1
|
Therapeutic potential of vitamin B 1 derivative benfotiamine from diabetes to COVID-19. Future Med Chem 2022; 14:809-826. [PMID: 35535731 DOI: 10.4155/fmc-2022-0040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Benfotiamine (S-benzoylthiamine-O-monophosphate), a unique, lipid-soluble derivative of thiamine, is the most potent allithiamine found in roasted garlic, as well as in other herbs of the genus Allium. In addition to potent antioxidative properties, benfotiamine has also been shown to be a strong anti-inflammatory agent with therapeutic significance to several pathological complications. Specifically, over the past decade or so, benfotiamine has been shown to prevent not only various secondary diabetic complications but also several inflammatory complications such as uveitis and endotoxemia. Recent studies also demonstrate that this compound could be used to prevent the symptoms associated with various infectious diseases such as HIV and COVID-19. In this review article, the authors discuss the significance of benfotiamine in the prevention of various pathological complications.
Collapse
|
2
|
Agamennone M, Storchi L, Marrone A, Paciotti R. Hampering the early aggregation of PrP-E200K protein by charge-based inhibitors: a computational study. J Comput Aided Mol Des 2021; 35:751-770. [PMID: 34110550 PMCID: PMC8213589 DOI: 10.1007/s10822-021-00393-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/04/2021] [Indexed: 11/25/2022]
Abstract
A multilayered computational workflow was designed to identify a druggable binding site on the surface of the E200K pathogenic mutant of the human prion protein, and to investigate the effect of the binding of small molecules in the inhibition of the early aggregation of this protein. At this purpose, we developed an efficient computational tool to scan the molecular interaction properties of a whole MD trajectory, thus leading to the characterization of plausible binding regions on the surface of PrP-E200K. These structural data were then employed to drive structure-based virtual screening and fragment-based approaches to the seeking of small molecular binders of the PrP-E200K. Six promising compounds were identified, and their binding stabilities were assessed by MD simulations. Therefore, analyses of the molecular electrostatic potential similarity between the bound complexes and unbound protein evidenced their potential activity as charged-based inhibitors of the PrP-E200K early aggregation.
Collapse
Affiliation(s)
| | - Loriano Storchi
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
- Molecular Discovery Limited, Middlesex, London, UK
| | - Alessandro Marrone
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Roberto Paciotti
- Department of Pharmacy, University "G d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| |
Collapse
|
3
|
Ott M, Werneke U. Wernicke's encephalopathy - from basic science to clinical practice. Part 1: Understanding the role of thiamine. Ther Adv Psychopharmacol 2020; 10:2045125320978106. [PMID: 33447357 PMCID: PMC7780320 DOI: 10.1177/2045125320978106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 11/10/2020] [Indexed: 01/19/2023] Open
Abstract
Wernicke's encephalopathy (WE) is an acute neuropsychiatric state. Untreated, WE can lead to coma or death, or progress to Korsakoff syndrome (KS) - a dementia characterized by irreversible loss of anterograde memory. Thiamine (vitamin B1) deficiency lies at the heart of this condition. Yet, our understanding of thiamine regarding prophylaxis and treatment of WE remains limited. This may contribute to the current undertreatment of WE in clinical practice. The overall aim of this review is to identify the best strategies for prophylaxis and treatment of WE in regard to (a) dose of thiamine, (b) mode of administration, (c) timing of switch from one mode of administration to another, (d) duration of administration, and (e) use of magnesium along thiamine as an essential cofactor. Evidence from randomized controlled trials and other intervention studies is virtually absent. Therefore, we have to resort to basic science for proof of principle instead. Here, we present the first part of our clinical review, in which we explore the physiology of thiamine and the pathophysiology of thiamine deficiency. We first explore both of these in their historical context. We then review the pharmacodynamics and pharmacokinetics of thiamine, exploring the roles of the six currently known thiamine compounds, their transporters, and target enzymes. We also explore the significance of magnesium as a cofactor in thiamine-facilitated enzymatic reactions and thiamine transport. In the second (forthcoming) part of this review, we will use the findings of the current review to make evidence-based inferences about strategies for prophylaxis and treatment of WE.
