1
|
Poding LH, Jägers P, Herlitze S, Huhn M. Diversity and function of fluorescent molecules in marine animals. Biol Rev Camb Philos Soc 2024; 99:1391-1410. [PMID: 38468189 DOI: 10.1111/brv.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/24/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
Fluorescence in marine animals has mainly been studied in Cnidaria but is found in many different phyla such as Annelida, Crustacea, Mollusca, and Chordata. While many fluorescent proteins and molecules have been identified, very little information is available about the biological functions of fluorescence. In this review, we focus on describing the occurrence of fluorescence in marine animals and the behavioural and physiological functions of fluorescent molecules based on experimental approaches. These biological functions of fluorescence range from prey and symbiont attraction, photoprotection, photoenhancement, stress mitigation, mimicry, and aposematism to inter- and intraspecific communication. We provide a comprehensive list of marine taxa that utilise fluorescence, including demonstrated effects on behavioural or physiological responses. We describe the numerous known functions of fluorescence in anthozoans and their underlying molecular mechanisms. We also highlight that other marine taxa should be studied regarding the functions of fluorescence. We suggest that an increase in research effort in this field could contribute to understanding the capacity of marine animals to respond to negative effects of climate change, such as rising sea temperatures and increasing intensities of solar irradiation.
Collapse
Affiliation(s)
- Lars H Poding
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Peter Jägers
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Stefan Herlitze
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| | - Mareike Huhn
- Department of General Zoology and Neurobiology, Institute of Biology and Biotechnology, Ruhr-University Bochum, Bochum, 44801, Germany
| |
Collapse
|
2
|
Leong LM, Storace DA. Imaging different cell populations in the mouse olfactory bulb using the genetically encoded voltage indicator ArcLight. NEUROPHOTONICS 2024; 11:033402. [PMID: 38288247 PMCID: PMC10823906 DOI: 10.1117/1.nph.11.3.033402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Genetically encoded voltage indicators (GEVIs) are protein-based optical sensors that allow for measurements from genetically defined populations of neurons. Although in vivo imaging in the mammalian brain with early generation GEVIs was difficult due to poor membrane expression and low signal-to-noise ratio, newer and more sensitive GEVIs have begun to make them useful for answering fundamental questions in neuroscience. We discuss principles of imaging using GEVIs and genetically encoded calcium indicators, both useful tools for in vivo imaging of neuronal activity, and review some of the recent mechanistic advances that have led to GEVI improvements. We provide an overview of the mouse olfactory bulb (OB) and discuss recent studies using the GEVI ArcLight to study different cell types within the bulb using both widefield and two-photon microscopy. Specific emphasis is placed on using GEVIs to begin to study the principles of concentration coding in the OB, how to interpret the optical signals from population measurements in the in vivo brain, and future developments that will push the field forward.
Collapse
Affiliation(s)
- Lee Min Leong
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
| | - Douglas A. Storace
- Florida State University, Department of Biological Science, Tallahassee, Florida, United States
- Florida State University, Program in Neuroscience, Tallahassee, Florida, United States
- Florida State University, Institute of Molecular Biophysics, Tallahassee, Florida, United States
| |
Collapse
|
3
|
Sanz-de Diego E, Aires A, Palacios-Alonso P, Cabrera D, Silvestri N, Vequi-Suplicy CC, Artés-Ibáñez EJ, Requejo-Isidro J, Delgado-Buscalioni R, Pellegrino T, Cortajarena AL, Terán FJ. Multiparametric modulation of magnetic transduction for biomolecular sensing in liquids. NANOSCALE 2024; 16:4082-4094. [PMID: 38348700 DOI: 10.1039/d3nr06489a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The recent COVID19 pandemic has remarkably boosted the research on in vitro diagnosis assays to detect biomarkers in biological fluids. Specificity and sensitivity are mandatory for diagnostic kits aiming to reach clinical stages. Whilst the modulation of sensitivity can significantly improve the detection of biomarkers in liquids, this has been scarcely explored. Here, we report on the proof of concept and parametrization of a novel biosensing methodology based on the changes of AC magnetic hysteresis areas observed for magnetic nanoparticles following biomolecular recognition in liquids. Several parameters are shown to significantly modulate the transducing capacity of magnetic nanoparticles to detect analytes dispersed in saline buffer at concentrations of clinical relevance. Magnetic nanoparticles were bio-conjugated with an engineered recognition peptide as a receptor. Analytes are engineered tetratricopeptide binding domains fused to the fluorescent protein whose dimerization state allows mono- or divalent variants. Our results unveil that the number of receptors per particle, analyte valency and concentration, nanoparticle composition and concentration, and field conditions play a key role in the formation of assemblies driven by biomolecular recognition. Consequently, all these parameters modulate the nanoparticle transduction capacity. Our study provides essential insights into the potential of AC magnetometry for customizing biomarker detection in liquids.
Collapse
Affiliation(s)
- Elena Sanz-de Diego
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
| | - Antonio Aires
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain.
| | | | - David Cabrera
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- School of Pharmacy and Bioengineering, Keele University, Guy Hilton Research Centre, Thurnburrow Drive, ST4 7QB, Stoke on Trent, UK
| | | | | | - Emilio J Artés-Ibáñez
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- Nanotech Solutions, 40150 Villacastín, Spain
| | - José Requejo-Isidro
- Centro Nacional de Biotecnologia (CSIC), 28049 Madrid, Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | | | | | - Aitziber L Cortajarena
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Francisco J Terán
- iMdea Nanociencia, Ciudad Universitaria de Cantoblanco, 28049 Madrid, Spain.
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| |
Collapse
|
4
|
Palacios-Alonso P, Sanz-de-Diego E, Peláez RP, Cortajarena AL, Teran FJ, Delgado-Buscalioni R. Predicting the size and morphology of nanoparticle clusters driven by biomolecular recognition. SOFT MATTER 2023; 19:8929-8944. [PMID: 37530392 DOI: 10.1039/d3sm00536d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Nanoparticle aggregation is a driving principle of innovative materials and biosensing methodologies, improving transduction capabilities displayed by optical, electrical or magnetic measurements. This aggregation can be driven by the biomolecular recognition between target biomolecules (analytes) and receptors bound onto nanoparticle surface. Despite theoretical advances on modelling the entropic interaction in similar systems, predictions of the fractal morphologies of the nanoclusters of bioconjugated nanoparticles are lacking. The morphology of resulting nanoclusters is sensitive to the location, size, flexibility, average number of receptors per particle f̄, and the analyte-particle concentration ratio. Here we considered bioconjugated iron oxide nanoparticles (IONPs) where bonds are mediated by a divalent protein that binds two receptors attached onto different IONPs. We developed a protocol combining analytical expressions for receptors and linker distributions, and Brownian dynamics simulations for bond formation, and validated it against experiments. As more bonds become available (e.g., by adding analytes), the aggregation deviates from the ideal Bethe's lattice scenario due to multivalence, loop formation, and steric hindrance. Generalizing Bethe's lattice theory with a (not-integer) effective functionality feff leads to analytical expressions for the cluster size distributions in excellent agreement with simulations. At high analyte concentration steric impediment imposes an accessible limit value facc to feff, which is bounded by facc < feff < f̄. A transition to gel phase, is correctly captured by the derived theory. Our findings offer new insights into quantifying analyte amounts by assessing nanocluster size, and predicting nanoassembly morphologies accurately is a first step towards understanding variations of physical properties in clusters formed after biomolecular recognition.
