PMC8770259 DOI: 10.3389/fcell.2021.797949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/16/2021] [Indexed: 01/16/2023] Open
Abstract
Membrane contact sites (MCS) are specialized small areas of close apposition between two different organelles that have led researchers to reconsider the dogma of intercellular communication via vesicular trafficking. The latter is now being challenged by the discovery of lipid and ion transfer across MCS connecting adjacent organelles. These findings gave rise to a new concept that implicates cell compartments not to function as individual and isolated entities, but as a dynamic and regulated ensemble facilitating the trafficking of lipids, including cholesterol, and ions. Hence, MCS are now envisaged as metabolic platforms, crucial for cellular homeostasis. In this context, well-known as well as novel proteins were ascribed functions such as tethers, transporters, and scaffolds in MCS, or transient MCS companions with yet unknown functions. Intriguingly, we and others uncovered metabolic alterations in cell-based disease models that perturbed MCS size and numbers between coupled organelles such as endolysosomes, the endoplasmic reticulum, mitochondria, or lipid droplets. On the other hand, overexpression or deficiency of certain proteins in this narrow 10-30 nm membrane contact zone can enable MCS formation to either rescue compromised MCS function, or in certain disease settings trigger undesired metabolite transport. In this "Mini Review" we summarize recent findings regarding a subset of annexins and discuss their multiple roles to regulate MCS dynamics and functioning. Their contribution to novel pathways related to MCS biology will provide new insights relevant for a number of human diseases and offer opportunities to design innovative treatments in the future.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Albert Lu
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.,Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Toxoplasma gondii SAG1 targeting host cell S100A6 for parasite invasion and host immunity. iScience 2021; 24:103514. [PMID: 34950858 PMCID: PMC8671940 DOI: 10.1016/j.isci.2021.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022] Open
Abstract
Toxoplasma gondii surface antigen 1 (TgSAG1) is a surface protein of tachyzoites, which plays a crucial role in toxoplasma gondii infection and host cell immune regulation. However, how TgSAG1 regulates these processes remains elucidated. We utilized the biotin ligase -TurboID fusion with TgSAG1 to identify the host proteins interacting with TgSAG1, and identified that S100A6 was co-localized with TgSAG1 when T. gondii attached to the host cell. S100A6, either knocking down or blocking its functional epitopes resulted in inhibited parasites invasion. Meanwhile, S100A6 overexpression in host cells promoted T. gondii infection. We further verified that TgSAG1 could inhibit the interaction of host cell vimentin with S100A6 for cytoskeleton organization during T. gondii invasion. As an immunogen, TgSAG1 could promote the secretion of tumor necrosis factor alpha (TNF-α) through S100A6-Vimentin/PKCθ-NF-κB signaling pathway. In summary, our findings revealed a mechanism for how TgSAG1 functioned in parasitic invasion and host immune regulation. TgSAG1 interacts with host protein S100A6 then regulates T. gondii infection TgSAG1 could regulate binding vimentin with S100A6 during T. gondii infection TgSAG1 regulate TNFα secretion through S100A6-vimentin/PKCθ-NF-κB signaling pathway
Collapse
|
24
|
Bharadwaj A, Kempster E, Waisman DM. The Annexin A2/S100A10 Complex: The Mutualistic Symbiosis of Two Distinct Proteins. Biomolecules 2021; 11:biom11121849. [PMID: 34944495 PMCID: PMC8699243 DOI: 10.3390/biom11121849] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Mutualistic symbiosis refers to the symbiotic relationship between individuals of different species in which both individuals benefit from the association. S100A10, a member of the S100 family of Ca2+-binding proteins, exists as a tight dimer and binds two annexin A2 molecules. This association forms the annexin A2/S100A10 complex known as AIIt, and modifies the distinct functions of both proteins. Annexin A2 is a Ca2+-binding protein that binds F-actin, phospholipid, RNA, and specific polysaccharides such as heparin. S100A10 does not bind Ca2+, but binds tPA, plasminogen, certain plasma membrane ion channels, neurotransmitter receptors, and the structural scaffold protein, AHNAK. S100A10 relies on annexin A2 for its intracellular survival: in the absence of annexin A2, it is rapidly destroyed by ubiquitin-dependent and independent proteasomal degradation. Annexin A2 requires S100A10 to increase its affinity for Ca2+, facilitating its participation in Ca2+-dependent processes such as membrane binding. S100A10 binds tissue plasminogen activator and plasminogen, and promotes plasminogen activation to plasmin, which is a process stimulated by annexin A2. In contrast, annexin A2 acts as a plasmin reductase and facilitates the autoproteolytic destruction of plasmin. This review examines the relationship between annexin A2 and S100A10, and how their mutualistic symbiosis affects the function of both proteins.
Collapse
Affiliation(s)
- Alamelu Bharadwaj
- Department of Pathology, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS B3H 1X5, Canada; (A.B.); (E.K.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada
| | - Emma Kempster
- Department of Pathology, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS B3H 1X5, Canada; (A.B.); (E.K.)
| | - David Morton Waisman
- Department of Pathology, Faculty of Medicine, Dalhousie University, Sir Charles Tupper Medical Building, Halifax, NS B3H 1X5, Canada; (A.B.); (E.K.)
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 1X5, Canada
- Correspondence: ; Tel.: +1-(902)-494-1803; Fax: +1-(902)-494-1355
| |
Collapse
|
25
|
Nakao Y, Fukushima M, Mauer AS, Liao CY, Ferris A, Dasgupta D, Heppelmann CJ, Vanderboom PM, Saraswat M, Pandey A, Nair KS, Allen AM, Nakao K, Malhi H. A Comparative Proteomic Analysis of Extracellular Vesicles Associated With Lipotoxicity. Front Cell Dev Biol 2021; 9:735001. [PMID: 34805145 PMCID: PMC8600144 DOI: 10.3389/fcell.2021.735001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging mediators of intercellular communication in nonalcoholic steatohepatitis (NASH). Palmitate, a lipotoxic saturated fatty acid, activates hepatocellular endoplasmic reticulum stress, which has been demonstrated to be important in NASH pathogenesis, including in the release of EVs. We have previously demonstrated that the release of palmitate-stimulated EVs is dependent on the de novo synthesis of ceramide, which is trafficked by the ceramide transport protein, STARD11. The trafficking of ceramide is a critical step in the release of lipotoxic EVs, as cells deficient in STARD11 do not release palmitate-stimulated EVs. Here, we examined the hypothesis that protein cargoes are trafficked to lipotoxic EVs in a ceramide-dependent manner. We performed quantitative proteomic analysis of palmitate-stimulated EVs in control and STARD11 knockout hepatocyte cell lines. Proteomics was performed on EVs isolated by size exclusion chromatography, ultracentrifugation, and density gradient separation, and EV proteins were measured by mass spectrometry. We also performed human EV proteomics from a control and a NASH plasma sample, for comparative analyses with hepatocyte-derived lipotoxic EVs. Size exclusion chromatography yielded most unique EV proteins. Ceramide-dependent lipotoxic EVs contain damage-associated molecular patterns and adhesion molecules. Haptoglobin, vascular non-inflammatory molecule-1, and insulin-like growth factor-binding protein complex acid labile subunit were commonly detected in NASH and hepatocyte-derived ceramide-dependent EVs. Lipotoxic EV proteomics provides novel candidate proteins to investigate in NASH pathogenesis and as diagnostic biomarkers for hepatocyte-derived EVs in NASH patients.