Collapse
Affiliation(s)
- Michael Ott
- Department of Public Health and Clinical Medicine, Division of Medicine, Umeå University, Umeå, Sweden
| | - Ursula Werneke
- Department of Clinical Sciences, Division of Psychiatry, Sunderby Research Unit, Umeå University, Umeå, Sweden
| |
Collapse
|
4
|
Pacei F, Tesone A, Laudi N, Laudi E, Cretti A, Pnini S, Varesco F, Colombo C. The Relevance of Thiamine Evaluation in a Practical Setting. Nutrients 2020; 12:nu12092810. [PMID: 32933220 PMCID: PMC7551939 DOI: 10.3390/nu12092810] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/03/2020] [Accepted: 09/05/2020] [Indexed: 02/07/2023] Open
Abstract
Thiamine is a crucial cofactor involved in the maintenance of carbohydrate metabolism and participates in multiple cellular metabolic processes. Although thiamine can be obtained from various food sources, some common food groups are deficient in thiamine, and it can be denatured by high temperature and pH. Additionally, different drugs can alter thiamine metabolism. In addition, the half-life of thiamine in the body is between 1 and 3 weeks. All these factors could provide an explanation for the relatively short period needed to develop thiamine deficiency and observe the consequent clinical symptoms. Thiamine deficiency could lead to neurological and cardiological problems. These clinical conditions could be severe or even fatal. Marginal deficiency too may promote weaker symptoms that might be overlooked. Patients undergoing upper gastrointestinal or pancreatic surgery could have or develop thiamine deficiency for many different reasons. To achieve the best outcome for these patients, we strongly recommend the execution of both an adequate preoperative nutritional assessment, which includes thiamine evaluation, and a close nutritional follow up to avoid a nutrient deficit in the postoperative period.
Collapse
Affiliation(s)
- Federico Pacei
- ASST Nord Milano, UOC Neurologia, Ospedale Bassini, 20092 Cinisello Balsamo, Italy
- Department of Physical Rehabilitation, Casa di Cura Bonvicini, Via Michael Pacher 12, 39100 Bolzano, Italy; (A.T.); (E.L.); (A.C.); (S.P.); (F.V.)
- Correspondence:
| | - Antonella Tesone
- Department of Physical Rehabilitation, Casa di Cura Bonvicini, Via Michael Pacher 12, 39100 Bolzano, Italy; (A.T.); (E.L.); (A.C.); (S.P.); (F.V.)
| | - Nazzareno Laudi
- Faculty of Medicine and Surgery, Medizinische Universitat Innsbruck, Christoph-Probst-Platz 1, Innrain 52 A, 6020 Innsbruck, Austria;
| | - Emanuele Laudi
- Department of Physical Rehabilitation, Casa di Cura Bonvicini, Via Michael Pacher 12, 39100 Bolzano, Italy; (A.T.); (E.L.); (A.C.); (S.P.); (F.V.)
| | - Anna Cretti
- Department of Physical Rehabilitation, Casa di Cura Bonvicini, Via Michael Pacher 12, 39100 Bolzano, Italy; (A.T.); (E.L.); (A.C.); (S.P.); (F.V.)
| | - Shira Pnini
- Department of Physical Rehabilitation, Casa di Cura Bonvicini, Via Michael Pacher 12, 39100 Bolzano, Italy; (A.T.); (E.L.); (A.C.); (S.P.); (F.V.)
| | - Fabio Varesco
- Department of Physical Rehabilitation, Casa di Cura Bonvicini, Via Michael Pacher 12, 39100 Bolzano, Italy; (A.T.); (E.L.); (A.C.); (S.P.); (F.V.)
