1
|
Espinosa JM, Castellano JM, Garcia-Rodriguez S, Quintero-Flórez A, Carrasquilla N, Perona JS. Lipophilic Bioactive Compounds Transported in Triglyceride-Rich Lipoproteins Modulate Microglial Inflammatory Response. Int J Mol Sci 2022; 23:ijms23147706. [PMID: 35887052 PMCID: PMC9321013 DOI: 10.3390/ijms23147706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022] Open
Abstract
Microglial cells can contribute to Alzheimer’s disease by triggering an inflammatory response that leads to neuronal death. In addition, the presence of amyloid-β in the brain is consistent with alterations in the blood–brain barrier integrity and triglyceride-rich lipoproteins (TRL) permeation. In the present work, we used lab-made TRL as carriers of lipophilic bioactive compounds that are commonly present in dietary oils, namely oleanolic acid (OA), α-tocopherol (AT) and β-sitosterol (BS), to assess their ability to modulate the inflammatory response of microglial BV-2 cells. We show that treatment with lab-made TRL increases the release and gene-expression of IL-1β, IL-6, and TNF-α, as well as NO and iNOS in microglia. On the other hand, TRL revealed bioactive compounds α-tocopherol and β-sitosterol as suitable carriers for oleanolic acid. The inclusion of these biomolecules in TRL reduced the release of proinflammatory cytokines. The inclusion of these biomolecules in TRL reduced the release of proinflammatory cytokines. AT reduced IL-6 release by 72%, OA reduced TNF-α release by approximately 50%, and all three biomolecules together (M) reduced IL-1β release by 35% and TNF-α release by more than 70%. In addition, NO generation was reduced, with the inclusion of OA by 45%, BS by 80% and the presence of M by 88%. Finally, a recovery of the basal glutathione content was observed with the inclusion of OA and M in the TRL. Our results open the way to exploiting the neuro-pharmacological potential of these lipophilic bioactive compounds through their delivery to the brain as part of TRL.
Collapse
|
2
|
Xiang Q, Tian F, Xu J, Du X, Zhang S, Liu L. New insight into dyslipidemia‐induced cellular senescence in atherosclerosis. Biol Rev Camb Philos Soc 2022; 97:1844-1867. [PMID: 35569818 PMCID: PMC9541442 DOI: 10.1111/brv.12866] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/18/2022] [Accepted: 04/28/2022] [Indexed: 11/28/2022]
Abstract
Atherosclerosis, characterized by lipid‐rich plaques in the arterial wall, is an age‐related disorder and a leading cause of mortality worldwide. However, the specific mechanisms remain complex. Recently, emerging evidence has demonstrated that senescence of various types of cells, such as endothelial cells (ECs), vascular smooth muscle cells (VSMCs), macrophages, endothelial progenitor cells (EPCs), and adipose‐derived mesenchymal stem cells (AMSCs) contributes to atherosclerosis. Cellular senescence and atherosclerosis share various causative stimuli, in which dyslipidemia has attracted much attention. Dyslipidemia, mainly referred to elevated plasma levels of atherogenic lipids or lipoproteins, or functional impairment of anti‐atherogenic lipids or lipoproteins, plays a pivotal role both in cellular senescence and atherosclerosis. In this review, we summarize the current evidence for dyslipidemia‐induced cellular senescence during atherosclerosis, with a focus on low‐density lipoprotein (LDL) and its modifications, hydrolysate of triglyceride‐rich lipoproteins (TRLs), and high‐density lipoprotein (HDL), respectively. Furthermore, we describe the underlying mechanisms linking dyslipidemia‐induced cellular senescence and atherosclerosis. Finally, we discuss the senescence‐related therapeutic strategies for atherosclerosis, with special attention given to the anti‐atherosclerotic effects of promising geroprotectors as well as anti‐senescence effects of current lipid‐lowering drugs.