Collapse
Affiliation(s)
- Yasuhiko Nakao
- Division of Gastroenterology and Hepatology, Rochester, MN, United States.,Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masanori Fukushima
- Division of Gastroenterology and Hepatology, Rochester, MN, United States.,Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Amy S Mauer
- Division of Gastroenterology and Hepatology, Rochester, MN, United States
| | - Chieh-Yu Liao
- Division of Gastroenterology and Hepatology, Rochester, MN, United States
| | - Anya Ferris
- Division of Gastroenterology and Hepatology, Rochester, MN, United States.,California Polytechnic State University, San Luis Obispo, CA, United States
| | - Debanjali Dasgupta
- Division of Gastroenterology and Hepatology, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Manipal, India
| | | | - Patrick M Vanderboom
- Mayo Clinic Medical Genome Facility-Proteomics Core, Manipal, India.,Mayo Endocrine Research Unit, Manipal, India
| | - Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Rochester, MN, United States.,Institute of Bioinformatics, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Rochester, MN, United States.,Institute of Bioinformatics, Bangalore, India.,Manipal Academy of Higher Education (MAHE), Manipal, India.,Center for Individualized Medicine, Rochester, MN, United States
| | | | - Alina M Allen
- Division of Gastroenterology and Hepatology, Rochester, MN, United States
| | - Kazuhiko Nakao
- Department of Gastroenterology and Hepatology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Rochester, MN, United States
| |
Collapse
|
26
|
Yan X, Kumar K, Miclette Lamarche R, Youssef H, Shaw GS, Marcotte I, DeWolf CE, Warschawski DE, Boisselier E. Interactions between the Cell Membrane Repair Protein S100A10 and Phospholipid Monolayers and Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9652-9663. [PMID: 34339205 DOI: 10.1021/acs.langmuir.1c00342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Protein S100A10 participates in different cellular mechanisms and has different functions, especially at the membrane. Among those, it forms a ternary complex with annexin A2 and the C-terminal of AHNAK and then joins the dysferlin membrane repair complex. Together, they act as a platform enabling membrane repair. Both AHNAK and annexin A2 have been shown to have membrane binding properties. However, the membrane binding abilities of S100A10 are not clear. In this paper, we aimed to study the membrane binding of S100A10 in order to better understand its role in the cell membrane repair process. S100A10 was overexpressed by E. coli and purified by affinity chromatography. Using a Langmuir monolayer as a model membrane, the binding parameters and ellipsometric angles of the purified S100A10 were measured using surface tensiometry and ellipsometry, respectively. Phosphorus-31 solid-state nuclear magnetic resonance spectroscopy was also used to study the interaction of S100A10 with lipid bilayers. In the presence of a lipid monolayer, S100A10 preferentially interacts with unsaturated phospholipids. In addition, its behavior in the presence of a bilayer model suggests that S100A10 interacts more with the negatively charged polar head groups than the zwitterionic ones. This work offers new insights on the binding of S100A10 to different phospholipids and advances our understanding of the parameters influencing its membrane behavior.
Collapse
Affiliation(s)
- Xiaolin Yan
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec City, QC, G1S 4L8 Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, CHU de Québec, Quebec City, QC, G1S 4L8 Canada
| | - Kiran Kumar
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
| | - Renaud Miclette Lamarche
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Hala Youssef
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Gary S Shaw
- Departement of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, N6A 5C1 Canada
| | - Isabelle Marcotte
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
| | - Christine E DeWolf
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, Concordia University, Montreal, QC, H4B 1R6 Canada
| | - Dror E Warschawski
- Departement of Chemistry, Faculty of Sciences, Université du Québec à Montréal, Montreal, QC, H2V 0B3 Canada
- Laboratoire des Biomolécules, LBM, CNRS UMR 7203, Sorbonne Université, École Normale Supérieure, PSL University, Paris, 75 005 France
| | - Elodie Boisselier
- Department of Ophthalmology, Faculty of Medicine, Université Laval, Quebec City, QC, G1S 4L8 Canada
- CUO-Recherche, Centre de Recherche du CHU de Québec, Hôpital du Saint-Sacrement, CHU de Québec, Quebec City, QC, G1S 4L8 Canada
| |
Collapse
|
27
|
Annexins and Membrane Repair Dysfunctions in Muscular Dystrophies. Int J Mol Sci 2021; 22:ijms22105276. [PMID: 34067866 PMCID: PMC8155887 DOI: 10.3390/ijms22105276] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
Muscular dystrophies constitute a group of genetic disorders that cause weakness and progressive loss of skeletal muscle mass. Among them, Miyoshi muscular dystrophy 1 (MMD1), limb girdle muscular dystrophy type R2 (LGMDR2/2B), and LGMDR12 (2L) are characterized by mutation in gene encoding key membrane-repair protein, which leads to severe dysfunctions in sarcolemma repair. Cell membrane disruption is a physiological event induced by mechanical stress, such as muscle contraction and stretching. Like many eukaryotic cells, muscle fibers possess a protein machinery ensuring fast resealing of damaged plasma membrane. Members of the annexins A (ANXA) family belong to this protein machinery. ANXA are small soluble proteins, twelve in number in humans, which share the property of binding to membranes exposing negatively-charged phospholipids in the presence of calcium (Ca2+). Many ANXA have been reported to participate in membrane repair of varied cell types and species, including human skeletal muscle cells in which they may play a collective role in protection and repair of the sarcolemma. Here, we discuss the participation of ANXA in membrane repair of healthy skeletal muscle cells and how dysregulation of ANXA expression may impact the clinical severity of muscular dystrophies.