| | - Chiara Colombo
- Lombardy Regional Course for General Practitioner, PoliS-Lombardia, Via Taramelli 12/F, 20100 Milano, Italy;
| |
Collapse
|
5
|
Aleshin VA, Mkrtchyan GV, Bunik VI. Mechanisms of Non-coenzyme Action of Thiamine: Protein Targets and Medical Significance. BIOCHEMISTRY (MOSCOW) 2019; 84:829-850. [PMID: 31522667 DOI: 10.1134/s0006297919080017] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Thiamine (vitamin B1) is a precursor of the well-known coenzyme of central metabolic pathways thiamine diphosphate (ThDP). Highly intense glucose oxidation in the brain requires ThDP-dependent enzymes, which determines the critical significance of thiamine for neuronal functions. However, thiamine can also act through the non-coenzyme mechanisms. The well-known facilitation of acetylcholinergic neurotransmission upon the thiamine and acetylcholine co-release into the synaptic cleft has been supported by the discovery of thiamine triphosphate (ThTP)-dependent phosphorylation of the acetylcholine receptor-associated protein rapsyn, and thiamine interaction with the TAS2R1 receptor, resulting in the activation of synaptic ion currents. The non-coenzyme regulatory binding of thiamine compounds has been demonstrated for the transcriptional regulator p53, poly(ADP-ribose) polymerase, prion protein PRNP, and a number of key metabolic enzymes that do not use ThDP as a coenzyme. The accumulated data indicate that the molecular mechanisms of the neurotropic action of thiamine are far broader than it has been originally believed, and closely linked to the metabolism of thiamine and its derivatives in animals. The significance of this topic has been illustrated by the recently established competition between thiamine and the antidiabetic drug metformin for common transporters, which can be the reason for the thiamine deficiency underlying metformin side effects. Here, we also discuss the medical implications of the research on thiamine, including the role of thiaminases in thiamine reutilization and biosynthesis of thiamine antagonists; molecular mechanisms of action of natural and synthetic thiamine antagonists, and biotransformation of pharmacological forms of thiamine. Given the wide medical application of thiamine and its synthetic forms, these aspects are of high importance for medicine and pharmacology, including the therapy of neurodegenerative diseases.
Collapse
Affiliation(s)
- V A Aleshin
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 19991 Moscow, Russia
| | - G V Mkrtchyan
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia
| | - V I Bunik
- Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119991, Russia. .,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 19991 Moscow, Russia
| |
Collapse
|
6
|
Chou WP, Chang YH, Lin HC, Chang YH, Chen YY, Ko CH. Thiamine for preventing dementia development among patients with alcohol use disorder: A nationwide population-based cohort study. Clin Nutr 2018; 38:1269-1273. [PMID: 29843940 DOI: 10.1016/j.clnu.2018.05.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/02/2018] [Accepted: 05/11/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE OF STUDY Alcohol use disorder is one of the most important factors contributing to dementia. This study examined the protective effect of thiamine administration on the incidence of dementia among patients with alcohol use disorder in Taiwan by evaluating a nationwide database. METHODS We retrieved data for this retrospective cohort study from the Longitudinal Health Insurance Database 1995-2000. Patients receiving thiamine therapy after the diagnosis of alcohol use disorder were recruited as the thiamine therapy (TT) group, and the comparison group without TT (NTT group) included randomly assigned and age-, sex-, and index year-matched individuals with alcohol use disorder. Demographic data, comorbid medical disorders, and psychotropic medication use were evaluated and controlled. The cumulative defined daily dose (DDD) was analyzed to demonstrate the dose effect. RESULTS Each group had 5059 patients. The TT group had a lower crude hazard ratio (0.76; 95% confidence interval: 0.60-0.96) of dementia than the NTT group. After adjusting for demographic data, comorbidity, and psychotropic medication use, the adjusted hazard ratio was 0.54 (95% confidence interval: 0.43-0.69). The significance existed among TT subjects with cumulative DDD higher than 23. The Kaplan-Meier analysis demonstrated a lower cumulative incidence of dementia in the TT group than in the NTT group. CONCLUSION The results indicated that thiamine therapy could be a protective factor for dementia development in patients with alcohol use disorder. Thiamine therapy should be a crucial part of the treatment plan and health policies to prevent dementia development or progression among patients with alcohol use disorder.
