1
|
Im J, Jeon JH, Lee D, Park JW, Jun W, Lim S, Park OJ, Yun CH, Han SH. Muramyl dipeptide potentiates Staphylococcus aureus lipoteichoic acid-induced nitric oxide production via TLR2/NOD2/PAFR signaling pathways. Front Immunol 2024; 15:1451315. [PMID: 39712020 PMCID: PMC11659290 DOI: 10.3389/fimmu.2024.1451315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024] Open
Abstract
Lipoteichoic acid (LTA) and peptidoglycan (PGN) are considered as key virulence factors of Staphylococcus aureus, which is a representative sepsis-causing Gram-positive pathogen. However, cooperative effect of S. aureus LTA and PGN on nitric oxide (NO) production is still unclear despite the pivotal roles of NO in initiation and progression of sepsis. We here evaluated the cooperative effects of S. aureus LTA (SaLTA) and muramyl dipeptide (MDP), the minimal structure of PGN, on NO production in both a mouse macrophage-like cell line, RAW 264.7 and mouse bone marrow-derived macrophages (BMMs). Although MDP alone did not affect NO production, MDP potently enhanced SaLTA-induced NO production via the expression of inducible NO synthases. The enhanced NO production was ameliorated in BMMs from TLR2-, CD14-, MyD88-, and NOD2-deficient mice. Moreover, the augmented SaLTA-induced NO production by MDP was attenuated by inhibitors specific for PAFR and MAP kinases. Furthermore, MDP also potently increased SaLTA-induced activities of STAT1, NF-κB, and AP-1 transcription factors, and specific inhibitors for these transcription factors suppressed the elevated NO production. Collectively, these results demonstrated that MDP potentiates SaLTA-induced NO production via TLR2/NOD2/PAFR, MAP kinases signaling axis, resulting in the activation of NF-κB, AP-1 and STAT1 transcription factors.
Collapse
Affiliation(s)
- Jintaek Im
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jun Ho Jeon
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Dongwook Lee
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Jeong Woo Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Woohyung Jun
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Suwon Lim
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Ok-Jin Park
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
2
|
Abdallah F, Bazzi S, Akle C, Bahr GM, Echtay KS. Reduction of hyperglycemia in STZ-induced diabetic mice by prophylactic treatment with heat-killed Mycobacterium aurum: possible effects on glucose utilization, mitochondrial uncoupling, and oxidative stress in liver and skeletal muscle. Front Endocrinol (Lausanne) 2024; 15:1427058. [PMID: 39377070 PMCID: PMC11456689 DOI: 10.3389/fendo.2024.1427058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/19/2024] [Indexed: 10/09/2024] Open
Abstract
Background In addition to conventional treatment and modifications in physical activity and diet, alternative strategies have been investigated to manage, prevent, or delay diabetes in humans. In this regard, one strategy has relied on the immunomodulatory properties of mycobacteria, whereby Bacillus Calmette-Guerin, an attenuated live strain of Mycobacterium bovis, has been shown to improve glycemic control in patients with diabetes and to alleviate hyperglycemia in selected murine models of diabetes. A novel heat-killed (HK) whole-cell preparation of Mycobacterium aurum (M. aurum) is currently under development as a potential food supplement; nevertheless, its potential bioactivity remains largely unknown. Thus, the present study investigated the potential prophylactic anti-diabetic effects of HK M. aurum in streptozotocin (STZ)-induced diabetic mice. Methods Mice were divided into three groups: the STZ-induced diabetic group was injected with a single intraperitoneal high dose of STZ, the HK M. aurum-treated diabetic group was prophylactically treated with three doses of HK M. aurum 6 weeks before STZ injection, and the control non-diabetic group was given three intradermal injections of borate-buffered saline and an intraperitoneal injection of citrate buffer. Liver lactate dehydrogenase (LDH), uncoupling protein 2 (UCP2), and glucose transporter 2 (GLUT2) and skeletal muscle LDH, UCP3, and GLUT4 protein expression levels in different mouse groups were determined by Western blot. Results Our results indicated that HK M. aurum did not cause any significant changes in glycemic levels of normal non-diabetic mice. Prophylactic administration of three doses of HK M. aurum to diabetic mice resulted in a significant reduction in their blood glucose levels when compared to those in control diabetic mice. Prophylactic treatment of diabetic mice with HK M. aurum significantly restored their disturbed protein expression levels of liver UCP2 and LDH as well as of skeletal muscle UCP3. On the other hand, prophylactic treatment of diabetic mice with HK M. aurum had no significant effect on their liver GLUT2 and skeletal muscle GLUT4 and LDH protein expression levels. Conclusions Our findings provide the first evidence that HK M. aurum possesses a hyperglycemia-lowering capacity and might support its future use as a food supplement for the amelioration of diabetes.
