1
|
Wei X, Li M, You J, Luo J, Zhai J, Zhang J, Feng J, Wang H, Zhou Y. A Procedural Overview of the Involvement of Small Molecules in the Nervous System in the Regulation of Bone Healing. Int J Nanomedicine 2025; 20:1263-1284. [PMID: 39906525 PMCID: PMC11792627 DOI: 10.2147/ijn.s505677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025] Open
Abstract
Clinically, a multitude of factors can contribute to the development of bone defects. In the process of bone healing, the nervous system plays a vital role in bone regeneration. Small molecules from the nervous system, such as neurotrophic factors and neuropeptides, have been found to stimulate osteoblast proliferation and differentiation by activating signaling pathways associated with bone calcification and angiogenesis. These small molecules play a crucial regulatory role at various stages of bone healing. The systematic release mechanism of small molecules within the nervous system through diverse bone tissue engineering materials holds significant clinical implications for the controlled regulation of the bone healing process. This review provides an overview of the involvement of various nervous system small molecules at different stages of bone healing and discusses their regulatory mechanisms, aiming to establish a theoretical foundation for programmed regulation in bone regeneration and design of replacement materials in bone tissue engineering.
Collapse
Affiliation(s)
- Xuyan Wei
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Mucong Li
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaqian You
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiaxin Luo
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Jian Feng
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Hanchi Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
- Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021, People’s Republic of China
| |
Collapse
|
2
|
Lu X, Zhao Y, Peng X, Lu C, Wu Z, Xu H, Qin Y, Xu Y, Wang Q, Hao Y, Geng D. Comprehensive Overview of Interface Strategies in Implant Osseointegration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202418849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Indexed: 01/05/2025]
Abstract
AbstractWith the improvement of implant design and the expansion of application scenarios, orthopedic implants have become a common surgical option for treating fractures and end‐stage osteoarthritis. Their common goal is rapidly forming and long‐term stable osseointegration. However, this fixation effect is limited by implant surface characteristics and peri‐implant bone tissue activity. Therefore, this review summarizes the strategies of interface engineering (osteogenic peptides, growth factors, and metal ions) and treatment methods (porous nanotubes, hydrogel embedding, and other load‐release systems) through research on its biological mechanism, paving the way to achieve the adaptation of both and coordination between different strategies. With the transition of the osseointegration stage, interface engineering strategies have demonstrated varying therapeutic effects. Especially, the activity of osteoblasts runs almost through the entire process of osseointegration, and their physiological activities play a dominant role in bone formation. Furthermore, diseases impacting bone metabolism exacerbate the difficulty of achieving osseointegration. This review aims to assist future research on osseointegration engineering strategies to improve implant‐bone fixation, promote fracture healing, and enhance post‐implantation recovery.
Collapse
Affiliation(s)
- Xiaoheng Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuhu Zhao
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Xiaole Peng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University 1 Youyi Street Chongqing 400016 China
| | - Chengyao Lu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Zebin Wu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Hao Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yi Qin
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yaozeng Xu
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Qing Wang
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| | - Yuefeng Hao
- Orthopedics and Sports Medicine Center The Affiliated Suzhou Hospital of Nanjing Medical University 242 Guangji Street Suzhou Jiangsu 215006 China
| | - Dechun Geng
- Department of Orthopedics The First Affiliated Hospital of Soochow University 188 Shizi Street Suzhou Jiangsu 215006 China
| |
Collapse
|
3
|
Li J, Zhang Z, Tang J, Hou Z, Li L, Li B. Emerging roles of nerve-bone axis in modulating skeletal system. Med Res Rev 2024; 44:1867-1903. [PMID: 38421080 DOI: 10.1002/med.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Over the past decades, emerging evidence in the literature has demonstrated that the innervation of bone is a crucial modulator for skeletal physiology and pathophysiology. The nerve-bone axis sparked extensive preclinical and clinical investigations aimed at elucidating the contribution of nerve-bone crosstalks to skeleton metabolism, homeostasis, and injury repair through the perspective of skeletal neurobiology. To date, peripheral nerves have been widely reported to mediate bone growth and development and fracture healing via the secretion of neurotransmitters, neuropeptides, axon guidance factors, and neurotrophins. Relevant studies have further identified several critical neural pathways that stimulate profound alterations in bone cell biology, revealing a complex interplay between the skeleton and nerve systems. In addition, inspired by nerve-bone crosstalk, novel drug delivery systems and bioactive materials have been developed to emulate and facilitate the process of natural bone repair through neuromodulation, eventually boosting osteogenesis for ideal skeletal tissue regeneration. Overall, this work aims to review the novel research findings that contribute to deepening the current understanding of the nerve-bone axis, bringing forth some schemas that can be translated into the clinical scenario to highlight the critical roles of neuromodulation in the skeletal system.
Collapse
Affiliation(s)
- Jingya Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinru Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeyu Hou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Okoturo E. Genetic determinants of periosteum-mediated craniofacial bone regeneration: a systematic review. Arch Craniofac Surg 2023; 24:251-259. [PMID: 37584066 PMCID: PMC10766501 DOI: 10.7181/acfs.2023.00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Periosteum-mediated bone regeneration (PMBR) is a recognized method for mandibular reconstruction. Despite its unpredictable nature and the limited degree to which it is understood, it does not share the concerns of developmental changes to donor and recipient tissues that other treatment options do. The definitive role of the periosteum in bone regeneration in any mammal remains largely unexplored. The purpose of this study was to identify the genetic determinants of PMBR in mammals through a systematic review. METHODS Our search methodology was designed in accordance with the PRISMA (Preferred Reporting Items for Systematic Review and Meta-Analysis) guidelines. We conducted a quality assessment of each publication, and evaluated the differences in gene expression between days 7 and 15. RESULTS A total of four studies satisfied the inclusion criteria. The subjects and tissues examined in these studies were Wistar rat calvaria in two studies, mini-pigs in one study, and calves and mice in one study. Three out of the four studies achieved the necessary quality score of ≥ 3. Gene expression analysis showed increased activity of genes responsible for angiogenesis, cytokine activities, and immune-inflammatory responses on day 7. Additionally, genes related to skeletal development and signaling pathways were upregulated on day 15. Conclusions: The results suggest that skeletal morphogenesis is regulated by genes associated with skeletal development, and the gene expression patterns of PMBR may be characterized by specific pathways.
Collapse
Affiliation(s)
- Eyituoyo Okoturo
- Division of Head & Neck Cancer Oral, Department of Maxillofacial Surgery, Lagos State University Teaching Hospital (LASUTH), Lagos, Nigeria
- Molecular Oncology Program, Medical Research Centre, Lagos State University College of Medicine (LASUCOM), Lagos, Nigeria
| |
Collapse
|
5
|
Assefa F. The role of sensory and sympathetic nerves in craniofacial bone regeneration. Neuropeptides 2023; 99:102328. [PMID: 36827755 DOI: 10.1016/j.npep.2023.102328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Multiple factors regulate the regeneration of craniofacial bone defects. The nervous system is recognized as one of the critical regulators of bone mass, thereby suggesting a role for neuronal pathways in bone regeneration. However, in the context of craniofacial bone regeneration, little is known about the interplay between the nervous system and craniofacial bone. Sensory and sympathetic nerves interact with the bone through their neuropeptides, neurotransmitters, proteins, peptides, and amino acid derivates. The neuron-derived factors, such as semaphorin 3A (SEMA3A), substance P (SP), calcitonin gene-related peptide (CGRP), neuropeptide Y (NPY), and vasoactive intestinal peptide (VIP), possess a remarkable role in craniofacial regeneration. This review summarizes the roles of these factors and recently published factors such as secretoneurin (SN) and spexin (SPX) in the osteoblast and osteoclast differentiation, bone metabolism, growth, remodeling and discusses the novel application of nerve-based craniofacial bone regeneration. Moreover, the review will facilitate understanding the mechanism of action and provide potential treatment direction for the craniofacial bone defect.
Collapse
Affiliation(s)
- Freshet Assefa
- Department of Biochemistry, Collage of Medicine and Health Sciences, Hawassa University, P.O.Box 1560, Hawassa, Ethiopia.
| |
Collapse
|
6
|
Shirazi S, Ravindran S, Cooper LF. Topography-mediated immunomodulation in osseointegration; Ally or Enemy. Biomaterials 2022; 291:121903. [PMID: 36410109 PMCID: PMC10148651 DOI: 10.1016/j.biomaterials.2022.121903] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Osteoimmunology is at full display during endosseous implant osseointegration. Bone formation, maintenance and resorption at the implant surface is a result of bidirectional and dynamic reciprocal communication between the bone and immune cells that extends beyond the well-defined osteoblast-osteoclast signaling. Implant surface topography informs adherent progenitor and immune cell function and their cross-talk to modulate the process of bone accrual. Integrating titanium surface engineering with the principles of immunology is utilized to harness the power of immune system to improve osseointegration in healthy and diseased microenvironments. This review summarizes current information regarding immune cell-titanium implant surface interactions and places these events in the context of surface-mediated immunomodulation and bone regeneration. A mechanistic approach is directed in demonstrating the central role of osteoimmunology in the process of osseointegration and exploring how regulation of immune cell function at the implant-bone interface may be used in future control of clinical therapies. The process of peri-implant bone loss is also informed by immunomodulation at the implant surface. How surface topography is exploited to prevent osteoclastogenesis is considered herein with respect to peri-implant inflammation, osteoclastic precursor-surface interactions, and the upstream/downstream effects of surface topography on immune and progenitor cell function.