Collapse
|
28
|
Berg Klenow M, Iversen C, Wendelboe Lund F, Mularski A, Busk Heitmann AS, Dias C, Nylandsted J, Simonsen AC. Annexins A1 and A2 Accumulate and Are Immobilized at Cross-Linked Membrane-Membrane Interfaces. Biochemistry 2021; 60:1248-1259. [PMID: 33861586 DOI: 10.1021/acs.biochem.1c00126] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rapid membrane repair is required to ensure cell survival after rupture of the plasma membrane. The annexin family of proteins is involved in plasma membrane repair (PMR) and is activated by the influx of Ca2+ from the extracellular medium at the site of injury. Annexins A1 and A2 (ANXA1 and ANXA2, respectively) are structurally similar and bind to negatively charged phosphatidylserine (PS) to induce membrane cross-linking and to promote fusion, which are both essential processes that occur during membrane repair. The degree of annexin accumulation and the annexin mobility at cross-linked membranes are important aspects of ANXA1 and ANXA2 function in repair. Here, we quantify ANXA1- and ANXA2-induced membrane cross-linking between giant unilamellar vesicles (GUVs). Time-lapse measurements show that ANXA1 and ANXA2 can induce membrane cross-linking on a time scale compatible with PMR. Cross-linked membrane-membrane interfaces between the GUVs persist in time without fusion, and quantification of confocal microscopy images demonstrates that ANXA1, ANXA2, and, to a lesser extent, PS lipids accumulate at the double membrane interface. Fluorescence recovery after photobleaching shows that the annexins are fully immobilized at the double membrane interface, whereas PS lipids display a 75% decrease in mobility. In addition, the complete immobilization of annexins between two membranes indicates a high degree of network formation between annexins, suggesting that membrane cross-linking is mainly driven by protein-protein interactions.
Collapse
Affiliation(s)
- Martin Berg Klenow
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Christoffer Iversen
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Frederik Wendelboe Lund
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Anna Mularski
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| | - Anne Sofie Busk Heitmann
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Catarina Dias
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
| | - Jesper Nylandsted
- Membrane Integrity, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen Ø, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3C, DK-2200 Copenhagen N, Denmark
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark (SDU), Campusvej 55, 5230 Odense M, Denmark
| |
Collapse
|
29
|
Ashraf APK, Gerke V. Plasma membrane wound repair is characterized by extensive membrane lipid and protein rearrangements in vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:118991. [PMID: 33667528 DOI: 10.1016/j.bbamcr.2021.118991] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 11/28/2022]
Abstract
Vascular endothelial cells are subject to mechanical stress resulting from blood flow and interactions with leukocytes. Stress occurs at the apical, vessel-facing cell surface and leads to membrane ruptures that have to be resealed to ensure cell survival. To mimic this process, we developed a laser ablation protocol selectively inducing wounds in the apical plasma membrane of endothelial cells. We show that Ca2+-dependent membrane resealing is initiated following this wounding protocol and that the process is accompanied by substantial membrane lipid dynamics at the wound site. Specifically, phosphatidylinositol (4,5)-bisphosphate, phosphatidylserine and phosphatidic acid rapidly accumulate at membrane wounds forming potential interaction platforms for Ca2+/phospholipid binding proteins of the annexin (Anx) family that are also recruited within seconds after wounding. Depletion of one annexin, AnxA2, and its putative binding partner S100A11 interferes with membrane resealing suggesting that Ca2+-dependent annexin-phospholipid interactions are required for efficient membrane wound repair in endothelial cells.
Collapse
Affiliation(s)
- Arsila P K Ashraf
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Strasse 56, 48149, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Von-Esmarch-Strasse 56, 48149, Münster, Germany.
| |
Collapse
|
30
|
Weisz J, Uversky VN. Zooming into the Dark Side of Human Annexin-S100 Complexes: Dynamic Alliance of Flexible Partners. Int J Mol Sci 2020; 21:ijms21165879. [PMID: 32824294 PMCID: PMC7461550 DOI: 10.3390/ijms21165879] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023] Open
Abstract
Annexins and S100 proteins form two large families of Ca2+-binding proteins. They are quite different both structurally and functionally, with S100 proteins being small (10–12 kDa) acidic regulatory proteins from the EF-hand superfamily of Ca2+-binding proteins, and with annexins being at least three-fold larger (329 ± 12 versus 98 ± 7 residues) and using non-EF-hand-based mechanism for calcium binding. Members of both families have multiple biological roles, being able to bind to a large cohort of partners and possessing a multitude of functions. Furthermore, annexins and S100 proteins can interact with each other in either a Ca2+-dependent or Ca2+-independent manner, forming functional annexin-S100 complexes. Such functional polymorphism and binding indiscrimination are rather unexpected, since structural information is available for many annexins and S100 proteins, which therefore are considered as ordered proteins that should follow the classical “one protein–one structure–one function” model. On the other hand, the ability to be engaged in a wide range of interactions with multiple, often unrelated, binding partners and possess multiple functions represent characteristic features of intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs); i.e., functional proteins or protein regions lacking unique tertiary structures. The aim of this paper is to provide an overview of the functional roles of human annexins and S100 proteins, and to use the protein intrinsic disorder perspective to explain their exceptional multifunctionality and binding promiscuity.
Collapse
Affiliation(s)
- Judith Weisz
- Departments of Gynecology and Pathology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA;
| | - Vladimir N. Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, 142290 Moscow, Russia
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-974-5816 (ext. 123); Fax: +1-813-974-7357
| |
Collapse
|
31
|
Meneses-Salas E, García-Melero A, Kanerva K, Blanco-Muñoz P, Morales-Paytuvi F, Bonjoch J, Casas J, Egert A, Beevi SS, Jose J, Llorente-Cortés V, Rye KA, Heeren J, Lu A, Pol A, Tebar F, Ikonen E, Grewal T, Enrich C, Rentero C. Annexin A6 modulates TBC1D15/Rab7/StARD3 axis to control endosomal cholesterol export in NPC1 cells. Cell Mol Life Sci 2020; 77:2839-2857. [PMID: 31664461 PMCID: PMC7326902 DOI: 10.1007/s00018-019-03330-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 01/23/2023]
Abstract
Cholesterol accumulation in late endosomes is a prevailing phenotype of Niemann-Pick type C1 (NPC1) mutant cells. Likewise, annexin A6 (AnxA6) overexpression induces a phenotype reminiscent of NPC1 mutant cells. Here, we demonstrate that this cellular cholesterol imbalance is due to AnxA6 promoting Rab7 inactivation via TBC1D15, a Rab7-GAP. In NPC1 mutant cells, AnxA6 depletion and eventual Rab7 activation was associated with peripheral distribution and increased mobility of late endosomes. This was accompanied by an enhanced lipid accumulation in lipid droplets in an acyl-CoA:cholesterol acyltransferase (ACAT)-dependent manner. Moreover, in AnxA6-deficient NPC1 mutant cells, Rab7-mediated rescue of late endosome-cholesterol export required the StAR-related lipid transfer domain-3 (StARD3) protein. Electron microscopy revealed a significant increase of membrane contact sites (MCS) between late endosomes and ER in NPC1 mutant cells lacking AnxA6, suggesting late endosome-cholesterol transfer to the ER via Rab7 and StARD3-dependent MCS formation. This study identifies AnxA6 as a novel gatekeeper that controls cellular distribution of late endosome-cholesterol via regulation of a Rab7-GAP and MCS formation.