Collapse
Affiliation(s)
- Pablo Palacios-Alonso
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
- Condensed Matter Physics Center, IFIMAC, Spain
| | | | - Raúl P Peláez
- Dpto. Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - A L Cortajarena
- CIC biomaGUNE-BRTA, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - F J Teran
- iMdea Nanociencia, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
- Nanobiotecnología (iMdea-Nanociencia), Unidad Asociada al Centro Nacional de Biotecnología (CSIC), 28049 Madrid, Spain
| | - Rafael Delgado-Buscalioni
- Dpto. Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
- Condensed Matter Physics Center, IFIMAC, Spain
| |
Collapse
|
5
|
Carrera-Pacheco SE, Hankamer B, Oey M. Environmental and nuclear influences on microalgal chloroplast gene expression. TRENDS IN PLANT SCIENCE 2023; 28:955-967. [PMID: 37080835 DOI: 10.1016/j.tplants.2023.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 05/03/2023]
Abstract
Microalgal chloroplasts, such as those of the model organism Chlamydomonas reinhardtii, are emerging as a new platform to produce recombinant proteins, including industrial enzymes, diagnostics, as well as animal and human therapeutics. Improving transgene expression and final recombinant protein yields, at laboratory and industrial scales, require optimization of both environmental and cellular factors. Most studies on C. reinhardtii have focused on optimization of cellular factors. Here, we review the regulatory influences of environmental factors, including light (cycle time, intensity, and quality), carbon source (CO2 and organic), and temperature. In particular, we summarize their influence via the redox state, cis-elements, and trans-factors on biomass and recombinant protein production to support the advancement of emerging large-scale light-driven biotechnology applications.
Collapse
Affiliation(s)
- Saskya E Carrera-Pacheco
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Ben Hankamer
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| | - Melanie Oey
- The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Road, St Lucia, Australia.
| |
Collapse
|
6
|
Sánchez-Pedreño Jiménez A, Puhl HL, Vogel SS, Kim Y. Ultrafast fluorescence depolarisation in green fluorescence protein tandem dimers as hydrophobic environment sensitive probes. Phys Chem Chem Phys 2023; 25:19532-19539. [PMID: 37351579 PMCID: PMC10370368 DOI: 10.1039/d3cp01765f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Advances in ultra-fast photonics have enabled monitoring of biochemical interactions on a sub nano-second time scale. In addition, picosecond dynamics of intermolecular energy transfer in fluorescent proteins has been observed. Here, we present the development of a genetically encoded fluorescent sensor that can detect changes in hydrophobicity by monitoring ultrafast fluorescence depolarisation. Our sensor is composed of a pair of dimeric enhanced green fluorescent proteins (dEGFPs) linked by a flexible amino-acid linker. We show dimerisation is perturbed by the addition of glycerol which interferes with the hydrophobic interaction of the two proteins. Time-resolved fluorescence anisotropy revealed a systematic attenuation of ultrafast fluorescence depolarisation when the sensor was exposed to increasing glycerol concentrations. This suggests that as hydrophobicity increases, dEGFP pairing decreases within a tandem dimer. Un-pairing of the protein fluorophores dramatically alters the rate of energy transfer between the proteins, resulting in an increase in the limiting anisotropy of the sensor.
Collapse
Affiliation(s)
- Alejandro Sánchez-Pedreño Jiménez
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 7XH, UK.
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guilford GU2 7XH, UK
- Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, UK
| | - Henry L Puhl
- Laboratory of Biophotonics and Quantum Biology, NIAAA, NIH, Bethesda, USA.
| | - Steven S Vogel
- Laboratory of Biophotonics and Quantum Biology, NIAAA, NIH, Bethesda, USA.
| | - Youngchan Kim
- Leverhulme Quantum Biology Doctoral Training Centre, University of Surrey, Guildford GU2 7XH, UK.
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guilford GU2 7XH, UK
- Advanced Technology Institute, University of Surrey, Guildford, GU2 7XH, UK
| |
Collapse
|
7
|
Deligönül N, Yildiz I, Bilgin S, Gokce I, Isildak O. Green Fluorescent Protein-Multi Walled Carbon Nanotube based Polymeric Membrane Electrode for Bismuth Ion Detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
8
|
Skin Immuno-CometChip in 3D vs. 2D Cultures to Screen Topical Toxins and Skin-Specific Cytochrome Inducers. Genes (Basel) 2023; 14:genes14030630. [PMID: 36980902 PMCID: PMC10048716 DOI: 10.3390/genes14030630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The targets of topical genotoxic agents are basal and stem cells of the skin. These cells may misrepair DNA lesions, resulting in deleterious mutations of tumor suppressors or oncogenes. However, the genotoxicity of many compounds has not as yet been determined and needs to be tested using a relevant skin model. To this end, we designed a new high-throughput assay for the detection of agents that create DNA damage in epidermal stem and basal cells and used it to test known DNA-damaging agents. We utilized either 2D epidermal cells or 3D skin equivalents and topically exposed them to different compounds. The Skin Immuno-CometChip assay uses arrays of microwells formed in a collagen/agarose mixture to capture single basal cells in each microwell by virtue of collagen binding to α2β1 integrin, which is present only on basal and stem cells. The presence of β1 integrin was verified by immunofluorescent labeling cells that were then subjected to an electrical field, allowing for the migration of nicked DNA out of the nucleoid in alkali, with the resulting DNA comets stained and imaged. Furthermore, using improved comet detection software allowed for the automated and rapid quantification of DNA damage. Our study indicates that we can accurately predict genotoxicity by using 3D skin cultures, as well as keratinocytes grown in 2D monolayers.