Collapse
Affiliation(s)
- Sajjad Shirazi
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA.
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, USA
| | - Lyndon F Cooper
- School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
7
|
Nakanishi Y, Kang S, Kumanogoh A. Crosstalk between axon guidance signaling and bone remodeling. Bone 2022; 157:116305. [PMID: 34973495 DOI: 10.1016/j.bone.2021.116305] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/04/2023]
Abstract
The maintenance of skeletal integrity is tightly regulated by two cell types, bone forming osteoblasts and bone resorbing osteoclasts. Although the role of the nervous system in regulating osteoblasts and osteoclasts was identified over a decade ago, the molecular mechanism of skeletal-neural interactions in bone homeostasis has only been studied recently. In particular, the complex roles of axon guidance molecules, such as semaphorins and ephrins, in the bone have been studied extensively. In this review, we highlight the latest advances in determining the functions of semaphorins and ephrins in the establishment and maintenance of the skeletal system, with a focus on the functional interaction between the skeletal and nervous systems.
Collapse
Affiliation(s)
- Yoshimitsu Nakanishi
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan
| | - Sujin Kang
- Department of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita City, Osaka 565-0871, Japan; Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Suita City, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita City, Osaka 565-0871, Japan; Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
8
|
Winning L, El Karim IA, Linden GJ, Irwin CR, Killough SA, Lundy FT. Differential regulation of NPY and SP receptor expression in STRO-1+ve PDLSCs by inflammatory cytokines. J Periodontal Res 2021; 57:186-194. [PMID: 34773642 DOI: 10.1111/jre.12952] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/30/2021] [Accepted: 10/30/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES The aims of this study were to investigate neuropeptide receptor expression regulation on STRO-1 +ve periodontal ligament stem cells (PDLSCs) in response to inflammatory cytokines and to investigate a potential osteogenic effect of neuropeptides. BACKGROUND Nerve fibres innervating the periodontal tissues in humans contain several neuropeptides including neuropeptide Y and substance P. The role of neuropeptide receptors on PDLSCs, including their response to the local inflammatory environment of periodontitis, is currently unknown. METHODS A homogenous population of STRO-1 +ve PDLSCs was prepared by immunomagnetic separation of cells obtained by the tissue out-growth method from healthy premolar teeth from a single donor. Regulation of gene expression of the neuropeptide Y Y1 receptor and substance P receptor tachykinin receptor 1 was investigated. A potential osteogenic effect of neuropeptide Y and substance P was also investigated by measuring alkaline phosphatase (ALP) activity, Alizarin red staining and quantifying osteogenic gene expression. RESULTS Treatment of STRO-1 +ve PDLSCs with tumour necrosis factor-alpha or interleukin 1-beta up-regulated the expression of the neuropeptide Y's Y1 receptor, but down-regulated substance P's receptor. Significantly increased ALP activity was observed in STRO-1 +ve PDLSCs treated with neuropeptide Y but not substance P. Further studies showed that neuropeptide Y had a modest osteogenic effect on cells at both a functional level and a gene level. CONCLUSIONS Expression of the neuropeptide Y Y1 receptor gene on STRO-1 +ve PDLSCs was sensitive to local inflammatory cytokines. Treatment of cells with neuropeptide Y was found to produce a modest enhanced osteogenic effect.
Collapse
Affiliation(s)
- Lewis Winning
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland.,Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Ikhlas A El Karim
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Gerard J Linden
- Centre for Dentistry, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Christopher R Irwin
- Centre for Dentistry, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Simon A Killough
- Centre for Dentistry, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| | - Fionnuala T Lundy
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
9
|
Tucci M, Wilson GA, McGuire R, Benghuzzi HA. The Effects of NPY1 Receptor Antagonism on Intervertebral Disc and Bone Changes in Ovariectomized Rats. Global Spine J 2021; 11:1166-1175. [PMID: 32748636 PMCID: PMC8453679 DOI: 10.1177/2192568220939908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
STUDY DESIGN Basic science. OBJECTIVE To compare the effects of a neuropeptide Y1 receptor antagonist (NPY-1RA) to estrogen on maintaining vertebral bone microarchitecture and disc height in a rat model of menopause. METHODS This study was an institutional animal care approved randomized control study with 104 ovariectomized rats and 32 intact control animals. Comparison of disc height, trabecular bone, body weights, circulating levels of NPY and estrogen, and distribution of Y1 receptors in the intervertebral disc in an established rodent osteoporotic model were made at baseline and after 2, 4, and 8 weeks after receiving either an implant containing estrogen or an antagonist to the neuropeptide Y1 receptor. Data was compared statistically using One-way analysis of variance. RESULTS Circulating levels of estrogen increased and NPY decreased following estrogen replacement, with values comparable to ovary-intact animals. NPY-1RA-treated animals had low estrogen and high NPY circulating levels and were similar to ovariectomized control rats. Both NPY-1RA and estrogen administration were able reduce, menopause associated weight gain. NPY-1RA appeared to restore bone formation and maintain disc height, while estrogen replacement prevented further bone loss. CONCLUSION NPY-1RA in osteoporotic rats activates osteoblast production of bone and decreased marrow and body fat more effectively than estrogen replacement when delivered in similar concentrations. Annulus cells had NPY receptors, which may play a role in disc nutrition, extracellular matrix production, and pain signaling cascades.
Collapse
Affiliation(s)
- Michelle Tucci
- University of Mississippi Medical Center, Jackson, MS, US,Michelle Tucci, Department of Anesthesiology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | | | - Robert McGuire
- University of Mississippi Medical Center, Jackson, MS, US
| | | |
Collapse
|
10
|
Ma W, Lyu H, Pandya M, Gopinathan G, Luan X, Diekwisch TGH. Successful Application of a Galanin-Coated Scaffold for Periodontal Regeneration. J Dent Res 2021; 100:1144-1152. [PMID: 34328037 DOI: 10.1177/00220345211028852] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The nervous system exerts finely tuned control over all aspects of the life of an organism, including pain, sensation, growth, and development. Recent developments in tissue regeneration research have increasingly turned to small molecule peptides to tailor and augment the biological response following tissue loss or injury. In the present study, we have introduced the small molecule peptide galanin (GAL) as a novel scaffold-coating agent for the healing and regeneration of craniofacial tissues. Using immunohistochemistry, we detected GAL and GAL receptors in healthy periodontal tissues and in the proximity of blood vessels, while exposure to our periodontal disease regimen resulted in a downregulation of GAL. In a 3-dimensional bioreactor culture, GAL coating of collagen scaffolds promoted cell proliferation and matrix synthesis. Following subcutaneous implantation, GAL-coated scaffolds were associated with mineralized bone-like tissue deposits, which reacted positively for alizarin red and von Kossa, and demonstrated increased expression and protein levels of RUNX2, OCN, OSX, and iBSP. In contrast, the GAL receptor antagonist galantide blocked the effect of GAL on Runx2 expression and inhibited mineralization in our subcutaneous implantation model. Moreover, GAL coating promoted periodontal regeneration and a rescue of the periodontal defect generated in our periodontitis model mice. Together, these data demonstrate the efficacy of the neuropeptide GAL as a coating material for tissue regeneration. They are also suggestive of a novel role for neurogenic signaling pathways in craniofacial and periodontal regeneration.
Collapse
Affiliation(s)
- W Ma
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA.,Department of Stomatology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - H Lyu
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - M Pandya
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA
| | - G Gopinathan
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA
| | - X Luan
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA
| | - T G H Diekwisch
- Texas A&M Center for Craniofacial Research and Diagnosis and Department of Periodontics, TAMU College of Dentistry, Dallas, TX, USA
| |
Collapse
|
11
|
Wieczorek E, Ożyhar A. Transthyretin: From Structural Stability to Osteoarticular and Cardiovascular Diseases. Cells 2021; 10:1768. [PMID: 34359938 PMCID: PMC8307983 DOI: 10.3390/cells10071768] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/29/2021] [Accepted: 07/09/2021] [Indexed: 01/10/2023] Open
Abstract
Transthyretin (TTR) is a tetrameric protein transporting hormones in the plasma and brain, which has many other activities that have not been fully acknowledged. TTR is a positive indicator of nutrition status and is negatively correlated with inflammation. TTR is a neuroprotective and oxidative-stress-suppressing factor. The TTR structure is destabilized by mutations, oxidative modifications, aging, proteolysis, and metal cations, including Ca2+. Destabilized TTR molecules form amyloid deposits, resulting in senile and familial amyloidopathies. This review links structural stability of TTR with the environmental factors, particularly oxidative stress and Ca2+, and the processes involved in the pathogenesis of TTR-related diseases. The roles of TTR in biomineralization, calcification, and osteoarticular and cardiovascular diseases are broadly discussed. The association of TTR-related diseases and vascular and ligament tissue calcification with TTR levels and TTR structure is presented. It is indicated that unaggregated TTR and TTR amyloid are bound by vicious cycles, and that TTR may have an as yet undetermined role(s) at the crossroads of calcification, blood coagulation, and immune response.
