1
|
Yao S, Peng J, Hu M, Zhou Q, Zhao X. Genome-Wide Profiling of the ACTIN Gene Family and Its Implications for Agronomic Traits in Brassica napus: A Bioinformatics Study. Int J Mol Sci 2024; 25:10752. [PMID: 39409081 PMCID: PMC11476578 DOI: 10.3390/ijms251910752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
ACTINs are key structural proteins in plants, which form the actin cytoskeleton and are engaged in numerous routine cellular processes. Meanwhile, ACTIN, recognized as a housekeeping gene, has not yet been thoroughly investigated in Brassica napus. The current research has led to the detection of 69 actin genes in B. napus, which were organized into six distinct subfamilies on the basis of phylogenetic relationships. Functional enrichment analysis, along with the construction of protein interaction networks, suggested that BnACTINs play roles in Preserving cell morphology and facilitating cytoplasmic movement, plant development, and adaptive responses to environmental stress. Moreover, the BnACTIN genes presented a wide range of expression levels among different tissues, whereas the majority experienced a substantial increase in expression when subjected to various abiotic stresses, demonstrating a pronounced sensitivity to abiotic factors. Furthermore, association mapping analysis indicated that some BnACTINs potentially affected certain key agronomic traits. Overall, our research deepens the knowledge of BnACTIN genes, promotes the cultivation of improved B. napus strains, and lays the groundwork for subsequent functional research.
Collapse
Affiliation(s)
- Shengli Yao
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiayu Peng
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ming Hu
- Horticultural Crop Biology and Germplasm Enhancement, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Qing Zhou
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuju Zhao
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
2
|
Stampe NK, Ottenheijm ME, Drici L, Wewer Albrechtsen NJ, Nielsen AB, Christoffersen C, Warming PE, Engstrøm T, Winkel BG, Jabbari R, Tfelt-Hansen J, Glinge C. Discovery of plasma proteins associated with ventricular fibrillation during first ST-elevation myocardial infarction via proteomics. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2024; 13:264-272. [PMID: 37811694 DOI: 10.1093/ehjacc/zuad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/10/2023]
Abstract
AIMS The underlying biological mechanisms of ventricular fibrillation (VF) during acute myocardial infarction are largely unknown. To our knowledge, this is the first proteomic study for this trait, with the aim to identify and characterize proteins that are associated with VF during first ST-elevation myocardial infarction (STEMI). METHODS AND RESULTS We included 230 participants from a Danish ongoing case-control study on patients with first STEMI with VF (case, n = 110) and without VF (control, n = 120) before guided catheter insertion for primary percutaneous coronary intervention. The plasma proteome was investigated using mass spectrometry-based proteomics on plasma samples collected within 24 h of symptom onset, and one patient was excluded in quality control. In 229 STEMI patients {72% men, median age 62 years [interquartile range (IQR): 54-70]}, a median of 257 proteins (IQR: 244-281) were quantified per patient. A total of 26 proteins were associated with VF; these proteins were involved in several biological processes including blood coagulation, haemostasis, and immunity. After correcting for multiple testing, two up-regulated proteins remained significantly associated with VF, actin beta-like 2 [ACTBL2, fold change (FC) 2.25, P < 0.001, q = 0.023], and coagulation factor XIII-A (F13A1, FC 1.48, P < 0.001, q = 0.023). None of the proteins were correlated with anterior infarct location. CONCLUSION Ventricular fibrillation due to first STEMI was significantly associated with two up-regulated proteins (ACTBL2 and F13A1), suggesting that they may represent novel underlying molecular VF mechanisms. Further research is needed to determine whether these proteins are predictive biomarkers or acute phase response proteins to VF during acute ischaemia.
Collapse
Affiliation(s)
- Niels Kjær Stampe
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
| | - Maud Eline Ottenheijm
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg Hospital, Copenhagen, Denmark
| | - Lylia Drici
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg Hospital, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg Hospital, Copenhagen, Denmark
| | - Annelaura Bach Nielsen
- NNF Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg Hospital, Copenhagen, Denmark
| | - Christina Christoffersen
- Department of Clinical Biochemistry, Centre of Diagnostic Investigation, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Biomedical Sciences, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peder Emil Warming
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
| | - Thomas Engstrøm
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
| | - Bo Gregers Winkel
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
| | - Reza Jabbari
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
| | - Jacob Tfelt-Hansen
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
- Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Charlotte Glinge
- Department of Cardiology, The Heart Centre, Copenhagen University Hospital-Rigshospitalet, Inge Lehmanns Vej 7, Copenhagen 2100, Denmark
| |
Collapse
|
3
|
Li H, Song C, Zhang Y, Liu G, Mi H, Li Y, Chen Z, Ma X, Zhang P, Cheng L, Peng P, Zhu H, Chen Z, Dong M, Chen S, Meng H, Xiao Q, Li H, Wu Q, Wang B, Zhang S, Shu K, Wan F, Guo D, Zhou W, Zhou L, Mao F, Rich JN, Yu X. Transgelin Promotes Glioblastoma Stem Cell Hypoxic Responses and Maintenance Through p53 Acetylation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305620. [PMID: 38087889 PMCID: PMC10870072 DOI: 10.1002/advs.202305620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Indexed: 02/17/2024]
Abstract
Glioblastoma (GBM) is a lethal cancer characterized by hypervascularity and necrosis associated with hypoxia. Here, it is found that hypoxia preferentially induces the actin-binding protein, Transgelin (TAGLN), in GBM stem cells (GSCs). Mechanistically, TAGLN regulates HIF1α transcription and stabilizes HDAC2 to deacetylate p53 and maintain GSC self-renewal. To translate these findings into preclinical therapeutic paradigm, it is found that sodium valproate (VPA) is a specific inhibitor of TAGLN/HDAC2 function, with augmented efficacy when combined with natural borneol (NB) in vivo. Thus, TAGLN promotes cancer stem cell survival in hypoxia and informs a novel therapeutic paradigm.
Collapse
Affiliation(s)
- Huan Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Chao Song
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yang Zhang
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Guohao Liu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hailong Mi
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yachao Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zhiye Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xiaoyu Ma
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Po Zhang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Lidong Cheng
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Peng Peng
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hongtao Zhu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Zirong Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Minhai Dong
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Sui Chen
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Hao Meng
- Intelligent Pathology InstituteThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230031China
| | - QunGen Xiao
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Honglian Li
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Qiulian Wu
- UPMC Hillman Cancer CenterDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA15219USA
| | - Baofeng Wang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Suojun Zhang
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Kai Shu
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Feng Wan
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Dongsheng Guo
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Wenchao Zhou
- Intelligent Pathology InstituteThe First Affiliated Hospital of USTCDivision of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefei230031China
| | - Lin Zhou
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Feng Mao
- Department of NeurosurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Jeremy N. Rich
- UPMC Hillman Cancer CenterDepartment of MedicineUniversity of Pittsburgh Medical CenterPittsburghPA15219USA
- Department of NeurologyUniversity of Pittsburgh School of MedicinePittsburghPA15213USA
| | - Xingjiang Yu
- Department of Histology and EmbryologySchool of Basic MedicineTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| |
Collapse
|
4
|
Smeir M, Chumala P, Katselis GS, Liu L. Lymphocyte-Specific Protein 1 Regulates Expression and Stability of Endothelial Nitric Oxide Synthase. Biomolecules 2024; 14:111. [PMID: 38254711 PMCID: PMC10813790 DOI: 10.3390/biom14010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 01/06/2024] [Indexed: 01/24/2024] Open
Abstract
Nitric oxide (NO), synthesized by endothelial nitric oxide synthase (eNOS), plays a critical role in blood pressure regulation. Genome-wide association studies have identified genetic susceptibility loci for hypertension in human lymphocyte-specific protein 1 (LSP1) gene. LSP1 is recognized as modulator of leukocyte extravasation, and endothelial permeability, however, the role of LSP1 in regulation of NO signaling within endothelial cells (ECs) remains unknown. The present study investigated the role of LSP1 in the regulation of eNOS expression and activity utilizing human macrovascular ECs in vitro and LSP1 knockout (KO) mice. In ECs, specific CRISPR-Cas9 genomic editing deleted LSP1 and caused downregulation of eNOS expression. LSP1 gain-of-function through adenovirus-mediated gene transfer was associated with enhanced expression of eNOS. Co-immunoprecipitation and confocal fluorescence microscopy revealed that eNOS and LSP1 formed a protein complex under basal conditions in ECs. Furthermore, LSP1 deficiency in mice promoted significant upregulation and instability of eNOS. Utilizing a mass-spectrometry-based bottom-up proteomics approach, we identified novel truncated forms of eNOS in immunoprecipitates from LSP1 KO aortae. Our experimental data suggest an important role of endothelial LSP1 in regulation of eNOS expression and activity within human ECs and murine vascular tissues.
Collapse
Affiliation(s)
- Musstafa Smeir
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| | - Paulos Chumala
- Department of Medicine, Canadian Center for Rural and Agricultural Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (P.C.); (G.S.K.)
| | - George S. Katselis
- Department of Medicine, Canadian Center for Rural and Agricultural Health, University of Saskatchewan, Saskatoon, SK S7N 2Z4, Canada; (P.C.); (G.S.K.)
| | - Lixin Liu
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada;
| |
Collapse
|
5
|
Du WW, Qadir J, Du KY, Chen Y, Wu N, Yang BB. Nuclear Actin Polymerization Regulates Cell Epithelial-Mesenchymal Transition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300425. [PMID: 37566765 PMCID: PMC10558697 DOI: 10.1002/advs.202300425] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/28/2023] [Indexed: 08/13/2023]
Abstract
Current studies on actin function primarily rely on cytoplasmic actin due to the absence of cellular models specifically expressing nuclear actin. Here, cell models capable of expressing varying levels of nuclear F/G-actin are generated and a significant role of nuclear actin in the regulation of epithelial-mesenchymal transition (EMT) is uncovered. Through immunoprecipitation and mass spectrometry analyses, distinct binding partners for nuclear F-actin (β-catenin, SMAD2, and SMAD3) and nuclear G-actin (MYBBP1A, NKRF, and MYPOP) are investigated, which respectively modulate EMT-promoting and EMT-repressing transcriptional events. While nuclear F-actin promotes EMT with enhanced cell migration, survival, and elongated mesenchymal morphology, nuclear G-actin represses EMT and related cell activities. Mechanistically, nuclear F-actin enhances β-catenin, SMAD2, and SMAD3 expression and stability in the nuclei, while nuclear G-actin increases MYBBP1A, NKRF, and MYPOP expression and stability in the nuclei. The association between nuclear F/G-actin and N-cadherin/E-cadherin in the cell lines (in vitro), and increased nuclear actin polymerization in the wound healing cells (in vivo) affirm a significant role of nuclear actin in EMT regulation. With evidence of nuclear actin polymerization and EMT during development, and irregularities in disease states such as cancer and fibrosis, targeting nuclear actin dynamics to trigger dysregulated EMT warrants ongoing study.
Collapse
Affiliation(s)
- William W. Du
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM4N3M5Canada
| | - Javeria Qadir
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM4N3M5Canada
| | - Kevin Y. Du
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM4N3M5Canada
| | - Yu Chen
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM4N3M5Canada
| | - Nan Wu
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM4N3M5Canada
| | - Burton B. Yang
- Sunnybrook Research Instituteand Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM4N3M5Canada
| |
Collapse
|
6
|
Su H, Xu J, Li J, Yi Z. Four ciliate-specific expansion events occurred during actin gene family evolution of eukaryotes. Mol Phylogenet Evol 2023; 184:107789. [PMID: 37105243 DOI: 10.1016/j.ympev.2023.107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/21/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Actin gene family is a divergent and ancient eukaryotic cellular cytoskeletal gene family, and participates in many essential cellular processes. Ciliated protists offer us an excellent opportunity to investigate gene family evolution, since their gene families evolved faster in ciliates than in other eukaryotes. Nonetheless, actin gene family is well studied in few model ciliate species but little is known about its evolutionary patterns in ciliates. Here, we analyzed the evolutionary pattern of eukaryotic actin gene family based on genomes/transcriptomes of 36 species covering ten ciliate classes, as well as those of nine non-ciliate eukaryotic species. Results showed: (1) Except for conventional actins and actin-related proteins (Arps) shared by various eukaryotes, at least four ciliate-specific subfamilies occurred during evolution of actin gene family. Expansions of Act2 and ArpC were supposed to have happen in the ciliate common ancestor, while expansions of ActI and ActII may have occurred in the ancestor of Armophorea, Muranotrichea, and Spirotrichea. (2) The number of actin isoforms varied greatly among ciliate species. Environmental adaptability, whole genome duplication (WGD) or segmental duplication events, distinct spatial and temporal patterns of expression might play driving forces for the increasement of isoform numbers. (3) The 'birth and death' model of evolution could explain the evolution of actin gene family in ciliates. And actin genes have been generally under strong negative selection to maintain protein structures and physiological functions. Collectively, we provided meaningful information for understanding the evolution of eukaryotic actin gene family.