Collapse
Affiliation(s)
- Wei-Po Chou
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, Tsyr-Huey Mental Hospital, Kaohsiung Jen-Ai's Home, Kaohsiung, Taiwan
| | - Yu-Han Chang
- Department of Psychiatry, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan
| | - Hung-Chi Lin
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsin Chang
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yun-Yu Chen
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Chih-Hung Ko
- Department of Psychiatry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Psychiatry, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
7
|
Du W, Gong G, Wang W, Xu J. Regulation of the aggregation behavior of human islet amyloid polypeptide fragment by titanocene complexes. J Biol Inorg Chem 2017; 22:1065-1074. [DOI: 10.1007/s00775-017-1484-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/27/2017] [Indexed: 01/09/2023]
|
8
|
Mechanisms Responsible for the High Sensitivity of Neural Cells to Vitamin B1 Deficiency. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9620-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Wang W, Zhao C, Zhu D, Gong G, Du W. Inhibition of amyloid peptide fibril formation by gold-sulfur complexes. J Inorg Biochem 2017; 171:1-9. [PMID: 28282581 DOI: 10.1016/j.jinorgbio.2017.02.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/18/2017] [Accepted: 02/20/2017] [Indexed: 12/16/2022]
Abstract
Amyloid-related diseases are characterized by protein conformational change and amyloid fibril deposition. Metal complexes are potential inhibitors of amyloidosis. Nitrogen-coordinated gold complexes have been used to disaggregate prion neuropeptide (PrP106-126) and human islet amyloid polypeptide (hIAPP). However, the roles of metal complexes in peptide fibril formation and related bioactivity require further exploration. In this work, we investigated the interactions of amyloid peptides PrP106-126 and hIAPP with two tetracoordinated gold-sulfur complexes, namely, dichloro diethyl dithiocarbamate gold complex and dichloro pyrrolidine dithiocarbamate gold complex. We also determined the effects of these complexes on peptide-induced cytotoxicity. Thioflavin T assay, morphological characterization, and particle size analysis indicated that the two gold-sulfur complexes effectively inhibited the fibrillation of the amyloid peptides, which led to the formation of nanoscale particles. The complexes reduced the cytotoxicity induced by the amyloid peptides. Intrinsic fluorescence, nuclear magnetic resonance, and mass spectrometry revealed that the complexes interacted with PrP106-126 and hIAPP via metal coordination and hydrophobic interaction, which improved the inhibition and binding of the two gold-sulfur compounds. Our study provided new insights into the use of tetracoordinated gold-sulfur complexes as drug candidates against protein conformational disorders.
Collapse
Affiliation(s)
- Wenji Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China
| | - Cong Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China
| | - Dengsen Zhu
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China
| | - Gehui Gong
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China
| | - Weihong Du
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China.
| |
Collapse
|
10
|
Pagadala NS, Syed K, Bhat R. In silico strategies on prion pathogenic conversion and inhibition from PrPC–PrPSc. Expert Opin Drug Discov 2017; 12:241-248. [DOI: 10.1080/17460441.2017.1287171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nataraj S. Pagadala
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, Canada
| | - Khajamohiddin Syed
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Rakesh Bhat
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, Canada
| |
Collapse
|
11
|
Bunik V, Aleshin V. Analysis of the Protein Binding Sites for Thiamin and Its Derivatives to Elucidate the Molecular Mechanisms of the Noncoenzyme Action of Thiamin (Vitamin B1). STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63930-1.00011-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Yildirim A, Zhang J, Manzetti S, van der Spoel D. Binding of Pollutants to Biomolecules: A Simulation Study. Chem Res Toxicol 2016; 29:1679-1688. [PMID: 27603112 DOI: 10.1021/acs.chemrestox.6b00189] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A number of cases around the world have been reported where animals were found dead or dying with symptoms resembling a thiamine (vitamin B) deficiency, and for some of these, a link to pollutants has been suggested. Here, we investigate whether biomolecules involved in thiamin binding and transport could be blocked by a range of different pollutants. We used in silico docking of five compound classes (25 compounds in total) to each of five targets (prion protein, ECF-type ABC transporter, thi-box riboswitch receptor, thiamin pyrophosphokinase, and YKoF protein) and subsequently performed molecular dynamics (MD) simulations to assess the stability of the complexes. The compound classes were thiamin analogues (control), pesticides, veterinary medicines, polychlorinated biphenyls, and dioxins, all of which are prevalent in the environment to some extent. A few anthropogenic compounds were found to bind the ECF-type ABC transporter, but none binds stably to prion protein. For the riboswitch, most compounds remained in their binding pockets during 50 ns of MD simulation, indicating that RNA provides a promiscuous binding site. In both YKoF and thiamin pyrophosphokinase (TPK), most compounds remain tightly bound. However, TPK biomolecules undergo pollutant-induced conformational changes. Although most compounds are found to bind to some of these targets, a larger data set is needed along with more quantitative methods like free energy perturbation calculations before firm conclusions can be drawn. This study is in part a test bed for large-scale quantitative computational screening of interactions between biological entities and pollutant molecules.