Collapse
Affiliation(s)
- Qunyan Xiang
- Department of Geriatrics, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Institute of Aging and Age‐related Disease Research Central South University Changsha Hunan 410011 PR China
| | - Feng Tian
- Department of Geriatric Cardiology The First Affiliated Hospital of Zhengzhou University Zhengzhou Henan 450000 PR China
| | - Jin Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| | - Xiao Du
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| | - Shilan Zhang
- Department of Gastroenterology, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital Central South University Changsha Hunan 410011 PR China
- Research Institute of Blood Lipid and Atherosclerosis Central South University Changsha Hunan 410011 PR China
- Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province Changsha Hunan 410011 PR China
- Cardiovascular Disease Research Center of Hunan Province Changsha Hunan 410011 PR China
| |
Collapse
|
3
|
Sottero B, Testa G, Gamba P, Staurenghi E, Giannelli S, Leonarduzzi G. Macrophage polarization by potential nutraceutical compounds: A strategic approach to counteract inflammation in atherosclerosis. Free Radic Biol Med 2022; 181:251-269. [PMID: 35158030 DOI: 10.1016/j.freeradbiomed.2022.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a main event in the onset and progression of atherosclerosis and is closely associated with oxidative stress in a sort of vicious circle that amplifies and sustains all stages of the disease. Key players of atherosclerosis are monocytes/macrophages. According to their pro- or anti-inflammatory phenotype and biological functions, lesional macrophages can release various mediators and enzymes, which in turn contribute to plaque progression and destabilization or, alternatively, lead to its resolution. Among the factors connected to atherosclerotic disease, lipid species carried by low density lipoproteins and pro-oxidant stimuli strongly promote inflammatory events in the vasculature, also by modulating the macrophage phenotyping. Therapies specifically aimed to balance macrophage inflammatory state are increasingly considered as powerful tools to counteract plaque formation and destabilization. In this connection, several molecules of natural origin have been recognized to be active mediators of diverse metabolic and signaling pathways regulating lipid homeostasis, redox state, and inflammation; they are, thus, considered as promising candidates to modulate macrophage responsiveness to pro-atherogenic stimuli. The current knowledge of the capability of nutraceuticals to target macrophage polarization and to counteract atherosclerotic lesion progression, based mainly on in vitro investigation, is summarized in the present review.
Collapse
Affiliation(s)
- Barbara Sottero
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Testa
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Erica Staurenghi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Serena Giannelli
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, School of Medicine, University of Turin, Orbassano, Torino, Italy.
| |
Collapse
|
4
|
Oleanolic Acid-Enriched Olive Oil Alleviates the Interleukin-6 Overproduction Induced by Postprandial Triglyceride-Rich Lipoproteins in THP-1 Macrophages. Nutrients 2021; 13:nu13103471. [PMID: 34684472 PMCID: PMC8537268 DOI: 10.3390/nu13103471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022] Open
Abstract
Oleanolic acid (OA), a triterpene that is highly present in olive leaves, has been proposed as a component of functional foods for the prevention of metabolic syndrome, due to its anti-inflammatory activity. We analyzed the effects of OA on inflammatory parameters and signaling proteins in LPS-stimulated THP-1 macrophages. Thus, THP-1 macrophages were incubated with LPS for 48 h after pretreatment with OA at different concentrations. Pretreatment with OA was significantly effective in attenuating IL-6 and TNF-α overproduction induced by LPS in macrophages, and also improved the levels of AMPK-α. We also evaluated the effects of human triglyceride-rich lipoproteins (TRLs) derived from individuals consuming an OA-enriched functional olive oil. For this purpose, TRLs were isolated from healthy adolescents before, 2 and 5 h postprandially after the intake of a meal containing the functional olive oil or common olive oil, and were incubated with THP-1 macrophages. THP-1 macrophages incubated with TRLs isolated at 2 h after the consumption of the OA-enriched olive oil showed significant lower levels of IL-6 compared to the TRLs derived from olive oil. Our results suggest that OA might have potential to be used as a lipid-based formulation in functional olive oils to prevent inflammatory processes underlying metabolic syndrome in adolescents.