Collapse
Affiliation(s)
- Farid Abdallah
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University
of Balamand, Al-Koura, Lebanon
| | - Samer Bazzi
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University
of Balamand, Al-Koura, Lebanon
| | - Charles Akle
- Immune Boost Clinic Limited, Saint Michael, Barbados
| | - Georges M. Bahr
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University
of Balamand, Al-Koura, Lebanon
| | - Karim S. Echtay
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University
of Balamand, Al-Koura, Lebanon
| |
Collapse
|
3
|
Rees A, Jenkins BJ, Angelini R, Davies LC, Cronin JG, Jones N, Thornton CA. Immunometabolic adaptation in monocytes underpins functional changes during pregnancy. iScience 2024; 27:109779. [PMID: 38736550 PMCID: PMC11088341 DOI: 10.1016/j.isci.2024.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/02/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Metabolic heterogeneity is a determinant of immune cell function. The normal physiological metabolic reprogramming of pregnancy that ensures the fuel requirements of mother and baby are met, might also underpin changes in immunity that occur with pregnancy and manifest as altered responses to pathogens and changes to autoimmune disease symptoms. Using peripheral blood from pregnant women at term, we reveal that monocytes lose M2-like and gain M1-like properties accompanied by reductions in mitochondrial mass, maximal respiration, and cardiolipin content in pregnancy; glycolysis is unperturbed. We establish that muramyl dipeptide (MDP)-stimulated cytokine production relies on oxidative metabolism, then show in pregnancy reduced cytokine production in response to MDP but not LPS. Overall, mitochondrially centered metabolic capabilities of late gestation monocytes are down-regulated revealing natural plasticity in monocyte phenotype and function that could reveal targets for improving pregnancy outcomes but also yield alternative therapeutic approaches to diverse metabolic and/or immune-mediated diseases beyond pregnancy.
Collapse
Affiliation(s)
- April Rees
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| | - Benjamin J. Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| | - Roberto Angelini
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| | - Luke C. Davies
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| | - James G. Cronin
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| | - Catherine A. Thornton
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| |
Collapse
|
4
|
Fadel JJ, Bahr GM, Echtay KS. Absence of effect of the antiretrovirals Duovir and Viraday on mitochondrial bioenergetics. J Cell Biochem 2018; 119:10384-10392. [PMID: 30187948 DOI: 10.1002/jcb.27384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 07/02/2018] [Indexed: 11/06/2022]
Abstract
Most toxicity associated with antiretroviral drugs is thought to result from disruption of mitochondrial function. Unfortunately, there are no validated laboratory markers for clinically assessing the onset of mitochondrial toxicity associated with antiretroviral therapy. In a previous study on mitochondrial hepatocytes, the protease inhibitor lopimune was shown to induce mitochondrial toxicity by increasing reactive oxygen species (ROS) production and decreasing respiratory control ratio (RCR) reflecting compromised mitochondrial efficiency in adenosine triphosphate production. Mitochondrial dysfunction and ROS production were directly correlated with the expression of uncoupling protein 2 (UCP2). In the current study we aim to determine the toxicity of nucleoside or nucleotide and nonnucleoside reverse-transcriptase inhibitors, Duovir and Viraday on liver mitochondria isolated from treated mice by monitoring UCP2 expression. Our results showed that both Duovir and Viraday had no effect on mitochondrial respiration states 2, 3, 4, and on RCR. In addition, ROS generation and UCP2 expression were not affected. In conclusion, our results indicate the difference in the mechanism of action of distinct classes of antiretroviral drugs on mitochondrial functions and may associate UCP2 expression with subclinical mitochondrial damage as marker of cellular oxidative stress.