Collapse
Affiliation(s)
- Ahmet Yildirim
- Department of Physics, Faculty of Science and Art, Siirt University , 56100 Siirt, Turkey.,Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| | - Jin Zhang
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden.,Department of Chemistry, Zhejiang University , Hangzhou 310027, China
| | - Sergio Manzetti
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| | - David van der Spoel
- Uppsala Center for Computational Chemistry, Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University , Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| |
Collapse
|
13
|
Gibson GE, Hirsch JA, Fonzetti P, Jordan BD, Cirio RT, Elder J. Vitamin B1 (thiamine) and dementia. Ann N Y Acad Sci 2016; 1367:21-30. [PMID: 26971083 DOI: 10.1111/nyas.13031] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 11/28/2022]
Abstract
The earliest and perhaps best example of an interaction between nutrition and dementia is related to thiamine (vitamin B1). Throughout the last century, research showed that thiamine deficiency is associated with neurological problems, including cognitive deficits and encephalopathy. Multiple similarities exist between classical thiamine deficiency and Alzheimer's disease (AD) in that both are associated with cognitive deficits and reductions in brain glucose metabolism. Thiamine-dependent enzymes are critical components of glucose metabolism that are reduced in the brains of AD patients and by thiamine decline, and a decrease in their levels could account for the reduction in glucose metabolism. In preclinical models, reduced thiamine can drive AD-like abnormalities, including memory deficits, neuritic plaques, and hyperphosphorylation of tau. Furthermore, excess thiamine diminishes AD-like pathologies. In addition to dietary deficits, drugs or other manipulations that interfere with thiamine absorption can cause thiamine deficiency. Elucidating the reasons why the brains of AD patients are functionally thiamine deficient and determining the effects of thiamine restoration may provide critical information to help treat patients with AD.
Collapse
Affiliation(s)
- Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, and Burke Medical Research Institute, White Plains, New York
| | | | | | | | | | - Jessica Elder
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, and Burke Medical Research Institute, White Plains, New York
| |
Collapse
|
14
|
Zhu D, Zhao C, Wang X, Wang W, Wang B, Du W. Roles of DMSO-type ruthenium complexes in disaggregation of prion neuropeptide PrP106–126. RSC Adv 2016. [DOI: 10.1039/c5ra21523d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
DMSO-type ruthenium complexes with aromatic ligands disaggregate the mature PrP106–126 fibrilsviametal coordination and hydrophobic interaction.
Collapse
Affiliation(s)
- Dengsen Zhu
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Cong Zhao
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Xuesong Wang
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Wenji Wang
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| | - Baohuai Wang
- College of Chemistry and Molecular Engineering
- Peking University
- China
| | - Weihong Du
- Department of Chemistry
- Renmin University of China
- Beijing
- China
| |
Collapse
|
15
|
Wustoni S, Hideshima S, Kuroiwa S, Nakanishi T, Hashimoto M, Mori Y, Osaka T. Sensitive electrical detection of human prion proteins using field effect transistor biosensor with dual-ligand binding amplification. Biosens Bioelectron 2015; 67:256-62. [DOI: 10.1016/j.bios.2014.08.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/08/2014] [Accepted: 08/08/2014] [Indexed: 11/16/2022]
|
16
|
Thiamine and magnesium deficiencies: keys to disease. Med Hypotheses 2014; 84:129-34. [PMID: 25542071 DOI: 10.1016/j.mehy.2014.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
Abstract
Thiamine deficiency (TD) is accepted as the cause of beriberi because of its action in the metabolism of simple carbohydrates, mainly as the rate limiting cofactor for the dehydrogenases of pyruvate and alpha-ketoglutarate, both being critical to the action of the citric acid cycle. Transketolase, dependent on thiamine and magnesium, occurs twice in the oxidative pentose pathway, important in production of reducing equivalents. Thiamine is also a cofactor in the dehydrogenase complex in the degradation of the branched chain amino acids, leucine, isoleucine and valine. In spite of these well accepted facts, the overall clinical effects of TD are still poorly understood. Because of the discovery of 2-hydroxyacyl-CoA lyase (HACL1) as the first peroxisomal enzyme in mammals found to be dependent on thiamine pyrophosphate (TPP) and the ability of thiamine to bind with prion protein, these factors should improve our clinical approach to TD. HACL1 has two important roles in alpha oxidation, the degradation of phytanic acid and shortening of 2-hydroxy long-chain fatty acids so that they can be degraded further by beta oxidation. The downstream effects of a lack of efficiency in this enzyme would be expected to be critical in normal brain metabolism. Although TD has been shown experimentally to produce reversible damage to mitochondria and there are many other causes of mitochondrial dysfunction, finding TD as the potential biochemical lesion would help in differential diagnosis. Stresses imposed by infection, head injury or inoculation can initiate intermittent cerebellar ataxia in thiamine deficiency/dependency. Medication or vaccine reactions appear to be more easily initiated in the more intelligent individuals when asymptomatic marginal malnutrition exists. Erythrocyte transketolase testing has shown that thiamine deficiency is widespread. It is hypothesized that the massive consumption of empty calories, particularly those derived from carbohydrate and fat, results in a high calorie/thiamine ratio as a major cause of disease. Because mild to moderate TD results in pseudo hypoxia in the limbic system and brainstem, emotional and stress reflexes of the autonomic nervous system are stimulated and exaggerated, producing symptoms often diagnosed as psychosomatic disease. If the biochemical lesion is recognized at this stage, the symptoms are easily reversible. If not, and the malnutrition continues, neurodegeneration follows and results in a variety of chronic brain diseases. Results from acceptance of the hypothesis could be tested by performing erythrocyte transketolase tests to pick out those with TD and supplementing the affected individuals with the appropriate dietary supplements.