Collapse
Affiliation(s)
- Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Ana García-Melero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Kristiina Kanerva
- Faculty of Medicine, Anatomy, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Frederic Morales-Paytuvi
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Júlia Bonjoch
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biological Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Antonia Egert
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Syed S Beevi
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jaimy Jose
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia
| | - Vicenta Llorente-Cortés
- Lipids and Cardiovascular Pathology Group, Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
- CIBERCV, Institute of Health Carlos III, Madrid, Spain
- Biomedical Research Institute of Barcelona-CSIC, Barcelona, Spain
| | - Kerry-Anne Rye
- School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Joerg Heeren
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, USA
| | - Albert Pol
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avaçats (ICREA), 08010, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain
| | - Elina Ikonen
- Faculty of Medicine, Anatomy, University of Helsinki, 00014, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, 00290, Helsinki, Finland
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036, Barcelona, Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036, Barcelona, Spain.
| |
Collapse
|
32
|
Simonsen AC, Boye TL, Nylandsted J. Annexins Bend Wound Edges during Plasma Membrane Repair. Curr Med Chem 2020; 27:3600-3610. [DOI: 10.2174/0929867326666190121121143] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/23/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
The plasma membrane of eukaryotic cells defines the boundary to the extracellular environment
and, thus provides essential protection from the surroundings. Consequently, disruptions to
the cell membrane triggered by excessive mechanical or biochemical stresses pose fatal threats to
cells, which they need to cope with to survive. Eukaryotic cells cope with these threats by activating
their plasma membrane repair system, which is shared by other cellular functions, and includes
mechanisms to remove damaged membrane by internalization (endocytosis), shedding, reorganization
of cytoskeleton and membrane fusion events to reseal the membrane. Members of the
annexin protein family, which are characterized by their Ca2+-dependent binding to anionic phospholipids,
are important regulators of plasma membrane repair. Recent studies based on cellular and
biophysical membrane models show that they have more distinct functions in the repair response
than previously assumed by regulating membrane curvature and excision of damaged membrane. In
cells, plasma membrane injury and flux of Ca2+ ions into the cytoplasm trigger recruitment of annexins
including annexin A4 and A6 to the membrane wound edges. Here, they induce curvature and
constriction force, which help pull the wound edges together for eventual fusion. Cancer cells are
dependent on efficient plasma membrane repair to counteract frequent stress-induced membrane
injuries, which opens novel avenues to target cancer cells through their membrane repair system.
Here, we discuss mechanisms of single cell wound healing implicating annexin proteins and membrane
curvature.
Collapse
Affiliation(s)
- Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK- 5230 Odense M, Denmark
| | - Theresa Louise Boye
- Membrane Integrity Group, Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK- 2100 Copenhagen, Denmark
| | - Jesper Nylandsted
- Membrane Integrity Group, Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK- 2100 Copenhagen, Denmark
| |
Collapse
|
33
|
Yuzhalin AE, Lim SY, Gordon-Weeks AN, Fischer R, Kessler BM, Yu D, Muschel RJ. Proteomics analysis of the matrisome from MC38 experimental mouse liver metastases. Am J Physiol Gastrointest Liver Physiol 2019; 317:G625-G639. [PMID: 31545917 PMCID: PMC6879896 DOI: 10.1152/ajpgi.00014.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/31/2023]
Abstract
Dissemination of primary tumors to distant anatomical sites has a substantial negative impact on patient prognosis. The liver is a common site for metastases from colorectal cancer, and patients with hepatic metastases have generally much shorter survival, raising a need to develop and implement novel strategies for targeting metastatic disease. The extracellular matrix (ECM) is a meshwork of highly crosslinked, insoluble high-molecular-mass proteins maintaining tissue integrity and establishing cell-cell interactions. Emerging evidence identifies the importance of the ECM in cancer cell migration, invasion, intravasation, and metastasis. Here, we isolated the ECM from MC38 mouse liver metastases using our optimized method of mild detergent solubilization followed by biochemical enrichment. The matrices were subjected to label-free quantitative mass spectrometry analysis, revealing proteins highly abundant in the metastatic matrisome. The resulting list of proteins upregulated in the ECM significantly predicted survival in patients with colorectal cancer but not other cancers with strong involvement of the ECM component. One of the proteins upregulated in liver metastatic ECM, annexin A1, was not previously studied in the context of cancer-associated matrisome. Here, we show that annexin A1 was markedly upregulated in colon cancer cell lines compared with cancer cells of other origin and also over-represented in human primary colorectal lesions, as well as hepatic metastases, compared with their adjacent healthy tissue counterparts. In conclusion, our study provides a comprehensive ECM characterization of MC38 experimental liver metastases and proposes annexin A1 as a putative target for this disease.NEW & NOTEWORTHY Here, the authors provide an extensive proteomics characterization of murine colorectal cancer liver metastasis matrisome (the ensemble of all extracellular matrix molecules). The findings presented in this study may enable identification of therapeutic targets or biomarkers of hepatic metastases.
Collapse
Affiliation(s)
- Arseniy E Yuzhalin
- Cancer Research United Kingdom/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
- Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russia
| | - Su Yin Lim
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Alex N Gordon-Weeks
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Roman Fischer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ruth J Muschel
- Cancer Research United Kingdom/Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Koerdt SN, Ashraf APK, Gerke V. Annexins and plasma membrane repair. CURRENT TOPICS IN MEMBRANES 2019; 84:43-65. [PMID: 31610865 DOI: 10.1016/bs.ctm.2019.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plasma membrane wound repair is a cell-autonomous process that is triggered by Ca2+ entering through the site of injury and involves membrane resealing, i.e., re-establishment of a continuous plasma membrane, as well as remodeling of the cortical actin cytoskeleton. Among other things, the injury-induced Ca2+ elevation initiates the wound site recruitment of Ca2+-regulated proteins that function in the course of repair. Annexins are a class of such Ca2+-regulated proteins. They associate with acidic phospholipids of cellular membranes in their Ca2+ bound conformation with Ca2+ sensitivities ranging from the low to high micromolar range depending on the respective annexin protein. Annexins accumulate at sites of plasma membrane injury in a temporally controlled manner and are thought to function by controlling membrane rearrangements at the wound site, most likely in conjunction with other repair proteins such as dysferlin. Their role in membrane repair, which has been evidenced in several model systems, will be discussed in this chapter.
