1
|
De Beul E, Franceus J, Desmet T. The many functions of carbohydrate-active enzymes in family GH65: diversity and application. Appl Microbiol Biotechnol 2024; 108:476. [PMID: 39348028 PMCID: PMC11442529 DOI: 10.1007/s00253-024-13301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
Glycoside Hydrolase family 65 (GH65) is a unique family of carbohydrate-active enzymes. It is the first protein family to bring together glycoside hydrolases, glycoside phosphorylases and glycosyltransferases, thereby spanning a broad range of reaction types. These enzymes catalyze the hydrolysis, reversible phosphorolysis or synthesis of various α-glucosides, typically α-glucobioses or their derivatives. In this review, we present a comprehensive overview of the diverse reaction types and substrate specificities found in family GH65. We describe the determinants that control this remarkable diversity, as well as the applications of GH65 enzymes for carbohydrate synthesis.
Collapse
Affiliation(s)
- Emma De Beul
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| | - Jorick Franceus
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium
| | - Tom Desmet
- Department of Biotechnology, Centre for Synthetic Biology (CSB), Ghent University, Ghent, Belgium.
| |
Collapse
|
2
|
Cifuente JO, Colleoni C, Kalscheuer R, Guerin ME. Architecture, Function, Regulation, and Evolution of α-Glucans Metabolic Enzymes in Prokaryotes. Chem Rev 2024; 124:4863-4934. [PMID: 38606812 PMCID: PMC11046441 DOI: 10.1021/acs.chemrev.3c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Bacteria have acquired sophisticated mechanisms for assembling and disassembling polysaccharides of different chemistry. α-d-Glucose homopolysaccharides, so-called α-glucans, are the most widespread polymers in nature being key components of microorganisms. Glycogen functions as an intracellular energy storage while some bacteria also produce extracellular assorted α-glucans. The classical bacterial glycogen metabolic pathway comprises the action of ADP-glucose pyrophosphorylase and glycogen synthase, whereas extracellular α-glucans are mostly related to peripheral enzymes dependent on sucrose. An alternative pathway of glycogen biosynthesis, operating via a maltose 1-phosphate polymerizing enzyme, displays an essential wiring with the trehalose metabolism to interconvert disaccharides into polysaccharides. Furthermore, some bacteria show a connection of intracellular glycogen metabolism with the genesis of extracellular capsular α-glucans, revealing a relationship between the storage and structural function of these compounds. Altogether, the current picture shows that bacteria have evolved an intricate α-glucan metabolism that ultimately relies on the evolution of a specific enzymatic machinery. The structural landscape of these enzymes exposes a limited number of core catalytic folds handling many different chemical reactions. In this Review, we present a rationale to explain how the chemical diversity of α-glucans emerged from these systems, highlighting the underlying structural evolution of the enzymes driving α-glucan bacterial metabolism.
Collapse
Affiliation(s)
- Javier O. Cifuente
- Instituto
Biofisika (UPV/EHU, CSIC), University of
the Basque Country, E-48940 Leioa, Spain
| | - Christophe Colleoni
- University
of Lille, CNRS, UMR8576-UGSF -Unité de Glycobiologie Structurale
et Fonctionnelle, F-59000 Lille, France
| | - Rainer Kalscheuer
- Institute
of Pharmaceutical Biology and Biotechnology, Heinrich Heine University, 40225 Dusseldorf, Germany
| | - Marcelo E. Guerin
- Structural
Glycobiology Laboratory, Department of Structural and Molecular Biology, Molecular Biology Institute of Barcelona (IBMB), Spanish
National Research Council (CSIC), Barcelona Science Park, c/Baldiri Reixac 4-8, Tower R, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Conceição CJF, Salgueiro BA, Ribeiro PA, Raposo M, Moe E. Advances in the expression and purification of human PARP1: A user-friendly protocol. Protein Expr Purif 2023; 211:106336. [PMID: 37419399 DOI: 10.1016/j.pep.2023.106336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/19/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
The PARP1 (Poly (ADP-ribose) polymerase 1) enzyme is essential for single and double-strand break repair in humans. Alterations affecting PARP1 activity have severe consequences for human health and are associated with pathologies like cancer, and metabolic and neurodegenerative disorders. Here, we have developed a fast and easy procedure for the expression and purification of PARP1. Biologically active protein was purified to an apparent purity > 95%, with only two purification steps. A thermostability analysis revealed that PARP1 possessed improved stability in 50 mM Tris-HCl pH 8.0 (Tm = 44.2 ± 0.3 °C), thus this buffer was used throughout the whole purification procedure. The protein was shown to bind to DNA and has no inhibitor molecules bound to the active site. Finally, the yield of the purified PARP1 protein is sufficient for both biochemical, biophysical and structural analysis. The new protocol provides a fast and simple purification procedure while producing similar protein quantities to what has been described previously.
Collapse
Affiliation(s)
- Carlota J F Conceição
- CEFITEC, Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal; Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Bruno A Salgueiro
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal.
| | - Paulo A Ribeiro
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Maria Raposo
- Laboratory of Instrumentation, Biomedical Engineering and Radiation Physics (LIBPhys-UNL), Department of Physics, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Elin Moe
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal; Department of Chemistry, UiT - the Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
4
|
Comparative Analysis of Brucepastera parasyntrophica gen. nov., sp. nov. and Teretinema zuelzerae gen. nov., comb. nov. ( Treponemataceae) Reveals the Importance of Interspecies Hydrogen Transfer in the Energy Metabolism of Spirochetes. Appl Environ Microbiol 2022; 88:e0050322. [PMID: 35862663 PMCID: PMC9317865 DOI: 10.1128/aem.00503-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Most members of the family Treponemataceae (Spirochaetales) are associated with vertebrate hosts. However, a diverse clade of uncultured, putatively free-living treponemes comprising several genus-level lineages is present in other anoxic environments. The only cultivated representative to date is Treponema zuelzerae, isolated from freshwater mud. Here, we describe the isolation of strain RmG11 from the intestinal tract of cockroaches. The strain represents a novel genus-level lineage of Treponemataceae and is metabolically distinct from T. zuelzerae. While T. zuelzerae grows well on various sugars, forming acetate and H2 as major fermentation products, strain RmG11 grew poorly on glucose, maltose, and starch, forming mainly ethanol and only small amounts of acetate and H2. In contrast to the growth of T. zuelzerae, that of strain RmG11 was strongly inhibited at high H2 partial pressures but improved considerably when H2 was removed from the headspace. Cocultures of strain RmG11 with the H2-consuming Methanospirillum hungatei produced acetate and methane but no ethanol. Comparative genomic analysis revealed that strain RmG11 possesses only a single, electron-confurcating hydrogenase that forms H2 from NADH and reduced ferredoxin, whereas T. zuelzerae also possesses a second, ferredoxin-dependent hydrogenase that allows the thermodynamically more favorable formation of H2 from ferredoxin via the Rnf complex. In addition, we found that T. zuelzerae utilizes xylan and possesses the genomic potential to degrade other plant polysaccharides. Based on phenotypic and phylogenomic evidence, we describe strain RmG11 as Brucepastera parasyntrophica gen. nov., sp. nov. and Treponema zuelzerae as Teretinema zuelzerae gen. nov., comb. nov. IMPORTANCE Spirochetes are widely distributed in various anoxic environments and commonly form molecular hydrogen as a major fermentation product. Here, we show that two closely related members of the family Treponemataceae differ strongly in their sensitivity to high hydrogen partial pressure, and we explain the metabolic mechanisms that cause these differences by comparative genome analysis. We demonstrate a strong boost in the growth of the hydrogen-sensitive strain and a shift in its fermentation products to acetate during cocultivation with a H2-utilizing methanogen. Our results add a hitherto unrecognized facet to the fermentative metabolism of spirochetes and also underscore the importance of interspecies hydrogen transfer in not-obligately-syntrophic interactions among fermentative and hydrogenotrophic guilds in anoxic environments.