Collapse
|
5
|
Kumar V, Sachan R, Rahman M, Rub RA, Patel DK, Sharma K, Gahtori P, Al-Abbasi FA, Alhayyani S, Anwar F, Kim HS. Chemopreventive effects of Melastoma malabathricum L. extract in mammary tumor model via inhibition of oxidative stress and inflammatory cytokines. Biomed Pharmacother 2021; 137:111298. [PMID: 33761590 DOI: 10.1016/j.biopha.2021.111298] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/11/2021] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
The objective of this study was to evaluate the anticancer effects of Melstoma malabathricum L. (MM) MDA-MB-231 human breast cancer and in vivo mammary tumor model and decipher the potential mechanism. The phyto-constituents in the extract have been identified by liquid chromatography-mass spectrometry (LC-MS). The anti-cancer activity of MM extract was tested on MDA-MB-231 human breast cancer cells. Chemical carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) was used for the induction of breast cancer in rodents. Burden, volume, tumor incidence, pro-inflammatory cytokines, antioxidant parameters and mitochondrial parameters were estimated. Histological analysis was determined in mammary gland, vagina, uterus, heart, liver, lung and renal tissues. LC-MS showed the 21 phyto-constituents present in the extract of MM. MM extract showed the potent cytotoxicity against MDA-MB-231 cells and exhibited the IC50 value (14.6 μM). MM extract significantly decreased the body weight and altered the organ weight such as ovary, uterus, liver, spleen, lungs, renal, adrenal and brain tissue. MM extract significantly down-regulated the tumor incidence, tumor burden and average tumor weight at dose dependently manner. MM extract significantly altered the antioxidants activity in term of augmented the level of superoxide dismutase (SOD), catalase (CAT) and suppressed the level of malonaldehyde (MDA); pro-inflammatory cytokines levels such as reduced the level of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) in the serum, hepatic and mammary gland tissue in DMBA induced mammary gland tumor rats. MM extract significantly (P < 0.001) enhanced the activity of mitochondrial parameters include Isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), Malate dehydrogenase (MDH) and alpha-keto glutaraldehyde dehydrogenase (α-KGDH). The histopathological finding exhibited that MM extract has a marked reduced effect on mammary glands, mammary gland, vagina, uterus, heart, liver, lung and renal.These data provide the scientific evidence that MM extract might be used as a traditional medicine to cure the breast cancer.
Collapse
Affiliation(s)
- Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - Richa Sachan
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea
| | - Mahfoozur Rahman
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - Rehan Abdur Rub
- Nanomedicine Research Lab, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Dinesh Kumar Patel
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Prayagraj, Uttar Pradesh, 211007, India
| | - Kalicharan Sharma
- Department of Pharmaceutical Chemistry, SPER, Jamia Hamdard, New Delhi, 110062, India
| | - Prashant Gahtori
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India
| | - F A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sultan Alhayyani
- Department of Chemistry, College of Sciences & Arts, Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Firoz Anwar
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248002, Uttarakhand, India.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, 440-746, Republic of Korea.
| |
Collapse
|
6
|
Bonetti J, Corti A, Lerouge L, Pompella A, Gaucher C. Phenotypic Modulation of Macrophages and Vascular Smooth Muscle Cells in Atherosclerosis-Nitro-Redox Interconnections. Antioxidants (Basel) 2021; 10:antiox10040516. [PMID: 33810295 PMCID: PMC8066740 DOI: 10.3390/antiox10040516] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Monocytes/macrophages and vascular smooth muscle cells (vSMCs) are the main cell types implicated in atherosclerosis development, and unlike other mature cell types, both retain a remarkable plasticity. In mature vessels, differentiated vSMCs control the vascular tone and the blood pressure. In response to vascular injury and modifications of the local environment (inflammation, oxidative stress), vSMCs switch from a contractile to a secretory phenotype and also display macrophagic markers expression and a macrophagic behaviour. Endothelial dysfunction promotes adhesion to the endothelium of monocytes, which infiltrate the sub-endothelium and differentiate into macrophages. The latter become polarised into M1 (pro-inflammatory), M2 (anti-inflammatory) or Mox macrophages (oxidative stress phenotype). Both monocyte-derived macrophages and macrophage-like vSMCs are able to internalise and accumulate oxLDL, leading to formation of “foam cells” within atherosclerotic plaques. Variations in the levels of nitric oxide (NO) can affect several of the molecular pathways implicated in the described phenomena. Elucidation of the underlying mechanisms could help to identify novel specific therapeutic targets, but to date much remains to be explored. The present article is an overview of the different factors and signalling pathways implicated in plaque formation and of the effects of NO on the molecular steps of the phenotypic switch of macrophages and vSMCs.