Collapse
Affiliation(s)
- Sophia N Koerdt
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Arsila P K Ashraf
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, Centre for Molecular Biology of Inflammation, University of Münster, Münster, Germany.
| |
Collapse
|
35
|
Sønder SL, Boye TL, Tölle R, Dengjel J, Maeda K, Jäättelä M, Simonsen AC, Jaiswal JK, Nylandsted J. Annexin A7 is required for ESCRT III-mediated plasma membrane repair. Sci Rep 2019; 9:6726. [PMID: 31040365 PMCID: PMC6491720 DOI: 10.1038/s41598-019-43143-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
The plasma membrane of eukaryotic cells forms the essential barrier to the extracellular environment, and thus plasma membrane disruptions pose a fatal threat to cells. Here, using invasive breast cancer cells we show that the Ca2+ - and phospholipid-binding protein annexin A7 is part of the plasma membrane repair response by enabling assembly of the endosomal sorting complex required for transport (ESCRT) III. Following injury to the plasma membrane and Ca2+ flux into the cytoplasm, annexin A7 forms a complex with apoptosis linked gene-2 (ALG-2) to facilitate proper recruitment and binding of ALG-2 and ALG-2-interacting protein X (ALIX) to the damaged membrane. ALG-2 and ALIX assemble the ESCRT III complex, which helps excise and shed the damaged portion of the plasma membrane during wound healing. Our results reveal a novel function of annexin A7 – enabling plasma membrane repair by regulating ESCRT III-mediated shedding of injured plasma membrane.
Collapse
Affiliation(s)
- Stine Lauritzen Sønder
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Theresa Louise Boye
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Regine Tölle
- Department of Dermatology, Medical Center, University of Freiburg, 79104, Freiburg, Germany.,Department of Biology, University of Fribourg Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Jörn Dengjel
- Department of Dermatology, Medical Center, University of Freiburg, 79104, Freiburg, Germany.,Department of Biology, University of Fribourg Chemin du Musée 10, 1700, Fribourg, Switzerland
| | - Kenji Maeda
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark
| | - Marja Jäättelä
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark.,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark
| | - Adam Cohen Simonsen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Jyoti K Jaiswal
- Children's National Health System, Center for Genetic Medicine Research, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA.,Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, 111 Michigan Avenue, NW, Washington, DC, 20010-2970, USA
| | - Jesper Nylandsted
- Unit for Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Strandboulevarden 49, DK-2100, Copenhagen, Denmark. .,Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
36
|
Luo J, Jiang LY, Yang H, Song BL. Intracellular Cholesterol Transport by Sterol Transfer Proteins at Membrane Contact Sites. Trends Biochem Sci 2019; 44:273-292. [DOI: 10.1016/j.tibs.2018.10.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/06/2018] [Accepted: 10/10/2018] [Indexed: 12/20/2022]
|
37
|
Spratt DE, Barber KR, Marlatt NM, Ngo V, Macklin JA, Xiao Y, Konermann L, Duennwald ML, Shaw GS. A subset of calcium-binding S100 proteins show preferential heterodimerization. FEBS J 2019; 286:1859-1876. [PMID: 30719832 DOI: 10.1111/febs.14775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/19/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022]
Abstract
The assembly of proteins into dimers and oligomers is a necessary step for the proper function of transcription factors, muscle proteins, and proteases. In uncontrolled states, oligomerization can also contribute to illnesses such as Alzheimer's disease. The S100 protein family is a group of dimeric proteins that have important roles in enzyme regulation, cell membrane repair, and cell growth. Most S100 proteins have been examined in their homodimeric state, yet some of these important proteins are found in similar tissues implying that heterodimeric molecules can also be formed from the combination of two different S100 members. In this work, we have established co-expression methods in order to identify and quantify the distribution of homo- and heterodimers for four specific pairs of S100 proteins in their calcium-free states. The split GFP trap methodology was used in combination with other GFP variants to simultaneously quantify homo- and heterodimeric S100 proteins in vitro and in living cells. For the specific S100 proteins examined, NMR, mass spectrometry, and GFP trap experiments consistently show that S100A1:S100B, S100A1:S100P, and S100A11:S100B heterodimers are the predominant species formed compared to their corresponding homodimers. We expect the tools developed here will help establish the roles of S100 heterodimeric proteins and identify how heterodimerization might alter the specificity for S100 protein action in cells.
Collapse
Affiliation(s)
- Donald E Spratt
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Kathryn R Barber
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Nicole M Marlatt
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Vy Ngo
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Canada
| | - Jillian A Macklin
- Department of Biochemistry, The University of Western Ontario, London, Canada
| | - Yiming Xiao
- Department of Chemistry, The University of Western Ontario, London, Canada
| | - Lars Konermann
- Department of Biochemistry, The University of Western Ontario, London, Canada.,Department of Chemistry, The University of Western Ontario, London, Canada
| | - Martin L Duennwald
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Canada
| | - Gary S Shaw
- Department of Biochemistry, The University of Western Ontario, London, Canada
| |
Collapse
|
38
|
Kollau A, Gesslbauer B, Russwurm M, Koesling D, Gorren ACF, Schrammel A, Mayer B. Modulation of nitric oxide-stimulated soluble guanylyl cyclase activity by cytoskeleton-associated proteins in vascular smooth muscle. Biochem Pharmacol 2018; 156:168-176. [PMID: 30099008 DOI: 10.1016/j.bcp.2018.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/08/2018] [Indexed: 12/18/2022]
Abstract
Soluble guanylyl cyclase (sGC, EC 4.6.1.2) is a key enzyme in the regulation of vascular tone. In view of the therapeutic interest of the NO/cGMP pathway, drugs were developed that either increase the NO sensitivity of the enzyme or activate heme-free apo-sGC. However, modulation of sGC activity by endogenous agents is poorly understood. In the present study we show that the maximal activity of NO-stimulated purified sGC is significantly increased by cytosolic preparations of porcine coronary arteries. Purification of the active principle by several chromatographic steps resulted in a protein mixture consisting of 100, 70, and 40 kDa bands on SDS polyacrylamide gel electrophoresis. The respective proteins were identified by LC-MS/MS as gelsolin, annexin A6, and actin, respectively. Further purification resulted in loss of activity, indicating an interaction of sGC with a protein complex rather than a single protein. The partially purified preparation had no effect on basal sGC activity or enzyme activation by the heme mimetic BAY 60-2770, suggesting a specific effect on the conformation of the NO-bound heterodimeric holoenzyme. Since the three proteins identified are all related to contractile elements of smooth muscle, our data suggest that regulation of vascular tone involves a modulatory interaction of sGC with the cytoskeleton.