Collapse
|
17
|
de Moraes MC, Santos JB, Dos Anjos DM, Rangel LP, Vieira TCRG, Moaddel R, da Silva JL. Prion protein-coated magnetic beads: synthesis, characterization and development of a new ligands screening method. J Chromatogr A 2014; 1379:1-8. [PMID: 25576041 DOI: 10.1016/j.chroma.2014.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 01/17/2023]
Abstract
Prion diseases are characterized by protein aggregation and neurodegeneration. Conversion of the native prion protein (PrP(C)) into the abnormal scrapie PrP isoform (PrP(Sc)), which undergoes aggregation and can eventually form amyloid fibrils, is a critical step leading to the characteristic path morphological hallmark of these diseases. However, the mechanism of conversion remains unclear. It is known that ligands can act as cofactors or inhibitors in the conversion mechanism of PrP(C) into PrP(Sc). Within this context, herein, we describe the immobilization of PrP(C) onto the surface of magnetic beads and the morphological characterization of PrP(C)-coated beads by fluorescence confocal microscopy. PrP(C)-coated magnetic beads were used to identify ligands from a mixture of compounds, which were monitored by UHPLC-ESI-MS/MS. This affinity-based method allowed the isolation of the anti-prion compound quinacrine, an inhibitor of PrP aggregation. The results indicate that this approach can be applied to not only "fish" for anti-prion compounds from complex matrixes, but also to screening for and identify possible cellular cofactors involved in the deflagration of prion diseases.
Collapse
Affiliation(s)
- Marcela Cristina de Moraes
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24210-141 Niterói, RJ, Brazil; Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, 21941-902 Rio de Janeiro, RJ, Brazil.
| | - Juliana Bosco Santos
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Daniel Meira Dos Anjos
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Luciana Pereira Rangel
- Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, 21941-902 Rio de Janeiro, RJ, Brazil; Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Tuane Cristine Ramos Gonçalves Vieira
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, 21941-902 Rio de Janeiro, RJ, Brazil
| | - Ruin Moaddel
- Biomedical Research Center, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Jerson Lima da Silva
- Universidade Federal do Rio de Janeiro, Instituto de Bioquímica Médica, 21941-902 Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia de Biologia Estrutural e Bioimagem, 21941-902 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
18
|
Wang X, Cui M, Zhao C, He L, Zhu D, Wang B, Du W. Regulation of aggregation behavior and neurotoxicity of prion neuropeptides by platinum complexes. Inorg Chem 2014; 53:5044-54. [PMID: 24787240 DOI: 10.1021/ic500092t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prion diseases belong to a group of infectious, fatal neurodegenerative disorders. The conformational conversion of a cellular prion protein (PrP(C)) into an abnormal misfolded isoform (PrP(Sc)) is the key event in prion disease pathology. PrP106-126 resembles PrP(Sc) in some physicochemical and biological characteristics, such as apoptosis induction in neurons, fibrillar formation, and mediation of the conversion of native cellular PrP(C) to PrP(Sc). Numerous studies have been conducted to explore the inhibiting methods on the aggregation and neurotoxicity of prion neuropeptide PrP106-126. We showed that PrP106-126 aggregation, as assessed by fluorescence assay and atomic force microscopy, is inhibited by platinum complexes cisplatin, carboplatin, and Pt(bpy)Cl2. ESI-MS and NMR assessments of PrP106-126 and its mutant peptides demonstrate that platinum complexes bind to the peptides in coordination and nonbonded interactions, which rely on the ligand properties and the peptide sequence. In peptides, methionine residue is preferred as a potent binding site over histidine residue for the studied platinum complexes, implying a typical thiophile characteristic of platinum. The neurotoxicity induced by PrP106-126 is better inhibited by Pt(bpy)Cl2 and cisplatin. Furthermore, the ligand configuration contributes to both the binding affinity and the inhibition of peptide aggregation. The pursuit of novel platinum candidates that selectively target prion neuropeptide is noteworthy for medicinal inorganic chemistry and chemical biology.