Collapse
Affiliation(s)
- Justine Bonetti
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| | - Alessandro Corti
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy;
| | - Lucie Lerouge
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| | - Alfonso Pompella
- Department of Translational Research NTMS, University of Pisa Medical School, 56126 Pisa, Italy;
- Correspondence: ; Tel.: +39-050-2218-537
| | - Caroline Gaucher
- CITHEFOR, Université de Lorraine, F-54000 Nancy, France; (J.B.); (L.L.); (C.G.)
| |
Collapse
|
7
|
Effects of Fat Supplementation in Dairy Goats on Lipid Metabolism and Health Status. Animals (Basel) 2019; 9:ani9110917. [PMID: 31689973 PMCID: PMC6912558 DOI: 10.3390/ani9110917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/24/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
Simple Summary There is an increasing demand for information on the nutraceutical properties of food. Due to its bioactive components and high digestibility, goat milk is an excellent functional food. Dietary fat supplementation can further enrich the value of goat milk by modifying its acidic profile. Nevertheless, animal health can also benefit from lipids supplied with rations. In this review, the relationships between dietary fats and goat health status are summarized. Particular attention is paid to describing the effects of specific fatty acids on lipid metabolism and immune functionality. Abstract Fat supplementation has long been used in dairy ruminant nutrition to increase the fat content of milk and supply energy during particularly challenging production phases. Throughout the years, advances have been made in the knowledge of metabolic pathways and technological treatments of dietary fatty acids (FAs), resulting in safer and more widely available lipid supplements. There is an awareness of the positive nutraceutical effects of the addition of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to fat supplementation, which provides consumers with healthier animal products through manipulation of their characteristics. If it is true that benefits to human health can be derived from the consumption of animal products rich in bioactive fatty acids (FAs), then it is reasonable to think that the same effect can occur in the animals to which the supplements are administered. Therefore, recent advances in fat supplementation of dairy goats with reference to the effect on health status have been summarized. In vivo trials and in vitro analysis on cultured cells, as well as histological and transcriptomic analyses of hepatic and adipose tissue, have been reviewed in order to assess documented relationships between specific FAs, lipid metabolism, and immunity.
Collapse
|
8
|
Lecithin derived from ω-3 PUFA fortified eggs decreases blood pressure in spontaneously hypertensive rats. Sci Rep 2017; 7:12373. [PMID: 28959007 PMCID: PMC5620069 DOI: 10.1038/s41598-017-12019-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/01/2017] [Indexed: 12/25/2022] Open
Abstract
Hypertension is the most common risk factor for stroke, coronary heart disease and heart failure, which are the leading causes of death worldwide. Dietary patterns and supplements intakes are becoming important factors in the hypertension. The aim of this study was to estimate the effects of new generation egg yolk phospholipids rich in lecithin (SL) esterified with omega-3 and omega-6 fatty acids on blood pressure in hypertensive rats (SHR). Here we have reported that lecithin (SL) derived from egg yolk lowers blood pressure in pathology of hypertension. The SHR rats treated with SL had significantly lower blood pressure than control group (157/104 vs. 178/121 mmHg; P < 0.05) and down-regulated mesenteric artery over-response to norepinephrine and potassium chloride, giving similar arterial response as for normotensive Wistar Kyoto rats (WKY). Hypertensive rats treated by SL demonstrated significantly lower serum level of inflammatory factors. This work also indicates that SL treatment lowers heart rate and reduces the serum level of oxidative stress marker - nitrotyrosine - by 30–34% in both hypertensive and normotensive animals. Phospholipids with lecithin derived from PUFA fortified eggs may be a valuable dietary supplement in prophylaxis of hypertension and in patients with hypertension, however, this requires further studies on humans.
Collapse
|
9
|
Paula RS, Souza VC, Toledo JO, Ferreira AP, Brito CJ, Gomes L, Moraes CF, Córdova C, Nóbrega OT. Habitual dietary intake and mediators of the inflammaging process in Brazilian older women. Aging Clin Exp Res 2016; 28:533-9. [PMID: 26347463 DOI: 10.1007/s40520-015-0445-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022]
Abstract
AIM This study aimed to assess whether the habitual intake of macronutrients by older women associates with circulating levels of important inflammaging mediators by means of a cross-sectional design with 229 Brazilian elderly women. METHODS Laboratory tests determined serum IL1α, IL1β, IL6, IL8, IL10, IL12 and TNFα by specific immunoassays. Food records of three alternate days were decomposed into usual intake of carbohydrates, proteins and lipids (and fractions), as well as total energy value (TEV) per patient. Moreover, the study has identified and controlled results for metabolic conditions known to influence the inflammatory profile: hypercholesterolemia, hypertension and diabetes. RESULTS AND DISCUSSION Pearson's correlation test revealed that log10IL8 expressed a positive association with levels of saturated fatty acid (FA) (r = 0.173; p = 0.009) and total cholesterol intake (r = 0.223; p = 0.001). Similar analysis of the other mediators revealed no association with dietary intake. CONCLUSION Higher intakes of total cholesterol and saturated FA seem to correlate with increased serum IL8 levels, being a possible mechanism by which this pro-atherogenic intake pattern may increase the risk of age-related chronic diseases with important inflammatory contribution.