Collapse
Affiliation(s)
- Elżbieta Wieczorek
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland;
| | | |
Collapse
|
12
|
Ng JS, Chin KY. Potential mechanisms linking psychological stress to bone health. Int J Med Sci 2021; 18:604-614. [PMID: 33437195 PMCID: PMC7797546 DOI: 10.7150/ijms.50680] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic psychological stress affects many body systems, including the skeleton, through various mechanisms. This review aims to provide an overview of the factors mediating the relationship between psychological stress and bone health. These factors can be divided into physiological and behavioural changes induced by psychological stress. The physiological factors involve endocrinological changes, such as increased glucocorticoids, prolactin, leptin and parathyroid hormone levels and reduced gonadal hormones. Low-grade inflammation and hyperactivation of the sympathetic nervous system during psychological stress are also physiological changes detrimental to bone health. The behavioural changes during mental stress, such as altered dietary pattern, cigarette smoking, alcoholism and physical inactivity, also threaten the skeletal system. Psychological stress may be partly responsible for epigenetic regulation of skeletal development. It may also mediate the relationship between socioeconomic status and bone health. However, more direct evidence is required to prove these hypotheses. In conclusion, chronic psychological stress should be recognised as a risk factor of osteoporosis and stress-coping methods should be incorporated as part of the comprehensive osteoporosis-preventing strategy.
Collapse
Affiliation(s)
- Jia-Sheng Ng
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| |
Collapse
|
13
|
Destabilisation of the structure of transthyretin is driven by Ca 2. Int J Biol Macromol 2020; 166:409-423. [PMID: 33129902 DOI: 10.1016/j.ijbiomac.2020.10.199] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
Tetrameric transthyretin (TTR) transports thyroid hormones and retinol in plasma and cerebrospinal fluid and performs protective functions under stress conditions. Ageing and mutations result in TTR destabilisation and the formation of the amyloid deposits that dysregulate Ca2+ homeostasis. Our aim was to determine whether Ca2+ affects the structural stability of TTR. We show, using multiple techniques, that Ca2+ does not induce prevalent TTR dissociation and/or oligomerisation. However, in the presence of Ca2+, TTR exhibits altered conformational flexibility and different interactions with the solvent molecules. These structural changes lead to the formation of the sub-populations of non-native TTR conformers and to the destabilisation of the structure of TTR. Moreover, the sub-population of TTR molecules undergoes fragmentation that is augmented by Ca2+. We postulate that Ca2+ constitutes the structural and functional switch between the native and non-native forms of TTR, and therefore tip the balance towards age-dependent pathological calcification.
Collapse
|
14
|
Shi L, Wang C, Yan Y, Wang G, Zhang J, Feng L, Yang X, Li G. Function study of vasoactive intestinal peptide on chick embryonic bone development. Neuropeptides 2020; 83:102077. [PMID: 32839008 DOI: 10.1016/j.npep.2020.102077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 01/08/2023]
Abstract
Embryonic bone development is a complicated procedure and modulated by neuro-osteogenic interaction. Vasoactive intestinal peptide (VIP) was first identified as a neural vasodilator and further proved to possess multiple biological functions such as neurotransmitter and immune regulator. However, as a key peptide regulator presented in skeletal nerve fibers, the function of VIP on innervation and early bone development regulation has not fully been uncovered yet. In this study, the chick embryo has been used as an experimental model to address the effect of VIP on embryonic bone development. Our study results confirmed the innervation of peripheral nerve fibers into limb bone tissue, which was revealed by the detection of neurofilament (NF) and class III β-tubulin (TUJ-1) in bone tissue at various developing stages. The VIP mRNA and peptide expression level in bone tissue were also increased upon innervation progress. A chick embryonic chemical sympathectomy model was constructed by exposing chick embryos with neurotoxin 6-OHDA. The 6-OHDA exposure of the early chick embryo caused the reduction of neural crest formation and NF expression. 6-OHDA treatment also inhibited distal limb bone development as well as VIP expression. Furthermore, co-application of VIP with 6-OHDA exposure could rescue the inhibited osteogenesis activity and delayed bone development during embryogenesis. Taken together, these results reveal that VIP played an important role during innervation at early stage of bone development. VIP could restore chemical sympathectomy induced osteogenesis inhibition and bone development impair in chick embryos.
Collapse
Affiliation(s)
- Liu Shi
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Trauma Center, Zhongda Hospital, School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, PR China; School of Medicine, Southeast University, No. 87 Ding Jia Qiao, Nanjing, PR China
| | - Chaojie Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Yu Yan
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Guang Wang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China
| | - Jinfang Zhang
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, PR China; Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Lu Feng
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China.
| | - Xuesong Yang
- Division of Histology and Embryology, Key Laboratory for Regenerative Medicine of the Ministry of Education, Medical College, Jinan University, Guangzhou 510632, PR China.
| | - Gang Li
- Department of Orthopaedics & Traumatology, Stem Cells and Regenerative Medicine Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, PR China; MOE Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, SAR, PR China.
| |
Collapse
|
15
|
Determination of neuropeptide Y Y1 receptor antagonist BIBP 3226 and evaluation of receptor expression based on liquid chromatography coupled with tandem mass spectrometry. Anal Bioanal Chem 2020; 412:6625-6632. [PMID: 32728863 DOI: 10.1007/s00216-020-02825-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/16/2020] [Indexed: 10/23/2022]
Abstract
Neuropeptide Y (NPY) is a peptide widely distributed throughout the body that is involved in various physiological processes, including the regulation of feeding behavior and energy homeostasis. 5-Carbamimidamido-2-(2,2-diphenylacetamido)-N-[(4-hydroxyphenyl)methyl]pentanamide (BIBP 3226) is a selective NPY Y1 receptor antagonist with recognized application in bone regeneration studies, requiring quantification at picogram levels. Hence, BIBP 3226 determination is proposed here by a validated HPLC-MS/MS method, based on a reversed-phase Kinetex® core-shell C8 column (2.6 μm, 150 × 2.1 mm) at 30 °C, elution in isocratic mode using a mixture of acetonitrile and water (30:70, v/v), containing 0.1% (v/v) formic acid, at 0.25 mL min-1, detection in positive ionization mode, and data acquisition in selected reaction monitoring mode. Calibration curves were linear for concentrations ranging from 0.25 to 30 ng mL-1 with LOD and LOQ values as low as 0.1 and 0.3 pg in cell extracts and 16 and 48 pg in supernatant culture media, respectively. BIBP 3226 was successfully determined in cell extracts and supernatants obtained from internalization assays. Using similar exposure conditions, the amount of BIBP 3226 found in breast cancer cells (MCF7) was 72 to 657 times higher than that found in bone marrow cells (Wt C57BL/6 mice), providing an indirect indicator of NPY Y1 receptor expression.
Collapse
|
16
|
Sousa DM, Martins PS, Leitão L, Alves CJ, Gomez-Lazaro M, Neto E, Conceição F, Herzog H, Lamghari M. The lack of neuropeptide Y-Y 1 receptor signaling modulates the chemical and mechanical properties of bone matrix. FASEB J 2020; 34:4163-4177. [PMID: 31960508 DOI: 10.1096/fj.201902796r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/23/2019] [Accepted: 01/05/2020] [Indexed: 01/07/2023]
Abstract
Genetic and pharmacological functional studies have provided evidence that the lack of Neuropeptide Y-Y1 receptor (Y1 R) signaling pathway induces a high bone mass phenotype in mice. However, clinical observations have shown that drug or genetic mediated improvement of bone mass might be associated to alterations to bone extracellular matrix (ECM) properties, leading to bone fragility. Hence, in this study we propose to characterize the physical, chemical and biomechanical properties of mature bone ECM of germline NPY-Y1 R knockout (Y1 R-/- ) mice, and compare to their wild-type (WT) littermates. Our results demonstrated that the high bone mass phenotype observed in Y1 R-/- mice involves alterations in Y1 R-/- bone ECM ultrastructure, as a result of accelerated deposition of organic and mineral fractions. In addition, Y1 R-/- bone ECM displays enhanced matrix maturation characterized by greater number of mature/highly packed collagen fibers without pathological accumulation of immature/mature collagen crosslinks nor compromise of mineral crystallinity. These unique features of Y1 R-/- bone ECM improved the biochemical properties of Y1 R-/- bones, reflected by mechanically robust bones with diminished propensity to fracture, contributing to greater bone strength. These findings support the future usage of drugs targeting Y1 R signaling as a promising therapeutic strategy to treat bone loss-related pathologies.