Collapse
|
9
|
Srila W, Min TT, Sumphanapai T, Rangnoi K, Berkmen M, Yamabhai M. Production and applications of fluorobody from redox-engineered Escherichia coli. Appl Microbiol Biotechnol 2023; 107:1959-1970. [PMID: 36729226 PMCID: PMC10050041 DOI: 10.1007/s00253-023-12395-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
Efficient selection and production of antibody fragments in microbial systems remain to be a challenging process. To optimize microbial production of single-chain variable fragments (scFvs), we have chosen five model targets, 1) a hapten, Zearalenone (ZEN) mycotoxin, along with infectious agents 2) rabies virus, 3) Propionibacterium acnes, 4) Pseudomonas aeruginosa, and a cancer cell 5) acute myeloid leukemia cell line (HL-60). The scFv binders were affinity selected from a non-immunized human phage display scFv antibody library and genetically fused to the N-terminus of emerald green fluorescent protein (EmGFP). The scFv-EmGFP fusion constructs were subcloned into an expression vector, under the control of T7 promoter, C-terminally tagged with hexa-histidine and expressed in different Escherichia coli (E. coli) hosts. This enabled the detection of cells that expressed the correct scFv-EmGFP fusion, termed fluorobody, via bright fluorescent signal in the cytoplasm. Among the three E. coli hosts tested, an engineered E. coli B strain called SHuffle B that promotes disulfide bond formation in the cytoplasm appeared to be the most appropriate host. The recombinant fluorobodies were well expressed (2-8 mg/L), possessed the fluorescence property of EmGFP, and retained the ability to bind to their cognate targets. Their specific bindings were demonstrated by ELISA, fluorescence-linked immunosorbent assay (FLISA), flow cytometry, and fluorescent microscope imaging. The fluorobody expression platform in this study could be further adopted as a one-step immunostaining technique based on scFv, isolated from phage display library to numerous desired targets. KEY POINTS: • E. coli SHuffle express T7 is a suitable expression host for scFv-EmGFP (fluorobody) • Only the clones harboring scFv-EmGFP plasmid will show bright fluorescent signal • This platform can be used to produce fluorobodies for numerous purposes.
Collapse
Affiliation(s)
- Witsanu Srila
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Thae Thae Min
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Thitima Sumphanapai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Kuntalee Rangnoi
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | | | - Montarop Yamabhai
- School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
10
|
Jennings E, Elliot TAE, Thawait N, Kanabar S, Yam-Puc JC, Ono M, Toellner KM, Wraith DC, Anderson G, Bending D. Nr4a1 and Nr4a3 Reporter Mice Are Differentially Sensitive to T Cell Receptor Signal Strength and Duration. Cell Rep 2021; 33:108328. [PMID: 33147449 PMCID: PMC7653457 DOI: 10.1016/j.celrep.2020.108328] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 08/07/2020] [Accepted: 10/08/2020] [Indexed: 12/27/2022] Open
Abstract
Nr4a receptors are activated by T cell receptor (TCR) signaling and play key roles in T cell differentiation. Which TCR signaling pathways regulate Nr4a receptors and their sensitivities to TCR signal strength and duration remains unclear. Using Nr4a1/Nur77-GFP and Nr4a3-Timer of cell kinetics and activity (Tocky) mice, we elucidate the signaling pathways governing Nr4a receptor expression. We reveal that Nr4a1–Nr4a3 are Src family kinase dependent. Moreover, Nr4a2 and Nr4a3 are attenuated by calcineurin inhibitors and bind nuclear factor of activated T cells 1 (NFAT1), highlighting a necessary and sufficient role for NFAT1 in the control of Nr4a2 and Nr4a3, but redundancy for Nr4a1. Nr4a1-GFP is activated by tonic and cognate signals during T cell development, whereas Nr4a3-Tocky requires cognate peptide:major histocompatibility complex (MHC) interactions for expression. Compared to Nr4a3-Tocky, Nr4a1-GFP is approximately 2- to 3-fold more sensitive to TCR signaling and is detectable by shorter periods of TCR signaling. These findings suggest that TCR signal duration may be an underappreciated aspect influencing the developmental fate of T cells in vivo. Nr4a1 and Nr4a3 show differential dependency on the calcineurin/NFAT pathway Nr4a1-GFP is expressed in developing Tcon and Treg within the thymus Nr4a3-Timer expression is largely restricted to thymic and peripheral CD25+ Treg Nr4a3-Timer requires a stronger and/or longer TCR signal for its expression
Collapse
Affiliation(s)
- Emma Jennings
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Thomas A E Elliot
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Natasha Thawait
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Shivani Kanabar
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Juan Carlos Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
11
|
Jennings E, Elliot TAE, Thawait N, Kanabar S, Yam-Puc JC, Ono M, Toellner KM, Wraith DC, Anderson G, Bending D. Nr4a1 and Nr4a3 Reporter Mice Are Differentially Sensitive to T Cell Receptor Signal Strength and Duration. Cell Rep 2020. [PMID: 33147449 DOI: 10.1016/j.celrep.2020.108328.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nr4a receptors are activated by T cell receptor (TCR) signaling and play key roles in T cell differentiation. Which TCR signaling pathways regulate Nr4a receptors and their sensitivities to TCR signal strength and duration remains unclear. Using Nr4a1/Nur77-GFP and Nr4a3-Timer of cell kinetics and activity (Tocky) mice, we elucidate the signaling pathways governing Nr4a receptor expression. We reveal that Nr4a1-Nr4a3 are Src family kinase dependent. Moreover, Nr4a2 and Nr4a3 are attenuated by calcineurin inhibitors and bind nuclear factor of activated T cells 1 (NFAT1), highlighting a necessary and sufficient role for NFAT1 in the control of Nr4a2 and Nr4a3, but redundancy for Nr4a1. Nr4a1-GFP is activated by tonic and cognate signals during T cell development, whereas Nr4a3-Tocky requires cognate peptide:major histocompatibility complex (MHC) interactions for expression. Compared to Nr4a3-Tocky, Nr4a1-GFP is approximately 2- to 3-fold more sensitive to TCR signaling and is detectable by shorter periods of TCR signaling. These findings suggest that TCR signal duration may be an underappreciated aspect influencing the developmental fate of T cells in vivo.
Collapse
Affiliation(s)
- Emma Jennings
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Thomas A E Elliot
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Natasha Thawait
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Shivani Kanabar
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Juan Carlos Yam-Puc
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Kai-Michael Toellner
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David C Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
12
|
Ko S, Jeon H, Yoon S, Kyung M, Yun H, Na JH, Jung ST. Discovery of Novel Pseudomonas putida Flavin-Binding Fluorescent Protein Variants with Significantly Improved Quantum Yield. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5873-5879. [PMID: 32367716 DOI: 10.1021/acs.jafc.0c00121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Oxygen-independent, flavin-binding fluorescent proteins (FbFPs) are emerging as alternatives to green fluorescent protein (GFP), which has limited applicability in studying anaerobic microorganisms, such as human gastrointestinal bacteria, which grow in oxygen-deficient environments. However, the utility of these FbFPs has been compromised because of their poor fluorescence emission. To overcome this limitation, we have employed a high-throughput library screening strategy and engineered an FbFP derived from Pseudomonas putida (SB2) for enhanced quantum yield. Of the resulting SB2 variants, KOFP-7 exhibited a significantly improved quantum yield (0.61) compared to other reported engineered FbFPs, which was even higher than that of enhanced GFP (EGFP, 0.60), with significantly enhanced tolerance against a strong reducing agent.