Collapse
Affiliation(s)
- Hua Su
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiahui Xu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jia Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
7
|
Zheng H, Cheng ZJ, Liang B, Wang ZG, Tao YP, Huang SY, Ni JS, Li HF, Yang L, Yuan SX, Wu J, Kawaguchi T, Samant H, Zhou WP, Xiang DM, Yang Y. N 6-Methyladenosine Modification of ANLN Enhances Hepatocellular Carcinoma Bone Metastasis. Int J Biol Sci 2023; 19:1009-1023. [PMID: 36923927 PMCID: PMC10008695 DOI: 10.7150/ijbs.73570] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 12/28/2022] [Indexed: 02/04/2023] Open
Abstract
Bones are categorized as the second most prevalent location of extra-hepatic metastasis in Hepatocellular Carcinoma (HCC), which is linked to an extremely poor prognosis due to limited therapeutic options. N6-methyladenosine (m6A) is a prominent modification involved in HCC, but the exact mechanisms on how m6A modifications induce HCC bone metastases (BM) remain unclear. The key modulators responsible for the abundant m6A RNA modification-induced HCC BM was found to be the METTL3 and YTHDF1. The expression of Anillin actin-binding protein (ANLN) was dramatically higher in HCC with BM tissues, and its messenger RNA (mRNA) stability was enhanced via m6A epitranscriptomic regulation by METTL3 and YTHDF1. High METTL3 and YTHDF1 expression along with nuclear ANLN protein was clinically correlated with BM in HCC patients. Furthermore, HCC BM was attributed to over-expression of nuclear ANLN forming a transcriptional complex with SP1 which enhanced KIF2C transcriptional activity to activate the mTORC1 pathway, therefore increased the expression of RANKL and disproportionated RANKL-OPG expression in bone microenvironment leading to malignant neoplasms invade bone tissue. In addition, inhibition of ANLN m6A modification by DZNeP attenuated HCC BM. This data provides meaningful understanding of the modulation and association of m6A epitranscriptomic-regulated BM in HCC, and moreover, defines potentially valuable therapeutic targets.
Collapse
Affiliation(s)
- Hao Zheng
- Third Department of Hepatic Surgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Zhang-Jun Cheng
- Department of Hepato-Pancreato-Biliary Centers, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bo Liang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Zhen-Guang Wang
- Third Department of Hepatic Surgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Yuan-Ping Tao
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Sheng-Yu Huang
- Department of Hepatobiliary and Pancreatic Surgery, The 10th People's Hospital, Tongji University, Shanghai 200433, China
| | - Jun-Sheng Ni
- Third Department of Hepatic Surgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Hui-Fen Li
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Le Yang
- Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Sheng-Xian Yuan
- Third Department of Hepatic Surgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Jennifer Wu
- Division of Hematology and Medical Oncology, Perlmutter Cancer Center, NYU Langone Health, New York, NY, USA
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Hrishikesh Samant
- Hrishikesh Samant, Division of Gastroenterology and Hepatology, LSU Health Science Center, Shreveport, LA, USA
| | - Wei-Ping Zhou
- Third Department of Hepatic Surgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| | - Dai-Min Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200032, China
| | - Yuan Yang
- Third Department of Hepatic Surgery, Third Affiliated Hospital, Naval Medical University, Shanghai 200438, China.,Key Laboratory of Signaling Regulation and Targeting Therapy of Liver Cancer (SMMU), Ministry of Education, Shanghai 200438, China.,Department of Organization Sample Bank, Shanghai Key Laboratory of Hepatobiliary Tumor Biology (EHBH), Shanghai 200438, China
| |
Collapse
|
8
|
Barker CG, Petsalaki E, Giudice G, Sero J, Ekpenyong EN, Bakal C, Petsalaki E. Identification of phenotype-specific networks from paired gene expression-cell shape imaging data. Genome Res 2022; 32:750-765. [PMID: 35197309 PMCID: PMC8997347 DOI: 10.1101/gr.276059.121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/17/2022] [Indexed: 11/24/2022]
Abstract
The morphology of breast cancer cells is often used as an indicator of tumor severity and prognosis. Additionally, morphology can be used to identify more fine-grained, molecular developments within a cancer cell, such as transcriptomic changes and signaling pathway activity. Delineating the interface between morphology and signaling is important to understand the mechanical cues that a cell processes in order to undergo epithelial-to-mesenchymal transition and consequently metastasize. However, the exact regulatory systems that define these changes remain poorly characterized. In this study, we used a network-systems approach to integrate imaging data and RNA-seq expression data. Our workflow allowed the discovery of unbiased and context-specific gene expression signatures and cell signaling subnetworks relevant to the regulation of cell shape, rather than focusing on the identification of previously known, but not always representative, pathways. By constructing a cell-shape signaling network from shape-correlated gene expression modules and their upstream regulators, we found central roles for developmental pathways such as WNT and Notch, as well as evidence for the fine control of NF-kB signaling by numerous kinase and transcriptional regulators. Further analysis of our network implicates a gene expression module enriched in the RAP1 signaling pathway as a mediator between the sensing of mechanical stimuli and regulation of NF-kB activity, with specific relevance to cell shape in breast cancer.
Collapse
Affiliation(s)
- Charlie George Barker
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Eirini Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Girolamo Giudice
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Julia Sero
- University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
| | - Emmanuel Nsa Ekpenyong
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| | - Chris Bakal
- Institute of Cancer Research, London SW3 6JB, United Kingdom
| | - Evangelia Petsalaki
- European Molecular Biology Laboratory-European Bioinformatics Institute, Hinxton CB10 1SD, United Kingdom
| |
Collapse
|
9
|
New Insights into Cellular Functions of Nuclear Actin. BIOLOGY 2021; 10:biology10040304. [PMID: 33916969 PMCID: PMC8067577 DOI: 10.3390/biology10040304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary It is well known that actin forms a cytoplasmic network of microfilaments, the part of the cytoskeleton, in the cytoplasm of eukaryotic cells. The presence of nuclear actin was elusive for a very long time. Now, there is a very strong evidence that actin plays many important roles in the nucleus. Here, we discuss the recently discovered functions of the nuclear actin pool. Actin does not have nuclear localization signal (NLS), so its import to the nucleus is facilitated by the NLS-containing proteins. Nuclear actin plays a role in the maintenance of the nuclear structure and the nuclear envelope breakdown. It is also involved in chromatin remodeling, and chromatin and nucleosome movement necessary for DNA recombination, repair, and the initiation of transcription. It also binds RNA polymerases, promoting transcription. Because of the multifaceted role of nuclear actin, the future challenge will be to further define its functions in various cellular processes and diseases. Abstract Actin is one of the most abundant proteins in eukaryotic cells. There are different pools of nuclear actin often undetectable by conventional staining and commercial antibodies used to identify cytoplasmic actin. With the development of more sophisticated imaging and analytical techniques, it became clear that nuclear actin plays a crucial role in shaping the chromatin, genomic, and epigenetic landscape, transcriptional regulation, and DNA repair. This multifaceted role of nuclear actin is not only important for the function of the individual cell but also for the establishment of cell fate, and tissue and organ differentiation during development. Moreover, the changes in the nuclear, chromatin, and genomic architecture are preamble to various diseases. Here, we discuss some of the newly described functions of nuclear actin.
Collapse
|
10
|
Lipid Rafts Interaction of the ARID3A Transcription Factor with EZRIN and G-Actin Regulates B-Cell Receptor Signaling. Diseases 2021; 9:diseases9010022. [PMID: 33804610 PMCID: PMC8005928 DOI: 10.3390/diseases9010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Several diseases originate via dysregulation of the actin cytoskeleton. The ARID3A/Bright transcription factor has also been implicated in malignancies, primarily those derived from hematopoietic lineages. Previously, we demonstrated that ARID3A shuttles between the nucleus and the plasma membrane, where it localizes within lipid rafts. There it interacts with components of the B-cell receptor (BCR) to reduce its ability to transmit downstream signaling. We demonstrate here that a direct component of ARID3A-regulated BCR signal strength is cortical actin. ARID3A interacts with actin exclusively within lipid rafts via the actin-binding protein EZRIN, which confines unstimulated BCRs within lipid rafts. BCR ligation discharges the ARID3A-EZRIN complex from lipid rafts, allowing the BCR to initiate downstream signaling events. The ARID3A-EZRIN interaction occurs almost exclusively within unpolymerized G-actin, where EZRIN interacts with the multifunctional ARID3A REKLES domain. These observations provide a mechanism by which a transcription factor directly regulates BCR signaling via linkage to the actin cytoskeleton with consequences for B-cell-related neoplasia.
Collapse
|
11
|
Malek N, Michrowska A, Mazurkiewicz E, Mrówczyńska E, Mackiewicz P, Mazur AJ. The origin of the expressed retrotransposed gene ACTBL2 and its influence on human melanoma cells' motility and focal adhesion formation. Sci Rep 2021; 11:3329. [PMID: 33558623 PMCID: PMC7870945 DOI: 10.1038/s41598-021-82074-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023] Open
Abstract
We have recently found that β-actin-like protein 2 (actbl2) forms complexes with gelsolin in human melanoma cells and can polymerize. Phylogenetic and bioinformatic analyses showed that actbl2 has a common origin with two non-muscle actins, which share a separate history from the muscle actins. The actin groups' divergence started at the beginning of vertebrate evolution, and actbl2 actins are characterized by the largest number of non-conserved amino acid substitutions of all actins. We also discovered that ACTBL2 is expressed at a very low level in several melanoma cell lines, but a small subset of cells exhibited a high ACTBL2 expression. We found that clones with knocked-out ACTBL2 (CR-ACTBL2) or overexpressing actbl2 (OE-ACTBL2) differ from control cells in the invasion, focal adhesion formation, and actin polymerization ratio, as well as in the formation of lamellipodia and stress fibers. Thus, we postulate that actbl2 is the seventh actin isoform and is essential for cell motility.
Collapse
Affiliation(s)
- Natalia Malek
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Aleksandra Michrowska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Ewa Mrówczyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Paweł Mackiewicz
- Department of Bioinformatics and Genomics, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Antonina J Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| |
Collapse
|
12
|
Vanslembrouck B, Ampe C, Hengel J. Time for rethinking the different β‐actin transgenic mouse models? Cytoskeleton (Hoboken) 2020; 77:527-543. [DOI: 10.1002/cm.21647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Bieke Vanslembrouck
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| | - Christophe Ampe
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| | - Jolanda Hengel
- Medical Cell Biology Research Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences Ghent University Ghent Belgium
| |
Collapse
|
13
|
Boiero Sanders M, Antkowiak A, Michelot A. Diversity from similarity: cellular strategies for assigning particular identities to actin filaments and networks. Open Biol 2020; 10:200157. [PMID: 32873155 PMCID: PMC7536088 DOI: 10.1098/rsob.200157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The actin cytoskeleton has the particularity of being assembled into many functionally distinct filamentous networks from a common reservoir of monomeric actin. Each of these networks has its own geometrical, dynamical and mechanical properties, because they are capable of recruiting specific families of actin-binding proteins (ABPs), while excluding the others. This review discusses our current understanding of the underlying molecular mechanisms that cells have developed over the course of evolution to segregate ABPs to appropriate actin networks. Segregation of ABPs requires the ability to distinguish actin networks as different substrates for ABPs, which is regulated in three different ways: (1) by the geometrical organization of actin filaments within networks, which promotes or inhibits the accumulation of ABPs; (2) by the identity of the networks' filaments, which results from the decoration of actin filaments with additional proteins such as tropomyosin, from the use of different actin isoforms or from covalent modifications of actin; (3) by the existence of collaborative or competitive binding to actin filaments between two or multiple ABPs. This review highlights that all these effects need to be taken into account to understand the proper localization of ABPs in cells, and discusses what remains to be understood in this field of research.