Collapse
Affiliation(s)
- Roberta Silva Paula
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Vinícius Carolino Souza
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| | - Juliana Oliveira Toledo
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
| | | | | | - Lucy Gomes
- Universidade Católica de Brasília, Brasilia, Brazil
| | - Clayton Franco Moraes
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil
- Universidade Católica de Brasília, Brasilia, Brazil
| | | | - Otávio Toledo Nóbrega
- Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília, DF, 70910-900, Brazil.
| |
Collapse
|
10
|
Postprandial lipoproteins and the molecular regulation of vascular homeostasis. Prog Lipid Res 2013; 52:446-64. [DOI: 10.1016/j.plipres.2013.06.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 06/06/2013] [Accepted: 06/06/2013] [Indexed: 12/17/2022]
|
11
|
Napolitano M, Botham KM, Bravo E. Postprandial human triglyceride-rich lipoproteins increase chemoattractant protein secretion in human macrophages. Cytokine 2013; 63:18-26. [DOI: 10.1016/j.cyto.2013.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 04/19/2013] [Accepted: 04/21/2013] [Indexed: 01/17/2023]
|
12
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss recent studies reporting on the influence of fatty acids on gene expression in relation to inflammation and immune responses. RECENT FINDINGS Saturated fatty acids promote, whereas several n-3 fatty acids, in particular eicosapentaenoic and docosahexaenoic acids, some isomers of conjugated linoleic acid, and punicic acid suppress, expression of inflammatory genes. The most common targets of fatty acids are genes encoding cytokines, chemokines, cyclooxygenase, nitric oxide synthase, and matrix metalloproteinases. The anti-inflammatory actions of fatty acids often involve inhibition of activation of nuclear factor-κB and activation of peroxisome proliferator-activated receptors α and γ. Common upstream events include actions on Toll-like receptors and via G-protein coupled receptors. Fatty acids can influence expression of genes involved in immune and inflammatory cell development and differentiation. Recent studies using genome-wide analyses demonstrate that dietary fatty acids can alter expression of a large number (many hundreds) of genes in human peripheral blood mononuclear cells. SUMMARY A wide range of fatty acids alter expression of genes involved in development, differentiation, and function of cells involved in inflammation and immunity.
Collapse
Affiliation(s)
- Philip C Calder
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
13
|
Dietary medium-chain triglycerides promote oral allergic sensitization and orally induced anaphylaxis to peanut protein in mice. J Allergy Clin Immunol 2012. [PMID: 23182172 DOI: 10.1016/j.jaci.2012.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The prevalence of peanut allergies is increasing. Peanuts and many other allergen sources contain significant amounts of triglycerides, which affect absorption of antigens but have unknown effects on sensitization and anaphylaxis. We recently reported that dietary medium-chain triglycerides (MCTs), which bypass mesenteric lymph and directly enter portal blood, reduce intestinal antigen absorption into blood compared with long-chain triglycerides (LCTs), which stimulate mesenteric lymph flow and are absorbed in chylomicrons through mesenteric lymph. OBJECTIVE We sought to test how dietary MCTs affect food allergy. METHODS C3H/HeJ mice were fed peanut butter protein in MCT, LCT (peanut oil), or LCT plus an inhibitor of chylomicron formation (Pluronic L81). Peanut-specific antibodies in plasma, responses of the mice to antigen challenges, and intestinal epithelial cytokine expression were subsequently measured. RESULTS MCT suppressed antigen absorption into blood but stimulated absorption into Peyer patches. A single gavage of peanut protein with MCT, as well as prolonged feeding in MCT-based diets, caused spontaneous allergic sensitization. MCT-sensitized mice experienced IgG-dependent anaphylaxis on systemic challenge and IgE-dependent anaphylaxis on oral challenge. MCT feeding stimulated jejunal-epithelial thymic stromal lymphopoietin, Il25, and Il33 expression compared with that seen after LCT feeding and promoted T(H)2 cytokine responses in splenocytes. Moreover, oral challenges of sensitized mice with antigen in MCT significantly aggravated anaphylaxis compared with challenges with the LCT. Importantly, the effects of MCTs could be mimicked by adding Pluronic L81 to LCTs, and in vitro assays indicated that chylomicrons prevent basophil activation. CONCLUSION Dietary MCTs promote allergic sensitization and anaphylaxis by affecting antigen absorption and availability and by stimulating T(H)2 responses.