Collapse
Affiliation(s)
- Sanghwan Ko
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Korea
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Korea
| | - Hyunwoo Jeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sanghan Yoon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Munsu Kyung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Korea
| | - Hyungdon Yun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jung-Hyun Na
- Department of Pharmaceutical Engineering, Sangji University, Wonju 26339, Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Korea
| |
Collapse
|
13
|
Kilaru S, Schuster M, Cannon S, Steinberg G. Optimised red- and green-fluorescent proteins for live cell imaging in the industrial enzyme-producing fungus Trichoderma reesei. Fungal Genet Biol 2020; 138:103366. [PMID: 32173466 DOI: 10.1016/j.fgb.2020.103366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 11/30/2022]
Abstract
The filamentous fungus Trichoderma reesei is a major source of cellulolytic enzymes in biofuel production. Despite its economic relevance, our understanding of its secretory pathways is fragmentary. A major challenge is to visualise the dynamic behaviour of secretory vesicles in living cells. To this end, we establish a location juxtaposing the succinate dehydrogenase locus as a "soft-landing" site for controlled expression of 4 green-fluorescent and 5 red-fluorescent protein-encoding genes (GFPs, RFPs). Quantitative and comparative analysis of their fluorescent signals in living cells demonstrates that codon-optimised monomeric superfolder GFP (TrmsGFP) and codon-optimised mCherry (TrmCherry) combine highest signal intensity with significantly improved signal-to-noise ratios. Finally, we show that integration of plasmid near the sdi1 locus does not affect secretion of cellulase activity in RUT-C30. The molecular and live cell imaging tools generated in this study will help our understanding the secretory pathway in the industrial fungus T. reesei.
Collapse
Affiliation(s)
- Sreedhar Kilaru
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Martin Schuster
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Stuart Cannon
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom
| | - Gero Steinberg
- Biosciences, University of Exeter, Stocker Road, EX4 4QD Exeter, United Kingdom.
| |
Collapse
|
14
|
Mann SE, Zhou Z, Landry LG, Anderson AM, Alkanani AK, Fischer J, Peakman M, Mallone R, Campbell K, Michels AW, Nakayama M. Multiplex T Cell Stimulation Assay Utilizing a T Cell Activation Reporter-Based Detection System. Front Immunol 2020; 11:633. [PMID: 32328071 PMCID: PMC7160884 DOI: 10.3389/fimmu.2020.00633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Recent advancements in single cell sequencing technologies allow for identification of numerous immune-receptors expressed by T cells such as tumor-specific and autoimmune T cells. Determining antigen specificity of those cells holds immense therapeutic promise. Therefore, the purpose of this study was to develop a method that can efficiently test antigen reactivity of multiple T cell receptors (TCRs) with limited cost, time, and labor. Nuclear factor of activated T cells (NFAT) is a transcription factor involved in producing cytokines and is often utilized as a reporter system for T cell activation. Using a NFAT-based fluorescent reporter system, we generated T-hybridoma cell lines that express intensely fluorescent proteins in response to antigen stimulation and constitutively express additional fluorescent proteins, which serve as identifiers of each T-hybridoma expressing a unique TCR. This allows for the combination of multiple T-hybridoma lines within a single reaction. Sensitivity to stimulation is not decreased by adding fluorescent proteins or multiplexing T cells. In multiplexed reactions, response by one cell line does not induce response in others, thus preserving specificity. This multiplex assay system will be a useful tool for antigen discovery research in a variety of contexts, including using combinatorial peptide libraries to determine T cell epitopes.
Collapse
Affiliation(s)
- Sarah E. Mann
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Zhicheng Zhou
- CNRS, INSERM, Institut Cochin, Université de Paris, Paris, France
| | - Laurie G. Landry
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Amanda M. Anderson
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aimon K. Alkanani
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jeremy Fischer
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Mark Peakman
- Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Roberto Mallone
- CNRS, INSERM, Institut Cochin, Université de Paris, Paris, France
- Assistance Publique - Hôpitaux de Paris, Service de Diabétologie et Immunologie Clinique, Cochin Hospital, Paris, France
| | - Kristen Campbell
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Aaron W. Michels
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Maki Nakayama
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
15
|
Rodríguez-Pulido A, Cortajarena AL, Torra J, Ruiz-González R, Nonell S, Flors C. Assessing the potential of photosensitizing flavoproteins as tags for correlative microscopy. Chem Commun (Camb) 2018; 52:8405-8. [PMID: 27301706 DOI: 10.1039/c6cc03119f] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photosensitizing flavoproteins have great potential as tags for correlative light and electron microscopy (CLEM). We examine the photostability of miniSOG mutants and their ability to photo-oxidize diaminobenzidine, both key aspects for CLEM. Our experiments reveal a complex relation between these parameters and the production of different reactive oxygen species.
Collapse
Affiliation(s)
- Alberto Rodríguez-Pulido
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience) and Nanobiotechnology Unit Associated to the National Center for Biotechnology (CSIC), 28049 Madrid, Spain.
| | - Aitziber L Cortajarena
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience) and Nanobiotechnology Unit Associated to the National Center for Biotechnology (CSIC), 28049 Madrid, Spain. and CIC biomaGUNE, Paseo de Miramón 182, E-20009 Donostia-San Sebastian, Spain
| | - Joaquim Torra
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
| | | | - Santi Nonell
- Institut Químic de Sarrià, Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Cristina Flors
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience) and Nanobiotechnology Unit Associated to the National Center for Biotechnology (CSIC), 28049 Madrid, Spain.
| |
Collapse
|
16
|
Molecular evolution of versatile derivatives from a GFP-like protein in the marine copepod Chiridius poppei. PLoS One 2017; 12:e0181186. [PMID: 28700734 PMCID: PMC5507436 DOI: 10.1371/journal.pone.0181186] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/26/2017] [Indexed: 12/20/2022] Open
Abstract
Fluorescent proteins are now indispensable tools in molecular research. They have also been adapted for a wide variety of uses in cases involving creative applications, including textiles, aquarium fish, and ornamental plants. Our colleagues have previously cloned a yellow GFP-like protein derived from the marine copepod Chiridius poppei (YGFP), and moreover, succeeded in generating transgenic flowers with clearly visible fluorescence, without the need for high-sensitivity imaging equipment. However, due to the low Stokes shift of YGFP (10 nm), it is difficult to separate emitted light of a labeled object from the light used for excitation; hence, limitations for various applications remain. In this study, which was aimed at developing YGFP mutants with increased Stokes shifts, we conducted stepwise molecular evolution experiments on YGFP by screening random mutations at three key amino acids, based on their fluorescent characteristics and structural stabilities, followed by optimization of their fluorescence output by DNA shuffling of the entire coding sequence. We successfully identified an eYGFPuv that had an excitation maximum in UV wavelengths and a 24-fold increase in fluorescence intensity compared to the previously reported YGFP mutant (H52D). In addition, eYGFPuv exhibited almost 9-fold higher fluorescence intensity compared to the commercially available GFPuv when expressed in human colon carcinoma HCT116 cells and without any differences in cytotoxicity. Thus, this novel mutant with the desirable characteristics of bright fluorescence, long Stokes shift, and low cytotoxity, may be particularly well suited to a variety of molecular and biological applications.