Collapse
Affiliation(s)
- Micaela Boiero Sanders
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Adrien Antkowiak
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Alphée Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| |
Collapse
|
14
|
Lew ZX, Zhou HM, Fang YY, Ye Z, Zhong W, Yang XY, Yu Z, Chen DY, Luo SM, Chen LF, Lin Y. Transgelin interacts with PARP1 in human colon cancer cells. Cancer Cell Int 2020; 20:366. [PMID: 32774160 PMCID: PMC7398379 DOI: 10.1186/s12935-020-01461-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/27/2020] [Indexed: 01/13/2023] Open
Abstract
Background Transgelin, an actin-binding protein, is associated with cytoskeleton remodeling. Findings from our previous studies demonstrated that transgelin was up-regulated in node-positive colorectal cancer (CRC) versus node-negative disease. Over-expression of TAGLN affected the expression of 256 downstream transcripts and increased the metastatic potential of colon cancer cells in vitro and in vivo. This study aims to explore the mechanisms through which transgelin participates in the metastasis of colon cancer cells. Methods Immunofluorescence and immunoblotting analysis were used to determine the cellular localization of endogenous and exogenous transgelin in colon cancer cells. Co-immunoprecipitation and subsequently high-performance liquid chromatography/tandem mass spectrometry were performed to identify the proteins that were potentially interacting with transgelin. The 256 downstream transcripts regulated by transgelin were analyzed with bioinformatics methods to discriminate the specific key genes and signaling pathways. The Gene-Cloud of Biotechnology Information (GCBI) tools were used to predict the potential transcription factors (TFs) for the key genes. The predicted TFs corresponded to the proteins identified to interact with transgelin. The interaction between transgelin and the TFs was verified by co-immunoprecipitation and immunofluorescence. Results Transgelin was found to localize in both the cytoplasm and nucleus of the colon cancer cells. Approximately 297 proteins were identified to interact with transgelin. The overexpression of TAGLN led to the differential expression of 184 downstream genes. Network topology analysis discriminated seven key genes, including CALM1, MYO1F, NCKIPSD, PLK4, RAC1, WAS and WIPF1, which are mostly involved in the Rho signaling pathway. Poly (ADP-ribose) polymerase-1 (PARP1) was predicted as the unique TF for the key genes and concurrently corresponded to the DNA-binding proteins potentially interacting with transgelin. The interaction between PARP1 and transgelin in human RKO colon cancer cells was further validated by immunoprecipitation and immunofluorescence assays. Conclusions Our results suggest that transgelin binds to PARP1 and regulates the expression of downstream key genes, which are mainly involved in the Rho signaling pathway, and thus participates in the metastasis of colon cancer.
Collapse
Affiliation(s)
- Zhen-Xian Lew
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Surgery, Guangzhou Concord Cancer Center, Guangzhou, 510045 China
| | - Hui-Min Zhou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, 510080 China
| | - Yuan-Yuan Fang
- Intensive Care Unit, Tongling People's Hospital, Tongling City, 244000 Anhui province China
| | - Zhen Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China
| | - Wa Zhong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China
| | - Xin-Yi Yang
- Digestive Medicine Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107 China
| | - Zhong Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China
| | - Dan-Yu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China
| | - Si-Min Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China
| | - Li-Fei Chen
- Department of Nephrology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, No. 107 West Yanjiang Road, Guangzhou, 510120 Guangdong China
| |
Collapse
|
15
|
Ergin V, Zheng S. Putative Coiled-Coil Domain-Dependent Autoinhibition and Alternative Splicing Determine SHTN1's Actin-Binding Activity. J Mol Biol 2020; 432:4154-4166. [PMID: 32371045 DOI: 10.1016/j.jmb.2020.04.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/16/2022]
Abstract
The actin cytoskeleton plays a pivotal role in cell development, morphogenesis, and other cellular functions. Precise control of actin dynamics requires actin-binding proteins. Here, we characterize multifarious regulation of SHTN1 (shootin1) and show that, unlike known actin-binding proteins, SHTN1's actin binding activity is intrinsically inhibited by a putative coiled-coil domain (CCD) and the autoinhibition is overcome by alternative splicing regulation. We found SHTN1 contains a noncanonical WH2 domain and an upstream proline-rich region (PRR) that by themselves are sufficient for actin interaction. Alternative splicing of Shtn1 at the C terminus and downstream of the WH2-PRR domain produces a long (SHTN1L or shootin1b) and a short (SHTN1S or shootin1a) isoform, which both contain the described PRR and WH2 domains. However, SHTN1S does not interact with actin due to inhibition mediated by an N-terminal CCD. A SHTN1L-specific C-terminal motif counters the intramolecular inhibition and allows SHNT1L to bind actin. A nuclear localization signal is embedded between PRR and WH2 and is subject to similar autoinhibition. SHTN1 would be the first WH2-containing molecule that adopts CCD-dependent autoinhibition and alternative splicing-dependent actin interaction.
Collapse
Affiliation(s)
- Volkan Ergin
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Sika Zheng
- Division of Biomedical Sciences, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
16
|
Frieden BR, Gatenby R. Ion-Based Cellular Signal Transmission, Principles of Minimum Information Loss, and Evolution by Natural Selection. Int J Mol Sci 2019; 21:ijms21010009. [PMID: 31861371 PMCID: PMC6982146 DOI: 10.3390/ijms21010009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 11/16/2022] Open
Abstract
The Extreme Physical Information EPI principle states that maximum information transmission or, equivalently, a minimum information loss is a fundamental property of nature. Prior work has demonstrated the universal EPI principle allows derivation of nearly all physical laws. Here, we investigate whether EPI can similarly give rise to the fundamental law of life: Evolution. Living systems require information to survive and proliferate. Heritable information in the genome encodes the structure and function of cellular macromolecules but this information remains fixed over time. In contrast, a cell must rapidly and continuously access, analyze, and respond to a wide range of continuously changing spatial and temporal information in the environment. We propose these two information dynamics are linked because the genes encode the structure of the macromolecules that form information conduits necessary for the dynamical interactions with the external environment. However, because the genome does not have the capacity to precisely locate the time and location of external signals, we propose the cell membrane is the site at which most external information is received and processed. In our model, an external signal is detected by gates on transmembrane ion channel and transmitted into the cytoplasm through ions that flow along pre-existing concentration gradients when the gate opens. The resulting cytoplasmic ion “puff” is localized in both time and space, thus producing spatial and temporal information. Small, localized signals in the cytoplasm are “processed” through alterations in the function and location of peripheral membrane proteins. Larger perturbations produce prolonged or spatially extensive changes in cytoplasmic ion concentrations that can be transmitted to other organelles via ion flows along elements of the cytoskeleton. An evolutionary constraint to the ever-increasing acquisition of environmental information is the cost of doing so. One solution to this trade-off is the evolution of information conduits that minimize signal loss during transmission. Since the structures of these conduits are encoded in the genome, evolution of macromolecular conduits that minimize signal loss is linked to and, in fact, governed by a universal principle, termed extreme physical information (EPI). Mathematical analysis of information dynamics based on the flow of ions through membrane channels and along wire-like cytoskeleton macromolecules fulfills the EPI principle. Thus, the empirically derived model of evolution by natural selection, although uniquely applicable to living systems, is theoretically grounded in a universal principle that can also be used to derive the laws of physics. Finally, if minimization of signal loss is a mechanism to overcome energy constraints, the model predicts increasing information and associated complexity are closely linked to increased efficiency of energy production or improved substrate acquisition.
Collapse
Affiliation(s)
- B. Roy Frieden
- College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA;
| | - Robert Gatenby
- Departments of Radiology and Integrated Mathematical Oncology, Moffitt Cancer Center, 1292 Magnolia Drive, Tampa, FL 33612, USA
- Correspondence:
| |
Collapse
|
17
|
Godwin WC, Hoffmann GF, Gray TJ, Hughes RM. Imaging of morphological and biochemical hallmarks of apoptosis with optimized optogenetic tools. J Biol Chem 2019; 294:16918-16929. [PMID: 31582560 DOI: 10.1074/jbc.ra119.009141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/27/2019] [Indexed: 01/14/2023] Open
Abstract
Creation of optogenetic switches for specific activation of cell death pathways can provide insights into apoptosis and could also form a basis for noninvasive, next-generation therapeutic strategies. Previous work has demonstrated that cryptochrome 2 (Cry2)/cryptochrome-interacting β helix-loop-helix (CIB), a blue light-activated protein-protein dimerization module from the plant Arabidopsis thaliana, together with BCL2-associated X apoptosis regulator (BAX), an outer mitochondrial membrane-targeting pro-apoptotic protein, can be used for light-mediated initiation of mitochondrial outer membrane permeabilization (MOMP) and downstream apoptosis. In this work, we further developed the original light-activated Cry2-BAX system (hereafter referred to as OptoBAX) by improving the photophysical properties and light-independent interactions of this optogenetic switch. The resulting optogenetic constructs significantly reduced the frequency of light exposure required for membrane permeabilization activation and also decreased dark-state cytotoxicity. We used OptoBAX in a series of experiments in Neuro-2a and HEK293T cells to measure the timing of the dramatic morphological and biochemical changes occurring in cells after light-induced MOMP. In these experiments, we used OptoBAX in tandem with fluorescent reporters to image key events in early apoptosis, including membrane inversion, caspase cleavage, and actin redistribution. We then used these data to construct a timeline of biochemical and morphological events in early apoptosis, demonstrating a direct link between MOMP-induced redistribution of actin and apoptosis progression. In summary, we created a next-generation Cry2/CIB-BAX system requiring less frequent light stimulation and established a timeline of critical apoptotic events, providing detailed insights into key steps in early apoptosis.
Collapse
Affiliation(s)
- Walton C Godwin
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
| | - George F Hoffmann
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
| | - Taylor J Gray
- Department of Biology, East Carolina University, Greenville, North Carolina 27858
| | - Robert M Hughes
- Department of Chemistry, East Carolina University, Greenville, North Carolina 27858
| |
Collapse
|
18
|
Chiusa M, Hu W, Liao HJ, Su Y, Borza CM, de Caestecker MP, Skrypnyk NI, Fogo AB, Pedchenko V, Li X, Zhang MZ, Hudson BG, Basak T, Vanacore RM, Zent R, Pozzi A. The Extracellular Matrix Receptor Discoidin Domain Receptor 1 Regulates Collagen Transcription by Translocating to the Nucleus. J Am Soc Nephrol 2019; 30:1605-1624. [PMID: 31383731 PMCID: PMC6727269 DOI: 10.1681/asn.2018111160] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 05/20/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The discoidin domain receptor 1 (DDR1) is activated by collagens, upregulated in injured and fibrotic kidneys, and contributes to fibrosis by regulating extracellular matrix production, but how DDR1 controls fibrosis is poorly understood. DDR1 is a receptor tyrosine kinase (RTK). RTKs can translocate to the nucleus via a nuclear localization sequence (NLS) present on the receptor itself or a ligand it is bound to. In the nucleus, RTKs regulate gene expression by binding chromatin directly or by interacting with transcription factors. METHODS To determine whether DDR1 translocates to the nucleus and whether this event is mediated by collagen-induced DDR1 activation, we generated renal cells expressing wild-type or mutant forms of DDR1 no longer able to bind collagen. Then, we determined the location of the DDR1 upon collagen stimulation. Using both biochemical assays and immunofluorescence, we analyzed the steps involved in DDR1 nuclear translocation. RESULTS We show that although DDR1 and its natural ligand, collagen, lack an NLS, DDR1 is present in the nucleus of injured human and mouse kidney proximal tubules. We show that DDR1 nuclear translocation requires collagen-mediated receptor activation and interaction of DDR1 with SEC61B, a component of the Sec61 translocon, and nonmuscle myosin IIA and β-actin. Once in the nucleus, DDR1 binds to chromatin to increase the transcription of collagen IV, a major collagen upregulated in fibrosis. CONCLUSIONS These findings reveal a novel mechanism whereby activated DDR1 translates to the nucleus to regulate synthesis of profibrotic molecules.