Collapse
Affiliation(s)
- Alexander Kollau
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Graz, Austria.
| | - Bernd Gesslbauer
- Institute of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, University of Graz, Graz, Austria
| | - Michael Russwurm
- Department of Pharmacology and Toxicology, Ruhr University Bochum, Bochum, Germany
| | - Doris Koesling
- Department of Pharmacology and Toxicology, Ruhr University Bochum, Bochum, Germany
| | - Antonius C F Gorren
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Astrid Schrammel
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Bernd Mayer
- Institute of Pharmaceutical Sciences, Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| |
Collapse
|
39
|
Taylor JR, Fernandez DJ, Thornton SM, Skeate JG, Lühen KP, Da Silva DM, Langen R, Kast WM. Heterotetrameric annexin A2/S100A10 (A2t) is essential for oncogenic human papillomavirus trafficking and capsid disassembly, and protects virions from lysosomal degradation. Sci Rep 2018; 8:11642. [PMID: 30076379 PMCID: PMC6076308 DOI: 10.1038/s41598-018-30051-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Human papillomavirus (HPV) entry into epithelial cells is independent of canonical endocytic pathways. Upon interaction with host cells, HPV establishes infection by traversing through an endocytic pathway that is clathrin- and caveolin-independent, but dependent on the annexin A2/S100A10 heterotetramer (A2t). We examined the contribution of monomeric annexin A2 (AnxA2) vs. A2t in HPV infection and endocytosis, and further characterized the role of these molecules in protein trafficking. We specifically show that cell surface A2t is not required for HPV attachment, and in the absence of A2t virion internalization remains clathrin-independent. Without A2t, viral progression from early endosomes to multivesicular endosomes is significantly inhibited, capsid uncoating is dramatically reduced, and lysosomal degradation of HPV is accelerated. Furthermore, we present evidence that AnxA2 forms a complex with CD63, a known mediator of HPV trafficking. Overall, the observed reduction in infection is less significant in the absence of S100A10 alone compared to full A2t, supporting an independent role for monomeric AnxA2. More broadly, we show that successful infection by multiple oncogenic HPV types is dependent on A2t. These findings suggest that A2t is a central mediator of high-risk HPV intracellular trafficking post-entry and pre-viral uncoating.
Collapse
Affiliation(s)
- Julia R Taylor
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Daniel J Fernandez
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Shantaé M Thornton
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Joseph G Skeate
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA
| | - Kim P Lühen
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Diane M Da Silva
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Ralf Langen
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA, USA
| | - W Martin Kast
- Department of Molecular Microbiology & Immunology, University of Southern California, Los Angeles, CA, USA.
- Department of Obstetrics & Gynecology, University of Southern California, Los Angeles, CA, USA.
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Romero JJ, Liebig BE, Broeckling CD, Prenni JE, Hansen TR. Pregnancy-induced changes in metabolome and proteome in ovine uterine flushings. Biol Reprod 2018; 97:273-287. [PMID: 29044433 DOI: 10.1093/biolre/iox078] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 07/15/2017] [Indexed: 12/25/2022] Open
Abstract
Mass spectrometry (MS) approaches were used herein to identify metabolites and proteins in uterine flushings (UF) that may contribute to nourishing the conceptus. Ovine uteri collected on Day 12 of the estrous cycle (n = 5 ewes exposed to vasectomized ram) or Days 12 (n = 4), 14 (n = 5), or 16 (n = 5) of pregnancy (bred with fertile ram) were flushed using buffered saline. Metabolites were extracted using 80% methanol and profiled using ultraperformance liquid chromatography (LC) tandem mass spectrometry. The proteome was examined by digestion with trypsin, followed by the analysis of peptides with LC-MS/MS. Metabolite profiling detected 8510 molecular features of which 9 were detected only in UF from Day 14-16 pregnant ewes that function in fatty acid transport (carnitines), hormone synthesis (androstenedione like), and availability of nutrients (valine). Proteome analysis detected 783 proteins present by Days 14-16 of pregnancy in UF, 7 of which are as follows: annexin (ANX) A1, A2, and A5; calcium-binding protein (S100A11); profilin 1; trophoblast kunitz domain protein 1 (TKDP); and interferon tau (IFNT). These proteins function in endocytosis, exocytosis, calcium signaling, and inhibition of prostaglandins (annexins and S100A11); protecting against maternal proteases (TKDP); remodeling cytoskeleton (profilin 1); and altering uterine release of prostaglandin F2 alpha as well as inducing IFNT-stimulated genes in the endometrium and the corpus luteum (IFNT). Identifying metabolites and proteins produced by the uterus and conceptus advances our understanding of embryo/maternal signaling and provides insights into possible the causes of reproductive failure.
Collapse
Affiliation(s)
- Jared J Romero
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Bethany E Liebig
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Corey D Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, USA.,Department of Horticulture, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica E Prenni
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado, USA.,Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
41
|
Xia Q, Li X, Zhou H, Zheng L, Shi J. S100A11 protects against neuronal cell apoptosis induced by cerebral ischemia via inhibiting the nuclear translocation of annexin A1. Cell Death Dis 2018; 9:657. [PMID: 29844306 PMCID: PMC5974363 DOI: 10.1038/s41419-018-0686-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/17/2022]
Abstract
The subcellular location of annexin A1 (ANXA1) determines the ultimate fate of neurons after ischemic stroke. ANXA1 nuclear translocation is involved in neuronal apoptosis after cerebral ischemia, and extracellular ANXA1 is also associated with regulation of inflammatory responses. As the factors and mechanism that influence ANXA1 subcellular translocation remain unclear, studies aiming to determine and clarify the role of ANXA1 as a cell fate ‘regulator’ within cells are critically needed. In this study, we found that intracerebroventricular injection of the recombinant adenovirus vector Ad-S100A11 (carrying S100A11) strongly improved cognitive function and induced robust neuroprotective effects after ischemic stroke in vivo. Furthermore, upregulation of S100A11 protected against neuronal apoptosis induced by oxygen-glucose deprivation and reoxygenation (OGD/R) in vitro. Surprisingly, S100A11 overexpression markedly decreased ANXA1 nuclear translocation and subsequently alleviated OGD/R-induced neuronal apoptosis. Notably, S100A11 exerted its neuroprotective effect by directly binding ANXA1. Importantly, S100A11 directly interacted with ANXA1 through the nuclear translocation signal (NTS) of ANXA1, which is essential for ANXA1 to import into the nucleus. Consistent with our previous studies, ANXA1 nuclear translocation after OGD/R promoted p53 transcriptional activity, induced mRNA expression of the pro-apoptotic Bid gene, and activated the caspase-3 apoptotic pathway, which was almost completely reversed by S100A11 overexpression. Thus, S100A11 protects against cell apoptosis by inhibiting OGD/R-induced ANXA1 nuclear translocation. This study provides a novel mechanism whereby S100A11 protects against neuronal cells apoptosis, suggesting the potential for a previously unidentified treatment strategy in minimizing apoptosis after ischemic stroke.