Collapse
|
17
|
Kato Y, Jimbo M, Sakakibara Y, Onizuka R, Takahashi T, Matsuhashi S, Mita H, Amada K, Imahara Y, Tanabe K, Toda A, Kamiya H. Characterization of a novel allergenic protein from the octocoral Scleronephthya gracillima (Kuekenthal) that corresponds to a new GFP-like family named Akane. LUMINESCENCE 2017; 32:1009-1016. [PMID: 28378893 DOI: 10.1002/bio.3284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/15/2016] [Accepted: 12/28/2016] [Indexed: 11/08/2022]
Abstract
Certain marine organisms have been known to cause allergic reactions among occupational fishermen. We have previously reported that bronchial asthma among the workers engaged in spiny lobster fishing in Japan was caused by octocorals such as Dendronephthya sp. and Scleronephthya gracillima (previously named Alcyonium gracillimum). Now we have found another octocoral, Scleronephthya gracillima (Kuekenthal), which causes the allergic disease in fishermen. The octocoral was characterized as a new green fluorescent protein (GFP)-like family. The new allergen has a molecular mass of 27 kDa in 1D and 2D SDS-PAGE under reduced conditions. The 27 kDa component was determined to be an allergen by western blotting, ECL immune staining method and absorption of patient sera with the antigen. Furthermore, the combination of analysis with LC-ESI-MS/MS and MASCOT search in the NCBInr database concluded the 27 kDa component had the sequence YPADI/LPDYFK, and that the 22 kDa component had the sequence QSFPEGFSWER, which both matched a GFP-like protein in Acropora aculeus and in Montastraea annularis. Further analysis by MALDI-TOF/MS/MS and MASCOT search in the NCBInr database of all 27 kDa eight spot components from 2D SDS-PAGE indicated that the sequence QSFPEGFSWER also matched as GFP-like protein in Lobophyllia hemprichii and Scleractinia sp. To our knowledge, this is the first report of the new allergenic protein that corresponds to a new GFP-like protein named Akane, and which has fluorescent emissions in the red and green part of the spectra at 628 nm and 508 nm, respectively.
Collapse
Affiliation(s)
- Yuko Kato
- Electronics Research Laboratory, Comprehensive Research Organization, Fukuoka Institute of Technology, Fukuoka, Japan
| | - Mitsuru Jimbo
- Department of Marine Biosciences, Schools of Marine Biosciences, Kitasato University, Japan
| | - Youichi Sakakibara
- Department of Biochemistry and Applied Biosciences, University of Miyazaki, Japan
| | - Reiko Onizuka
- National Hospital Organization, Miyazaki-Higashi Hospital, Japan
| | - Tatsuya Takahashi
- Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Sachiko Matsuhashi
- Department of Internal Medicine, Faculty of Medicine, Saga University, Japan
| | - Hajime Mita
- Department of Life, Environment and Materials Science, Faculty of Engineering, Fukuoka Institute of Technology, Japan
| | - Kei Amada
- Department of Life, Environment and Materials Science, Faculty of Engineering, Fukuoka Institute of Technology, Japan
| | | | - Kimiko Tanabe
- Cooperative Research Center, University of Miyazaki, Japan
| | - Akihisa Toda
- Daiichi University of Pharmacy, Department of Health Science and Hygiene, Japan
| | - Hisao Kamiya
- Department of Marine Biosciences, Schools of Marine Biosciences, Kitasato University, Japan
| |
Collapse
|
18
|
Regan L, Caballero D, Hinrichsen MR, Virrueta A, Williams DM, O'Hern CS. Protein design: Past, present, and future. Biopolymers 2016; 104:334-50. [PMID: 25784145 DOI: 10.1002/bip.22639] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/05/2015] [Accepted: 03/07/2015] [Indexed: 01/16/2023]
Abstract
Building on the pioneering work of Ho and DeGrado (J Am Chem Soc 1987, 109, 6751-6758) in the late 1980s, protein design approaches have revealed many fundamental features of protein structure and stability. We are now in the era that the early work presaged - the design of new proteins with practical applications and uses. Here we briefly survey some past milestones in protein design, in addition to highlighting recent progress and future aspirations.
Collapse
Affiliation(s)
- Lynne Regan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT.,Department of Chemistry, Yale University, New Haven, CT.,Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT
| | - Diego Caballero
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Physics, Yale University, New Haven, CT
| | - Michael R Hinrichsen
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Alejandro Virrueta
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT
| | - Danielle M Williams
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
| | - Corey S O'Hern
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT.,Department of Physics, Yale University, New Haven, CT.,Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT.,Department of Applied Physics, Yale University, New Haven, CT
| |
Collapse
|
19
|
Mérola F, Erard M, Fredj A, Pasquier H. Engineering fluorescent proteins towards ultimate performances: lessons from the newly developed cyan variants. Methods Appl Fluoresc 2016. [DOI: 10.1088/2050-6120/4/1/012001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Loganathan SK, Lukowski CM, Casey JR. The cytoplasmic domain is essential for transport function of the integral membrane transport protein SLC4A11. Am J Physiol Cell Physiol 2015; 310:C161-74. [PMID: 26582474 DOI: 10.1152/ajpcell.00246.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/11/2015] [Indexed: 12/21/2022]
Abstract
Large cytoplasmic domains (CD) are a common feature among integral membrane proteins. In virtually all cases, these CD have a function (e.g., binding cytoskeleton or regulatory factors) separate from that of the membrane domain (MD). Strong associations between CD and MD are rare. Here we studied SLC4A11, a membrane transport protein of corneal endothelial cells, the mutations of which cause genetic corneal blindness. SLC4A11 has a 41-kDa CD and a 57-kDa integral MD. One disease-causing mutation in the CD, R125H, manifests a catalytic defect, suggesting a role of the CD in transport function. Expressed in HEK-293 cells without the CD, MD-SLC4A11 is retained in the endoplasmic reticulum, indicating a folding defect. Replacement of CD-SLC4A11 with green fluorescent protein did not rescue MD-SLC4A11, suggesting some specific role of CD-SLC4A11. Homology modeling revealed that the structure of CD-SLC4A11 is similar to that of the Cl(-)/HCO3(-) exchange protein AE1 (SLC4A1) CD. Fusion to CD-AE1 partially rescued MD-SLC4A11 to the cell surface, suggesting that the structure of CD-AE1 is similar to that of CD-SLC4A11. The CD-AE1-MD-SLC4a11 chimera, however, had no functional activity. We conclude that CD-SLC4A11 has an indispensable role in the transport function of SLC4A11. CD-SLC4A11 forms insoluble precipitates when expressed in bacteria, suggesting that the domain cannot fold properly when expressed alone. Consistent with a strong association between CD-SLC4A11 and MD-SLC4A11, these domains specifically associate when coexpressed in HEK-293 cells. We conclude that SLC4A11 is a rare integral membrane protein in which the CD has strong associations with the integral MD, which contributes to membrane transport function.