Collapse
|
5
|
Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. Int J Mol Sci 2022; 23:ijms23063043. [PMID: 35328479 PMCID: PMC8950772 DOI: 10.3390/ijms23063043] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Among carbohydrate active enzymes, glycoside phosphorylases (GPs) are valuable catalysts for white biotechnologies, due to their exquisite capacity to efficiently re-modulate oligo- and poly-saccharides, without the need for costly activated sugars as substrates. The reversibility of the phosphorolysis reaction, indeed, makes them attractive tools for glycodiversification. However, discovery of new GP functions is hindered by the difficulty in identifying them in sequence databases, and, rather, relies on extensive and tedious biochemical characterization studies. Nevertheless, recent advances in automated tools have led to major improvements in GP mining, activity predictions, and functional screening. Implementation of GPs into innovative in vitro and in cellulo bioproduction strategies has also made substantial advances. Herein, we propose to discuss the latest developments in the strategies employed to efficiently discover GPs and make the best use of their exceptional catalytic properties for glycoside bioproduction.
Collapse
|
6
|
Surve S, Shinde DB, Kulkarni R. Isolation, characterization and comparative genomics of potentially probiotic Lactiplantibacillus plantarum strains from Indian foods. Sci Rep 2022; 12:1940. [PMID: 35121802 PMCID: PMC8816928 DOI: 10.1038/s41598-022-05850-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/18/2022] [Indexed: 01/11/2023] Open
Abstract
Lactiplantibacillus plantarum is one of the most diverse species of lactic acid bacteria found in various habitats. The aim of this work was to perform preliminary phenotypic and genomic characterization of two novel and potentially probiotic L. plantarum strains isolated from Indian foods, viz., dhokla batter and jaggery. Both the strains were bile and acid tolerant, utilized various sugars, adhered to intestinal epithelial cells, produced exopolysaccharides and folate, were susceptible for tetracycline, erythromycin, and chloramphenicol, did not cause hemolysis, and exhibited antimicrobial and plant phenolics metabolizing activities. The genetic determinants of bile tolerance, cell-adhesion, bacteriocins production, riboflavin and folate biosynthesis, plant polyphenols utilization, and exopolysaccharide production were found in both the strains. One of the strains contained a large number of unique genes while the other had a simultaneous presence of glucansucrase and fructansucrase genes which is a rare trait in L. plantarum. Comparative genome analysis of 149 L. plantarum strains highlighted high variation in the cell-adhesion and sugar metabolism genes while the genomic regions for some other properties were relatively conserved. This work highlights the unique properties of our strains along with the probiotic and technically important genomic features of a large number of L. plantarum strains.
Collapse
Affiliation(s)
- Sarvesh Surve
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India.,Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, 03755, USA
| | - Dasharath B Shinde
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India
| | - Ram Kulkarni
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, India.
| |
Collapse
|
7
|
Discovery of a Kojibiose Hydrolase by Analysis of Specificity-Determining Correlated Positions in Glycoside Hydrolase Family 65. Molecules 2021; 26:molecules26206321. [PMID: 34684901 PMCID: PMC8537180 DOI: 10.3390/molecules26206321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
The Glycoside Hydrolase Family 65 (GH65) is an enzyme family of inverting α-glucoside phosphorylases and hydrolases that currently contains 10 characterized enzyme specificities. However, its sequence diversity has never been studied in detail. Here, an in-silico analysis of correlated mutations was performed, revealing specificity-determining positions that facilitate annotation of the family’s phylogenetic tree. By searching these positions for amino acid motifs that do not match those found in previously characterized enzymes from GH65, several clades that may harbor new functions could be identified. Three enzymes from across these regions were expressed in E. coli and their substrate profile was mapped. One of those enzymes, originating from the bacterium Mucilaginibacter mallensis, was found to hydrolyze kojibiose and α-1,2-oligoglucans with high specificity. We propose kojibiose glucohydrolase as the systematic name and kojibiose hydrolase or kojibiase as the short name for this new enzyme. This work illustrates a convenient strategy for mapping the natural diversity of enzyme families and smartly mining the ever-growing number of available sequences in the quest for novel specificities.
Collapse
|
8
|
Kido Y, Maeno S, Tanno H, Kichise Y, Shiwa Y, Endo A. Niche-specific adaptation of Lactobacillus helveticus strains isolated from malt whisky and dairy fermentations. Microb Genom 2021; 7:000560. [PMID: 33900907 PMCID: PMC8208680 DOI: 10.1099/mgen.0.000560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/15/2021] [Indexed: 01/24/2023] Open
Abstract
Lactobacillus helveticus is a well characterized lactobacillus for dairy fermentations that is also found in malt whisky fermentations. The two environments contain considerable differences related to microbial growth, including the presence of different growth inhibitors and nutrients. The present study characterized L. helveticus strains originating from dairy fermentations (called milk strains hereafter) and malt whisky fermentations (called whisky strains hereafter) by in vitro phenotypic tests and comparative genomics. The whisky strains can tolerate ethanol more than the milk strains, whereas the milk strains can tolerate lysozyme and lactoferrin more than the whisky strains. Several plant-origin carbohydrates, including cellobiose, maltose, sucrose, fructooligosaccharide and salicin, were generally metabolized only by the whisky strains, whereas milk-derived carbohydrates, i.e. lactose and galactose, were metabolized only by the milk strains. Milk fermentation properties also distinguished the two groups. The general genomic characteristics, including genomic size, number of coding sequences and average nucleotide identity values, differentiated the two groups. The observed differences in carbohydrate metabolic properties between the two groups correlated with the presence of intact specific enzymes in glycoside hydrolase (GH) families GH1, GH4, GH13, GH32 and GH65. Several GHs in the milk strains were inactive due to the presence of stop codon(s) in genes encoding the GHs, and the inactivation patterns of the genes encoding specific enzymes assigned to GH1 in the milk strains suggested a possible diversification manner of L. helveticus strains. The present study has demonstrated how L. helveticus strains have adapted to their habitats.
Collapse
Affiliation(s)
- Yoshihiko Kido
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| | - Shintaro Maeno
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| | - Hiroki Tanno
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| | - Yuko Kichise
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yuh Shiwa
- NODAI Genome Research Center, Tokyo University of Agriculture, Tokyo 156-8502, Japan
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Akihito Endo
- Department of Food, Aroma and Cosmetic Chemistry, Tokyo University of Agriculture, Hokkaido 099-2493, Japan
| |
Collapse
|
9
|
Zhang T, Yang J, Tian C, Ren C, Chen P, Men Y, Sun Y. High-Yield Biosynthesis of Glucosylglycerol through Coupling Phosphorolysis and Transglycosylation Reactions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:15249-15256. [PMID: 33306378 DOI: 10.1021/acs.jafc.0c04851] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glucosylglycerol is a powerful osmolyte that has attracted attention as a useful moisturizing ingredient in the cosmetic industry. This study demonstrates two artificially designed synthetic routes for manufacturing glucosylglycerol by combining phosphorolysis and transglycosylation reactions. The overall Gibbs energy change of the synthetic routes was negative, indicating that they are thermodynamically favorable. In vitro biosystems were constructed through combining the phosphorolysis ability of sucrose/maltose phosphorylase and the transglycosylation capacity of glucosylglycerol phosphorylases from different organisms. A near-stoichiometric conversion of sucrose and glycerol with a high product yield of 98% was achieved under optimal reaction conditions. The large-scale glucosylglycerol production of this biosystem was investigated under a high concentration of substrates (2 mol/L sucrose and 2.4 mol/L glycerol), and the titer reached 1.78 mol/L (452 g/L) with a productivity of 24.3 g/L/h. To the best of our knowledge, this value presented the highest glucosylglycerol production level until now, which indicated a great industrial application potential for glucosylglycerol manufacturing.