Collapse
Affiliation(s)
- Manuel Chiusa
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Wen Hu
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Hong-Jun Liao
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Yan Su
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Corina M Borza
- Division of Nephrology and Hypertension, Department of Medicine, and
| | | | | | - Agnes B Fogo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Vadim Pedchenko
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Xiyue Li
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Ming-Zhi Zhang
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Billy G Hudson
- Division of Nephrology and Hypertension, Department of Medicine, and
| | - Trayambak Basak
- Division of Nephrology and Hypertension, Department of Medicine, and
| | | | - Roy Zent
- Division of Nephrology and Hypertension, Department of Medicine, and
- Department of Veterans Affairs, Nashville, Tennessee
| | - Ambra Pozzi
- Division of Nephrology and Hypertension, Department of Medicine, and
- Department of Veterans Affairs, Nashville, Tennessee
| |
Collapse
|
19
|
Mishra P, Martin DC, Androulakis IP, Moghe PV. Fluorescence Imaging of Actin Turnover Parses Early Stem Cell Lineage Divergence and Senescence. Sci Rep 2019; 9:10377. [PMID: 31316098 PMCID: PMC6637207 DOI: 10.1038/s41598-019-46682-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/27/2019] [Indexed: 02/07/2023] Open
Abstract
This study describes a new approach to discern early divergence in stem cell lineage progression via temporal dynamics of the cytoskeletal protein, F-actin. The approach involves real-time labeling of human mesenchymal stem cells (MSCs) and longitudinal tracking of the turnover dynamics of a fluorogenic F-actin specific probe, SiR-actin (SA). Cells cultured in media with distinct lineage factors and labeled with SA showed lineage specific reduction in the actin turnover shortly after adipogenic (few minutes) and chondrogenic (3–4 hours) commitment in contrast to osteogenic and basal cultured conditions. Next, composite staining of SA along with the competing F-actin specific fluorescent conjugate, phalloidin, and high-content image analysis of the complementary labels showed clear phenotypic parsing of the sub-populations as early as 1-hour post-induction across all three lineages. Lastly, the potential of SA-based actin turnover analysis to distinguish cellular aging was explored. In-vitro aged cells were found to have reduced actin turnover within 1-hour of simultaneous analysis in comparison to cells of earlier passage. In summary, SiR-actin fluorescent reporter imaging offers a new platform to sensitively monitor emergent lineage phenotypes during differentiation and aging and resolve some of the earliest evident differences in actin turnover dynamics.
Collapse
Affiliation(s)
- Prakhar Mishra
- Cell and Developmental Biology graduate program in Molecular Biosciences, Rutgers University, Piscataway, NJ, 08854, USA
| | - Daniel C Martin
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, 08854, USA. .,Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
20
|
Hernández-Elizárraga VH, Olguín-López N, Hernández-Matehuala R, Ocharán-Mercado A, Cruz-Hernández A, Guevara-González RG, Caballero-Pérez J, Ibarra-Alvarado C, Sánchez-Rodríguez J, Rojas-Molina A. Comparative Analysis of the Soluble Proteome and the Cytolytic Activity of Unbleached and Bleached Millepora complanata ("Fire Coral") from the Mexican Caribbean. Mar Drugs 2019; 17:E393. [PMID: 31277227 PMCID: PMC6669453 DOI: 10.3390/md17070393] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/24/2023] Open
Abstract
Coral bleaching caused by global warming has resulted in massive damage to coral reefs worldwide. Studies addressing the consequences of elevated temperature have focused on organisms of the class Anthozoa, and up to now, there is little information regarding the mechanisms by which reef forming Hydrozoans face thermal stress. In this study, we carried out a comparative analysis of the soluble proteome and the cytolytic activity of unbleached and bleached Millepora complanata ("fire coral") that inhabited reef colonies exposed to the 2015-2016 El Niño-Southern Oscillation in the Mexican Caribbean. A differential proteomic response involving proteins implicated in key cellular processes, such as glycolysis, DNA repair, stress response, calcium homeostasis, exocytosis, and cytoskeleton organization was found in bleached hydrocorals. Four of the proteins, whose levels increased in bleached specimens, displayed sequence similarity to a phospholipase A2, an astacin-like metalloprotease, and two pore forming toxins. However, a protein, which displayed sequence similarity to a calcium-independent phospholipase A2, showed lower levels in bleached cnidarians. Accordingly, the hemolytic effect of the soluble proteome of bleached hydrocorals was significantly higher, whereas the phospholipase A2 activity was significantly reduced. Our results suggest that bleached M. complanata is capable of increasing its toxins production in order to balance the lack of nutrients supplied by its symbionts.
Collapse
Affiliation(s)
- Víctor Hugo Hernández-Elizárraga
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Norma Olguín-López
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Rosalina Hernández-Matehuala
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrea Ocharán-Mercado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Andrés Cruz-Hernández
- Laboratorio de Biología Molecular. Escuela de Agronomía, Universidad de La Salle Bajío, Av. Universidad 15 602, Colonia Lomas del Campestre, C.P. 37150 León, Guanajuato, México
| | - Ramón Gerardo Guevara-González
- C.A Ingeniería de Biosistemas, Facultad de Ingeniería-Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas-Amazcala Km. 1, S/N, C.P. 76265 Amazcala, El Marqués, Querétaro, México
| | - Juan Caballero-Pérez
- Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - César Ibarra-Alvarado
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México
| | - Judith Sánchez-Rodríguez
- Unidad Académica de Sistemas Arrecifales Puerto Morelos, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Prolongación Niños Héroes S/N, Puerto Morelos, C.P. 77580 Quintana Roo, México
| | - Alejandra Rojas-Molina
- Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, C.P. 76010 Querétaro, Querétaro, México.
| |
Collapse
|
21
|
Frieden BR, Gatenby RA. Signal transmission through elements of the cytoskeleton form an optimized information network in eukaryotic cells. Sci Rep 2019; 9:6110. [PMID: 30992457 PMCID: PMC6467984 DOI: 10.1038/s41598-019-42343-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/25/2019] [Indexed: 11/23/2022] Open
Abstract
Multiple prior empirical and theoretical studies have demonstrated wire-like flow of electrons and ions along elements of the cytoskeleton but this has never been linked to a biological function. Here we propose that eukaryotes use this mode of signal transmission to convey spatial and temporal environmental information from the cell membrane to the nucleus. The cell membrane, as the interface between intra- and extra-cellular environments, is the site at which much external information is received. Prior studies have demonstrated that transmembrane ion gradients permit information acquisition when an environmental signal interacts with specialized protein gates in membrane ion channels and producing specific ions to flow into or out of the cell along concentration gradients. The resulting localized change in cytoplasmic ion concentrations and charge density can alter location and enzymatic function of peripheral membrane proteins. This allows the cell to process the information and rapidly deploy a local response. Here we investigate transmission of information received and processed in and around the cell membrane by elements of the cytoskeleton to the nucleus to alter gene expression. We demonstrate signal transmission by ion flow along the cytoskeleton is highly optimized. In particular, microtubules, with diameters of about 30 nm, carry coarse-grained Shannon information to the centrosome adjacent to the nucleus with minimum loss of input source information. And, microfilaments, with diameters of about 4 nm, transmit maximum Fisher (fine-grained) information to protein complexes in the nuclear membrane. These previously unrecognized information dynamics allow continuous integration of spatial and temporal environmental signals with inherited information in the genome.
Collapse
Affiliation(s)
- B R Frieden
- College of Optical Science, University of Arizona, Tucson, AZ, USA
| | - R A Gatenby
- Department of Integrated Mathematical Biology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
22
|
Xing B, Ma J, Jiang Z, Feng Z, Ling S, Szigety K, Su W, Zhang L, Jia R, Sun Y, Zhang L, Kong X, Ma X, Hua X. GLP-1 signaling suppresses menin's transcriptional block by phosphorylation in β cells. J Cell Biol 2019; 218:855-870. [PMID: 30792230 PMCID: PMC6400573 DOI: 10.1083/jcb.201805049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 10/23/2018] [Accepted: 01/07/2019] [Indexed: 12/13/2022] Open
Abstract
Both menin and glucagon-like peptide 1 (GLP-1) pathways play central yet opposing role in regulating β cell function, with menin suppressing, and GLP-1 promoting, β cell function. However, little is known as to whether or how GLP-1 pathway represses menin function. Here, we show that GLP-1 signaling-activated protein kinase A (PKA) directly phosphorylates menin at the serine 487 residue, relieving menin-mediated suppression of insulin expression and cell proliferation. Mechanistically, Ser487-phosphorylated menin gains increased binding affinity to nuclear actin/myosin IIa proteins and gets sequestrated from the Ins1 promoter. This event leads to reduced binding of repressive epigenetic histone modifiers suppressor variegation 3-9 homologue protein 1 (SUV39H1) and histone deacetylases 1 (HDAC1) at the locus and subsequently increased Ins1 gene transcription. Ser487 phosphorylation of menin also increases expression of proproliferative cyclin D2 and β cell proliferation. Our results have uncovered a previously unappreciated physiological link in which GLP-1 signaling suppresses menin function through phosphorylation-triggered and actin/myosin cytoskeletal protein-mediated derepression of gene transcription.
Collapse
Affiliation(s)
- Bowen Xing
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Zongzhe Jiang
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Sunbin Ling
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Katy Szigety
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Wen Su
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Longmei Zhang
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Ruirui Jia
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Yanmei Sun
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Lin Zhang
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Xiangchen Kong
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Xiaosong Ma
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China
| | - Xianxin Hua
- Shenzhen University, College of Medicine, Medical Center and Diabetes Center, Shenzhen, China .,Department of Cancer Biology, Abramson Family Cancer Research Institute, Institute of Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| |
Collapse
|
23
|
AKT/protein kinase B associates with β-actin in the nucleus of melanoma cells. Biosci Rep 2019; 39:BSR20181312. [PMID: 30643008 PMCID: PMC6356016 DOI: 10.1042/bsr20181312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/21/2018] [Accepted: 01/07/2019] [Indexed: 12/19/2022] Open
Abstract
The serine-threonine kinase AKT/PKB is a critical regulator of various essential cellular processes, and dysregulation of AKT has been implicated in many diseases, including cancer. Despite AKT action is known to function mainly in the cytoplasm, AKT has been reported to translocate to the nucleus. However, very little is known about the mechanism required for the nuclear import of AKT as well as its function in this cellular compartment. In the present study, we characterized the presence of endogenous nuclear AKT in human melanoma cells and addressed the possible role of AKT by exploring its potential association with key interaction nuclear partners. Confocal and Western blot analyses showed that both phosphorylated and non-phosphorylated forms of AKT are present in melanoma cells nuclei. Using mass spectrometry in combination with protein-crosslinking and co-immunoprecipitation, we identified a series of putative protein partners of nuclear AKT, including heterogeneous nuclear ribonucleoprotein (hnRNP), cytoskeleton proteins β-actin, γ-actin, β-actin-like 2 and vimentin. Confocal microscopy and biochemical analyses validated β-actin as a new nuclear AKT-interacting partner. Cofilin and active RNA Polymerase II, two proteins that have been described to interact and work in concert with nuclear actin in transcription regulation, were also found associated with nuclear AKT. Overall, the present study uncovered a yet unrecognized nuclear coupling of AKT and provides insights into the involvement of AKT in the interaction network of nuclear actin.