Collapse
Affiliation(s)
- Xuesong Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
19
|
Zhao C, Wang X, He L, Zhu D, Wang B, Du W. Influence of gold–bipyridyl derivants on aggregation and disaggregation of the prion neuropeptide PrP106–126. Metallomics 2014; 6:2117-25. [DOI: 10.1039/c4mt00219a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold–bipyridyl derivants affect aggregation and disaggregation of a prion neuropeptide PrP106–126.
Collapse
Affiliation(s)
- Cong Zhao
- Department of Chemistry
- Renmin University of China
- Beijing, China
| | - Xuesong Wang
- Department of Chemistry
- Renmin University of China
- Beijing, China
| | - Lei He
- Department of Chemistry
- Renmin University of China
- Beijing, China
| | - Dengsen Zhu
- Department of Chemistry
- Renmin University of China
- Beijing, China
| | - Baohuai Wang
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing, China
| | - Weihong Du
- Department of Chemistry
- Renmin University of China
- Beijing, China
| |
Collapse
|
20
|
Pagadala NS, Bjorndahl TC, Blinov N, Kovalenko A, Wishart DS. Molecular docking of thiamine reveals similarity in binding properties between the prion protein and other thiamine-binding proteins. J Mol Model 2013; 19:5225-35. [DOI: 10.1007/s00894-013-1979-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 08/21/2013] [Indexed: 12/28/2022]
|
21
|
Wang X, He L, Zhao C, Du W, Lin J. Gold complexes inhibit the aggregation of prion neuropeptides. J Biol Inorg Chem 2013; 18:767-78. [DOI: 10.1007/s00775-013-1030-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 08/05/2013] [Indexed: 12/19/2022]
|
22
|
Jetha NN, Semenchenko V, Wishart DS, Cashman NR, Marziali A. Nanopore analysis of wild-type and mutant prion protein (PrP(C)): single molecule discrimination and PrP(C) kinetics. PLoS One 2013; 8:e54982. [PMID: 23393562 PMCID: PMC3564863 DOI: 10.1371/journal.pone.0054982] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/18/2012] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are fatal neurodegenerative diseases associated with the conversion of cellular prion protein (PrP(C)) in the central nervous system into the infectious isoform (PrP(Sc)). The mechanics of conversion are almost entirely unknown, with understanding stymied by the lack of an atomic-level structure for PrP(Sc). A number of pathogenic PrP(C) mutants exist that are characterized by an increased propensity for conversion into PrP(Sc) and that differ from wild-type by only a single amino-acid point mutation in their primary structure. These mutations are known to perturb the stability and conformational dynamics of the protein. Understanding of how this occurs may provide insight into the mechanism of PrP(C) conversion. In this work we sought to explore wild-type and pathogenic mutant prion protein structure and dynamics by analysis of the current fluctuations through an organic α-hemolysin nanometer-scale pore (nanopore) in which a single prion protein has been captured electrophoretically. In doing this, we find that wild-type and D178N mutant PrP(C), (a PrP(C) mutant associated with both Fatal Familial Insomnia and Creutzfeldt-Jakob disease), exhibit easily distinguishable current signatures and kinetics inside the pore and we further demonstrate, with the use of Hidden Markov Model signal processing, accurate discrimination between these two proteins at the single molecule level based on the kinetics of a single PrP(C) capture event. Moreover, we present a four-state model to describe wild-type PrP(C) kinetics in the pore as a first step in our investigation on characterizing the differences in kinetics and conformational dynamics between wild-type and D178N mutant PrP(C). These results demonstrate the potential of nanopore analysis for highly sensitive, real-time protein and small molecule detection based on single molecule kinetics inside a nanopore, and show the utility of this technique as an assay to probe differences in stability between wild-type and mutant prion proteins at the single molecule level.
Collapse
Affiliation(s)
- Nahid N Jetha
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | |
Collapse
|