Collapse
Affiliation(s)
- Tong Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Chaoyu Tian
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Chenxi Ren
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Peng Chen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yan Men
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Yuanxia Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
10
|
An 1,4-α-Glucosyltransferase Defines a New Maltodextrin Catabolism Scheme in Lactobacillus acidophilus. Appl Environ Microbiol 2020; 86:AEM.00661-20. [PMID: 32444471 DOI: 10.1128/aem.00661-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
The maltooligosaccharide (MOS) utilization locus in Lactobacillus acidophilus NCFM, a model for human small-intestine lactobacilli, encodes three glycoside hydrolases (GHs): a putative maltogenic α-amylase of family 13, subfamily 20 (LaGH13_20), a maltose phosphorylase of GH65 (LaGH65), and a family 13, subfamily 31, member (LaGH13_31B), annotated as a 1,6-α-glucosidase. Here, we reveal that LaGH13_31B is a 1,4-α-glucosyltransferase that disproportionates MOS with a degree of polymerization of ≥2, with a preference for maltotriose. Kinetic analyses of the three GHs encoded by the MOS locus revealed that the substrate preference of LaGH13_31B toward maltotriose complements the ~40-fold lower k cat of LaGH13_20 toward this substrate, thereby enhancing the conversion of odd-numbered MOS to maltose. The concerted action of LaGH13_20 and LaGH13_31B confers the efficient conversion of MOS to maltose that is phosphorolyzed by LaGH65. Structural analyses revealed the presence of a flexible elongated loop that is unique for a previously unexplored clade of GH13_31, represented by LaGH13_31B. The identified loop insertion harbors a conserved aromatic residue that modulates the activity and substrate affinity of the enzyme, thereby offering a functional signature of this clade, which segregates from 1,6-α-glucosidases and sucrose isomerases previously described within GH13_31. Genomic analyses revealed that the LaGH13_31B gene is conserved in the MOS utilization loci of lactobacilli, including acidophilus cluster members that dominate the human small intestine.IMPORTANCE The degradation of starch in the small intestine generates short linear and branched α-glucans. The latter are poorly digestible by humans, rendering them available to the gut microbiota, e.g., lactobacilli adapted to the small intestine and considered beneficial to health. This study unveils a previously unknown scheme of maltooligosaccharide (MOS) catabolism via the concerted activity of an 1,4-α-glucosyltransferase together with a classical hydrolase and a phosphorylase. The intriguing involvement of a glucosyltransferase likely allows the fine-tuning of the regulation of MOS catabolism for optimal harnessing of this key metabolic resource in the human small intestine. The study extends the suite of specificities that have been identified in GH13_31 and highlights amino acid signatures underpinning the evolution of 1,4-α-glucosyl transferases that have been recruited in the MOS catabolism pathway in lactobacilli.
Collapse
|
11
|
Abstract
Traditional sour beers are produced by spontaneous fermentations involving numerous yeast and bacterial species. One of the traits that separates sour beers from ales and lagers is the high concentration of organic acids such as lactic acid and acetic acid, which results in reduced pH and increased acidic taste. Several challenges complicate the production of sour beers through traditional methods. These include poor process control, lack of consistency in product quality, and lengthy fermentation times. This review summarizes the methods for traditional sour beer production with a focus on the use of lactobacilli to generate this beverage. In addition, the review describes the use of selected pure cultures of microorganisms with desirable properties in conjunction with careful application of processing steps. Together, this facilitates the production of sour beer with a higher level of process control and more rapid fermentation compared to traditional methods.
Collapse
|
12
|
Sakaguchi M. Diverse and common features of trehalases and their contributions to microbial trehalose metabolism. Appl Microbiol Biotechnol 2020; 104:1837-1847. [PMID: 31925485 DOI: 10.1007/s00253-019-10339-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022]
Abstract
Trehalose is a stable disaccharide that consists of two glucose units linked primarily by an α,α-(1 → 1)-linkage, and it has been found in a wide variety of organisms. In these organisms, trehalose functions not only as a source of carbon energy but also as a protector against various stress conditions. In addition, this disaccharide is attractive for use in a wide range of applications due to its bioactivities. In trehalose metabolism, direct trehalose-hydrolyzing enzymes are known as trehalases, which have been reported for bacteria, archaea, and eukaryotes, and are classified into glycoside hydrolase 37 (GH37), GH65, and GH15 families according to the Carbohydrate-Active enZyme (CAZy) database. The catalytic domains (CDs) of these enzymes commonly share (α/α)6-barrel structures and have two amino acid residues, Asp and/or Glu, that function as catalytic residues in an inverting mechanism. In this review, I focus on diverse and common features of trehalases within different GH families and their contributions to microbial trehalose metabolism.
Collapse
Affiliation(s)
- Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, 2,665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
13
|
Gao Y, Saburi W, Taguchi Y, Mori H. Biochemical characteristics of maltose phosphorylase MalE from Bacillus sp. AHU2001 and chemoenzymatic synthesis of oligosaccharides by the enzyme. Biosci Biotechnol Biochem 2019; 83:2097-2109. [PMID: 31262243 DOI: 10.1080/09168451.2019.1634516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Maltose phosphorylase (MP), a glycoside hydrolase family 65 enzyme, reversibly phosphorolyzes maltose. In this study, we characterized Bacillus sp. AHU2001 MP (MalE) that was produced in Escherichia coli. The enzyme exhibited phosphorolytic activity to maltose, but not to other α-linked glucobioses and maltotriose. The optimum pH and temperature of MalE for maltose-phosphorolysis were 8.1 and 45°C, respectively. MalE was stable at a pH range of 4.5-10.4 and at ≤40°C. The phosphorolysis of maltose by MalE obeyed the sequential Bi-Bi mechanism. In reverse phosphorolysis, MalE utilized d-glucose, 1,5-anhydro-d-glucitol, methyl α-d-glucoside, 2-deoxy-d-glucose, d-mannose, d-glucosamine, N-acetyl-d-glucosamine, kojibiose, 3-deoxy-d-glucose, d-allose, 6-deoxy-d-glucose, d-xylose, d-lyxose, l-fucose, and l-sorbose as acceptors. The kcat(app)/Km(app) value for d-glucosamine and 6-deoxy-d-glucose was comparable to that for d-glucose, and that for other acceptors was 0.23-12% of that for d-glucose. MalE synthesized α-(1→3)-glucosides through reverse phosphorolysis with 2-deoxy-d-glucose and l-sorbose, and synthesized α-(1→4)-glucosides in the reaction with other tested acceptors.
Collapse
Affiliation(s)
- Yu Gao
- Research Faculty of Agriculture, Hokkaido University , Sapporo , Japan
| | - Wataru Saburi
- Research Faculty of Agriculture, Hokkaido University , Sapporo , Japan
| | - Yodai Taguchi
- Research Faculty of Agriculture, Hokkaido University , Sapporo , Japan
| | - Haruhide Mori
- Research Faculty of Agriculture, Hokkaido University , Sapporo , Japan
| |
Collapse
|
14
|
Macdonald SS, Armstrong Z, Morgan-Lang C, Osowiecka M, Robinson K, Hallam SJ, Withers SG. Development and Application of a High-Throughput Functional Metagenomic Screen for Glycoside Phosphorylases. Cell Chem Biol 2019; 26:1001-1012.e5. [PMID: 31080075 DOI: 10.1016/j.chembiol.2019.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/15/2019] [Accepted: 03/27/2019] [Indexed: 01/19/2023]
Abstract
Glycoside phosphorylases (GPs) catalyze the reversible phosphorolysis of glycosidic bonds, releasing sugar 1-phosphates. To identify a greater range of these under-appreciated enzymes, we have developed a high-throughput functional screening method based on molybdenum blue formation. In a proof-of-principle screen focused on cellulose-degrading GPs we interrogated ∼23,000 large insert (fosmid) clones sourced from microbial communities inhabiting two separate environments and identified seven novel GPs from carbohydrate active enzyme family GH94 and one from GH149. Characterization identified cellobiose phosphorylases, cellodextrin phosphorylases, laminaribiose phosphorylases, and a β-1,3-glucan phosphorylase. To demonstrate the versatility of the screening method, varying substrate combinations were used to identify GP activity from families GH13, GH65, GH112, and GH130 in addition to GH94 and GH149. These pilot screen and substrate versatility results provide a screening paradigm platform for recovering diverse GPs from uncultivated microbial communities acting on different substrates with considerable potential to unravel previously unknown degradative pathways within microbiomes.