Collapse
Affiliation(s)
- Daniela M Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Pedro S Martins
- INEGI - Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
| | - Luís Leitão
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Cecília J Alves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Maria Gomez-Lazaro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Estrela Neto
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Francisco Conceição
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Herbert Herzog
- Neuroscience Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, NSW, Australia
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
17
|
Zhang Z, Wang P, Li X, Wang Y, Qin Z, Zhang C, Li J. Reconstruction of mandibular bone defects using biphasic calcium phosphate bone substitutes with simultaneous implant placement in mini‐swine: A pilot
in vivo
study. J Biomed Mater Res B Appl Biomater 2018; 107:2071-2079. [PMID: 30576059 DOI: 10.1002/jbm.b.34299] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/25/2018] [Accepted: 12/01/2018] [Indexed: 02/05/2023]
Affiliation(s)
- Zhen Zhang
- State Key Laboratory of Oral Diseases and Center of Orthognathic and TMJ SurgeryNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
- Department of Oral & Maxillofacial‐Head & Neck OncologyShanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of Stomatology Shanghai China
| | - Peng Wang
- State Key Laboratory of Oral Diseases and Center of Orthognathic and TMJ SurgeryNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Xiang Li
- State Key Laboratory of Oral Diseases and Center of Orthognathic and TMJ SurgeryNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Yu Wang
- State Key Laboratory of Oral Diseases and Center of Orthognathic and TMJ SurgeryNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Zhifan Qin
- State Key Laboratory of Oral Diseases and Center of Orthognathic and TMJ SurgeryNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
| | - Chenping Zhang
- Department of Oral & Maxillofacial‐Head & Neck OncologyShanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine Shanghai China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyNational Clinical Research Center of Stomatology Shanghai China
| | - Jihua Li
- State Key Laboratory of Oral Diseases and Center of Orthognathic and TMJ SurgeryNational Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu China
| |
Collapse
|
18
|
Zhang Z, Li Z, Zhang C, Liu J, Bai Y, Li S, Zhang C. Biomimetic intrafibrillar mineralized collagen promotes bone regeneration via activation of the Wnt signaling pathway. Int J Nanomedicine 2018; 13:7503-7516. [PMID: 30538446 PMCID: PMC6257138 DOI: 10.2147/ijn.s172164] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose The purpose of this study was to assess the effects of biomimetic intrafibrillar mineralized collagen (IMC) bone scaffold materials on bone regeneration and the underlying biological mechanisms. Materials and methods A critical-sized bone defect in the rat femur was created; then IMC, extrafibrillar mineralized collagen, and nano-hydroxyapatite bone scaffold materials were grafted into the defect. Ten weeks after implantation, micro-computed tomography and histology were applied to evaluate the bone regeneration. Furthermore, microarray technology was applied for transcriptional profile analysis at two postoperative time points (7 and 14 days). Subsequently, the critical genes involved in bone regeneration identified by transcriptional analysis were verified both in vivo through immunohistochemical analysis and in vitro by quantitative real-time transcription polymerase chain reaction evaluation. Results Significantly increased new bone formation was found in the IMC group based on micro-computed tomography and histological evaluation (P<0.05). Transcriptional analysis revealed that the early process of IMC-guided bone regeneration involves the overexpression of genes mainly associated with inflammation, immune response, skeletal development, angiogenesis, neurogenesis, and the Wnt signaling pathway. The roles of the Wnt signaling pathway-related factors Wnt5a, β-catenin, and Axin2 were further confirmed both in vivo and in vitro. Conclusion The IMC bone scaffold materials significantly enhanced bone regeneration via activation of the Wnt signaling pathway.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research, Institute of Stomatology and National Clinical Research Center of Stomatology, Shanghai, China,
| | - Zheyi Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China, .,Institute for Clinical Research and Application of Sunny Dental, Beijing, China
| | - Chengyao Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research, Institute of Stomatology and National Clinical Research Center of Stomatology, Shanghai, China,
| | - Jiannan Liu
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research, Institute of Stomatology and National Clinical Research Center of Stomatology, Shanghai, China,
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China,
| | - Song Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China,
| | - Chenping Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research, Institute of Stomatology and National Clinical Research Center of Stomatology, Shanghai, China,
| |
Collapse
|
19
|
Qiao Y, Wang Y, Zhou Y, Jiang F, Huang T, Chen L, Lan J, Yang C, Guo Y, Yan S, Wei Z, Li J. The role of nervous system in adaptive response of bone to mechanical loading. J Cell Physiol 2018; 234:7771-7780. [PMID: 30414185 DOI: 10.1002/jcp.27683] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 10/09/2018] [Indexed: 02/05/2023]
Abstract
Bone tissue is remodeled through the catabolic function of the osteoclasts and the anabolic function of the osteoblasts. The process of bone homeostasis and metabolism has been identified to be co-ordinated with several local and systemic factors, of which mechanical stimulation acts as an important regulator. Very recent studies have shown a mutual effect between bone and other organs, which means bone influences the activity of other organs and is also influenced by other organs and systems of the body, especially the nervous system. With the discovery of neuropeptide (calcitonin gene-related peptide, vasoactive intestinal peptide, substance P, and neuropeptide Y) and neurotransmitter in bone and the adrenergic receptor observed in osteoclasts and osteoblasts, the function of peripheral nervous system including sympathetic and sensor nerves in bone resorption and its reaction to on osteoclasts and osteoblasts under mechanical stimulus cannot be ignored. Taken together, bone tissue is not only the mechanical transmitter, but as well the receptor of neural system under mechanical loading. This review aims to summarize the relationship among bone, nervous system, and mechanotransduction.
Collapse
Affiliation(s)
- Yini Qiao
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Yang Wang
- Department of Oral Radiology, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Yimei Zhou
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Fulin Jiang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Tu Huang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Liujing Chen
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Jingxiang Lan
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Cai Yang
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Yutong Guo
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Shanyu Yan
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Zhangming Wei
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| | - Juan Li
- Department of Orthodontics, West China Hospital of Stomatology, West China School of Stomatology Sichuan University, State Key Laboratory of Oral Diseases, Chengdu, China
| |
Collapse
|
20
|
Wieczorek E, Chitruń A, Ożyhar A. Destabilised human transthyretin shapes the morphology of calcium carbonate crystals. Biochim Biophys Acta Gen Subj 2018; 1863:313-324. [PMID: 30394286 DOI: 10.1016/j.bbagen.2018.10.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/12/2018] [Accepted: 10/26/2018] [Indexed: 12/20/2022]
Abstract
Human transthyretin (TTR) is a homotetramer that transports thyroid hormones and retinol in the serum and cerebrospinal fluid. TTR is also an intracellular protein found in tissues such as those in the brain, eye and pancreas. TTR is a nutrition marker, reflecting the health of the organism, and TTR levels are linked to the normal and diseased states of the body. The switch from a protective to a pathological role is attributed to the destabilisation of the TTR structure, which leads to tetramer dissociation and amyloid formation. Native and destabilised TTR have been associated with osteoarthritis and bone density in humans. Moreover, TTR is present in eggshell mammillary cones; therefore, we verified the putative TTR engagement in the process of mineral formation. Using an in vitro assay, we found that TTR affected calcium carbonate crystal growth and morphology, producing asymmetric crystals with a complex nanocrystalline composition. The crystals possessed rounded edges and corners and irregular etch pits, suggesting the selective inhibition of crystal growth and/or dissolution imposed by TTR. The occurrence of many porosities, fibrillary inclusions and amorphous precipitates suggested that destabilisation of the TTR structure is an important factor involved in the mineralisation process. Crystals grown in the presence of TTR exhibited the characteristic features of crystals controlled by biomineralisation-active proteins, suggesting novel functions of TTR in the mineral formation process.
Collapse
Affiliation(s)
- Elżbieta Wieczorek
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Anna Chitruń
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
21
|
刘 松, 吴 建, 胡 稷, 王 簕, 王 钊, 孟 欢, 卓 灵, 郑 健. [Neuropeptide Y Y1 receptor antagonist PD160170 promotes osteogenic differentiation of rat bone marrow mesenchymal stem cells in vitro and femoral defect repair in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2018; 38:669-676. [PMID: 29997088 PMCID: PMC6765719 DOI: 10.3969/j.issn.1673-4254.2018.06.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVE To investigate the effects of neuropeptide Y (NPY) Y1 receptor antagonist PD160170 in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and accelerating healing of femoral defect in rats. METHODS The third generation of rat BMSCs were treated with PBS (control) or 10-6, 10-7, or 10-8 mol/L NPY Y1 receptor antagonist PD160170. After 7 and 14 days of treatment, the cells were examined for osteogenic differentiation with alkaline phosphatase (ALP) and alizarin red staining. At 7 and 21 days of treatment, the mRNA and protein expressions of collagen type I (COLI), osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) in the cells were detected using q-PCR and Westem Blotting. In a male SD rat model (body weight 300∓20 g) of bilateral femoral condyle defects (2.5 mm in diameter), the effect of daily local injection of 0.2 mL PD160170 (10-6 and 10-8 mol/L, for 28 consecutive days) in promoting bone defect repair was evaluated with micro-CT scans. RESULTS ALP and alizarin red staining showed that the BMSCs treated with PD160170, at the optimal concentration of 10-8 mol/L, contained more intracellular cytoplasmic brown particles and mineralized nodules in extracellular matrix than PBS-treated cells. PD160170 (10-8 mol/L) significantly up-regulated the mRNA and protein expressions of COLI at day 7 and those of OCN and Runx2 at day 21 (P<0.05). In the rat models of femoral bone defect, the volume/tissue volume ratio, bone mineral density and the number of bone trabeculae were significantly greater in 10-6 mol/L PD160170 group than in the control group (P<0.05), but the bone trabecular thickness (P=0.07) and bone volume (P=0.35) were similar between the two groups. CONCLUSION NPY Y1 receptor antagonist PD160170 can promote osteogenic differentiation of BMSCs and healing of femoral defects in rats, suggesting the potential of therapeutic strategies targeting NPY Y1 receptor signaling in the prevention and treatment of bone fracture and osteoporosis.