Collapse
Affiliation(s)
- Sampath K Loganathan
- Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Chris M Lukowski
- Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph R Casey
- Membrane Protein Disease Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
21
|
Braun-Galleani S, Baganz F, Purton S. Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter. Biotechnol J 2015; 10:1289-97. [PMID: 26098300 PMCID: PMC4985702 DOI: 10.1002/biot.201400566] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 05/15/2015] [Accepted: 06/18/2015] [Indexed: 11/10/2022]
Abstract
Microalgae have potential as platforms for the synthesis of high-value recombinant proteins due to their many beneficial attributes including ease of cultivation, lack of pathogenic agents, and low-cost downstream processing. However, current recombinant protein levels are low compared to other microbial platforms and stable insertion of transgenes is available in only a few microalgal species. We have explored different strategies aimed at increasing growth rate and recombinant protein production in the Chlamydomonas reinhardtii chloroplast. A novel fluorescent protein (vivid Verde Fluorescent Protein, VFP) was expressed under the control of the native atpA promoter/5'UTR element. VFP levels were detected by western blotting, with increased protein levels observed when co-expressed with a gene encoding the Escherichia coli Spy chaperone. We used these transformant lines to study the effect of temperature, light and media on recombinant protein production and cell growth. VFP levels and fluorescence, assessed by flow cytometry, allowed a determination of improved cultivation conditions as 30°C under mixotrophic mode. These conditions were tested for the accumulation of an antimicrobial endolysin (Cpl-1) of potential commercial interest, observing that the outcome obtained for VFP could not be easily replicated for Cpl-1. This study suggests that recombinant protein expression is product-specific and needs to be optimized individually.
Collapse
Affiliation(s)
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, United Kingdom
| | - Saul Purton
- Institute of Structural and Molecular Biology, University College London, United Kingdom
| |
Collapse
|
22
|
Spectral and structural comparison between bright and dim green fluorescent proteins in Amphioxus. Sci Rep 2014; 4:5469. [PMID: 24968921 PMCID: PMC4073121 DOI: 10.1038/srep05469] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 05/23/2014] [Indexed: 11/09/2022] Open
Abstract
The cephalochordate Amphioxus naturally co-expresses fluorescent proteins (FPs) with different brightness, which thus offers the rare opportunity to identify FP molecular feature/s that are associated with greater/lower intensity of fluorescence. Here, we describe the spectral and structural characteristics of green FP (bfloGFPa1) with perfect (100%) quantum efficiency yielding to unprecedentedly-high brightness, and compare them to those of co-expressed bfloGFPc1 showing extremely-dim brightness due to low (0.1%) quantum efficiency. This direct comparison of structure-function relationship indicated that in the bright bfloGFPa1, a Tyrosine (Tyr159) promotes a ring flipping of a Tryptophan (Trp157) that in turn allows a cis-trans transformation of a Proline (Pro55). Consequently, the FP chromophore is pushed up, which comes with a slight tilt and increased stability. FPs are continuously engineered for improved biochemical and/or photonic properties, and this study provides new insight to the challenge of establishing a clear mechanistic understanding between chromophore structural environment and brightness level.
Collapse
|
23
|
Abstract
Microtubules (MTs) polymerize from soluble αβ-tubulin and undergo rapid dynamic transitions to depolymerization at their ends. Microtubule-associated regulator proteins modulate polymerization dynamics in vivo by altering microtubule plus end conformations or influencing αβ-tubulin incorporation rates. Biochemical reconstitution of dynamic MT polymerization can be visualized with total internal reflection fluorescence (TIRF) microscopy using purified MT regulators. This approach has provided extensive details on the regulation of microtubule dynamics. Here, I describe a general approach to reconstitute MT dynamic polymerization with TOG domain microtubule regulators from the XMAP215/Dis1 and CLASP families using TIRF microscopy. TIRF imaging strategies require nucleation of microtubule polymerization from surface-attached, stabilized MTs. The approaches described here can be used to study the mechanism of a wide variety of microtubule regulatory proteins.
Collapse
|
24
|
Hoi H, Howe ES, Ding Y, Zhang W, Baird MA, Sell BR, Allen JR, Davidson MW, Campbell RE. An engineered monomeric Zoanthus sp. yellow fluorescent protein. ACTA ACUST UNITED AC 2013; 20:1296-304. [PMID: 24094838 DOI: 10.1016/j.chembiol.2013.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 08/23/2013] [Accepted: 08/28/2013] [Indexed: 01/02/2023]
Abstract
Protein engineering has created a palette of monomeric fluorescent proteins (FPs), but there remains an ~30 nm spectral gap between the most red-shifted useful Aequorea victoria green FP (GFP) variants and the most blue-shifted useful Discosoma sp. red FP (RFP) variants. To fill this gap, we have engineered a monomeric version of the yellow FP (YFP) from Zoanthus sp. coral. Our preferred variant, designated as mPapaya1, displays excellent fluorescent brightness, good photostability, and retains its monomeric character both in vitro and in living cells in the context of protein chimeras. We demonstrate that mPapaya1 can serve as a good Förster resonance energy transfer (FRET) acceptor when paired with an mTFP1 donor. mPapaya1 is a valuable addition to the palette of FP variants that are useful for multicolor imaging and FRET-based biosensing.