Collapse
Affiliation(s)
- Spencer S Macdonald
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; ECOSCOPE Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Zachary Armstrong
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Connor Morgan-Lang
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Magdalena Osowiecka
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Kyle Robinson
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; ECOSCOPE Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Steven J Hallam
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; ECOSCOPE Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Peter Wall Institute for Advanced Studies, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Genome Science and Technology Program, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; ECOSCOPE Training Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
15
|
Luciano WA, Matte TC, Portela IA, de Medeiros LL, dos Santos Lima M, Maciel JF, de Souza EL, Garcia EF, Magnani M. Effects of Lactobacillus acidophilus LA-3 on physicochemical and sensory parameters of açaí and mango based smoothies and its survival following simulated gastrointestinal conditions. Food Res Int 2018; 114:159-168. [DOI: 10.1016/j.foodres.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
|
16
|
Lactobacillus acidophilus Metabolizes Dietary Plant Glucosides and Externalizes Their Bioactive Phytochemicals. mBio 2017; 8:mBio.01421-17. [PMID: 29162708 PMCID: PMC5698550 DOI: 10.1128/mbio.01421-17] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Therapeutically active glycosylated phytochemicals are ubiquitous in the human diet. The human gut microbiota (HGM) modulates the bioactivities of these compounds, which consequently affect host physiology and microbiota composition. Despite a significant impact on human health, the key players and the underpinning mechanisms of this interplay remain uncharacterized. Here, we demonstrate the growth of Lactobacillus acidophilus on mono- and diglucosyl dietary plant glycosides (PGs) possessing small aromatic aglycones. Transcriptional analysis revealed the upregulation of host interaction genes and identified two loci that encode phosphotransferase system (PTS) transporters and phospho-β-glucosidases, which mediate the uptake and deglucosylation of these compounds, respectively. Inactivating these transport and hydrolysis genes abolished or severely reduced growth on PG, establishing the specificity of the loci to distinct groups of PGs. Following intracellular deglucosylation, the aglycones of PGs are externalized, rendering them available for absorption by the host or for further modification by other microbiota taxa. The PG utilization loci are conserved in L. acidophilus and closely related lactobacilli, in correlation with versatile growth on these compounds. Growth on the tested PG appeared more common among human gut lactobacilli than among counterparts from other ecologic niches. The PGs that supported the growth of L. acidophilus were utilized poorly or not at all by other common HGM strains, underscoring the metabolic specialization of L. acidophilus. These findings highlight the role of human gut L. acidophilus and select lactobacilli in the bioconversion of glycoconjugated phytochemicals, which is likely to have an important impact on the HGM and human host. Thousands of therapeutically active plant-derived compounds are widely present in berries, fruits, nuts, and beverages like tea and wine. The bioactivity and bioavailability of these compounds, which are typically glycosylated, are altered by microbial bioconversions in the human gut. Remarkably, little is known about the bioconversion of PGs by the gut microbial community, despite the significance of this metabolic facet to human health. Our work provides the first molecular insights into the metabolic routes of diet relevant and therapeutically active PGs by Lactobacillus acidophilus and related human gut lactobacilli. This taxonomic group is adept at metabolizing the glucoside moieties of select PG and externalizes their aglycones. The study highlights an important role of lactobacilli in the bioconversion of dietary PG and presents a framework from which to derive molecular insights into their metabolism by members of the human gut microbiota.
Collapse
|
17
|
An Extracellular Cell-Attached Pullulanase Confers Branched α-Glucan Utilization in Human Gut Lactobacillus acidophilus. Appl Environ Microbiol 2017; 83:AEM.00402-17. [PMID: 28411221 DOI: 10.1128/aem.00402-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/06/2017] [Indexed: 12/16/2022] Open
Abstract
Of the few predicted extracellular glycan-active enzymes, glycoside hydrolase family 13 subfamily 14 (GH13_14) pullulanases are the most common in human gut lactobacilli. These enzymes share a unique modular organization, not observed in other bacteria, featuring a catalytic module, two starch binding modules, a domain of unknown function, and a C-terminal surface layer association protein (SLAP) domain. Here, we explore the specificity of a representative of this group of pullulanases, Lactobacillus acidophilus Pul13_14 (LaPul13_14), and its role in branched α-glucan metabolism in the well-characterized Lactobacillus acidophilus NCFM, which is widely used as a probiotic. Growth experiments with L. acidophilus NCFM on starch-derived branched substrates revealed a preference for α-glucans with short branches of about two to three glucosyl moieties over amylopectin with longer branches. Cell-attached debranching activity was measurable in the presence of α-glucans but was repressed by glucose. The debranching activity is conferred exclusively by LaPul13_14 and is abolished in a mutant strain lacking a functional LaPul13_14 gene. Hydrolysis kinetics of recombinant LaPul13_14 confirmed the preference for short-branched α-glucan oligomers consistent with the growth data. Curiously, this enzyme displayed the highest catalytic efficiency and the lowest Km reported for a pullulanase. Inhibition kinetics revealed mixed inhibition by β-cyclodextrin, suggesting the presence of additional glucan binding sites besides the active site of the enzyme, which may contribute to the unprecedented substrate affinity. The enzyme also displays high thermostability and higher activity in the acidic pH range, reflecting adaptation to the physiologically challenging conditions in the human gut.IMPORTANCE Starch is one of the most abundant glycans in the human diet. Branched α-1,6-glucans in dietary starch and glycogen are nondegradable by human enzymes and constitute a metabolic resource for the gut microbiota. The role of health-beneficial lactobacilli prevalent in the human small intestine in starch metabolism remains unexplored in contrast to colonic bacterial residents. This study highlights the pivotal role of debranching enzymes in the breakdown of starchy branched α-glucan oligomers (α-limit dextrins) by human gut lactobacilli exemplified by Lactobacillus acidophilus NCFM, which is one of the best-characterized strains used as probiotics. Our data bring novel insight into the metabolic preference of L. acidophilus for α-glucans with short α-1,6-branches. The unprecedented affinity of the debranching enzyme that confers growth on these substrates reflects its adaptation to the nutrient-competitive gut ecological niche and constitutes a potential advantage in cross-feeding from human and bacterial dietary starch metabolism.
Collapse
|
18
|
Taguchi Y, Saburi W, Imai R, Mori H. Evaluation of acceptor selectivity of Lactococcus lactis ssp. lactis trehalose 6-phosphate phosphorylase in the reverse phosphorolysis and synthesis of a new sugar phosphate. Biosci Biotechnol Biochem 2017; 81:1512-1519. [PMID: 28537141 DOI: 10.1080/09168451.2017.1329620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Trehalose 6-phosphate phosphorylase (TrePP), a member of glycoside hydrolase family 65, catalyzes the reversible phosphorolysis of trehalose 6-phosphate (Tre6P) with inversion of the anomeric configuration to produce β-d-glucose 1-phosphate (β-Glc1P) and d-glucose 6-phosphate (Glc6P). TrePP in Lactococcus lactis ssp. lactis (LlTrePP) is, alongside the phosphotransferase system, involved in the metabolism of trehalose. In this study, recombinant LlTrePP was produced and characterized. It showed its highest reverse phosphorolytic activity at pH 4.8 and 40°C, and was stable in the pH range 5.0-8.0 and at up to 30°C. Kinetic analyses indicated that reverse phosphorolysis of Tre6P proceeded through a sequential bi bi mechanism involving the formation of a ternary complex of the enzyme, β-Glc1P, and Glc6P. Suitable acceptor substrates were Glc6P, and, at a low level, d-mannose 6-phosphate (Man6P). From β-Glc1P and Man6P, a novel sugar phosphate, α-d-Glcp-(1↔1)-α-d-Manp6P, was synthesized with 51% yield.