Collapse
Affiliation(s)
- Jessy J Fadel
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Georges M Bahr
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| | - Karim S Echtay
- Department of Biomedical Sciences, Faculty of Medicine and Medical Sciences, University of Balamand, Tripoli, Lebanon
| |
Collapse
|
5
|
Pan HC, Lee CC, Chou KM, Lu SC, Sun CY. Serum levels of uncoupling proteins in patients with differential insulin resistance: A community-based cohort study. Medicine (Baltimore) 2017; 96:e8053. [PMID: 28984759 PMCID: PMC5737995 DOI: 10.1097/md.0000000000008053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The uncoupling protein (UCP) belongs to a family of energy-dissipating proteins in mitochondria. Increasing evidences have indicated that UCPs have immense impact on glucose homeostasis and are key proteins in metabolic syndrome. For applying the findings to clinical practice, we designed a study to explore the association between serum UCPs 1-3 and insulin resistance. This investigation prospectively recorded demographical parameter and collected blood samples of 1071 participants from 4 districts in Northeastern Taiwan during the period from August 2013 to July 2014. Propensity score matching by age and sex in patients with top and bottom third homeostasis model assessment of insulin resistance (HOMA-IR) levels was performed, and 326 subjects were enrolled for further studies. The mean age of the patients was 59.4 years and the majority of them (65.5%) were females. The prevalence of metabolic syndrome was 35.5%. Our results demonstrated that serum UCPs 1-3 were significantly associated with differences in HOMA-IR levels. Multiple logistic regression analysis indicated that low UCP 1 and features of metabolic syndrome, namely hypertension, diabetes, body mass index, and high-density lipoprotein, were independent determinants for high HOMA-IR levels. We thus determined that low serum UCP 1 is a predictor for high resistance to insulin.
Collapse
Affiliation(s)
- Heng-Chih Pan
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chin-Chan Lee
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- School of Medicine, Chang Gung University, Taoyuan
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kuei-Mei Chou
- Divisions of Endocrinology and Metabolism, Department of Internal Medicine
| | - Shang-Chieh Lu
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- Community Medicine Research Center, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Chiao-Yin Sun
- Division of Nephrology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung
- School of Medicine, Chang Gung University, Taoyuan
| |
Collapse
|
6
|
Ezquer F, Bahamonde J, Huang YL, Ezquer M. Administration of multipotent mesenchymal stromal cells restores liver regeneration and improves liver function in obese mice with hepatic steatosis after partial hepatectomy. Stem Cell Res Ther 2017; 8:20. [PMID: 28129776 PMCID: PMC5273822 DOI: 10.1186/s13287-016-0469-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/11/2016] [Accepted: 12/31/2016] [Indexed: 02/06/2023] Open
Abstract
Background The liver has the remarkable capacity to regenerate in order to compensate for lost or damaged hepatic tissue. However, pre-existing pathological abnormalities, such as hepatic steatosis (HS), inhibits the endogenous regenerative process, becoming an obstacle for liver surgery and living donor transplantation. Recent evidence indicates that multipotent mesenchymal stromal cells (MSCs) administration can improve hepatic function and increase the potential for liver regeneration in patients with liver damage. Since HS is the most common form of chronic hepatic illness, in this study we evaluated the role of MSCs in liver regeneration in an animal model of severe HS with impaired liver regeneration. Methods C57BL/6 mice were fed with a regular diet (normal mice) or with a high-fat diet (obese mice) to induce HS. After 30 weeks of diet exposure, 70% hepatectomy (Hpx) was performed and normal