Collapse
Affiliation(s)
- Hiofan Hoi
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Palacios-Cuesta M, Cortajarena AL, García O, Rodríguez-Hernández J. Versatile Functional Microstructured Polystyrene-Based Platforms for Protein Patterning and Recognition. Biomacromolecules 2013; 14:3147-54. [DOI: 10.1021/bm400771y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Marta Palacios-Cuesta
- Department of Chemistry and
Properties of Polymers, Instituto de Ciencia y Tecnología de Polímeros, (ICTP-CSIC), Juan de la Cierva
3, 28006 Madrid, Spain
| | - Aitziber L. Cortajarena
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain and CNB-CSIC-IMDEA Nanociencia
Associated Unit “Unidad de Nanobiotecnología”
| | - Olga García
- Department of Chemistry and
Properties of Polymers, Instituto de Ciencia y Tecnología de Polímeros, (ICTP-CSIC), Juan de la Cierva
3, 28006 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Department of Chemistry and
Properties of Polymers, Instituto de Ciencia y Tecnología de Polímeros, (ICTP-CSIC), Juan de la Cierva
3, 28006 Madrid, Spain
| |
Collapse
|
26
|
Pooyaei Mehr SF, DeSalle R, Kao HT, Narechania A, Han Z, Tchernov D, Pieribone V, Gruber DF. Transcriptome deep-sequencing and clustering of expressed isoforms from Favia corals. BMC Genomics 2013; 14:546. [PMID: 23937070 PMCID: PMC3751062 DOI: 10.1186/1471-2164-14-546] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 08/03/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Genomic and transcriptomic sequence data are essential tools for tackling ecological problems. Using an approach that combines next-generation sequencing, de novo transcriptome assembly, gene annotation and synthetic gene construction, we identify and cluster the protein families from Favia corals from the northern Red Sea. RESULTS We obtained 80 million 75 bp paired-end cDNA reads from two Favia adult samples collected at 65 m (Fav1, Fav2) on the Illumina GA platform, and generated two de novo assemblies using ABySS and CAP3. After removing redundancy and filtering out low quality reads, our transcriptome datasets contained 58,268 (Fav1) and 62,469 (Fav2) contigs longer than 100 bp, with N50 values of 1,665 bp and 1,439 bp, respectively. Using the proteome of the sea anemone Nematostella vectensis as a reference, we were able to annotate almost 20% of each dataset using reciprocal homology searches. Homologous clustering of these annotated transcripts allowed us to divide them into 7,186 (Fav1) and 6,862 (Fav2) homologous transcript clusters (E-value ≤ 2e(-30)). Functional annotation categories were assigned to homologous clusters using the functional annotation of Nematostella vectensis. General annotation of the assembled transcripts was improved 1-3% using the Acropora digitifera proteome. In addition, we screened these transcript isoform clusters for fluorescent proteins (FPs) homologs and identified seven potential FP homologs in Fav1, and four in Fav2. These transcripts were validated as bona fide FP transcripts via robust fluorescence heterologous expression. Annotation of the assembled contigs revealed that 1.34% and 1.61% (in Fav1 and Fav2, respectively) of the total assembled contigs likely originated from the corals' algal symbiont, Symbiodinium spp. CONCLUSIONS Here we present a study to identify the homologous transcript isoform clusters from the transcriptome of Favia corals using a far-related reference proteome. Furthermore, the symbiont-derived transcripts were isolated from the datasets and their contribution quantified. This is the first annotated transcriptome of the genus Favia, a major increase in genomics resources available in this important family of corals.
Collapse
Affiliation(s)
- Shaadi F Pooyaei Mehr
- The Graduate Center, Molecular, Cellular and Developmental Biology, City University of New York, New York, NY 10065, USA
- American Museum of Natural History, Sackler Institute of Comparative Genomics, New York, NY 10024, USA
| | - Rob DeSalle
- American Museum of Natural History, Sackler Institute of Comparative Genomics, New York, NY 10024, USA
| | - Hung-Teh Kao
- Department of Psychiatry and Human Behavior, Division of Biology and Medicine, Warren Alpert Medical School, Brown University, Providence RI 02912, USA
| | - Apurva Narechania
- American Museum of Natural History, Sackler Institute of Comparative Genomics, New York, NY 10024, USA
| | - Zhou Han
- John B. Pierce Laboratory, Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - Dan Tchernov
- Marine Biology Department, The Leon H. Charney School of Marine Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | - Vincent Pieribone
- John B. Pierce Laboratory, Cellular and Molecular Physiology, Yale University, New Haven, CT 06519, USA
| | - David F Gruber
- The Graduate Center, Molecular, Cellular and Developmental Biology, City University of New York, New York, NY 10065, USA
- American Museum of Natural History, Sackler Institute of Comparative Genomics, New York, NY 10024, USA
- Department of Natural Sciences, City University of New York, Baruch College, Box A-0506, 17 Lexington Avenue, New York, NY 10010, USA
| |
Collapse
|
27
|
de León AS, Rodríguez-Hernández J, Cortajarena AL. Honeycomb patterned surfaces functionalized with polypeptide sequences for recognition and selective bacterial adhesion. Biomaterials 2013. [DOI: 10.1016/j.biomaterials.2012.10.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Jin L, Han Z, Platisa J, Wooltorton JRA, Cohen LB, Pieribone VA. Single action potentials and subthreshold electrical events imaged in neurons with a fluorescent protein voltage probe. Neuron 2012; 75:779-85. [PMID: 22958819 DOI: 10.1016/j.neuron.2012.06.040] [Citation(s) in RCA: 344] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2012] [Indexed: 11/18/2022]
Abstract
Monitoring neuronal electrical activity using fluorescent protein-based voltage sensors has been limited by small response magnitudes and slow kinetics of existing probes. Here we report the development of a fluorescent protein voltage sensor, named ArcLight, and derivative probes that exhibit large changes in fluorescence intensity in response to voltage changes. ArcLight consists of the voltage-sensing domain of Ciona intestinalis voltage-sensitive phosphatase and super ecliptic pHluorin that carries the point mutation A227D. The fluorescence intensity of ArcLight A242 decreases by 35% in response to a 100 mV depolarization when measured in HEK293 cells, which is more than five times larger than the signals from previously reported fluorescent protein voltage sensors. We show that the combination of signal size and response speed of these new probes allows the reliable detection of single action potentials and excitatory potentials in individual neurons and dendrites.
Collapse
Affiliation(s)
- Lei Jin
- Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | | | | | | | | | | |
Collapse
|
29
|
Telford WG, Hawley T, Subach F, Verkhusha V, Hawley RG. Flow cytometry of fluorescent proteins. Methods 2012; 57:318-30. [PMID: 22293036 DOI: 10.1016/j.ymeth.2012.01.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 01/16/2012] [Indexed: 11/30/2022] Open
Abstract
Fluorescent proteins are now a critical tool in all areas of biomedical research. In this article, we review the techniques required to use fluorescent proteins for flow cytometry, concentrating specifically on the excitation and emission requirements for each protein, and the specific equipment required for optimal use.