Collapse
Affiliation(s)
- Yodai Taguchi
- a Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| | - Wataru Saburi
- a Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| | - Ryozo Imai
- b Division of Applied Genetics , National Agriculture and Food Research Organization , Tsukuba , Japan
| | - Haruhide Mori
- a Research Faculty of Agriculture , Hokkaido University , Sapporo , Japan
| |
Collapse
|
19
|
Cockburn D, Wilkens C, Dilokpimol A, Nakai H, Lewińska A, Abou Hachem M, Svensson B. Using Carbohydrate Interaction Assays to Reveal Novel Binding Sites in Carbohydrate Active Enzymes. PLoS One 2016; 11:e0160112. [PMID: 27504624 PMCID: PMC4978508 DOI: 10.1371/journal.pone.0160112] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/13/2016] [Indexed: 01/23/2023] Open
Abstract
Carbohydrate active enzymes often contain auxiliary binding sites located either on independent domains termed carbohydrate binding modules (CBMs) or as so-called surface binding sites (SBSs) on the catalytic module at a certain distance from the active site. The SBSs are usually critical for the activity of their cognate enzyme, though they are not readily detected in the sequence of a protein, but normally require a crystal structure of a complex for their identification. A variety of methods, including affinity electrophoresis (AE), insoluble polysaccharide pulldown (IPP) and surface plasmon resonance (SPR) have been used to study auxiliary binding sites. These techniques are complementary as AE allows monitoring of binding to soluble polysaccharides, IPP to insoluble polysaccharides and SPR to oligosaccharides. Here we show that these methods are useful not only for analyzing known binding sites, but also for identifying new ones, even without structural data available. We further verify the chosen assays discriminate between known SBS/CBM containing enzymes and negative controls. Altogether 35 enzymes are screened for the presence of SBSs or CBMs and several novel binding sites are identified, including the first SBS ever reported in a cellulase. This work demonstrates that combinations of these methods can be used as a part of routine enzyme characterization to identify new binding sites and advance the study of SBSs and CBMs, allowing them to be detected in the absence of structural data.
Collapse
Affiliation(s)
- Darrell Cockburn
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Casper Wilkens
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Adiphol Dilokpimol
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Hiroyuki Nakai
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Anna Lewińska
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- * E-mail:
| |
Collapse
|
20
|
Cockburn DW, Koropatkin NM. Polysaccharide Degradation by the Intestinal Microbiota and Its Influence on Human Health and Disease. J Mol Biol 2016; 428:3230-3252. [PMID: 27393306 DOI: 10.1016/j.jmb.2016.06.021] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/29/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023]
Abstract
Carbohydrates comprise a large fraction of the typical diet, yet humans are only able to directly process some types of starch and simple sugars. The remainder transits the large intestine where it becomes food for the commensal bacterial community. This is an environment of not only intense competition but also impressive cooperation for available glycans, as these bacteria work to maximize their energy harvest from these carbohydrates during their limited transit time through the gut. The species within the gut microbiota use a variety of strategies to process and scavenge both dietary and host-produced glycans such as mucins. Some act as generalists that are able to degrade a wide range of polysaccharides, while others are specialists that are only able to target a few select glycans. All are members of a metabolic network where substantial cross-feeding takes place, as by-products of one organism serve as important resources for another. Much of this metabolic activity influences host physiology, as secondary metabolites and fermentation end products are absorbed either by the epithelial layer or by transit via the portal vein to the liver where they can have additional effects. These microbially derived compounds influence cell proliferation and apoptosis, modulate the immune response, and can alter host metabolism. This review summarizes the molecular underpinnings of these polysaccharide degradation processes, their impact on human health, and how we can manipulate them through the use of prebiotics.
Collapse
Affiliation(s)
- Darrell W Cockburn
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nicole M Koropatkin
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Caner S, Zhang X, Jiang J, Chen H, Nguyen NT, Overkleeft H, Brayer GD, Withers SG. Glucosyl epi‐cyclophellitol allows mechanism‐based inactivation and structural analysis of human pancreatic α‐amylase. FEBS Lett 2016; 590:1143-51. [DOI: 10.1002/1873-3468.12143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/17/2016] [Accepted: 03/17/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Sami Caner
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of British Columbia Vancouver BC Canada
| | - Xiaohua Zhang
- Department of Chemistry Faculty of Science University of British Columbia Vancouver BC Canada
| | - Jianbing Jiang
- Leiden Institute of Chemistry Leiden University The Netherlands
| | - Hong‐Ming Chen
- Department of Chemistry Faculty of Science University of British Columbia Vancouver BC Canada
| | - Nham T. Nguyen
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of British Columbia Vancouver BC Canada
| | | | - Gary D. Brayer
- Department of Biochemistry and Molecular Biology Faculty of Medicine University of British Columbia Vancouver BC Canada
| | - Stephen G. Withers
- Department of Chemistry Faculty of Science University of British Columbia Vancouver BC Canada
| |
Collapse
|
22
|
Kanpiengjai A, Lumyong S, Nguyen TH, Haltrich D, Khanongnuch C. Characterization of a maltose-forming α-amylase from an amylolytic lactic acid bacterium Lactobacillus plantarum S21. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
23
|
Puchart V. Glycoside phosphorylases: Structure, catalytic properties and biotechnological potential. Biotechnol Adv 2015; 33:261-76. [DOI: 10.1016/j.biotechadv.2015.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 12/20/2022]
|
24
|
O'Neill EC, Field RA. Enzymatic synthesis using glycoside phosphorylases. Carbohydr Res 2015; 403:23-37. [PMID: 25060838 PMCID: PMC4336185 DOI: 10.1016/j.carres.2014.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 05/29/2014] [Accepted: 06/09/2014] [Indexed: 01/10/2023]
Abstract
Carbohydrate phosphorylases are readily accessible but under-explored catalysts for glycoside synthesis. Their use of accessible and relatively stable sugar phosphates as donor substrates underlies their potential. A wide range of these enzymes has been reported of late, displaying a range of preferences for sugar donors, acceptors and glycosidic linkages. This has allowed this class of enzymes to be used in the synthesis of diverse carbohydrate structures, including at the industrial scale. As more phosphorylase enzymes are discovered, access to further difficult to synthesise glycosides will be enabled. Herein we review reported phosphorylase enzymes and the glycoside products that they have been used to synthesise.
Collapse
Affiliation(s)
- Ellis C O'Neill
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Robert A Field
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
25
|
Biochemical properties and substrate recognition mechanism of GH31 α-glucosidase from Bacillus sp. AHU 2001 with broad substrate specificity. Biochimie 2015; 108:140-8. [DOI: 10.1016/j.biochi.2014.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/11/2014] [Indexed: 11/19/2022]
|
26
|
|
27
|
Identification and characterization of an archaeal kojibiose catabolic pathway in the hyperthermophilic Pyrococcus sp. strain ST04. J Bacteriol 2014; 196:1122-31. [PMID: 24391053 DOI: 10.1128/jb.01222-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A unique gene cluster responsible for kojibiose utilization was identified in the genome of Pyrococcus sp. strain ST04. The proteins it encodes hydrolyze kojibiose, a disaccharide product of glucose caramelization, and form glucose-6-phosphate (G6P) in two steps. Heterologous expression of the kojibiose-related enzymes in Escherichia coli revealed that two genes, Py04_1502 and Py04_1503, encode kojibiose phosphorylase (designated PsKP, for Pyrococcus sp. strain ST04 kojibiose phosphorylase) and β-phosphoglucomutase (PsPGM), respectively. Enzymatic assays show that PsKP hydrolyzes kojibiose to glucose and β-glucose-1-phosphate (β-G1P). The Km values for kojibiose and phosphate were determined to be 2.53 ± 0.21 mM and 1.34 ± 0.04 mM, respectively. PsPGM then converts β-G1P into G6P in the presence of 6 mM MgCl2. Conversion activity from β-G1P to G6P was 46.81 ± 3.66 U/mg, and reverse conversion activity from G6P to β-G1P was 3.51 ± 0.13 U/mg. The proteins are highly thermostable, with optimal temperatures of 90°C for PsKP and 95°C for PsPGM. These results indicate that Pyrococcus sp. strain ST04 converts kojibiose into G6P, a substrate of the glycolytic pathway. This is the first report of a disaccharide utilization pathway via phosphorolysis in hyperthermophilic archaea.