Collapse
Affiliation(s)
- 松 刘
- 广州医科大学附属第三医院骨科二区,广东 广州 510150Department of Orthopedics, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - 建群 吴
- 广州市花都区人民医院骨科,广东 广州 510800Department of Orthopedics, Huadu District People's Hospital, Guangzhou 510800, China
- 南方医院医科大学南方医院创伤骨科,广东 广州 510515Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 稷杰 胡
- 南方医院医科大学南方医院创伤骨科,广东 广州 510515Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 簕 王
- 广州医科大学附属第三医院骨科二区,广东 广州 510150Department of Orthopedics, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - 钊 王
- 广州医科大学附属第三医院骨科二区,广东 广州 510150Department of Orthopedics, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - 欢 孟
- 南方医院医科大学南方医院创伤骨科,广东 广州 510515Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 灵剑 卓
- 南方医院医科大学南方医院创伤骨科,广东 广州 510515Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 健雄 郑
- 南方医院医科大学南方医院创伤骨科,广东 广州 510515Department of Orthopedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
22
|
Liu X, Liu H, Xiong Y, Yang L, Wang C, Zhang R, Zhu X. Postmenopausal osteoporosis is associated with the regulation of SP, CGRP, VIP, and NPY. Biomed Pharmacother 2018; 104:742-750. [PMID: 29807224 DOI: 10.1016/j.biopha.2018.04.044] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 12/13/2022] Open
Abstract
Estrogen deficiency is the main factor underlying postmenopausal osteoporosis. A large number of neuropeptides, which regulate skeletal metabolism, potentially represent a regulatory pathway for the pathogenesis of osteoporosis. The aim of this study was to explore factors involved in the regulation of bone-related neuropeptides and their association with estrogen deficiency and bone metabolism. Thirty adult female Sprague-Dawley (SD) rats were randomly divided into a control group with sham surgery (n = 15) and an ovariectomy group with bilateral oophorectomy (n = 15). After 16 weeks, serum estrogen was reduced,CTX-1 was increased and P1NP was not significantly affected in the ovariectomy group and a model of osteoporosis was established. We then investigate the gene expression and protein levels of a range of neuropeptides and their receptors, including substance P (SP) and tachykinin receptor 1 (TACR1), calcitonin gene-related peptide (CGRP) and calcitonin receptor-like (CALCRL), vasoactive intestinal polypeptide (VIP) and receptor 1 and 2 (VPAC1, 2), neuropeptide Y (NPY) and receptor Y1 and Y2, in the brain and femora. Ovariectomy reduced TACR1, CGRP, CALCRL, NPY, NPY Y2 in the brain, but increased TACR1 and decreased SP, CALCRL, VIP, VPAC2 in the bone. Collectively, our data revealed that the pathogenesis of postmenopausal osteoporosis is associated with the regulation of SP, CGRP, VIP, and NPY. These novel results are of significant importance in the development of neuropeptides as therapeutic targets.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Jinan University College of Traditional Chinese Medicine, Guangzhou 510632, PR China
| | - Hengrui Liu
- Jinan University College of Pharmacy, Guangzhou 510632, PR China
| | - Yingquan Xiong
- Jinan University College of Pharmacy, Guangzhou 510632, PR China
| | - Li Yang
- Jinan University College of Pharmacy, Guangzhou 510632, PR China
| | - Chaopeng Wang
- Jinan University College of Pharmacy, Guangzhou 510632, PR China
| | - Ronghua Zhang
- Jinan University College of Pharmacy, Guangzhou 510632, PR China.
| | - Xiaofeng Zhu
- First Affiliated Hospital of Jinan University, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
23
|
Childress P, Brinker A, Gong CMS, Harris J, Olivos DJ, Rytlewski JD, Scofield DC, Choi SY, Shirazi-Fard Y, McKinley TO, Chu TMG, Conley CL, Chakraborty N, Hammamieh R, Kacena MA. Forces associated with launch into space do not impact bone fracture healing. LIFE SCIENCES IN SPACE RESEARCH 2018; 16:52-62. [PMID: 29475520 PMCID: PMC5828031 DOI: 10.1016/j.lssr.2017.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 06/08/2023]
Abstract
Segmental bone defects (SBDs) secondary to trauma invariably result in a prolonged recovery with an extended period of limited weight bearing on the affected limb. Soldiers sustaining blast injuries and civilians sustaining high energy trauma typify such a clinical scenario. These patients frequently sustain composite injuries with SBDs in concert with extensive soft tissue damage. For soft tissue injury resolution and skeletal reconstruction a patient may experience limited weight bearing for upwards of 6 months. Many small animal investigations have evaluated interventions for SBDs. While providing foundational information regarding the treatment of bone defects, these models do not simulate limited weight bearing conditions after injury. For example, mice ambulate immediately following anesthetic recovery, and in most cases are normally ambulating within 1-3 days post-surgery. Thus, investigations that combine disuse with bone healing may better test novel bone healing strategies. To remove weight bearing, we have designed a SBD rodent healing study in microgravity (µG) on the International Space Station (ISS) for the Rodent Research-4 (RR-4) Mission, which launched February 19, 2017 on SpaceX CRS-10 (Commercial Resupply Services). In preparation for this mission, we conducted an end-to-end mission simulation consisting of surgical infliction of SBD followed by launch simulation and hindlimb unloading (HLU) studies. In brief, a 2 mm defect was created in the femur of 10 week-old C57BL6/J male mice (n = 9-10/group). Three days after surgery, 6 groups of mice were treated as follows: 1) Vivarium Control (maintained continuously in standard cages); 2) Launch Negative Control (placed in the same spaceflight-like hardware as the Launch Positive Control group but were not subjected to launch simulation conditions); 3) Launch Positive Control (placed in spaceflight-like hardware and also subjected to vibration followed by centrifugation); 4) Launch Positive Experimental (identical to Launch Positive Control group, but placed in qualified spaceflight hardware); 5) Hindlimb Unloaded (HLU, were subjected to HLU immediately after launch simulation tests to simulate unloading in spaceflight); and 6) HLU Control (single housed in identical HLU cages but not suspended). Mice were euthanized 28 days after launch simulation and bone healing was examined via micro-Computed Tomography (µCT). These studies demonstrated that the mice post-surgery can tolerate launch conditions. Additionally, forces and vibrations associated with launch did not impact bone healing (p = .3). However, HLU resulted in a 52.5% reduction in total callus volume compared to HLU Controls (p = .0003). Taken together, these findings suggest that mice having a femoral SBD surgery tolerated the vibration and hypergravity associated with launch, and that launch simulation itself did not impact bone healing, but that the prolonged lack of weight bearing associated with HLU did impair bone healing. Based on these findings, we proceeded with testing the efficacy of FDA approved and novel SBD therapies using the unique spaceflight environment as a novel unloading model on SpaceX CRS-10.
Collapse
Affiliation(s)
- Paul Childress
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - Alexander Brinker
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - Cynthia-May S Gong
- KBR Wyle Laboratory and Division of Space Biology, NASA Ames Research Center, Moffett Field, CA, United States
| | - Jonathan Harris
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - David J Olivos
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - Jeffrey D Rytlewski
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - David C Scofield
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - Sungshin Y Choi
- KBR Wyle Laboratory and Division of Space Biology, NASA Ames Research Center, Moffett Field, CA, United States
| | - Yasaman Shirazi-Fard
- KBR Wyle Laboratory and Division of Space Biology, NASA Ames Research Center, Moffett Field, CA, United States
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States
| | - Tien-Min G Chu
- Department of Biomedical and Applied Sciences, Indiana University School of Dentistry, Indianapolis, IN, United States
| | - Carolynn L Conley
- Department of Defense Space Test Program, Houston, TX, United States
| | - Nabarun Chakraborty
- Geneva Foundation, Fredrick, MD, United States; US Army Center for Environmental Health Research, Fredrick, MD, United States
| | - Rasha Hammamieh
- US Army Center for Environmental Health Research, Fredrick, MD, United States
| | - Melissa A Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, 1130 W. Michigan St, FH 115, Indianapolis, IN, United States.
| |
Collapse
|
24
|
Li Z, Pan J, Ma J, Zhang Z, Bai Y. Microarray gene expression of periosteum in spontaneous bone regeneration of mandibular segmental defects. Sci Rep 2017; 7:13535. [PMID: 29051537 PMCID: PMC5648814 DOI: 10.1038/s41598-017-13586-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Spontaneous bone regeneration could occur to reestablish mandibular bony continuity in patients who underwent partial or total mandibulectomy for tumors with periosteum-preserving. However, scarce data is available related to the precise role of periosteum in this bone regeneration. Therefore we aimed to investigate the gene expression of periosteum that were involved in the mandibular bone regeneration. Mandibular segmental defects were created in six mini-pigs with periosteum preserved. The periosteum of defects and control site were harvested at 1 and 2 weeks. Gene ontology (GO) analysis showed that the mechanisms concerning immature wound healing were clearly up-regulated at week 1. In contrast, by week-2, the GO categories of skeletal development, ossification and bone mineralization were significantly over-represented at week-2 with several genes encoding cell differentiation, extracellular matrix formation, and anatomical structure development. Furthermore, Tgfβ/Bmp, Wnt and Notch signaling were all related to the osteogenic process in this study. Besides osteogenesis, genes related to angiogenesis and neurogenesis were also prominent at week-2. These findings revealed that the gene expression profile of the periosteum’s cells participating in bone regeneration varied in different time points, and numbers of candidate genes that differentially expressed during early healing stages of intramembranous bone regeneration were suggested.