Collapse
Affiliation(s)
- Qian Xia
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xing Li
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Huijuan Zhou
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lu Zheng
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China.,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Shi
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China. .,Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan, People's Republic of China. .,Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
| |
Collapse
|
42
|
Rentero C, Blanco-Muñoz P, Meneses-Salas E, Grewal T, Enrich C. Annexins-Coordinators of Cholesterol Homeostasis in Endocytic Pathways. Int J Mol Sci 2018; 19:E1444. [PMID: 29757220 PMCID: PMC5983649 DOI: 10.3390/ijms19051444] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 02/07/2023] Open
Abstract
The spatiotemporal regulation of calcium (Ca2+) storage in late endosomes (LE) and lysosomes (Lys) is increasingly recognized to influence a variety of membrane trafficking events, including endocytosis, exocytosis, and autophagy. Alterations in Ca2+ homeostasis within the LE/Lys compartment are implicated in human diseases, ranging from lysosomal storage diseases (LSDs) to neurodegeneration and cancer, and they correlate with changes in the membrane binding behaviour of Ca2+-binding proteins. This also includes Annexins (AnxA), which is a family of Ca2+-binding proteins participating in membrane traffic and tethering, microdomain organization, cytoskeleton interactions, Ca2+ signalling, and LE/Lys positioning. Although our knowledge regarding the way Annexins contribute to LE/Lys functions is still incomplete, recruitment of Annexins to LE/Lys is greatly influenced by the availability of Annexin bindings sites, including acidic phospholipids, such as phosphatidylserine (PS) and phosphatidic acid (PA), cholesterol, and phosphatidylinositol (4,5)-bisphosphate (PIP2). Moreover, the cytosolic portion of LE/Lys membrane proteins may also, directly or indirectly, determine the recruitment of Annexins to LE. Strikingly, within LE/Lys, AnxA1, A2, A6, and A8 differentially contribute to cholesterol transport along the endocytic route, in particular, cholesterol transfer between LE and other compartments, positioning Annexins at the centre of major pathways mediating cellular cholesterol homeostasis. Underlying mechanisms include the formation of membrane contact sites (MCS) and intraluminal vesicles (ILV), as well as the modulation of LE-cholesterol transporter activity. In this review, we will summarize the current understanding how Annexins contribute to influence LE/Lys membrane transport and associated functions.
Collapse
Affiliation(s)
- Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Patricia Blanco-Muñoz
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia.
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona. 08036 Barcelona. Spain.
- Centre de Recerca Biomèdica CELLEX, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
| |
Collapse
|
43
|
Harbaoui M, Ben Saad R, Ben Halima N, Choura M, Brini F. Structural and functional characterisation of two novel durum wheat annexin genes in response to abiotic stress. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:542-552. [PMID: 32290993 DOI: 10.1071/fp17212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/12/2017] [Indexed: 05/14/2023]
Abstract
Abiotic stress results in massive loss of crop productivity throughout the world. Understanding the plant gene regulatory mechanisms involved in stress responses is very important. Annexins are a conserved multigene family of Ca-dependent, phospholipid-binding proteins with suggested functions in response to environmental stresses and signalling during plant growth and development. Annexins function to counteract oxidative stress, maintain cell redox homeostasis and enhance drought tolerance. A full-length cDNA of two genes (TdAnn6 and TdAnn12) encoding annexin proteins were isolated and characterised from Tunisian durum wheat varieties (Triticum turgidum L. subsp. durum cv. Mahmoudi). Analyses of the deduced proteins encoded by annexin cDNAs (TdAnn6 and TdAnn12) indicate the presence of the characteristic four repeats of 70-75 amino acids and the motifs proposed to be involved in Ca2+ binding. Gene expression patterns obtained by real-time PCR revealed differential temporal and spatial regulation of the two annexin genes in durum wheat under different abiotic stress conditions such as salt (NaCl 150mM), osmotic (10% polyethylene glycol 8000), ionic (LiCl 10mM), oxidative (H2O2), ABA (100µM), salicylic acid (10mM), cold (4°C) and heat (37°C) stress. The two annexin genes were not regulated by heavy metal stress (CdCl2 150µM). Moreover, heterologous expression of TdAnn6 and TdAnn12 in yeast improves its tolerance to abiotic stresses, suggesting annexin's involvement in theses stress tolerance mechanisms. Taken together, our results show that the two newly isolated wheat annexin might play an active role in modulating plant cell responses to abiotic stress responses.
Collapse
Affiliation(s)
- Marwa Harbaoui
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177" 3018, Sfax,Tunisia
| | - Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177" 3018, Sfax,Tunisia
| | | | - Mouna Choura
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177" 3018, Sfax,Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P "1177" 3018, Sfax,Tunisia
| |
Collapse
|
44
|
Xiao Y, Shaw GS, Konermann L. Calcium-Mediated Control of S100 Proteins: Allosteric Communication via an Agitator/Signal Blocking Mechanism. J Am Chem Soc 2017; 139:11460-11470. [PMID: 28758397 DOI: 10.1021/jacs.7b04380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Allosteric proteins possess dynamically coupled residues for the propagation of input signals to distant target binding sites. The input signals usually correspond to "effector is present" or "effector is not present". Many aspects of allosteric regulation remain incompletely understood. This work focused on S100A11, a dimeric EF-hand protein with two hydrophobic target binding sites. An annexin peptide (Ax) served as the target. Target binding is allosterically controlled by Ca2+ over a distance of ∼26 Å. Ca2+ promotes formation of a [Ca4 S100 Ax2] complex, where the Ax peptides are accommodated between helices III/IV and III'/IV'. Without Ca2+ these binding sites are closed, precluding interactions with Ax. The allosteric mechanism was probed by microsecond MD simulations in explicit water, complemented by hydrogen exchange mass spectrometry (HDX/MS). Consistent with experimental data, MD runs in the absence of Ca2+ and Ax culminated in target binding site closure. In simulations on [Ca4 S100] the target binding sites remained open. These results capture the essence of allosteric control, revealing how Ca2+ prevents binding site closure. Both HDX/MS and MD data showed that the metalation sites become more dynamic after Ca2+ loss. However, these enhanced dynamics do not represent the primary trigger of the allosteric cascade. Instead, a labile salt bridge acts as an incessantly active "agitator" that destabilizes the packing of adjacent residues, causing a domino chain of events that culminates in target binding site closure. This agitator represents the starting point of the allosteric signal propagation pathway. Ca2+ binding rigidifies elements along this pathway, thereby blocking signal transmission. This blocking mechanism does not conform to the commonly held view that allosteric communication pathways generally originate at the sites where effectors interact with the protein.