Collapse
|
28
|
Abou Hachem M, Andersen JM, Barrangou R, Møller MS, Fredslund F, Majumder A, Ejby M, Lahtinen SJ, Jacobsen S, Lo Leggio L, Goh YJ, Klaenhammer TR, Svensson B. Recent insight into oligosaccharide uptake and metabolism in probiotic bacteria. BIOCATAL BIOTRANSFOR 2013. [DOI: 10.3109/10242422.2013.828048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Andersen JM, Barrangou R, Abou Hachem M, Lahtinen SJ, Goh YJ, Svensson B, Klaenhammer TR. Transcriptional analysis of oligosaccharide utilization by Bifidobacterium lactis Bl-04. BMC Genomics 2013; 14:312. [PMID: 23663691 PMCID: PMC3684542 DOI: 10.1186/1471-2164-14-312] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/18/2013] [Indexed: 02/02/2023] Open
Abstract
Background Probiotic bifidobacteria in combination with prebiotic carbohydrates have documented positive effects on human health regarding gastrointestinal disorders and improved immunity, however the selective routes of uptake remain unknown for most candidate prebiotics. The differential transcriptomes of Bifidobacterium animalis subsp. lactis Bl-04, induced by 11 potential prebiotic oligosaccharides were analyzed to identify the genetic loci involved in the uptake and catabolism of α- and β-linked hexoses, and β-xylosides. Results The overall transcriptome was modulated dependent on the type of glycoside (galactosides, glucosides or xylosides) utilized. Carbohydrate transporters of the major facilitator superfamily (induced by gentiobiose and β-galacto-oligosaccharides (GOS)) and ATP-binding cassette (ABC) transporters (upregulated by cellobiose, GOS, isomaltose, maltotriose, melibiose, panose, raffinose, stachyose, xylobiose and β-xylo-oligosaccharides) were differentially upregulated, together with glycoside hydrolases from families 1, 2, 13, 36, 42, 43 and 77. Sequence analysis of the identified solute-binding proteins that determine the specificity of ABC transporters revealed similarities in the breadth and selectivity of prebiotic utilization by bifidobacteria. Conclusion This study identified the differential gene expression for utilization of potential prebiotics highlighting the extensive capabilities of Bifidobacterium lactis Bl-04 to utilize oligosaccharides. Results provide insights into the ability of this probiotic microbe to utilize indigestible carbohydrates in the human gastrointestinal tract.
Collapse
Affiliation(s)
- Joakim M Andersen
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads Building 224, Kgs. Lyngby DK-2800, Denmark
| | | | | | | | | | | | | |
Collapse
|
30
|
Gänzle MG. Enzymatic and bacterial conversions during sourdough fermentation. Food Microbiol 2013; 37:2-10. [PMID: 24230468 DOI: 10.1016/j.fm.2013.04.007] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/11/2013] [Accepted: 04/14/2013] [Indexed: 10/26/2022]
Abstract
Enzymatic and microbial conversion of flour components during bread making determines bread quality. Metabolism of sourdough microbiota and the activity of cereal enzymes are interdependent. Acidification, oxygen consumption, and thiols accumulation by microbial metabolism modulate the activity of cereal enzymes. In turn, cereal enzymes provide substrates for bacterial growth. This review highlights the role of cereal enzymes and the metabolism of lactic acid bacteria in conversion of carbohydrates, proteins, phenolic compounds and lipids. Heterofermentative lactic acid bacteria prevailing in wheat and rye sourdoughs preferentially metabolise sucrose and maltose; the latter is released by cereal enzymes during fermentation. Sucrose supports formation of acetate by heterofermentative lactobacilli, and the formation of exopolysaccharides. The release of maltose and glucose by cereal enzymes during fermentation determines the exopolysaccharide yield in sourdough fermentations. Proteolysis is dependent on cereal proteases. Peptidase activities of sourdough lactic acid bacteria determine the accumulation of (bioactive) peptides, amino acids, and amino acid metabolites in dough and bread. Enzymatic conversion and microbial metabolism of phenolic compounds is relevant in sorghum and millet containing high levels of phenolic compounds. The presence of phenolic compounds with antimicrobial activity in sorghum selects for fermentation microbiota that are resistant to the phenolic compounds.
Collapse
Affiliation(s)
- Michael G Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, 4-10 Ag/For Centre, Edmonton, Canada T6G 2P5.
| |
Collapse
|
31
|
Hu Y, Ketabi A, Buchko A, Gänzle MG. Metabolism of isomalto-oligosaccharides by Lactobacillus reuteri and bifidobacteria. Lett Appl Microbiol 2013; 57:108-14. [PMID: 23565659 DOI: 10.1111/lam.12076] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/20/2013] [Accepted: 03/30/2013] [Indexed: 02/04/2023]
Abstract
UNLABELLED Commercial isomalto-oligosaccharides (IMO) are functional food ingredients. They are composed of α(1→6)- and α(1→4)-linked oligosaccharides. IMO are partially indigestible, and dietary IMO stimulate beneficial members of intestinal microbiota, including lactobacilli and bifidobacteria. However, data on IMO metabolism by lactobacilli are not available. It was the aim of this study to identify metabolic pathways of IMO metabolism in lactobacilli. This study focused on the host-adapted species Lactobacillus reuteri. Metabolism of bifidobacteria was analysed for comparison. Commercial IMO contained IMO with a degree of polymerization (DP) of up to four and panose-series oligosaccharides (POS) with a DP of up to 5. Lactobacilli metabolized isomaltose preferentially over oligosaccharides with higher DP. Bifidobacteria preferentially metabolized oligosaccharides with higher DP and accumulated glucose. Metabolism of IMO and POS by L. reuteri was attributed to α(1→6)-specific glucanase DexB and maltose phosphorylase. Contribution of maltose phosphorylase was verified by quantification of IMO and POS phosphorolysis in crude cellular extracts of L. reuteri 100-23. In conclusion, metabolism of IMO by lactobacilli is limited to short-chain oligosaccharides, while bifidobacteria preferentially metabolize oligosaccharides with higher DP. The functionality of commercial IMO can thus be modified by degree of polymerization. SIGNIFICANCE AND IMPACT OF THE STUDY Isomalto-oligosaccharides (IMO) are applied as functional food ingredients, but the composition and biological functionality of current commercial products are poorly documented. This study is the first to analyse IMO metabolism by Lactobacillus reuteri. Bifidobacteria were used for comparison. Commercial IMO contained IMO with degree of polymerization (DP) of up to four and panose-series oligosaccharides with DP of up to 5. L. reuteri preferentially metabolized short-chain oligosaccharides, whereas bifidobacteria preferentially metabolized higher oligosaccharides. Results of this study allow the modification of the biological and technological functionality of commercial IMO by adjustment of the degree of polymerization and will thus facilitate the application development for IMO.
Collapse
Affiliation(s)
- Y Hu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
32
|
Vigsnaes LK, Nakai H, Hemmingsen L, Andersen JM, Lahtinen SJ, Rasmussen LE, Hachem MA, Petersen BO, Duus JØ, Meyer AS, Licht TR, Svensson B. In vitro growth of four individual human gut bacteria on oligosaccharides produced by chemoenzymatic synthesis. Food Funct 2013; 4:784-93. [DOI: 10.1039/c3fo30357h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Gänzle MG, Follador R. Metabolism of oligosaccharides and starch in lactobacilli: a review. Front Microbiol 2012; 3:340. [PMID: 23055996 PMCID: PMC3458588 DOI: 10.3389/fmicb.2012.00340] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 09/04/2012] [Indexed: 01/02/2023] Open
Abstract
Oligosaccharides, compounds that are composed of 2-10 monosaccharide residues, are major carbohydrate sources in habitats populated by lactobacilli. Moreover, oligosaccharide metabolism is essential for ecological fitness of lactobacilli. Disaccharide metabolism by lactobacilli is well understood; however, few data on the metabolism of higher oligosaccharides are available. Research on the ecology of intestinal microbiota as well as the commercial application of prebiotics has shifted the interest from (digestible) disaccharides to (indigestible) higher oligosaccharides. This review provides an overview on oligosaccharide metabolism in lactobacilli. Emphasis is placed on maltodextrins, isomalto-oligosaccharides, fructo-oligosaccharides, galacto-oligosaccharides, and raffinose-family oligosaccharides. Starch is also considered. Metabolism is discussed on the basis of metabolic studies related to oligosaccharide metabolism, information on the cellular location and substrate specificity of carbohydrate transport systems, glycosyl hydrolases and phosphorylases, and the presence of metabolic genes in genomes of 38 strains of lactobacilli. Metabolic pathways for disaccharide metabolism often also enable the metabolism of tri- and tetrasaccharides. However, with the exception of amylase and levansucrase, metabolic enzymes for oligosaccharide conversion are intracellular and oligosaccharide metabolism is limited by transport. This general restriction to intracellular glycosyl hydrolases differentiates lactobacilli from other bacteria that adapted to intestinal habitats, particularly Bifidobacterium spp.