Collapse
Affiliation(s)
- Zheyi Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Juli Pan
- School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Jinling Ma
- School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhen Zhang
- Department of Oral & Maxillofacial-Head & Neck Oncology, Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Compartmentalized Microfluidic Platforms: The Unrivaled Breakthrough of In Vitro Tools for Neurobiological Research. J Neurosci 2017; 36:11573-11584. [PMID: 27852766 DOI: 10.1523/jneurosci.1748-16.2016] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/08/2016] [Accepted: 09/28/2016] [Indexed: 12/15/2022] Open
Abstract
Microfluidic technology has become a valuable tool to the scientific community, allowing researchers to study fine cellular mechanisms with higher variable control compared with conventional systems. It has evolved tremendously, and its applicability and flexibility made its usage grow exponentially and transversely to several research fields. This has been particularly noticeable in neuroscience research, where microfluidic platforms made it possible to address specific questions extending from axonal guidance, synapse formation, or axonal transport to the development of 3D models of the CNS to allow pharmacological testing and drug screening. Furthermore, the continuous upgrade of microfluidic platforms has allowed a deeper study of the communication occurring between different neuronal and glial cells or between neurons and other peripheral tissues, both in physiological and pathological conditions. Importantly, the evolution of microfluidic technology has always been accompanied by the development of new computational tools addressing data acquisition, analysis, and modeling.
Collapse
|
26
|
Salvi GE, Bosshardt DD, Lang NP, Abrahamsson I, Berglundh T, Lindhe J, Ivanovski S, Donos N. Temporal sequence of hard and soft tissue healing around titanium dental implants. Periodontol 2000 2017; 68:135-52. [PMID: 25867984 DOI: 10.1111/prd.12054] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2013] [Indexed: 12/22/2022]
Abstract
The objective of the present review was to summarize the evidence available on the temporal sequence of hard and soft tissue healing around titanium dental implants in animal models and in humans. A search was undertaken to find animal and human studies reporting on the temporal dynamics of hard and soft tissue integration of titanium dental implants. Moreover, the influence of implant surface roughness and chemistry on the molecular mechanisms associated with osseointegration was also investigated. The findings indicated that the integration of titanium dental implants into hard and soft tissue represents the result of a complex cascade of biological events initiated by the surgical intervention. Implant placement into alveolar bone induces a cascade of healing events starting with clot formation and continuing with the maturation of bone in contact with the implant surface. From a genetic point of view, osseointegration is associated with a decrease in inflammation and an increase in osteogenesis-, angiogenesis- and neurogenesis-associated gene expression during the early stages of wound healing. The attachment and maturation of the soft tissue complex (i.e. epithelium and connective tissue) to implants becomes established 6-8 weeks following surgery. Based on the findings of the present review it can be concluded that improved understanding of the mechanisms associated with osseointegration will provide leads and targets for strategies aimed at enhancing the clinical performance of titanium dental implants.
Collapse
|
27
|
Gu XC, Zhang XB, Hu B, Zi Y, Li M. Neuropeptide Y accelerates post-fracture bone healing by promoting osteogenesis of mesenchymal stem cells. Neuropeptides 2016; 60:61-66. [PMID: 27720230 DOI: 10.1016/j.npep.2016.09.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 09/09/2016] [Accepted: 09/11/2016] [Indexed: 01/27/2023]
Abstract
Fracture repair is a complex yet well orchestrated regenerative process involving numerous signaling and cell types including osteoblasts. Here we showed that NPY, a neurotransmitter with regulatory functions in bone homeostasis, may contribute to the post-fracture bone healing in patients with traumatic brain injury-fracture combined injuries. Our results suggested NPY levels were increased in patients with the combined injuries, accomplished by arising of bone healing markers, such as ALP, OC, PICP and ICTP, than in those with simple fractures, and NPY have direct actions on MSCs to promote their osteogenic differentiation. Our results provided clinical evidences for NPY participating in the bone healing process in a nonhypothalamic manner, most probably by directly promoting osteogenesis of mesenchymal stem cells.
Collapse
Affiliation(s)
- Xiao-Chuan Gu
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Bin Zhang
- Department of Emergency Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Bing Hu
- Department of Medical Oncology, Shanghai Minhang District Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zi
- Department of Emergency, 463rd Hospital of PLA, Shenyang 110042, China.
| | - Ming Li
- Department of Orthopedics, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
28
|
Xiao J, Yu W, Wang X, Wang B, Chen J, Liu Y, Li Z. Correlation between neuropeptide distribution, cancellous bone microstructure and joint pain in postmenopausal women with osteoarthritis and osteoporosis. Neuropeptides 2016; 56:97-104. [PMID: 26706183 DOI: 10.1016/j.npep.2015.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/11/2015] [Accepted: 12/07/2015] [Indexed: 12/29/2022]
Abstract
OBJECTIVES To explore the relationship between the distribution of neuropeptides, cancellous bone microstructure and joint pain in postmenopausal women with osteoarthritis (OA) and osteoporosis (OP). METHODS Cancellous bone of the femoral head was obtained at the time of hip arthroplasty from 20 postmenopausal women, 10 with OA and 10 with OP. Pain intensity was evaluated using the visual analog scale (VAS) before the operation. The microstructural parameters were measured with micro-CT and the neuropeptides of the cancellous bone were stained by an immunohistochemical method. RESULTS We observed that BV/TV, Tb.Th and Th.N values in the OP were significantly decreased compared to those in the OA. Immunohistochemical analysis revealed that the mean optical density (MOD) values for SP, CGRP, and VIP in the OA group were significantly higher than those in the OP, and the MOD value for NPY in the OA was significantly lower than that in the OP. We also observed that the MOD values for SP were positively correlated with AD, BV/TV, Tb.Th, Tb.N and Conn.D and negatively with MD, Tb.Sp and SMI in all patients. The MOD values for CGRP were positively correlated with AD, BV/TV and Tb.Th. MOD values for VIP were positively correlated with BV/TV and Tb.Th and negatively with SMI. The VAS score was correlated positively with the MOD values for SP, CGRP, VIP and negatively with NPY in all patients. CONCLUSIONS Neuropeptides play an important role in the pathogenesis of OA and OP, which may cause pain and influence the bone microstructure.
Collapse
Affiliation(s)
- Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xiangrui Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Bo Wang
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Jianwei Chen
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Yue Liu
- Department of Human Anatomy, Histology and Embryology, Shanghai Key Laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Zhanchun Li
- Department of Orthopaedic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China.
| |
Collapse
|
29
|
Liu S, Jin D, Wu JQ, Xu ZY, Fu S, Mei G, Zou ZL, Ma SH. Neuropeptide Y stimulates osteoblastic differentiation and VEGF expression of bone marrow mesenchymal stem cells related to canonical Wnt signaling activating in vitro. Neuropeptides 2016; 56:105-13. [PMID: 26707636 DOI: 10.1016/j.npep.2015.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/26/2022]
Abstract
Neuropeptide Y (NPY) is a neuropeptide secreted by sensory nerve fibers distributed in the marrow and vascular canals of bone tissue. However, the effect of NPY on the osteogenic ability of bone marrow mesenchymal stem cells (BMSCs) remains controversial and has not been thoroughly investigated. To explore the osteogenic activity and the migration and VEGF expression capabilities of BMSCs affected by NPY, as well as the underlying mechanisms, we investigated the potential relationships among NPY, osteoblastic differentiation, angiogenesis and canonical Wnt signaling in BMSCs. NPY was observed to regulate osteoblastic differentiation at concentrations ranging from 10(-8) to 10(-12)mol/L, and the effects of NPY on the levels of Wnt signaling proteins were detected using Western blotting. To unravel the underlying mechanism, BMSCs were treated with NPY after pretreatment with the NPY-1R antagonist PD160170 or the Wnt pathway antagonist DKK1, and gene expression levels of Wnt signaling molecules and osteoblastic markers were determined by qPCR. Our results indicated that NPY significantly promoted osteoblastic differentiation of BMSCs in a concentration-dependent manner and up-regulated the expression levels of proteins including β-catenin and p-GSK-3β and the mRNA level of β-catenin. Moreover, NPY promoted the translocation of β-catenin into nucleus. The effects of NPY were inhibited by PD160170 or DKK1. Additionally, NPY enhanced the ability of BMSCs to migrate and promoted the expression of vascular endothelial growth factor (VEGF) as measured by immunocytochemical staining, qPCR and Western blot. These results suggested that NPY may stimulate osteoblastic differentiation via activating canonical Wnt signaling and enhance the angiogenic capacity of BMSCs.