Collapse
Affiliation(s)
- William G Telford
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
30
|
Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TWJ, Royant A. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 2012; 3:751. [PMID: 22434194 PMCID: PMC3316892 DOI: 10.1038/ncomms1738] [Citation(s) in RCA: 519] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/08/2012] [Indexed: 11/09/2022] Open
Abstract
Cyan variants of green fluorescent protein are widely used as donors in Förster resonance energy transfer experiments. The popular, but modestly bright, Enhanced Cyan Fluorescent Protein (ECFP) was sequentially improved into the brighter variants Super Cyan Fluorescent Protein 3A (SCFP3A) and mTurquoise, the latter exhibiting a high-fluorescence quantum yield and a long mono-exponential fluorescence lifetime. Here we combine X-ray crystallography and excited-state calculations to rationalize these stepwise improvements. The enhancement originates from stabilization of the seventh β-strand and the strengthening of the sole chromophore-stabilizing hydrogen bond. The structural analysis highlighted one suboptimal internal residue, which was subjected to saturation mutagenesis combined with fluorescence lifetime-based screening. This resulted in mTurquoise2, a brighter variant with faster maturation, high photostability, longer mono-exponential lifetime and the highest quantum yield measured for a monomeric fluorescent protein. Together, these properties make mTurquoise2 the preferable cyan variant of green fluorescent protein for long-term imaging and as donor for Förster resonance energy transfer to a yellow fluorescent protein.
Collapse
Affiliation(s)
- Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Li B, Shahid R, Peshkepija P, Zimmer M. Water Diffusion In And Out Of The β-Barrel Of GFP and The Fast Maturing Fluorescent Protein, TurboGFP. Chem Phys 2011; 392:143-148. [PMID: 22582003 DOI: 10.1016/j.chemphys.2011.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The chromophore of fluorescent proteins is formed by an internal cyclization of the tripeptide 65SYG67 fragment and a subsequent oxidation. The oxidation is slow - the kinetics of this step is presumably improved in fast maturing GFPs. Water molecules can aid in the chromophore formation. We have used 50ns molecular dynamics simulations of the mature and immature forms of avGFP and TurboGFP to examine the diffusion of water molecules in-and-out of the protein β-barrel. Most crystal structures of GFPs have well-structured waters within hydrogen-bonding distance of Glu222 and Arg96. It has been proposed that they have an important role in chromophore formation. Stable waters are found in similar positions in all simulations conducted. The simulations confirm the existence of a pore that leads to the chromophore in the rapidly maturing TurboGFP; decreased water diffusion upon chromophore formation; and increased water diffusion due to the pore formation.
Collapse
Affiliation(s)
- Binsen Li
- Chemistry Department, Connecticut College, New London, CT06320
| | | | | | | |
Collapse
|
32
|
Ong WJH, Alvarez S, Leroux IE, Shahid RS, Samma AA, Peshkepija P, Morgan AL, Mulcahy S, Zimmer M. Function and structure of GFP-like proteins in the protein data bank. MOLECULAR BIOSYSTEMS 2011; 7:984-92. [PMID: 21298165 DOI: 10.1039/c1mb05012e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The RCSB protein databank contains 266 crystal structures of green fluorescent proteins (GFP) and GFP-like proteins. This is the first systematic analysis of all the GFP-like structures in the pdb. We have used the pdb to examine the function of fluorescent proteins (FP) in nature, aspects of excited state proton transfer (ESPT) in FPs, deformation from planarity of the chromophore and chromophore maturation. The conclusions reached in this review are that (1) The lid residues are highly conserved, particularly those on the "top" of the β-barrel. They are important to the function of GFP-like proteins, perhaps in protecting the chromophore or in β-barrel formation. (2) The primary/ancestral function of GFP-like proteins may well be to aid in light induced electron transfer. (3) The structural prerequisites for light activated proton pumps exist in many structures and it's possible that like bioluminescence, proton pumps are secondary functions of GFP-like proteins. (4) In most GFP-like proteins the protein matrix exerts a significant strain on planar chromophores forcing most GFP-like proteins to adopt non-planar chromophores. These chromophoric deviations from planarity play an important role in determining the fluorescence quantum yield. (5) The chemospatial characteristics of the chromophore cavity determine the isomerization state of the chromophore. The cavities of highlighter proteins that can undergo cis/trans isomerization have chemospatial properties that are common to both cis and trans GFP-like proteins.
Collapse
Affiliation(s)
- Wayne J-H Ong
- Chemistry Department, Connecticut College, New London, CT 06320, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Grove TZ, Osuji CO, Forster JD, Dufresne ER, Regan L. Stimuli-responsive smart gels realized via modular protein design. J Am Chem Soc 2011; 132:14024-6. [PMID: 20860358 DOI: 10.1021/ja106619w] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Smart gels have a variety of applications, including tissue engineering and controlled drug delivery. Here we present a modular, bottom-up approach that permits the creation of protein-based smart gels with encoded morphology, functionality, and responsiveness to external stimuli. The properties of these gels are encoded by the proteins from which they are synthesized. In particular, the strength and density of the network of intermolecular cross-links are specified by the interactions of the gels' constituent protein modules with their cognate peptide ligands. Thus, these gels exhibit stimuli-responsive assembly and disassembly, dissolving (or gelling) under conditions that weaken (or strengthen) the protein-peptide interaction. We further demonstrate that such gels can encapsulate and release both proteins and small molecules and that their rheological properties are well suited for biomedical applications.
Collapse
Affiliation(s)
- Tijana Z Grove
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, United States
| | | | | | | | | |
Collapse
|
34
|
Michelini E, Cevenini L, Mezzanotte L, Coppa A, Roda A. Cell-based assays: fuelling drug discovery. Anal Bioanal Chem 2010; 398:227-38. [PMID: 20623273 DOI: 10.1007/s00216-010-3933-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 06/16/2010] [Accepted: 06/16/2010] [Indexed: 12/15/2022]
Abstract
It has been estimated that over a billion dollars in resources can be consumed to obtain clinical approval, and only a few new chemical entities are approved by the US Food and Drug Administration (FDA) each year. Therefore it is of utmost importance to obtain the maximum amount of information about biological activity, toxicological profile, biochemical mechanisms, and off-target interactions of drug-candidate leads in the earliest stages of drug discovery. Cell-based assays, because of their peculiar advantages of predictability, possibility of automation, multiplexing, and miniaturization, seem the most appealing tool for the high demands of the early stages of the drug-discovery process. Nevertheless, cellular screening, relying on different strategies ranging from reporter gene technology to protein fragment complementation assays, still presents a variety of challenges. This review focuses on main advantages and limitations of different cell-based approaches, and future directions and trends in this fascinating field.
Collapse
Affiliation(s)
- Elisa Michelini
- Department of Pharmaceutical Sciences, University of Bologna, Via Mentana, 7, 40126 Bologna, Italy
| | | | | | | | | |
Collapse
|