Collapse
Affiliation(s)
- Michael G. Gänzle
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| | - Rainer Follador
- Department of Agricultural, Food and Nutritional Science, University of AlbertaEdmonton, AB, Canada
| |
Collapse
|
34
|
Andersen JM, Barrangou R, Hachem MA, Lahtinen SJ, Goh YJ, Svensson B, Klaenhammer TR. Transcriptional analysis of prebiotic uptake and catabolism by Lactobacillus acidophilus NCFM. PLoS One 2012; 7:e44409. [PMID: 23028535 PMCID: PMC3446993 DOI: 10.1371/journal.pone.0044409] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 08/02/2012] [Indexed: 12/22/2022] Open
Abstract
The human gastrointestinal tract can be positively modulated by dietary supplementation of probiotic bacteria in combination with prebiotic carbohydrates. Here differential transcriptomics and functional genomics were used to identify genes in Lactobacillus acidophilus NCFM involved in the uptake and catabolism of 11 potential prebiotic compounds consisting of α- and β- linked galactosides and glucosides. These oligosaccharides induced genes encoding phosphoenolpyruvate-dependent sugar phosphotransferase systems (PTS), galactoside pentose hexuronide (GPH) permease, and ATP-binding cassette (ABC) transporters. PTS systems were upregulated primarily by di- and tri-saccharides such as cellobiose, isomaltose, isomaltulose, panose and gentiobiose, while ABC transporters were upregulated by raffinose, Polydextrose, and stachyose. A single GPH transporter was induced by lactitol and galactooligosaccharides (GOS). The various transporters were associated with a number of glycoside hydrolases from families 1, 2, 4, 13, 32, 36, 42, and 65, involved in the catabolism of various α- and β-linked glucosides and galactosides. Further subfamily specialization was also observed for different PTS-associated GH1 6-phospho-β-glucosidases implicated in the catabolism of gentiobiose and cellobiose. These findings highlight the broad oligosaccharide metabolic repertoire of L. acidophilus NCFM and establish a platform for selection and screening of both probiotic bacteria and prebiotic compounds that may positively influence the gastrointestinal microbiota.
Collapse
Affiliation(s)
- Joakim Mark Andersen
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Rodolphe Barrangou
- DuPont Nutrition and Health, Madison, Wisconsin, United States of America
| | - Maher Abou Hachem
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | - Yong-Jun Goh
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | - Todd R. Klaenhammer
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
35
|
Identification of Bacillus selenitireducens MLS10 maltose phosphorylase possessing synthetic ability for branched α-D-glucosyl trisaccharides. Carbohydr Res 2012; 360:25-30. [PMID: 22940176 DOI: 10.1016/j.carres.2012.07.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 07/17/2012] [Accepted: 07/17/2012] [Indexed: 11/21/2022]
Abstract
We discovered an inverting maltose phosphorylase (Bsel2056) belonging to glycoside hydrolase family 65 from Bacillus selenitireducens MLS10, which possesses synthetic ability for α-D-glucosyl disaccharides and trisaccharides through the reverse phosphorolysis with β-D-glucose 1-phosphate as the donor. Bsel2056 showed the flexibility for monosaccharide acceptors with alternative C2 substituent (2-amino-2-deoxy-D-glucose, 2-deoxy-D-arabino-hexose, 2-acetamido-2-deoxy-D-glucose, D-mannose), resulting in production of 1,4-α-D-glucosyl disaccharides with strict regioselectivity. In addition, Bsel2056 synthesized two maltose derivatives possessing additional D-glucosyl residue bound to C2 position of the D-glucose residue at the reducing end, 1,4-α-D-glucopyranosyl-[1,2-α-D-glucopyranosyl]-D-glucose and 1,4-α-D-glucopyranosyl-[1,2-β-D-glucopyranosyl]-D-glucose, from 1,2-α-D-glucopyranosyl-D-glucose (kojibiose) and 1,2-β-D-glucopyranosyl-D-glucose (sophorose), respectively, as the acceptors. These results suggested that Bsel2056 possessed a binding space to accommodate the bulky C2 substituent of D-glucose.
Collapse
|
36
|
Enzymology and structure of the GH13_31 glucan 1,6-α-glucosidase that confers isomaltooligosaccharide utilization in the probiotic Lactobacillus acidophilus NCFM. J Bacteriol 2012; 194:4249-59. [PMID: 22685275 DOI: 10.1128/jb.00622-12] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Isomaltooligosaccharides (IMO) have been suggested as promising prebiotics that stimulate the growth of probiotic bacteria. Genomes of probiotic lactobacilli from the acidophilus group, as represented by Lactobacillus acidophilus NCFM, encode α-1,6 glucosidases of the family GH13_31 (glycoside hydrolase family 13 subfamily 31) that confer degradation of IMO. These genes reside frequently within maltooligosaccharide utilization operons, which include an ATP-binding cassette transporter and α-glucan active enzymes, e.g., maltogenic amylases and maltose phosphorylases, and they also occur separated from any carbohydrate transport or catabolism genes on the genomes of some acidophilus complex members, as in L. acidophilus NCFM. Besides the isolated locus encoding a GH13_31 enzyme, the ABC transporter and another GH13 in the maltooligosaccharide operon were induced in response to IMO or maltotetraose, as determined by reverse transcription-PCR (RT-PCR) transcriptional analysis, suggesting coregulation of α-1,6- and α-1,4-glucooligosaccharide utilization loci in L. acidophilus NCFM. The L. acidophilus NCFM GH13_31 (LaGH13_31) was produced recombinantly and shown to be a glucan 1,6-α-glucosidase active on IMO and dextran and product-inhibited by glucose. The catalytic efficiency of LaGH13_31 on dextran and the dextran/panose (trisaccharide) efficiency ratio were the highest reported for this class of enzymes, suggesting higher affinity at distal substrate binding sites. The crystal structure of LaGH13_31 was determined to a resolution of 2.05 Å and revealed additional substrate contacts at the +2 subsite in LaGH13_31 compared to the GH13_31 from Streptococcus mutans (SmGH13_31), providing a possible structural rationale to the relatively high affinity for dextran. A comprehensive phylogenetic and activity motif analysis mapped IMO utilization enzymes from gut microbiota to rationalize preferential utilization of IMO by gut residents.
Collapse
|
37
|
|
38
|
Discovery of nigerose phosphorylase from Clostridium phytofermentans. Appl Microbiol Biotechnol 2011; 93:1513-22. [PMID: 21808968 DOI: 10.1007/s00253-011-3515-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/15/2011] [Accepted: 07/24/2011] [Indexed: 10/17/2022]
Abstract
A novel phosphorylase from Clostridium phytofermentans belonging to the glycoside hydrolase family (GH) 65 (Cphy1874) was characterized. The recombinant Cphy1874 protein produced in Escherichia coli showed phosphorolytic activity on nigerose in the presence of inorganic phosphate, resulting in the release of D-glucose and β-D-glucose 1-phosphate (β-G1P) with the inversion of the anomeric configuration. Kinetic parameters of the phosphorolytic activity on nigerose were k(cat) = 67 s(-1) and K(m) = 1.7 mM. This enzyme did not phosphorolyze substrates for the typical GH65 enzymes such as trehalose, maltose, and trehalose 6-phosphate except for a weak phosphorolytic activity on kojibiose. It showed the highest reverse phosphorolytic activity in the reverse reaction using D-glucose as the acceptor and β-G1P as the donor, and the product was mostly nigerose at the early stage of the reaction. The enzyme also showed reverse phosphorolytic activity, in a decreasing order, on D-xylose, 1,5-anhydro-D-glucitol, D-galactose, and methyl-α-D-glucoside. All major products were α-1,3-glucosyl disaccharides, although the reaction with D-xylose and methyl-α-D-glucoside produced significant amounts of α-1,2-glucosides as by-products. We propose 3-α-D-glucosyl-D-glucose:phosphate β-D-glucosyltransferase as the systematic name and nigerose phosphorylase as the short name for this Cphy1874 protein.