Collapse
|
24
|
Kumarasinghe N, Moss WN. Analysis of a structured intronic region of the LMP2 pre-mRNA from EBV reveals associations with human regulatory proteins and nuclear actin. BMC Res Notes 2019; 12:33. [PMID: 30658689 PMCID: PMC6339298 DOI: 10.1186/s13104-019-4070-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 01/11/2019] [Indexed: 01/07/2023] Open
Abstract
Objective The pre-mRNA of the Epstein–Barr virus LMP2 (latent membrane protein 2) has a region of unusual RNA structure that partially spans two consecutive exons and the entire intervening intron; suggesting RNA folding might affect splicing—particularly via interactions with human regulatory proteins. To better understand the roles of protein associations with this structured intronic region, we undertook a combined bioinformatics (motif searching) and experimental analysis (biotin pulldowns and RNA immunoprecipitations) of protein binding. Result Characterization of the ribonucleoprotein composition of this region revealed several human proteins as interactors: regulatory proteins hnRNP A1 (heterogeneous nuclear ribonucleoprotein A1), hnRNP U, HuR (human antigen R), and PSF (polypyrimidine tract-binding protein-associated splicing factor), as well as, unexpectedly, the cytoskeletal protein actin. Treatment of EBV-positive cells with drugs that alter actin polymerization specifically showed marked effects on splicing in this region. This suggests a potentially novel role for nuclear actin in regulation of viral RNA splicing. Electronic supplementary material The online version of this article (10.1186/s13104-019-4070-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nuwanthika Kumarasinghe
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA, 50011, USA.
| |
Collapse
|
25
|
An actin-based nucleoskeleton involved in gene regulation and genome organization. Biochem Biophys Res Commun 2018; 506:378-386. [DOI: 10.1016/j.bbrc.2017.11.206] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/30/2017] [Indexed: 12/21/2022]
|
26
|
Li J, Staiger CJ. Understanding Cytoskeletal Dynamics During the Plant Immune Response. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:513-533. [PMID: 29975609 DOI: 10.1146/annurev-phyto-080516-035632] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The plant cytoskeleton is a dynamic framework of cytoplasmic filaments that rearranges as the needs of the cell change during growth and development. Incessant turnover mechanisms allow these networks to be rapidly redeployed in defense of host cytoplasm against microbial invaders. Both chemical and mechanical stimuli are recognized as danger signals to the plant, and these are perceived and transduced into cytoskeletal dynamics and architecture changes through a collection of well-recognized, previously characterized players. Recent advances in quantitative cell biology approaches, along with the powerful molecular genetics techniques associated with Arabidopsis, have uncovered two actin-binding proteins as key intermediaries in the immune response to phytopathogens and defense signaling. Certain bacterial phytopathogens have adapted to the cytoskeletal-based defense mechanism during the basal immune response and have evolved effector proteins that target actin filaments and microtubules to subvert transcriptional reprogramming, secretion of defense-related proteins, and cell wall-based defenses. In this review, we describe current knowledge about host cytoskeletal dynamics operating at the crossroads of the molecular and cellular arms race between microbes and plants.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA;
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Christopher J Staiger
- Department of Biological Sciences and Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
27
|
Li J, Choi PS, Chaffer CL, Labella K, Hwang JH, Giacomelli AO, Kim JW, Ilic N, Doench JG, Ly SH, Dai C, Hagel K, Hong AL, Gjoerup O, Goel S, Ge JY, Root DE, Zhao JJ, Brooks AN, Weinberg RA, Hahn WC. An alternative splicing switch in FLNB promotes the mesenchymal cell state in human breast cancer. eLife 2018; 7:37184. [PMID: 30059005 PMCID: PMC6103745 DOI: 10.7554/elife.37184] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Alternative splicing of mRNA precursors represents a key gene expression regulatory step and permits the generation of distinct protein products with diverse functions. In a genome-scale expression screen for inducers of the epithelial-to-mesenchymal transition (EMT), we found a striking enrichment of RNA-binding proteins. We validated that QKI and RBFOX1 were necessary and sufficient to induce an intermediate mesenchymal cell state and increased tumorigenicity. Using RNA-seq and eCLIP analysis, we found that QKI and RBFOX1 coordinately regulated the splicing and function of the actin-binding protein FLNB, which plays a causal role in the regulation of EMT. Specifically, the skipping of FLNB exon 30 induced EMT by releasing the FOXC1 transcription factor. Moreover, skipping of FLNB exon 30 is strongly associated with EMT gene signatures in basal-like breast cancer patient samples. These observations identify a specific dysregulation of splicing, which regulates tumor cell plasticity and is frequently observed in human cancer. As the human body develops, countless cells change from one state into another. Two important cell states are known as epithelial and mesenchymal. Cells in the epithelial state tend to be tightly connected and form barriers, like skin cells. Mesenchymal state cells are loosely organized, move around more and make up connective tissues. Some cells alternate between these states via an epithelial-to-mesenchymal transition (EMT for short) and back again. Without this transition, certain organs would not develop and wounds would not heal. Yet, cancer cells also use this transition to spread to distant sites of the body. Such cancers are often the most aggressive, and therefore the most deadly. The epithelial-to-mesenchymal transition is dynamically regulated in a reversible manner. For example, the genes for some proteins might only be active in the epithelial state and further reinforce this state by turning on other ‘epithelial genes’. Alternatively, there might be differences in the processing of mRNA molecules – the intermediate molecules between DNA and protein – that result in the production of different proteins in epithelial and mesenchymal cells. Li, Choi et al. wanted to know which of the thousands of human genes can endow epithelial state cells with mesenchymal characteristics. A better understanding of the switch could help to prevent cancers undergoing an epithelial-to-mesenchymal transition. From a large-scale experiment in human breast cancer cells, Li, Choi et al. found that a group of proteins that bind and modify mRNA molecules are important for the epithelial-to-mesenchymal transition. Two proteins in particular promoted the transition, most likely by binding to the mRNA of a third protein called FLNB and removing a small piece of it. FLNB normally works to prevent the epithelial-to-mesenchymal transition, but the smaller protein encoded by the shorter mRNA promoted the transition by turning on ‘mesenchymal genes’. This switching between different FLNB proteins happens in some of the more aggressive breast cancers, which also contain mesenchymal cells. Finding out which FLNB protein is made in a given cancer may provide an indication of its aggressiveness. Also, looking for drugs that can target the mRNA-binding proteins or FLNB may one day lead to new treatments for some of the most aggressive breast cancers.
Collapse
Affiliation(s)
- Ji Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Peter S Choi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Christine L Chaffer
- Whitehead Institute for Biomedical Research and MIT, Cambridge, United States.,Garvan Institute of Medical Research, Sydney, Australia
| | - Katherine Labella
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States
| | - Justin H Hwang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Andrew O Giacomelli
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jong Wook Kim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Nina Ilic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Seav Huong Ly
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Chao Dai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Kimberly Hagel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States
| | - Andrew L Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Ole Gjoerup
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| | - Shom Goel
- Harvard Medical School, Boston, United States.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
| | - Jennifer Y Ge
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, United States
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, United States
| | - Jean J Zhao
- Harvard Medical School, Boston, United States.,Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, United States
| | - Angela N Brooks
- University of California, Santa Cruz, Santa Cruz, United States
| | - Robert A Weinberg
- Whitehead Institute for Biomedical Research and MIT, Cambridge, United States
| | - William C Hahn
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, United States.,Harvard Medical School, Boston, United States.,Broad Institute of MIT and Harvard, Cambridge, United States
| |
Collapse
|
28
|
Stradal TEB, Schelhaas M. Actin dynamics in host-pathogen interaction. FEBS Lett 2018; 592:3658-3669. [PMID: 29935019 PMCID: PMC6282728 DOI: 10.1002/1873-3468.13173] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
The actin cytoskeleton and Rho GTPase signaling to actin assembly are prime targets of bacterial and viral pathogens, simply because actin is involved in all motile and membrane remodeling processes, such as phagocytosis, macropinocytosis, endocytosis, exocytosis, vesicular trafficking and membrane fusion events, motility, and last but not least, autophagy. This article aims at providing an overview of the most prominent pathogen‐induced or ‐hijacked actin structures, and an outlook on how future research might uncover additional, equally sophisticated interactions.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Germany
| |
Collapse
|
29
|
High PINCH1 Expression in Human Laryngeal Carcinoma Associates with Poor Prognosis. Anal Cell Pathol (Amst) 2018; 2018:2989635. [PMID: 29755929 PMCID: PMC5884441 DOI: 10.1155/2018/2989635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/24/2018] [Indexed: 12/22/2022] Open
Abstract
Focal adhesion signaling to actin cytoskeleton is critically implicated in cell migration and cancer invasion and metastasis. Actin-binding proteins cofilin and N-WASP regulate actin filament turnover, and focal adhesion proteins parvins and PINCH mediate integrin signaling to the actin cytoskeleton. Altered expression of these proteins has been implicated in human cancer. This study addresses their expression and prognostic significance in human laryngeal carcinoma. Protein expressions of cofilin, N-WASP, α-parvin, β-parvin, and PINCH1 were examined by immunohistochemistry in 72 human laryngeal squamous cell carcinomas. Correlations with clinicopathological data and survival were evaluated. All proteins examined were overexpressed in human laryngeal carcinomas compared to adjacent nonneoplastic epithelium. High expression of PINCH1 was associated significantly with high grade, lymph node-positive, and advanced stage disease. Moreover, high PINCH1 expression significantly associated with poor overall and disease-free survival and high cytoplasmic PINCH1 expression was shown by multivariate analysis to independently predict poor overall survival. In conclusion, we provide novel evidence that focal adhesion signaling to actin cytoskeleton is implicated in human laryngeal carcinogenesis and PINCH1 has prognostic significance in the disease.
Collapse
|
30
|
Yang X, Lin Y. Functions of nuclear actin-binding proteins in human cancer. Oncol Lett 2017; 15:2743-2748. [PMID: 29434999 DOI: 10.3892/ol.2017.7658] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022] Open
Abstract
Nuclear actin-binding proteins (ABPs) perform distinguishable functions compared with their cytoplasmic counterparts in extensive activities of living cells. In addition to the ability to regulate actin cytoskeleton dynamics, nuclear ABPs are associated with multiple nuclear biological processes, including chromatin remodeling, gene transcriptional regulation, DNA damage response, nucleocytoplasmic trafficking and nuclear structure maintenance. The nuclear translocation of ABPs is affected by numerous intracellular or extracellular stimuli, which may lead to developmental malformation, tumor initiation, tumor progression and metastasis. Abnormal expression of certain ABPs have been reported in different types of cancer. This review focuses on the newly identified roles of nuclear ABPs in the pathological processes associated with cancer.
Collapse
Affiliation(s)
- Xinyi Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
31
|
Wang Y, Nagarajan M, Uhler C, Shivashankar GV. Orientation and repositioning of chromosomes correlate with cell geometry-dependent gene expression. Mol Biol Cell 2017; 28:1997-2009. [PMID: 28615317 PMCID: PMC5541849 DOI: 10.1091/mbc.e16-12-0825] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/13/2022] Open
Abstract
Extracellular matrix signals from the microenvironment regulate gene expression patterns and cell behavior. Using a combination of experiments and geometric models, we demonstrate correlations between cell geometry, three-dimensional (3D) organization of chromosome territories, and gene expression. Fluorescence in situ hybridization experiments showed that micropatterned fibroblasts cultured on anisotropic versus isotropic substrates resulted in repositioning of specific chromosomes, which contained genes that were differentially regulated by cell geometries. Experiments combined with ellipsoid packing models revealed that the mechanosensitivity of chromosomes was correlated with their orientation in the nucleus. Transcription inhibition experiments suggested that the intermingling degree was more sensitive to global changes in transcription than to chromosome radial positioning and its orientations. These results suggested that cell geometry modulated 3D chromosome arrangement, and their neighborhoods correlated with gene expression patterns in a predictable manner. This is central to understanding geometric control of genetic programs involved in cellular homeostasis and the associated diseases.