and obese mice were divided into two groups that received 5 × 105 MSCs or vehicle via the tail vein immediately after Hpx. Results We confirmed a significant inhibition of hepatic regeneration when liver steatosis was present, while the hepatic regenerative response was promoted by infusion of MSCs. Specifically, MSC administration improved the hepatocyte proliferative response, PCNA-labeling index, DNA synthesis, liver function, and also reduced the number of apoptotic hepatocytes. These effects may be associated to the paracrine secretion of trophic factors by MSCs and the hepatic upregulation of key cytokines and growth factors relevant for cell proliferation, which ultimately improves the survival rate of the mice. Conclusions MSCs represent a promising therapeutic strategy to improve liver regeneration in patients with HS as well as for increasing the number of donor organs available for transplantation. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0469-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, 7710162, Santiago, Chile
| | - Javiera Bahamonde
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, 7710162, Santiago, Chile.,Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, 7710162, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Av. Las Condes 12.438, Lo Barnechea, 7710162, Santiago, Chile.
| |
Collapse
|
7
|
Donadelli M, Dando I, Fiorini C, Palmieri M. UCP2, a mitochondrial protein regulated at multiple levels. Cell Mol Life Sci 2014; 71:1171-90. [PMID: 23807210 PMCID: PMC11114077 DOI: 10.1007/s00018-013-1407-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/16/2013] [Accepted: 06/10/2013] [Indexed: 12/11/2022]
Abstract
An ever-increasing number of studies highlight the role of uncoupling protein 2 (UCP2) in a broad range of physiological and pathological processes. The knowledge of the molecular mechanisms of UCP2 regulation is becoming fundamental in both the comprehension of UCP2-related physiological events and the identification of novel therapeutic strategies based on UCP2 modulation. The study of UCP2 regulation is a fast-moving field. Recently, several research groups have made a great effort to thoroughly understand the various molecular mechanisms at the basis of UCP2 regulation. In this review, we describe novel findings concerning events that can occur in a concerted manner at various levels: Ucp2 gene mutation (single nucleotide polymorphisms), UCP2 mRNA and protein expression (transcriptional, translational, and protein turn-over regulation), UCP2 proton conductance (ligands and post-transcriptional modifications), and nutritional and pharmacological regulation of UCP2.
Collapse
Affiliation(s)
- Massimo Donadelli
- Section of Biochemistry, Deparment of Life and Reproduction Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy,
| | | | | | | |
Collapse
|
8
|
Mitochondrial uncoupling protein 2 (UCP2) in glucose and lipid metabolism. Trends Mol Med 2011; 18:52-8. [PMID: 21917523 DOI: 10.1016/j.molmed.2011.08.003] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/09/2011] [Accepted: 08/18/2011] [Indexed: 12/18/2022]
Abstract
Nutrient availability is critical for the physiological functions of all tissues. By contrast, an excess of nutrients such as carbohydrate and fats impair health and shorten life due by stimulating chronic diseases, including diabetes, cancer and neurodegeneration. The control of circulating glucose and lipid levels involve mitochondria in both central and peripheral mechanisms of metabolism regulation. Mitochondrial uncoupling protein 2 (UCP2) has been implicated in physiological and pathological processes related to glucose and lipid metabolism, and in this review we discuss the latest data on the relationships between UCP2 and glucose and lipid sensing from the perspective of specific hypothalamic neuronal circuits and peripheral tissue functions. The goal is to provide a framework for discussion of future therapeutic strategies for metabolism-related chronic diseases.
Collapse
|