Collapse
|
39
|
Fredslund F, Hachem MA, Larsen RJ, Sørensen PG, Coutinho PM, Lo Leggio L, Svensson B. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J Mol Biol 2011; 412:466-80. [PMID: 21827767 DOI: 10.1016/j.jmb.2011.07.057] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 11/19/2022]
Abstract
Lactobacillus acidophilus NCFM is a probiotic bacterium known for its beneficial effects on human health. The importance of α-galactosidases (α-Gals) for growth of probiotic organisms on oligosaccharides of the raffinose family present in many foods is increasingly recognized. Here, the crystal structure of α-Gal from L. acidophilus NCFM (LaMel36A) of glycoside hydrolase (GH) family 36 (GH36) is determined by single-wavelength anomalous dispersion. In addition, a 1.58-Å-resolution crystallographic complex with α-d-galactose at substrate binding subsite -1 was determined. LaMel36A has a large N-terminal twisted β-sandwich domain, connected by a long α-helix to the catalytic (β/α)(8)-barrel domain, and a C-terminal β-sheet domain. Four identical monomers form a tightly packed tetramer where three monomers contribute to the structural integrity of the active site in each monomer. Structural comparison of LaMel36A with the monomeric Thermotoga maritima α-Gal (TmGal36A) reveals that O2 of α-d-galactose in LaMel36A interacts with a backbone nitrogen in a glycine-rich loop of the catalytic domain, whereas the corresponding atom in TmGal36A is from a tryptophan side chain belonging to the N-terminal domain. Thus, two distinctly different structural motifs participate in substrate recognition. The tetrameric LaMel36A furthermore has a much deeper active site than the monomeric TmGal36A, which possibly modulates substrate specificity. Sequence analysis of GH36, inspired by the observed structural differences, results in four distinct subgroups having clearly different active-site sequence motifs. This novel subdivision incorporates functional and architectural features and may aid further biochemical and structural analyses within GH36.
Collapse
Affiliation(s)
- Folmer Fredslund
- Department of Systems Biology, Enzyme and Protein Chemistry, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kongens Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
40
|
Luley-Goedl C, Nidetzky B. Carbohydrate synthesis by disaccharide phosphorylases: reactions, catalytic mechanisms and application in the glycosciences. Biotechnol J 2011; 5:1324-38. [PMID: 21154671 DOI: 10.1002/biot.201000217] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Disaccharide phosphorylases are glycosyltransferases (EC 2.4.1.α) of specialized carbohydrate metabolism in microorganisms. They catalyze glycosyl transfer to phosphate using a disaccharide as donor substrate. Phosphorylases for the conversion of naturally abundant disaccharides including sucrose, maltose, α,α-trehalose, cellobiose, chitobiose, and laminaribiose have been described. Structurally, these disaccharide phosphorylases are often closely related to glycoside hydrolases and transglycosidases. Mechanistically, they are categorized according the stereochemical course of the reaction catalyzed, whereby the anomeric configuration of the disaccharide donor substrate may be retained or inverted in the sugar 1-phosphate product. Glycosyl transfer with inversion is thought to occur through a single displacement-like catalytic mechanism, exemplified by the reaction coordinate of cellobiose/chitobiose phosphorylase. Reaction via configurational retention takes place through the double displacement-like mechanism employed by sucrose phosphorylase. Retaining α,α-trehalose phosphorylase (from fungi) utilizes a different catalytic strategy, perhaps best described by a direct displacement mechanism, to achieve stereochemical control in an overall retentive transformation. Disaccharide phosphorylases have recently attracted renewed interest as catalysts for synthesis of glycosides to be applied as food additives and cosmetic ingredients. Relevant examples are lacto-N-biose and glucosylglycerol whose enzymatic production was achieved on multikilogram scale. Protein engineering of phosphorylases is currently pursued in different laboratories with the aim of broadening the donor and acceptor substrate specificities of naturally existing enzyme forms, to eventually generate a toolbox of new catalysts for glycoside synthesis.
Collapse
Affiliation(s)
- Christiane Luley-Goedl
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, Petersgasse 12, Graz, Austria
| | | |
Collapse
|
41
|
Schwab C, Gänzle M. Lactic acid bacteria fermentation of human milk oligosaccharide components, human milk oligosaccharides and galactooligosaccharides. FEMS Microbiol Lett 2010; 315:141-8. [PMID: 21175746 DOI: 10.1111/j.1574-6968.2010.02185.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Human milk contains about 7% lactose and 1% human milk oligosaccharides (HMOs) consisting of lactose with linked fucose, N-acetylglucosamine and sialic acid. In infant formula, galactooligosaccharides (GOSs) are added to replace HMOs. This study investigated the ability of six strains of lactic acid bacteria (LAB), Lactobacillus acidophilus, Lactobacillus plantarum, Lactobacillus fermentum, Lactobacillus reuteri, Streptococcus thermophilus and Leuconostoc mesenteroides subsp. cremoris, to digest HMO components, defined HMOs, and GOSs. All strains grew on lactose and glucose. N-acetylglucosamine utilization varied between strains and was maximal in L. plantarum; fucose utilization was low or absent in all strains. Both hetero- and homofermentative LAB utilized N-acetylglucosamine via the Embden-Meyerhof pathway. Lactobacillus acidophilus and L. plantarum were the most versatile in hydrolysing pNP analogues and the only strains releasing mono- and disaccharides from defined HMOs. Whole cells of all six LAB hydrolysed oNP-galactoside and pNP-galactoside indicating β-galactosidase activity. High β-galactosidase activity of L. reuteri, L. fermentum, S. thermophilus and L. mesenteroides subsp. cremoris whole cells correlated to lactose and GOS hydrolysis. Hydrolysis of lactose and GOSs by heterologously expressed β-galactosidases confirmed that LAB β-galactosidases are involved in GOS digestion. In summary, the strains of LAB used were not capable of utilizing complex HMOs but metabolized HMO components and GOSs.
Collapse
Affiliation(s)
- Clarissa Schwab
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | | |
Collapse
|
42
|
Nakai H, Petersen BO, Westphal Y, Dilokpimol A, Abou Hachem M, Duus JØ, Schols HA, Svensson B. Rational engineering of Lactobacillus acidophilus NCFM maltose phosphorylase into either trehalose or kojibiose dual specificity phosphorylase. Protein Eng Des Sel 2010; 23:781-7. [PMID: 20713411 DOI: 10.1093/protein/gzq055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lactobacillus acidophilus NCFM maltose phosphorylase (LaMP) of the (alpha/alpha)(6)-barrel glycoside hydrolase family 65 (GH65) catalyses both phosphorolysis of maltose and formation of maltose by reverse phosphorolysis with beta-glucose 1-phosphate and glucose as donor and acceptor, respectively. LaMP has about 35 and 26% amino acid sequence identity with GH65 trehalose phosphorylase (TP) and kojibiose phosphorylase (KP) from Thermoanaerobacter brockii ATCC35047. The structure of L. brevis MP and multiple sequence alignment identified (alpha/alpha)(6)-barrel loop 3 that forms the rim of the active site pocket as a target for specificity engineering since it contains distinct sequences for different GH65 disaccharide phosphorylases. Substitution of LaMP His413-Glu421, His413-Ile418 and His413-Glu415 from loop 3, that include His413 and Glu415 presumably recognising the alpha-anomeric O-1 group of the glucose moiety at subsite +1, by corresponding segments from Ser426-Ala431 in TP and Thr419-Phe427 in KP, thus conferred LaMP with phosphorolytic activity towards trehalose and kojibiose, respectively. Two different loop 3 LaMP variants catalysed the formation of trehalose and kojibiose in yields superior of maltose by reverse phosphorolysis with (alpha1, alpha1)- and alpha-(1,2)-regioselectivity, respectively, as analysed by nuclear magnetic resonance. The loop 3 in GH65 disaccharide phosphorylase is thus a key determinant for specificity both in phosphorolysis and in regiospecific reverse phosphorolysis.
Collapse
Affiliation(s)
- Hiroyuki Nakai
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Nakai H, Dilokpimol A, Hachem MA, Svensson B. Efficient one-pot enzymatic synthesis of α-(1→4)-glucosidic disaccharides through a coupled reaction catalysed by Lactobacillus acidophilus NCFM maltose phosphorylase. Carbohydr Res 2010; 345:1061-4. [DOI: 10.1016/j.carres.2010.03.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 03/17/2010] [Indexed: 11/28/2022]
|