Collapse
Affiliation(s)
- Yejun Wang
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Mallika Nagarajan
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411 Singapore
| | - Caroline Uhler
- IST Austria, Am Campus 1, 3400 Klosterneuburg, Austria
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - G V Shivashankar
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 117411 Singapore
- FIRC Institute for Molecular Oncology, 20139 Milan, Italy
| |
Collapse
|
32
|
Macronuclear Actin copy number variations in single cells of different Pseudokeronopsis (Alveolata, Ciliophora) populations. Eur J Protistol 2017; 59:75-81. [DOI: 10.1016/j.ejop.2017.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 02/01/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
|
33
|
Simiczyjew A, Mazur AJ, Dratkiewicz E, Nowak D. Involvement of β- and γ-actin isoforms in actin cytoskeleton organization and migration abilities of bleb-forming human colon cancer cells. PLoS One 2017; 12:e0173709. [PMID: 28333953 PMCID: PMC5363831 DOI: 10.1371/journal.pone.0173709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022] Open
Abstract
Amoeboid movement is characteristic for rounded cells, which do not form strong adhesion contacts with the ECM and use blebs as migratory protrusions. It is well known that actin is the main component of mature forms of these structures, but the exact role fulfilled by non-muscle actin isoforms β- and γ- in bleb formation and migration of these cells is still not fully understood. The aim of this study was to establish the role of β- and γ-actin in migration of bleb-forming cancer cells using isoform-specific antibodies and expression of fluorescently tagged actin isoforms. We observed, after staining with monoclonal antibodies, that both actins are present in these cells in the form of a cortical ring as well as in the area of blebs. Additionally, using simultaneous expression of differentially tagged β- and γ-actin in cells, we observed that the actin isoforms are present together in a single bleb. They were involved during bleb expansion as well as retraction. Also present in the area of these protrusions formed by both isoforms were the bleb markers–ezrin and myosin II. The overexpression of β- or γ-actin led to actin cytoskeletal rearrangement followed by the growth of migration and invasion abilities of examined human colon cancer cells, LS174T line. In summary these data prove that both actin isoforms have an impact on motility of bleb-forming cancer cells. Moreover, we conclude that monoclonal antibodies directed against actin isoforms in combination with the tagged actins are good tools to study their role in important biological processes.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
- * E-mail:
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
| | - Ewelina Dratkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, Poland
| |
Collapse
|
34
|
Inada N. Plant actin depolymerizing factor: actin microfilament disassembly and more. JOURNAL OF PLANT RESEARCH 2017; 130:227-238. [PMID: 28044231 PMCID: PMC5897475 DOI: 10.1007/s10265-016-0899-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/14/2016] [Indexed: 05/19/2023]
Abstract
ACTIN DEPOLYMERIZING FACTOR (ADF) is a conserved protein among eukaryotes. The main function of ADF is the severing and depolymerizing filamentous actin (F-actin), thus regulating F-actin organization and dynamics and contributing to growth and development of the organisms. Mammalian genomes contain only a few ADF genes, whereas angiosperm plants have acquired an expanding number of ADFs, resulting in the differentiation of physiological functions. Recent studies have revealed functions of ADFs in plant growth and development, and various abiotic and biotic stress responses. In biotic stress responses, ADFs are involved in both susceptibility and resistance, depending on the pathogens. Furthermore, recent studies have highlighted a new role of ADF in the nucleus, possibly in the regulation of gene expression. In this review, I will summarize the current status of plant ADF research and discuss future research directions.
Collapse
Affiliation(s)
- Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara, 630-0192, Japan.
| |
Collapse
|
35
|
Tormos AM, Rius-Pérez S, Jorques M, Rada P, Ramirez L, Valverde ÁM, Nebreda ÁR, Sastre J, Taléns-Visconti R. p38α regulates actin cytoskeleton and cytokinesis in hepatocytes during development and aging. PLoS One 2017; 12:e0171738. [PMID: 28166285 PMCID: PMC5293263 DOI: 10.1371/journal.pone.0171738] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/25/2017] [Indexed: 12/02/2022] Open
Abstract
Background Hepatocyte poliploidization is an age-dependent process, being cytokinesis failure the main mechanism of polyploid hepatocyte formation. Our aim was to study the role of p38α MAPK in the regulation of actin cytoskeleton and cytokinesis in hepatocytes during development and aging. Methods Wild type and p38α liver-specific knock out mice at different ages (after weaning, adults and old) were used. Results We show that p38α MAPK deficiency induces actin disassembly upon aging and also cytokinesis failure leading to enhanced binucleation. Although the steady state levels of cyclin D1 in wild type and p38α knock out old livers remained unaffected, cyclin B1- a marker for G2/M transition- was significantly overexpressed in p38α knock out mice. Our findings suggest that hepatocytes do enter into S phase but they do not complete cell division upon p38α deficiency leading to cytokinesis failure and binucleation. Moreover, old liver-specific p38α MAPK knock out mice exhibited reduced F-actin polymerization and a dramatic loss of actin cytoskeleton. This was associated with abnormal hyperactivation of RhoA and Cdc42 GTPases. Long-term p38α deficiency drives to inactivation of HSP27, which seems to account for the impairment in actin cytoskeleton as Hsp27-silencing decreased the number and length of actin filaments in isolated hepatocytes. Conclusions p38α MAPK is essential for actin dynamics with age in hepatocytes.
Collapse
Affiliation(s)
- Ana M. Tormos
- Department of Physiology, University of Valencia. Burjassot, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, University of Valencia. Burjassot, Valencia, Spain
| | - María Jorques
- Department of Physiology, University of Valencia. Burjassot, Valencia, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain
| | - Lorena Ramirez
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ángela M. Valverde
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERdem), ISCIII, Madrid, Spain
| | - Ángel R. Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Juan Sastre
- Department of Physiology, University of Valencia. Burjassot, Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia. Burjassot, Valencia, Spain
- * E-mail:
| |
Collapse
|
36
|
Sailem HZ, Bakal C. Identification of clinically predictive metagenes that encode components of a network coupling cell shape to transcription by image-omics. Genome Res 2017; 27:196-207. [PMID: 27864353 PMCID: PMC5287226 DOI: 10.1101/gr.202028.115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 11/17/2016] [Indexed: 01/02/2023]
Abstract
The associations between clinical phenotypes (tumor grade, survival) and cell phenotypes, such as shape, signaling activity, and gene expression, are the basis for cancer pathology, but the mechanisms explaining these relationships are not always clear. The generation of large data sets containing information regarding cell phenotypes and clinical data provides an opportunity to describe these mechanisms. Here, we develop an image-omics approach to integrate quantitative cell imaging data, gene expression, and protein-protein interaction data to systematically describe a "shape-gene network" that couples specific aspects of breast cancer cell shape to signaling and transcriptional events. The actions of this network converge on NF-κB, and support the idea that NF-κB is responsive to mechanical stimuli. By integrating RNAi screening data, we identify components of the shape-gene network that regulate NF-κB in response to cell shape changes. This network was also used to generate metagene models that predict NF-κB activity and aspects of morphology such as cell area, elongation, and protrusiveness. Critically, these metagenes also have predictive value regarding tumor grade and patient outcomes. Taken together, these data strongly suggest that changes in cell shape, driven by gene expression and/or mechanical forces, can promote breast cancer progression by modulating NF-κB activation. Our findings highlight the importance of integrating phenotypic data at the molecular level (signaling and gene expression) with those at the cellular and tissue levels to better understand breast cancer oncogenesis.
Collapse
Affiliation(s)
- Heba Z Sailem
- Institute of Cancer Research, Division of Cancer Biology, London SW3 6JB, United Kingdom
| | - Chris Bakal
- Institute of Cancer Research, Division of Cancer Biology, London SW3 6JB, United Kingdom
| |
Collapse
|
37
|
Insights into a novel nuclear function for Fascin in the regulation of the amino-acid transporter SLC3A2. Sci Rep 2016; 6:36699. [PMID: 27819326 PMCID: PMC5098188 DOI: 10.1038/srep36699] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/19/2016] [Indexed: 01/08/2023] Open
Abstract
Fascin 1 (FSCN1) is a cytoskeleton-associated protein recognized to function primarily in the regulation of cytoskeleton structure and formation of plasma membrane protrusions. Here we report a novel nuclear function for Fascin 1. Biochemical studies and genome wide localization using ChIP-seq identified phosphorylated Fascin 1 (pFascin) in complexes associated with transcription and that it co-localizes with histone H3 Lys4 trimethylation (H3K4me3) on chromatin. Gene expression profiling identified genes affected by Fascin 1 including SLC3A2, a gene encoding for a plasma membrane transporter that regulates intracellular amino acid levels. RbBP5, a subunit of the H3K4 histone methyltransferase (HMT) complex was found to interact with Fascin 1 supporting its role in H3K4me3 establishment at target genes. Moreover, we show that changes to SLC3A2 levels affect amino acid-mediated mTORC1 activation. These results reveal that Fascin 1 has a yet undiscovered nuclear function as an epigenetic modulator of genes essential for amino acid metabolism.
Collapse
|
38
|
Tobin SW, Yang D, Girgis J, Farahzad A, Blais A, McDermott JC. Regulation of Hspb7 by MEF2 and AP-1: implications for Hspb7 in muscle atrophy. J Cell Sci 2016; 129:4076-4090. [PMID: 27632998 DOI: 10.1242/jcs.190009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 09/08/2016] [Indexed: 12/31/2022] Open
Abstract
Mycocyte enhancer factor 2 (MEF2) and activator protein 1 (AP-1) transcription complexes have been individually implicated in myogenesis, but their genetic interaction has not previously been addressed. Using MEF2A, c-Jun and Fra-1 chromatin immunoprecipitation sequencing (ChIP-seq) data and predicted AP-1 consensus motifs, we identified putative common MEF2 and AP-1 target genes, several of which are implicated in regulating the actin cytoskeleton. Because muscle atrophy results in remodelling or degradation of the actin cytoskeleton, we characterized the expression of putative MEF2 and AP-1 target genes (Dstn, Flnc, Hspb7, Lmod3 and Plekhh2) under atrophic conditions using dexamethasone (Dex) treatment in skeletal myoblasts. Heat shock protein b7 (Hspb7) was induced by Dex treatment and further analyses revealed that loss of MEF2A using siRNA prevented Dex-regulated induction of Hspb7. Conversely, ectopic Fra-2 or c-Jun expression reduced Dex-mediated upregulation of Hspb7 whereas AP-1 depletion enhanced Hspb7 expression. In vivo, expression of Hspb7 and other autophagy-related genes was upregulated in response to atrophic conditions in mice. Manipulation of Hspb7 levels in mice also impacted gross muscle mass. Collectively, these data indicate that MEF2 and AP-1 confer antagonistic regulation of Hspb7 gene expression in skeletal muscle, with implications for autophagy and muscle atrophy.
Collapse
Affiliation(s)
- Stephanie Wales Tobin
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.,Muscle Health Research Centre (MHRC), York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.,Centre for Research in Biomolecular Interactions (CRBI), 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - Dabo Yang
- Ottawa Institute of Systems Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - John Girgis
- Ottawa Institute of Systems Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Ali Farahzad
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.,Muscle Health Research Centre (MHRC), York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.,Centre for Research in Biomolecular Interactions (CRBI), 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - Alexandre Blais
- Ottawa Institute of Systems Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - John C McDermott
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3 .,Muscle Health Research Centre (MHRC), York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.,Centre for Research in Biomolecular Interactions (CRBI), 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.,Centre for Research in Mass Spectrometry (CRMS), York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
39
|
da Silva BDO, Lima KF, Gonçalves LR, da Silveira MB, Moraes KCM. MicroRNA Profiling of the Effect of the Heptapeptide Angiotensin-(1-7) in A549 Lung Tumor Cells Reveals a Role for miRNA149-3p in Cellular Migration Processes. PLoS One 2016; 11:e0162094. [PMID: 27598578 PMCID: PMC5012581 DOI: 10.1371/journal.pone.0162094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022] Open
Abstract
Lung cancer is one of the most frequent types of cancer in humans and a leading cause of death worldwide. The high mortality rates are correlated with late diagnosis, which leads to high rates of metastasis found in patients. Thus, despite all the improvement in therapeutic approaches, the development of new drugs that control cancer cell migration and metastasis are required. The heptapeptide angiotensin-(1-7) [ang-(1-7)] has demonstrated the ability to control the growth rates of human lung cancer cells in vitro and in vivo, and the elucidation of central elements that control the fine-tuning of cancer cells migration in the presence of the ang-(1-7), will support the development of new therapeutic approaches. Ang-(1-7) is a peptide hormone of the renin-angiotensin system (RAS) and this study investigates the modulatory effect of the heptapeptide on the expression pattern of microRNAs (miRNAs) in lung tumor cells, to elucidate mechanistic concerns about the effect of the peptide in the control of tumor migratory processes. Our primary aim was to compare the miRNA profiling between treated and untreated-heptapeptide cells to characterize the relevant molecule that modulates cellular migration rates. The analyses selected twenty one miRNAs, which are differentially expressed between the groups; however, statistical analyses indicated miRNA-149-3p as a relevant molecule. Once functional analyses were performed, we demonstrated that miRNA-149-3p plays a role in the cellular migration processes. This information could be useful for future investigations on drug development.