Collapse
Affiliation(s)
- Song Liu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China
| | - Dan Jin
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China.
| | - Jian-qun Wu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China
| | - Zi-yi Xu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China
| | - Su Fu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China
| | - Gang Mei
- Department of Orthopaedics, Xiangyang Central Hospital, Xiangyang City, Hubei Province 441021, People's Republic of China
| | - Zhen-Lv Zou
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China
| | - Sheng-hui Ma
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou City, Guangdong Province 510515, People's Republic of China
| |
Collapse
|
30
|
Geloso MC, Corvino V, Di Maria V, Marchese E, Michetti F. Cellular targets for neuropeptide Y-mediated control of adult neurogenesis. Front Cell Neurosci 2015; 9:85. [PMID: 25852477 PMCID: PMC4360818 DOI: 10.3389/fncel.2015.00085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
Neuropeptides are emerging as key regulators of stem cell niche activities in health and disease, both inside and outside the central nervous system (CNS). Among them, neuropeptide Y (NPY), one of the most abundant neuropeptides both in the nervous system and in non-neural districts, has become the focus of much attention for its involvement in a wide range of physiological and pathological conditions, including the modulation of different stem cell activities. In particular, a pro-neurogenic role of NPY has been evidenced in the neurogenic niche, where a direct effect on neural progenitors has been demonstrated, while different cellular types, including astrocytes, microglia and endothelial cells, also appear to be responsive to the peptide. The marked modulation of the NPY system during several pathological conditions that affect neurogenesis, including stress, seizures and neurodegeneration, further highlights the relevance of this peptide in the regulation of adult neurogenesis. In view of the considerable interest in understanding the mechanisms controlling neural cell fate, this review aims to summarize and discuss current data on NPY signaling in the different cellular components of the neurogenic niche in order to elucidate the complexity of the mechanisms underlying the modulatory properties of this peptide.
Collapse
Affiliation(s)
- Maria Concetta Geloso
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Corvino
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Valentina Di Maria
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Elisa Marchese
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| | - Fabrizio Michetti
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore Rome, Italy
| |
Collapse
|
31
|
Machida Y, Bruinsma C, Hallinger DR, Roper SM, Garcia E, Trevino MB, Nadler J, Ahima R, Imai Y. Pancreatic islet neuropeptide Y overexpression has minimal effect on islet morphology and β-cell adaptation to high-fat diet. Endocrinology 2014; 155:4634-40. [PMID: 25285650 PMCID: PMC4239427 DOI: 10.1210/en.2014-1537] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY) is highly expressed in the hypothalamus, where it regulates feeding and energy homeostasis. Interestingly, NPY and its receptors are also expressed in peripheral tissues with roles in metabolism, including pancreatic islets. In islets, NPY is known to suppress insulin secretion acutely. In addition, the role of NPY in β-cell de-differentiation has been postulated recently. Therefore, we studied transgenic mice expressing NPY under rat insulin promoter (TG) to determine the effects of chronic up-regulation of NPY on islet morphology and function. NPY levels were 25 times higher in islets of TG mice compared with wild-type (WT) littermates, whereas no differences in NPY expression were noted in the brains of TG and WT mice. Islet NPY secretion was 2.3-fold higher in TG compared with WT mice. There were no significant changes in body weight, glucose tolerance, or insulin sensitivity in TG mice fed regular rodent diet or high-fat diet (HF). Islet β-cell area was comparable between TG and WT mice both on regular rodent and HF diets, indicating that NPY overexpression is insufficient to alter β-cell maturation or the compensatory increase of β-cell area on HF. One abnormality noted was that the glucose-stimulated insulin secretion in islets isolated from TG was reduced compared with those from WT mice on HF diet. Overall, an increase in islet NPY level has little impact on islet function and is insufficient to affect glucose homeostasis in mice.
Collapse
Affiliation(s)
- Yui Machida
- Department of Internal Medicine (Y.M., C.B., D.R.H., S.M.R., E.G., M.B.T., J.N., Y.I.), Strelitz Diabetes Center, Eastern Virginia Medical School, Norfolk, Virginia 23507; and Department of Medicine (R.A.), Division of Endocrinology, Diabetes, and Metabolism, and the Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Anderson D, Holt BJ, Pennell CE, Holt PG, Hart PH, Blackwell JM. Genome-wide association study of vitamin D levels in children: replication in the Western Australian Pregnancy Cohort (Raine) study. Genes Immun 2014; 15:578-83. [PMID: 25208829 DOI: 10.1038/gene.2014.52] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/15/2014] [Accepted: 07/17/2014] [Indexed: 01/08/2023]
Abstract
This genome-wide association study (GWAS) utilises data from the Western Australian Pregnancy Cohort (Raine) Study for 25-hydroxyvitamin D (25(OH)D) levels measured in blood collected at age 6 years (n=673) and at age 14 years (n=1140). Replication of significantly associated genes from previous GWASs was found for both ages. Genome-wide significant associations were found both at age 6 and 14 with single nucleotide polymorphisms (SNPs) on chromosome 11p15 in PDE3B/CYP2R1 (age 6: rs1007392, P=3.9 × 10(-8); age14: rs11023332, P=2.2 × 10(-10)) and on chromosome 4q13 in GC (age 6: rs17467825, P=4.2 × 10(-9); age14: rs1155563; P=3.9 × 10(-9)). In addition, a novel association was observed at age 6 with SNPs on chromosome 7p15 near NPY (age 6: rs156299, P=1.3 × 10(-6)) that could be of functional interest in highlighting alternative pathways for vitamin D metabolism in this age group and merits further analysis in other cohort studies.
Collapse
Affiliation(s)
- D Anderson
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| | - B J Holt
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| | - C E Pennell
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia, Australia
| | - P G Holt
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| | - P H Hart
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| | - J M Blackwell
- Telethon Kids Institute, The University of Western Australia, Subiaco, Western Australia, Australia
| |
Collapse
|
33
|
Zofková I, Matucha P. New insights into the physiology of bone regulation: the role of neurohormones. Physiol Res 2014; 63:421-7. [PMID: 24702491 DOI: 10.33549/physiolres.932668] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bone metabolism is regulated by interaction between two skeletal cells - osteoclasts and osteoblasts. Function of these cells is controlled by a number of humoral factors, including neurohormones, which ensure equilibrium between bone resorption and bone formation. Influence of neurohormones on bone metabolism is often bimodal and depends on the tissue, in which the hormone is expressed. While hypothalamic beta-1 and beta-2-adrenergic systems stimulate bone formation, beta-2 receptors in bone tissue activate osteoclatogenesis and increases bone resorption. Chronic stimulation of peripheral beta-2 receptors is known to quicken bone loss and alter the mechanical quality of the skeleton. This is supported by the observation of a low incidence of hip fractures in patients treated with betablockers. A bimodal osteo-tropic effect has also been observed with serotonin. While serotonin synthetized in brain has osteo-anabolic effects, serotonin released from the duodenum inhibits osteoblast activity and decreases bone formation. On the other hand, both cannabinoid systems (CB1 receptors in the brain and CB2 in bone tissue) are unambiguously osteo-protective, especially with regard to the aging skeleton. Positive (protective) effects on bone have also been shown by some hypophyseal hormones, such as thyrotropin (which inhibits bone resorption) and adrenocorticotropic hormone and oxytocin, both of which stimulate bone formation. Low oxytocin levels have been shown to potentiate bone loss induced by hypoestrinism in postmenopausal women, as well as in girls with mental anorexia. In addition to reviewing neurohormones with anabolic effects, this article also reviews neurohormones with unambiguously catabolic effects on the skeleton, such as neuropeptide Y and neuromedin U. An important aim of research in this field is the synthesis of new molecules that can stimulate osteo-anabolic or inhibiting osteo-catabolic processes.
Collapse
Affiliation(s)
- I Zofková
- Institute of Endocrinology, Prague, Czech Republic. ;
| | | |
Collapse
|
34
|
Neto E, Alves CJ, Sousa DM, Alencastre IS, Lourenço AH, Leitão L, Ryu HR, Jeon NL, Fernandes R, Aguiar P, Almeida RD, Lamghari M. Sensory neurons and osteoblasts: close partners in a microfluidic platform. Integr Biol (Camb) 2014; 6:586-95. [DOI: 10.1039/c4ib00035h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We presented a microfluidic-based coculture system as a new tool to be explored for modeling biological processes and pharmacological screening concerning peripheral tissues innervation.
Collapse
Affiliation(s)
- Estrela Neto
- INEB – Instituto de Engenharia Biomédica
- 823 4150-180 Porto, Portugal
- FMUP – Faculdade de Medicina da Universidade do Porto
- Porto, Portugal
| | - Cecília J. Alves
- INEB – Instituto de Engenharia Biomédica
- 823 4150-180 Porto, Portugal
| | - Daniela M. Sousa
- INEB – Instituto de Engenharia Biomédica
- 823 4150-180 Porto, Portugal
| | | | - Ana H. Lourenço
- INEB – Instituto de Engenharia Biomédica
- 823 4150-180 Porto, Portugal
| | - Luís Leitão
- IBMC – Instituto de Biologia Molecular e Celular
- Universidade do Porto
- Porto, Portugal
| | - Hyun R. Ryu
- WCU Multiscale Mechanical Design
- Seoul National University
- Seoul, Korea
| | - Noo L. Jeon
- WCU Multiscale Mechanical Design
- Seoul National University
- Seoul, Korea
- School of Mechanical and Aerospace Engineering
- Seoul National University
| | - Rui Fernandes
- IBMC – Instituto de Biologia Molecular e Celular
- Universidade do Porto
- Porto, Portugal
| | - Paulo Aguiar
- Centro de Matemática da Universidade do Porto
- Porto, Portugal
| | - Ramiro D. Almeida
- CNC – Center for Neuroscience and Cell Biology
- Department of Life Sciences
- University of Coimbra
- Coimbra, Portugal
| | - Meriem Lamghari
- INEB – Instituto de Engenharia Biomédica
- 823 4150-180 Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar
- Universidade do Porto
- Porto, Portugal
| |
Collapse
|
35
|
Ma Y, Krueger JJ, Redmon SN, Uppuganti S, Nyman JS, Hahn MK, Elefteriou F. Extracellular norepinephrine clearance by the norepinephrine transporter is required for skeletal homeostasis. J Biol Chem 2013; 288:30105-30113. [PMID: 24005671 DOI: 10.1074/jbc.m113.481309] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in bone remodeling induced by pharmacological and genetic manipulation of β-adrenergic receptor (βAR) signaling in osteoblasts support a role of sympathetic nerves in the regulation of bone remodeling. However, the contribution of endogenous sympathetic outflow and nerve-derived norepinephrine (NE) to bone remodeling under pathophysiological conditions remains unclear. We show here that differentiated osteoblasts, like neurons, express the norepinephrine transporter (NET), exhibit specific NE uptake activity via NET and can catabolize, but not generate, NE. Pharmacological blockade of NE transport by reboxetine induced bone loss in WT mice. Similarly, lack of NE reuptake in norepinephrine transporter (Net)-deficient mice led to reduced bone formation and increased bone resorption, resulting in suboptimal peak bone mass and mechanical properties associated with low sympathetic outflow and high plasma NE levels. Last, daily sympathetic activation induced by mild chronic stress was unable to induce bone loss, unless NET activity was blocked. These findings indicate that the control of endogenous NE release and reuptake by presynaptic neurons and osteoblasts is an important component of the complex homeostatic machinery by which the sympathetic nervous system controls bone remodeling. These findings also suggest that drugs antagonizing NET activity, used for the treatment of hyperactivity disorders, may have deleterious effects on bone accrual.