Collapse
|
14
|
Bentley C, Hathaway N, Widdows J, Bejta F, De Pascale C, Avella M, Wheeler-Jones C, Botham K, Lawson C. Influence of chylomicron remnants on human monocyte activation in vitro. Nutr Metab Cardiovasc Dis 2011; 21:871-878. [PMID: 20674313 PMCID: PMC3212651 DOI: 10.1016/j.numecd.2010.02.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 01/14/2010] [Accepted: 02/12/2010] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Atherosclerosis is known to be an inflammatory disease and there is increasing evidence that chylomicron remnants (CMR), the lipoproteins which carry dietary fats in the blood, cause macrophage foam cell formation and inflammation. In early atherosclerosis the frequency of activated monocytes in the peripheral circulation is increased, and clearance of CMR from blood may be delayed, however, whether CMR contribute directly to monocyte activation and subsequent egress into the arterial wall has not been established. Here, the contribution of CMR to activation of monocyte pro-inflammatory pathways was assessed using an in vitro model. METHODS AND RESULTS Primary human monocytes and CMR-like particles (CRLP) were used to measure several endpoints of monocyte activation. Treatment with CRLP caused rapid and prolonged generation of reactive oxygen species by monocytes. The pro-inflammatory chemokines MCP-1 and IL-8 were secreted in nanogram quantities by the cells in the absence of CRLP. IL-8 secretion was transiently increased after CRLP treatment, and CRLP maintained secretion in the presence of pharmacological inhibitors of IL-8 production. In contrast, exposure to CRLP significantly reduced MCP-1 secretion. Chemotaxis towards MCP-1 was increased in monocytes pre-exposed to CRLP and was reversed by addition of exogenous MCP-1. CONCLUSION Our findings indicate that CRLP activate human monocytes and augment their migration in vitro by reducing cellular MCP-1 expression. Our data support the current hypothesis that CMR contribute to the inflammatory milieu of the arterial wall in early atherosclerosis, and suggest that this may reflect direct interaction with circulating blood monocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - C. Lawson
- Corresponding author. Tel.: +44 20 7468 1216; fax: +44 20 7468 5204.
| |
Collapse
|
15
|
The oxidative state of chylomicron remnants influences their modulation of human monocyte activation. Int J Vasc Med 2011; 2012:942512. [PMID: 21961069 PMCID: PMC3180828 DOI: 10.1155/2012/942512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/21/2011] [Accepted: 07/26/2011] [Indexed: 12/30/2022] Open
Abstract
Chylomicron remnants (CMRs) contribute directly to human monocyte activation in vitro, by increasing reactive oxygen species (ROS) production and cell migration. In this study, the effects of the oxidative state of CMR on the degree of monocyte activation was investigated. CMR-like particles (CRLPs) were prepared in three different oxidative states, normal (CRLPs), protected from oxidation by incorporation of the antioxidant, probucol (pCRLPs), or oxidised with CuSO(4) (oxCRLPs). Lipid accumulation and ROS production were significantly increased in primary human monocytes incubated with CRLPs, whilst secretion on monocyte chemoattractant protein-1 was reduced, but oxCRLPs had no additional effect. In contrast, pCRLPs were taken up by monocytes to a lesser extent and had no significant effect on ROS or MCP-1 secretion. These studies suggest that the oxidative state of CMRs modulates their stimulation of the activation of peripheral blood human monocytes and that dietary antioxidants may provide some protection against these atherogenic effects.