Collapse
Affiliation(s)
| | - Kelvin Furtado Lima
- Institute of Chemistry, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Araraquara, SP, Brazil
| | - Letícia Rocha Gonçalves
- Molecular Biology Laboratory, Departament of Biology, Bioscience Institute, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, SP, Brazil
| | - Marina Bonfogo da Silveira
- Molecular Biology Laboratory, Departament of Biology, Bioscience Institute, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, SP, Brazil
| | - Karen C. M. Moraes
- Molecular Biology Laboratory, Departament of Biology, Bioscience Institute, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Rio Claro, SP, Brazil
- * E-mail:
| |
Collapse
|
40
|
Sim S, Niwa T, Taguchi H, Aida T. Supramolecular Nanotube of Chaperonin GroEL: Length Control for Cellular Uptake Using Single-Ring GroEL Mutant as End-Capper. J Am Chem Soc 2016; 138:11152-5. [PMID: 27545864 DOI: 10.1021/jacs.6b07925] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
How to modulate supramolecular protein nanotubes without sacrificing their thermodynamic stability? This challenging issue emerged with an enhanced reality since our successful development of a protein nanotube of chaperonin GroELMC as a novel ATP-responsive 1D nanocarrier because the nanotube length may potentially affect the cellular uptake efficiency. Herein, we report a molecularly engineered protein end-capper (SRMC) that firmly binds to the nanotube termini since the end-capper originates from GroEL. According to the single-ring mutation of GroEL, we obtained a single-ring version of GroEL bearing cysteine mutations (GroELCys) and modified its 14 apical cysteine residues with merocyanine (MC). Whereas SRMC self-dimerizes upon treatment with Mg(2+), we confirmed that SRMC serves as the efficient end-capper for the Mg(2+)-mediated supramolecular polymerization of GroELMC and allows for modulating the average nanotube length over a wide range from 320 to 40 nm by increasing the feed molar ratio SRMC/GroELMC up to 5.4. We also found that the nanotubes shorter than 100 nm are efficiently taken up into HEP3B cells.
Collapse
Affiliation(s)
- Seunghyun Sim
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuya Niwa
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology , Midori-ku, Yokohama 226-8501, Japan
| | - Hideki Taguchi
- Research Unit for Cell Biology, Institute of Innovative Research, Tokyo Institute of Technology , Midori-ku, Yokohama 226-8501, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,RIKEN Center for Emergent Matter Science , 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
41
|
Parrish AR. The cytoskeleton as a novel target for treatment of renal fibrosis. Pharmacol Ther 2016; 166:1-8. [PMID: 27343756 DOI: 10.1016/j.pharmthera.2016.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/07/2016] [Indexed: 12/23/2022]
Abstract
The incidence of chronic kidney disease (CKD) is increasing, with an estimated prevalence of 12% in the United States (Synder et al., 2009). While CKD may progress to end-stage renal disease (ESRD), which necessitates renal replacement therapy, i.e. dialysis or transplantation, most CKD patients never reach ESRD due to the increased risk of death from cardiovascular disease. It is well-established that regardless of the initiating insult - most often diabetes or hypertension - fibrosis is the common pathogenic pathway that leads to progressive injury and organ dysfunction (Eddy, 2014; Duffield, 2014). As such, there has been extensive research into the molecular and cellular mechanisms of renal fibrosis; however, translation to effective therapeutic strategies has been limited. While a role for the disruption of the cytoskeleton, most notably the actin network, has been established in acute kidney injury over the past two decades, a role in regulating renal fibrosis and CKD is only recently emerging. This review will focus on the role of the cytoskeleton in regulating pro-fibrotic pathways in the kidney, as well as data suggesting that these pathways represent novel therapeutic targets to manage fibrosis and ultimately CKD.
Collapse
Affiliation(s)
- Alan R Parrish
- Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO 65212, USA.
| |
Collapse
|
42
|
Takáč T, Bekešová S, Šamaj J. Actin depolymerization-induced changes in proteome of Arabidopsis roots. J Proteomics 2016; 153:89-99. [PMID: 27321584 DOI: 10.1016/j.jprot.2016.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/27/2016] [Accepted: 06/11/2016] [Indexed: 10/25/2022]
Abstract
Actin cytoskeleton is a vital cellular structure primarily known for controlling cell integrity, division and expansion. Here we present a proteomic dissection of Arabidopsis roots treated by actin depolymerizing agent latrunculin B. Pharmacological disintegration of the actin cytoskeleton by latrunculin B caused downregulation of several proteins involved in the actin organization and dynamics. Moreover, this approach helped to identify new protein candidates involved in gene transcription, due to the altered abundance of proteins involved in mRNA nuclear export. Finally, latrunculin B negatively affected the abundance of abscisic acid (ABA) responsive proteins. SIGNIFICANCE This article substantially contributes to the current knowledge about the importance of actin organization and dynamics in proteome remodelling. We employed gel based and gel free proteomic analyses and identified several new protein candidates and protein networks linking actin dynamics to the gene transcription and to the ABA response in Arabidopsis.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Slávka Bekešová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
43
|
Gao J, Fu S, Zeng Z, Li F, Niu Q, Jing D, Feng X. Cyclic stretch promotes osteogenesis-related gene expression in osteoblast-like cells through a cofilin-associated mechanism. Mol Med Rep 2016; 14:218-24. [PMID: 27177232 PMCID: PMC4918615 DOI: 10.3892/mmr.2016.5239] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 04/11/2016] [Indexed: 11/06/2022] Open
Abstract
Osteoblasts have the capacity to perceive and transduce mechanical signals, and thus, regulate the mRNA and protein expression of a variety of genes associated with osteogenesis. Cytoskeletal reconstruction, as one of the earliest perception events for external mechanical stimulation, has previously been demonstrated to be essential for mechanotransduction in bone cells. However, the mechanism by which mechanical signals induce cytoskeletal deformation remains poorly understood. The actin‑binding protein, cofilin, promotes the depolymerization of actin and is understood to be important in the regulation of activities in various cell types, including endothelial, neuronal and muscle cells. However, to the best of our knowledge, the importance of cofilin in osteoblastic mechanotransduction has not been previously investigated. In the present study, osteoblast‑like MG‑63 cells were subjected to physiological cyclic stretch stimulation (12% elongation) for 1, 4, 8, 12 and 24 h, and the expression levels of cofilin and osteogenesis-associated genes were quantified with reverse transcription‑quantitative polymerase chain reaction, immunofluorescence staining and western blotting analyses. Additionally, knockdown of cofilin using RNA interference was conducted, and the mRNA levels of osteogenesis‑associated genes were compared between osteoblast‑like cells in the presence and absence of cofilin gene knockdown. The results of the present study demonstrated that cyclic stretch stimulates the expression of genes associated with osteoblastic activities in MG‑63 cells, including alkaline phosphatase (ALP), osteocalcin (OCN), runt‑related transcription factor 2 (Runx2) and collagen‑1 (COL‑1). Cyclic stretch also regulates the mRNA and protein expression of cofilin in MG‑63 cells. Furthermore, stretch‑induced increases in the levels of osteogenesis-associated genes, including ALP, OCN, Runx2 and COL‑1, were reduced following cofilin gene knockdown. Together, these results demonstrate that cofilin is involved in the regulation of mechanical load‑induced osteogenesis and, to the best of our knowledge, provides the first evidence demonstrating the importance of cofilin in osteoblastic mechanotransduction.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Shanmin Fu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Zhaobin Zeng
- Department of Stomatology, General Hospital of Shenyang Military Area Command, Shenyang, Liaoning 110084, P.R. China
| | - Feifei Li
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Qiannan Niu
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Da Jing
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xue Feng
- State Key Laboratory of Military Stomatology, Department of Orthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
44
|
Inada N, Higaki T, Hasezawa S. Nuclear Function of Subclass I Actin-Depolymerizing Factor Contributes to Susceptibility in Arabidopsis to an Adapted Powdery Mildew Fungus. PLANT PHYSIOLOGY 2016; 170:1420-34. [PMID: 26747284 PMCID: PMC4775110 DOI: 10.1104/pp.15.01265] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/05/2016] [Indexed: 05/19/2023]
Abstract
Actin-depolymerizing factors (ADFs) are conserved proteins that function in regulating the structure and dynamics of actin microfilaments in eukaryotes. In this study, we present evidence that Arabidopsis (Arabidopsis thaliana) subclass I ADFs, particularly ADF4, functions as a susceptibility factor for an adapted powdery mildew fungus. The null mutant of ADF4 significantly increased resistance against the adapted powdery mildew fungus Golovinomyces orontii. The degree of resistance was further enhanced in transgenic plants in which the expression of all subclass I ADFs (i.e. ADF1-ADF4) was suppressed. Microscopic observations revealed that the enhanced resistance of adf4 and ADF1-4 knockdown plants (ADF1-4Ri) was associated with the accumulation of hydrogen peroxide and cell death specific to G. orontii-infected cells. The increased resistance and accumulation of hydrogen peroxide in ADF1-4Ri were suppressed by the introduction of mutations in the salicylic acid- and jasmonic acid-signaling pathways but not by a mutation in the ethylene-signaling pathway. Quantification by microscopic images detected an increase in the level of actin microfilament bundling in ADF1-4Ri but not in adf4 at early G. orontii infection time points. Interestingly, complementation analysis revealed that nuclear localization of ADF4 was crucial for susceptibility to G. orontii. Based on its G. orontii-infected-cell-specific phenotype, we suggest that subclass I ADFs are susceptibility factors that function in a direct interaction between the host plant and the powdery mildew fungus.
Collapse
Affiliation(s)
- Noriko Inada
- Laboratory of Plant Function Analysis, Plant Global Educational Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (N.I.); andDepartment of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan (T.H., S.H.)
| | - Takumi Higaki
- Laboratory of Plant Function Analysis, Plant Global Educational Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (N.I.); andDepartment of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan (T.H., S.H.)
| | - Seiichiro Hasezawa
- Laboratory of Plant Function Analysis, Plant Global Educational Project, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (N.I.); andDepartment of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan (T.H., S.H.)
| |
Collapse
|
45
|
Zhou HM, Fang YY, Weinberger PM, Ding LL, Cowell JK, Hudson FZ, Ren M, Lee JR, Chen QK, Su H, Dynan WS, Lin Y. Transgelin increases metastatic potential of colorectal cancer cells in vivo and alters expression of genes involved in cell motility. BMC Cancer 2016; 16:55. [PMID: 26847345 PMCID: PMC4741053 DOI: 10.1186/s12885-016-2105-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 01/31/2016] [Indexed: 01/22/2023] Open
Abstract
Background Transgelin is an actin-binding protein that promotes motility in normal cells. Although the role of transgelin in cancer is controversial, a number of studies have shown that elevated levels correlate with aggressive tumor behavior, advanced stage, and poor prognosis. Here we sought to determine the role of transgelin more directly by determining whether experimental manipulation of transgelin levels in colorectal cancer (CRC) cells led to changes in metastatic potential in vivo. Methods Isogenic CRC cell lines that differ in transgelin expression were characterized using in vitro assays of growth and invasiveness and a mouse tail vein assay of experimental metastasis. Downstream effects of transgelin overexpression were investigated by gene expression profiling and quantitative PCR. Results Stable overexpression of transgelin in RKO cells, which have low endogenous levels, led to increased invasiveness, growth at low density, and growth in soft agar. Overexpression also led to an increase in the number and size of lung metastases in the mouse tail vein injection model. Similarly, attenuation of transgelin expression in HCT116 cells, which have high endogenous levels, decreased metastases in the same model. Investigation of mRNA expression patterns showed that transgelin overexpression altered the levels of approximately 250 other transcripts, with over-representation of genes that affect function of actin or other cytoskeletal proteins. Changes included increases in HOOK1, SDCCAG8, ENAH/Mena, and TNS1 and decreases in EMB, BCL11B, and PTPRD. Conclusions Increases or decreases in transgelin levels have reciprocal effects on tumor cell behavior, with higher expression promoting metastasis. Chronic overexpression influences steady-state levels of mRNAs for metastasis-related genes. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2105-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui-Min Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Gastroenterology and Hepatology, The First Affiliated Hospital, School of Clinical Medicine of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Yuan-Yuan Fang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Paul M Weinberger
- Center for Biotechnology and Genomic Medicine, Georgia Regents University, Augusta, GA, 30912, USA.,GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | | | - John K Cowell
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Farlyn Z Hudson
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA
| | - Mingqiang Ren
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA
| | - Jeffrey R Lee
- Department of Pathology, Georgia Regents University, and Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA
| | - Qi-Kui Chen
- Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Hong Su
- Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - William S Dynan
- Institute of Molecular Medicine and Genetics, Georgia Regents University, Augusta, GA, USA. .,Departments of Radiation Oncology and Biochemistry, Emory University, Atlanta, GA, USA.