Collapse
Affiliation(s)
- Yun Ma
- From the Department of Medicine, Division of Clinical Pharmacology,; Vanderbilt Center for Bone Biology
| | | | - Sara N Redmon
- Department of Medicine, Division of Genetic Medicine
| | - Sasidhar Uppuganti
- Vanderbilt Center for Bone Biology,; the Department of Orthopaedic, Surgery and Rehabilitation
| | - Jeffry S Nyman
- Vanderbilt Center for Bone Biology,; the Department of Orthopaedic, Surgery and Rehabilitation,; Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, Tennessee 37232
| | - Maureen K Hahn
- Department of Medicine, Division of Genetic Medicine,; Department of Pharmacology,; Vanderbilt Kennedy Center for Research on Human Development, and
| | - Florent Elefteriou
- From the Department of Medicine, Division of Clinical Pharmacology,; Vanderbilt Center for Bone Biology,; Department of Pharmacology,; Department of Cancer Biology,.
| |
Collapse
|
36
|
Long H, Zheng L, Gomes FC, Zhang J, Mou X, Yuan H. Study on osteogenesis promoted by low sound pressure level infrasound in vivo and some underlying mechanisms. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:437-442. [PMID: 23770453 DOI: 10.1016/j.etap.2013.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/15/2013] [Accepted: 04/24/2013] [Indexed: 06/02/2023]
Abstract
To clarify the effects of low sound pressure level (LSPL) infrasound on local bone turnover and explore its underlying mechanisms, femoral defected rats were stabilized with a single-side external fixator. After exposure to LSPL infrasound for 30min twice everyday for 6 weeks, the pertinent features of bone healing were assessed by radiography, peripheral quantitative computerized tomography (pQCT), histology and immunofluorescence assay. Infrasound group showed a more consecutive and smoother process of fracture healing and modeling in radiographs and histomorphology. It also showed significantly higher average bone mineral content (BMC) and bone mineral density (BMD). Immunofluorescence showed increased expression of calcitonin gene related peptide (CGRP) and decreased Neuropeptide Y (NPY) innervation in microenvironment. The results suggested the osteogenesis promotion effects of LSPL infrasound in vivo. Neuro-osteogenic network in local microenvironment was probably one target mediating infrasonic osteogenesis, which might provide new strategy to accelerate bone healing and remodeling.
Collapse
Affiliation(s)
- Hua Long
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, PR China.
| | - Liheng Zheng
- Department of Orthotraumatology, Centro Hospitalar Conde de Sao Januario, Macau.
| | | | - Jinhui Zhang
- Department of Orthotraumatology, Centro Hospitalar Conde de Sao Januario, Macau.
| | - Xiang Mou
- Department of Physiotherapy and Rehabilitation, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| | - Hua Yuan
- Department of Physiotherapy and Rehabilitation, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, PR China.
| |
Collapse
|
37
|
Andriankaja OM, Galicia J, Dong G, Xiao W, Alawi F, Graves DT. Gene expression dynamics during diabetic periodontitis. J Dent Res 2012; 91:1160-5. [PMID: 23103632 DOI: 10.1177/0022034512465292] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Diabetes impairs the resolution of periodontal inflammation. We explored pathways altered by inflammation in the diabetic periodontium by using ligatures to induce periodontitis in type-2 diabetic Goto-Kakizaki rats. Ligatures were removed after 7 days, and rats were then treated with TNF inhibitor (pegsunercept) or vehicle alone and euthanized 4 days later. RNA was extracted from periodontal tissue, examined by mRNA profiling, and further analyzed by functional criteria. We found that 1,754 genes were significantly up-regulated and 1,243 were down-regulated by pegsunercept (p < 0.05). Functional analysis revealed up-regulation of neuron-associated and retina-associated gene clusters as well as those related to cell activity and signaling. Others were down-regulated by TNF inhibition and included genes associated with host defense, apoptosis, cell signaling and activity, and coagulation/hemostasis/complement. For selected genes, findings with microarray and rt-PCR agreed. PPAR-α was investigated further by immunohistochemistry due to its anti-inflammatory function and was found to be up-regulated in the gingiva during the resolution of periodontal inflammation and suppressed by diabetes. The results indicate that diabetes-enhanced inflammation both up- and down-regulates genes involved in cellular activity and cell signaling, while it predominantly up-regulates genes involved in the host response, apoptosis, and coagulation/homeostasis/complement and down-regulates mRNA levels of neuron, retina, and energy/metabolism-associated genes.
Collapse
Affiliation(s)
- O M Andriankaja
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
38
|
The neuro-osteogenic network: The sympathetic regulation of bone resorption. JAPANESE DENTAL SCIENCE REVIEW 2012. [DOI: 10.1016/j.jdsr.2011.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
39
|
Seale SM, Feng Q, Agarwal AK, El-Alfy AT. Neurobehavioral and transcriptional effects of acrylamide in juvenile rats. Pharmacol Biochem Behav 2011; 101:77-84. [PMID: 22197712 DOI: 10.1016/j.pbb.2011.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 11/30/2011] [Accepted: 12/10/2011] [Indexed: 01/10/2023]
Abstract
Acrylamide is a type-2 alkene monomer with established human neurotoxic effects. While the primary source of human exposure to acrylamide is occupational, other exposure sources include food, drinking water, and smoking. In this study, neurobehavioral assays coupled with transcriptional profiling analysis were conducted to assess both behavioral and gene expression effects induced by acrylamide neurotoxicity in juvenile rats. Acrylamide administration in rat pups induced significant characteristic neurotoxic symptoms including increased heel splay, decrease in grip strength, and decrease in locomotor activity. Transcriptome analysis with the Affymetrix Rat Genome 230 2.0 array indicated that acrylamide treatment caused a significant alteration in the expression of a few genes that are involved in muscle contraction, pain, and dopaminergic neuronal pathways. First, expression of the Mylpf gene involved in muscle contraction was downregulated in the spinal cord in response to acrylamide. Second, in sciatic nerves, acrylamide repressed the expression of the opioid receptor gene Oprk1 that is known to play a role in neuropathic pain regulation. Finally, in the cerebellum, acrylamide treatment caused a decrease in the expression of the nuclear receptor gene Nr4a2 that is required for development of dopaminergic neurons. Thus, our work examining the effect of acrylamide at the whole-genome level on a developmental mammalian model has identified a few genes previously not implicated in acrylamide neurotoxicity that might be further developed into biomarkers for assessing the risk of adverse health effects induced by acrylamide exposure.
Collapse
Affiliation(s)
- Suzanne M Seale
- Environmental Toxicology Research Program, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | | | | | | |
Collapse
|
40
|
Cenni E, Scioscia L, Baldini N. Orthopaedic research in italy: state of the art. Int J Immunopathol Pharmacol 2011; 24:157-78. [PMID: 21669157 DOI: 10.1177/03946320110241s230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The most significant results in experimental and clinical orthopaedic research in Italy within the last three years have been primarily in major congenital diseases, bone tumors, regenerative medicine, joint replacements, spine, tendons and ligaments. The data presented in the following discussion is comparable with leading international results, highlighting Italian orthopaedic research excellemce as well as its shortcomings.
Collapse
Affiliation(s)
- E Cenni
- Istituto Ortopedico Rizzoli, Bologna, Italy
| | | | | |
Collapse
|
41
|
Ivanovski S, Hamlet S, Salvi G, Huynh-Ba G, Bosshardt D, Lang N, Donos N. Transcriptional profiling of osseointegration in humans. Clin Oral Implants Res 2011; 22:373-81. [DOI: 10.1111/j.1600-0501.2010.02112.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Donos N, Retzepi M, Wall I, Hamlet S, Ivanovski S. In vivo gene expression profile of guided bone regeneration associated with a microrough titanium surface. Clin Oral Implants Res 2011; 22:390-8. [DOI: 10.1111/j.1600-0501.2010.02105.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|