Collapse
|
16
|
Graham VS, Lawson C, Wheeler-Jones CPD, Perona JS, Ruiz-Gutierrez V, Botham KM. Triacylglycerol-rich lipoproteins derived from healthy donors fed different olive oils modulate cytokine secretion and cyclooxygenase-2 expression in macrophages: the potential role of oleanolic acid. Eur J Nutr 2011; 51:301-9. [PMID: 21681438 DOI: 10.1007/s00394-011-0215-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE Current evidence suggests that consumption of virgin olive oil (VOO) helps to protect against the development of atherosclerosis and that minor components such as oleanolic acid contribute to this effect. In this study, the effects of triacylglycerol-rich lipoproteins (TRLs) derived from olive oil on inflammatory processes in macrophages and how they are modulated by oleanolic acid was investigated. METHODS TRLs isolated from healthy volunteers 2 and 4 h after a test meal containing VOO, pomace olive oil (POO) (the second pressing of olive oil, enriched in minor components) or POO enriched with oleanolic acid (OPOO) were incubated with macrophages derived from the human monocyte cell line, THP-1. RESULTS All types of TRLs caused a decrease of about 50% in the secretion of monocyte chemoattractant protein-1 (MCP-1) by the cells. Interleukin (IL)-6 secretion was also significantly decreased by 2 and 4 h VOO TRLs and by 4 h OPOO TRLs. In contrast, increased IL-1β secretion was observed with all 2 h TRL types, and increased tumour necrosis factor-α (TNF-α) production with 2 h VOO and POO, but not OPOO, TRLs. TRLs isolated after 4 h, however, had no significant effects on TNF-α secretion and increased IL-1β secretion only when they were derived from VOO. Cyclooxygenase-2 (COX-2) mRNA expression was strongly down-regulated by all types of TRLs, but protein expression was significantly depressed only by 4 h OPOO TRLs. CONCLUSION These findings demonstrate that TRLs derived from olive oil influence inflammatory processes in macrophages and suggest that oleanolic acid may have beneficial effects.
Collapse
Affiliation(s)
- V S Graham
- Department of Veterinary Basic Sciences, The Royal Veterinary College, Royal College St, London, NW1 0TU, UK
| | | | | | | | | | | |
Collapse
|
17
|
Dalla-Riva J, Garonna E, Elliott J, Botham KM, Wheeler-Jones CP. Endothelial cells as targets for chylomicron remnants. ATHEROSCLEROSIS SUPP 2010; 11:31-7. [PMID: 20439166 DOI: 10.1016/j.atherosclerosissup.2010.04.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/01/2010] [Accepted: 04/02/2010] [Indexed: 11/19/2022]
Abstract
Endothelial dysfunction is characterised by pro-inflammatory/pro-coagulant changes in the endothelium and supports leukocyte adhesion and transmigration, key steps in early atherogenesis. There is emerging evidence that triacylglycerol-rich lipoproteins (TGRLs) present in the circulation during the postprandial phase influence vascular inflammation but the specific contribution of the remnant lipoprotein component of TGRLs is largely unexplored and the mechanistic basis of their actions poorly defined. This article provides a brief overview of the evidence supporting direct actions of these particles on endothelial cells and highlights the importance of their fatty acid composition and oxidative state as determinants of their cellular actions.
Collapse
Affiliation(s)
- Jonathan Dalla-Riva
- Department of Veterinary Basic Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK
| | | | | | | | | |
Collapse
|
18
|
Sudheendran S, Chang CC, Deckelbaum RJ. N-3 vs. saturated fatty acids: effects on the arterial wall. Prostaglandins Leukot Essent Fatty Acids 2010; 82:205-9. [PMID: 20207121 PMCID: PMC2878127 DOI: 10.1016/j.plefa.2010.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease is a leading cause of death worldwide. Atherosclerosis and unstable plaques are underlying causes for cardiovascular diseases. Cardiovascular disease is associated with consumption of diets high in saturated fats. In contrast there is increasing evidence that higher intakes of dietary n-3 fatty acids decrease risk for cardiovascular disease. Recent studies are beginning to clarify how n-3 compared with saturated fatty acids influence cardiovascular disease risk via pathways in the arterial wall. In this paper we will review studies that report on mechanisms whereby dietary fatty acids affect atherosclerosis through modulation of arterial wall lipid deposition, inflammation, cell proliferation, and plaque vulnerability.
Collapse
Affiliation(s)
- S Sudheendran
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|