| | - Ying Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China. .,Department of Gastroenterology and Hepatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
46
|
Yi Z, Huang L, Yang R, Lin X, Song W. Actin evolution in ciliates (Protist, Alveolata) is characterized by high diversity and three duplication events. Mol Phylogenet Evol 2015; 96:45-54. [PMID: 26721556 DOI: 10.1016/j.ympev.2015.11.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 11/02/2015] [Accepted: 11/16/2015] [Indexed: 01/13/2023]
Abstract
Ciliates possess two distinct nuclear genomes and unique genomic features, including highly fragmented chromosomes and extensive chromosomal rearrangements. Recent transcriptomic surveys have revealed that ciliates have several multi-copy genes providing an ideal template to study gene family evolution. Nonetheless, this process remains little studied in ciliated protozoa and consequently, the evolutionary patterns that govern it are not well understood. In this study, we focused on obtaining fine-scale information relative to ciliate species divergence for the first time. A total of 230 actin gene sequences were derived from this study, among which 217 were from four closely related Pseudokeronopsis species and 13 from other hypotrichous ciliates. Our investigation shows that: (1) At least three duplication events occurred in ciliates: diversification of three actin genes (Actin I, II, III) happened after the divergence of ciliate classes but before that of subclasses. And several recent and genus-specific duplications were followed within Actin I (Sterkiella, Oxytricha, Uroleptus, etc.), Actin II (Sterkiella), respectively. (2) Within the genus Pseudokeronopsis, Actin I gene duplication events happened after P. carnea and P. erythrina diverged. In contrast, in the morphologically similar species P. flava and P. rubra, the duplication event preceded diversification of the two species. The Actin II gene duplication events preceded divergence of the genus Pseudokeronopsis. (3) Phylogenetic analyses revealed that actin is suitable for resolving ciliate classes, but may not be used to infer lower taxon relationships.
Collapse
Affiliation(s)
- Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Lijuan Huang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Ran Yang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xiaofeng Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Weibo Song
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
47
|
Simiczyjew A, Mazur AJ, Ampe C, Malicka-Błaszkiewicz M, van Troys M, Nowak D. Active invadopodia of mesenchymally migrating cancer cells contain both β and γ cytoplasmic actin isoforms. Exp Cell Res 2015; 339:206-19. [PMID: 26548725 DOI: 10.1016/j.yexcr.2015.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 10/30/2015] [Accepted: 11/04/2015] [Indexed: 10/25/2022]
Abstract
Invadopodia are actin-rich protrusions formed by mesenchymally migrating cancer cells. They are mainly composed of actin, actin-associated proteins, integrins and proteins of signaling machineries. These protrusions display focalized proteolytic activity towards the extracellular matrix. It is well known that polymerized (F-)actin is present in these structures, but the nature of the actin isoform has not been studied before. We here show that both cytoplasmic actin isoforms, β- and γ-actin, are present in the invadopodia of MDA-MB-231 breast cancer cells cultured on a 2D-surface, where they colocalize with the invadopodial marker cortactin. Invadopodial structures formed by the cells in a 3D-collagen matrix also contain β- and γ-actin. We demonstrate this using isoform-specific antibodies and expression of fluorescently-tagged actin isoforms. Additionally, using simultaneous expression of differentially tagged β- and γ-actin in cells, we show that the actin isoforms are present together in a single invadopodium. Cells with an increased level of β- or γ-actin, display a similar increase in the number and size of invadopodia in comparison to control cells. Moreover, increasing the level of either actin isoforms also increases invasion velocity.
Collapse
Affiliation(s)
- Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Christophe Ampe
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Maria Malicka-Błaszkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| | - Marleen van Troys
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland
| |
Collapse
|
48
|
Kuznetsova IM, Povarova OI, Uversky VN, Turoverov KK. Native globular actin has a thermodynamically unstable quasi-stationary structure with elements of intrinsic disorder. FEBS J 2015; 283:438-45. [PMID: 26460158 DOI: 10.1111/febs.13548] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 09/20/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Abstract
The native form of globular actin, G-actin, is formed in vivo as a result of complex post-translational folding processes that require ATP energy expenditure and are assisted by the 70 kDa heat shock protein, prefoldin and chaperonin containing TCP-1. G-actin is stabilized by the binding of one ATP molecule and one Ca(2+) ion (or Mg(2+) in vivo). Chemical denaturants, heating or Ca(2+) removal transform native actin (N) into 'inactivated actin' (I), a compact oligomer comprising 14-16 subunits. Viscogenic and crowding agents slow this process but do not stop it. The lack of calcium in the solution accelerates the spontaneous N → I transition. Thus, native G-actin has a kinetically stable (as a result of the high free energy barrier between the N and I states) but thermodynamically unstable structure, which, in the absence of Ca(2+) or other bivalent metal ions, spontaneously converts to the thermodynamically stable I state. It was noted that native actin has much in common with intrinsically disordered proteins: it has functionally important disordered regions; it is constantly in complex with one of its numerous partners; and it plays key roles in many cellular processes, in a manner similar to disordered hub proteins. By analyzing actin folding in vivo and unfolding in vitro, we advanced the hypothesis that proteins in a native state may have a thermodynamically unstable quasi-stationary structure. The kinetically stable native state of these proteins appears forcibly under the influence of intracellular folding machinery. The denaturation of such proteins is always irreversible because the inactivated state, for which the structure is determined by the amino acid sequence of a protein, comprises the thermodynamically stable state under physiological conditions.
Collapse
Affiliation(s)
- Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Olga I Povarova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | - Vladimir N Uversky
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia.,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia.,Department of Biophysics, Peter the Great Saint-Petersburg Polytechnic University, Russia
| |
Collapse
|
49
|
Yang J, Zhao Y, Kalita M, Li X, Jamaluddin M, Tian B, Edeh CB, Wiktorowicz JE, Kudlicki A, Brasier AR. Systematic Determination of Human Cyclin Dependent Kinase (CDK)-9 Interactome Identifies Novel Functions in RNA Splicing Mediated by the DEAD Box (DDX)-5/17 RNA Helicases. Mol Cell Proteomics 2015. [PMID: 26209609 DOI: 10.1074/mcp.m115.049221] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inducible transcriptional elongation is a rapid, stereotypic mechanism for activating immediate early immune defense genes by the epithelium in response to viral pathogens. Here, the recruitment of a multifunctional complex containing the cyclin dependent kinase 9 (CDK9) triggers the process of transcriptional elongation activating resting RNA polymerase engaged with innate immune response (IIR) genes. To identify additional functional activity of the CDK9 complex, we conducted immunoprecipitation (IP) enrichment-stable isotope labeling LC-MS/MS of the CDK9 complex in unstimulated cells and from cells activated by a synthetic dsRNA, polyinosinic/polycytidylic acid [poly (I:C)]. 245 CDK9 interacting proteins were identified with high confidence in the basal state and 20 proteins in four functional classes were validated by IP-SRM-MS. These data identified that CDK9 interacts with DDX 5/17, a family of ATP-dependent RNA helicases, important in alternative RNA splicing of NFAT5, and mH2A1 mRNA two proteins controlling redox signaling. A direct comparison of the basal versus activated state was performed using stable isotope labeling and validated by IP-SRM-MS. Recruited into the CDK9 interactome in response to poly(I:C) stimulation are HSPB1, DNA dependent kinases, and cytoskeletal myosin proteins that exchange with 60S ribosomal structural proteins. An integrated human CDK9 interactome map was developed containing all known human CDK9- interacting proteins. These data were used to develop a probabilistic global map of CDK9-dependent target genes that predicted two functional states controlling distinct cellular functions, one important in immune and stress responses. The CDK9-DDX5/17 complex was shown to be functionally important by shRNA-mediated knockdown, where differential accumulation of alternatively spliced NFAT5 and mH2A1 transcripts and alterations in downstream redox signaling were seen. The requirement of CDK9 for DDX5 recruitment to NFAT5 and mH2A1 chromatin target was further demonstrated using chromatin immunoprecipitation (ChIP). These data indicate that CDK9 is a dynamic multifunctional enzyme complex mediating not only transcriptional elongation, but also alternative RNA splicing and potentially translational control.
Collapse
Affiliation(s)
- Jun Yang
- From the ‡Department of Internal Medicine; §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences
| | - Yingxin Zhao
- From the ‡Department of Internal Medicine; §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences
| | - Mridul Kalita
- §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences
| | - Xueling Li
- ¶Institute for Translational Sciences; ‖Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Mohammad Jamaluddin
- From the ‡Department of Internal Medicine; ¶Institute for Translational Sciences
| | - Bing Tian
- From the ‡Department of Internal Medicine; §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences
| | | | - John E Wiktorowicz
- §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences; ‖Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Andrzej Kudlicki
- §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences; ‖Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas
| | - Allan R Brasier
- From the ‡Department of Internal Medicine; §Sealy Center for Molecular Medicine; ¶Institute for Translational Sciences;
| |
Collapse
|
50
|
Li J, Henty-Ridilla JL, Staiger BH, Day B, Staiger CJ. Capping protein integrates multiple MAMP signalling pathways to modulate actin dynamics during plant innate immunity. Nat Commun 2015; 6:7206. [PMID: 26018794 PMCID: PMC4458898 DOI: 10.1038/ncomms8206] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 04/17/2015] [Indexed: 12/13/2022] Open
Abstract
Plants and animals perceive diverse microbe-associated molecular patterns (MAMPs) via pattern recognition receptors and activate innate immune signalling. The actin cytoskeleton has been suggested as a target for innate immune signalling and a key transducer of cellular responses. However, the molecular mechanisms underlying actin remodelling and the precise functions of these rearrangements during innate immunity remain largely unknown. Here we demonstrate rapid actin remodelling in response to several distinct MAMP signalling pathways in plant epidermal cells. The regulation of actin dynamics is a convergence point for basal defence machinery, such as cell wall fortification and transcriptional reprogramming. Our quantitative analyses of actin dynamics and genetic studies reveal that MAMP-stimulated actin remodelling is due to the inhibition of capping protein (CP) by the signalling lipid, phosphatidic acid. In addition, CP promotes resistance against bacterial and fungal phytopathogens. These findings demonstrate that CP is a central target for the plant innate immune response.
Collapse
Affiliation(s)
- Jiejie Li
- Department of Biological Sciences, Purdue University, 335 Hansen Life Sciences Building, West Lafayette, Indiana 47907-2064, USA
| | - Jessica L. Henty-Ridilla
- Department of Biological Sciences, Purdue University, 335 Hansen Life Sciences Building, West Lafayette, Indiana 47907-2064, USA
| | - Benjamin H. Staiger
- Department of Biological Sciences, Purdue University, 335 Hansen Life Sciences Building, West Lafayette, Indiana 47907-2064, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824-6254, USA
| | - Christopher J. Staiger
- Department of Biological Sciences, Purdue University, 335 Hansen Life Sciences Building, West Lafayette, Indiana 47907-2064, USA
- The Bindley Bioscience Center, Discovery Park, Purdue University, 1203 West State Street, West Lafayette, Indiana 47907, USA
| |
Collapse
|