Collapse
Affiliation(s)
- Yiming Xiao
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| | - Gary S Shaw
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department of Chemistry, The University of Western Ontario , London, Ontario N6A 5B7, Canada
| |
Collapse
|
45
|
Enrich C, Rentero C, Meneses-Salas E, Tebar F, Grewal T. Annexins: Ca 2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 981:351-385. [PMID: 29594868 DOI: 10.1007/978-3-319-55858-5_14] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite the discovery of annexins 40 years ago, we are just beginning to understand some of the functions of these still enigmatic proteins. Defined and characterized by their ability to bind anionic membrane lipids in a Ca2+-dependent manner, each annexin has to be considered a multifunctional protein, with a multitude of cellular locations and diverse activities. Underlying causes for this considerable functional diversity include their capability to associate with multiple cytosolic and membrane proteins. In recent years, the increasingly recognized establishment of membrane contact sites between subcellular compartments opens a new scenario for annexins as instrumental players to link Ca2+ signalling with the integration of membrane trafficking in many facets of cell physiology. In this chapter, we review and discuss current knowledge on the contribution of annexins in the biogenesis and functioning of the late endocytic compartment, affecting endo- and exocytic pathways in a variety of physiological consequences ranging from membrane repair, lysosomal exocytosis, to cell migration.
Collapse
Affiliation(s)
- Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain. .,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain.
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Elsa Meneses-Salas
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Francesc Tebar
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Centre de Recerca Biomèdica (CELLEX), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
| | - Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, Australia
| |
Collapse
|
46
|
Whitlock JM, Hartzell HC. Anoctamins/TMEM16 Proteins: Chloride Channels Flirting with Lipids and Extracellular Vesicles. Annu Rev Physiol 2016; 79:119-143. [PMID: 27860832 DOI: 10.1146/annurev-physiol-022516-034031] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anoctamin (ANO)/TMEM16 proteins exhibit diverse functions in cells throughout the body and are implicated in several human diseases. Although the founding members ANO1 (TMEM16A) and ANO2 (TMEM16B) are Ca2+-activated Cl- channels, most ANO paralogs are Ca2+-dependent phospholipid scramblases that serve as channels facilitating the movement (scrambling) of phospholipids between leaflets of the membrane bilayer. Phospholipid scrambling significantly alters the physical properties of the membrane and its landscape and has vast downstream signaling consequences. In particular, phosphatidylserine exposed on the external leaflet of the plasma membrane functions as a ligand for receptors vital for cell-cell communication. A major consequence of Ca2+-dependent scrambling is the release of extracellular vesicles that function as intercellular messengers by delivering signaling proteins and noncoding RNAs to alter target cell function. We discuss the physiological implications of Ca2+-dependent phospholipid scrambling, the extracellular vesicles associated with this activity, and the roles of ANOs in these processes.
Collapse
Affiliation(s)
- Jarred M Whitlock
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322;
| | - H Criss Hartzell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322;
| |
Collapse
|
47
|
Bartman CE, Metwally H, Konermann L. Effects of Multidentate Metal Interactions on the Structure of Collisionally Activated Proteins: Insights from Ion Mobility Spectrometry and Molecular Dynamics Simulations. Anal Chem 2016; 88:6905-13. [DOI: 10.1021/acs.analchem.6b01627] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Claire E. Bartman
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Haidy Metwally
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Lars Konermann
- Department
of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
48
|
Mirsaeidi M, Gidfar S, Vu A, Schraufnagel D. Annexins family: insights into their functions and potential role in pathogenesis of sarcoidosis. J Transl Med 2016; 14:89. [PMID: 27071553 PMCID: PMC4830063 DOI: 10.1186/s12967-016-0843-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 03/30/2016] [Indexed: 12/13/2022] Open
Abstract
Annexins are Ca2+-regulated phospholipid-binding proteins that play an important role in the cell life cycle, exocytosis, and apoptosis. Annexin A11 is one of the oldest vertebrate annexins that has a crucial role in sarcoidosis pathogenesis. The mechanism of effect in sarcoidosis granuloma cells may be due to alterations in apoptosis. Immune cells with a specific mutation at protein location 230 are resistant to apoptosis and consequently have continued effects on inflammation and progression of sarcoidosis. The mechanism of action of annexin A11 may be based upon alterations in delivering calcium to two different apoptosis pathways (caspase and P53).
Collapse
Affiliation(s)
- Mehdi Mirsaeidi
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of Miami, Miller School of Medicine, 1600 NW 10th Ave # 7060A, Miami, FL, 33136, USA.
| | - Sanaz Gidfar
- Department of Ophthalmology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ann Vu
- Department of Medicine, University of Miami, Miami, FL, USA
| | - Dean Schraufnagel
- Division of Pulmonary and Critical Care, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
49
|
Jaiswal JK, Nylandsted J. S100 and annexin proteins identify cell membrane damage as the Achilles heel of metastatic cancer cells. Cell Cycle 2015; 14:502-9. [PMID: 25565331 DOI: 10.1080/15384101.2014.995495] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanical activity of cells and the stress imposed on them by extracellular environment is a constant source of injury to the plasma membrane (PM). In invasive tumor cells, increased motility together with the harsh environment of the tumor stroma further increases the risk of PM injury. The impact of these stresses on tumor cell plasma membrane and mechanism by which tumor cells repair the PM damage are poorly understood. Ca(2+) entry through the injured PM initiates repair of the PM. Depending on the cell type, different organelles and proteins respond to this Ca(2+) entry and facilitate repair of the damaged plasma membrane. We recently identified that proteins expressed in various metastatic cancers including Ca(2+)-binding EF hand protein S100A11 and its binding partner annexin A2 are used by tumor cells for plasma membrane repair (PMR). Here we will discuss the involvement of S100, annexin proteins and their regulation of actin cytoskeleton, leading to PMR. Additionally, we will show that another S100 member--S100A4 accumulates at the injured PM. These findings reveal a new role for the S100 and annexin protein up regulation in metastatic cancers and identify these proteins and PMR as targets for treating metastatic cancers.
Collapse
Affiliation(s)
- Jyoti K Jaiswal
- a Center for Genetic Medicine Research ; Children's National Medical Center ; Washington , DC USA
| | | |
Collapse
|
50
|
Plasma membrane and cytoskeleton dynamics during single-cell wound healing. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015. [DOI: 10.1016/j.bbamcr.2015.07.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|