1
|
Jang S, Park I, Choi M, Kim J, Yeo S, Huh SO, Choi JW, Moon C, Choe HK, Choe Y, Kim K. Impact of the circadian nuclear receptor REV-ERBα in dorsal raphe 5-HT neurons on social interaction behavior, especially social preference. Exp Mol Med 2023; 55:1806-1819. [PMID: 37537215 PMCID: PMC10474013 DOI: 10.1038/s12276-023-01052-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 08/05/2023] Open
Abstract
Social interaction among conspecifics is essential for maintaining adaptive, cooperative, and social behaviors, along with survival among mammals. The 5-hydroxytryptamine (5-HT) neuronal system is an important neurotransmitter system for regulating social behaviors; however, the circadian role of 5-HT in social interaction behaviors is unclear. To investigate whether the circadian nuclear receptor REV-ERBα, a transcriptional repressor of the rate-limiting enzyme tryptophan hydroxylase 2 (Tph2) gene in 5-HT biosynthesis, may affect social interaction behaviors, we generated a conditional knockout (cKO) mouse by targeting Rev-Erbα in dorsal raphe (DR) 5-HT neurons (5-HTDR-specific REV-ERBα cKO) using the CRISPR/Cas9 gene editing system and assayed social behaviors, including social preference and social recognition, with a three-chamber social interaction test at two circadian time (CT) points, i.e., at dawn (CT00) and dusk (CT12). The genetic ablation of Rev-Erbα in DR 5-HTergic neurons caused impaired social interaction behaviors, particularly social preference but not social recognition, with no difference between the two CT points. This deficit of social preference induced by Rev-Erbα in 5-HTDR-specific mice is functionally associated with real-time elevated neuron activity and 5-HT levels at dusk, as determined by fiber-photometry imaging sensors. Moreover, optogenetic inhibition of DR to nucleus accumbens (NAc) 5-HTergic circuit restored the impairment of social preference in 5-HTDR-specific REV-ERBα cKO mice. These results suggest the significance of the circadian regulation of 5-HT levels by REV-ERBα in regulating social interaction behaviors.
Collapse
Affiliation(s)
- Sangwon Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Inah Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Mijung Choi
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jihoon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Seungeun Yeo
- Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Sung-Oh Huh
- Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University, Chuncheon, 24252, Republic of Korea
| | - Ji-Woong Choi
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Cheil Moon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Kyungjin Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
2
|
Klaessens S, Stroobant V, De Plaen E, Van den Eynde BJ. Systemic tryptophan homeostasis. Front Mol Biosci 2022; 9:897929. [PMID: 36188218 PMCID: PMC9515494 DOI: 10.3389/fmolb.2022.897929] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/01/2022] [Indexed: 11/27/2022] Open
Abstract
Tryptophan is an essential amino acid, which is not only a building block for protein synthesis, but also a precursor for the biosynthesis of co-enzymes and neuromodulators, such as NAD/NADP(H), kynurenic acid, melatonin and serotonin. It also plays a role in immune homeostasis, as local tryptophan catabolism impairs T-lymphocyte mediated immunity. Therefore, tryptophan plasmatic concentration needs to be stable, in spite of large variations in dietary supply. Here, we review the main checkpoints accounting for tryptophan homeostasis, including absorption, transport, metabolism and elimination, and we discuss the physiopathology of disorders associated with their dysfunction. Tryptophan is catabolized along the kynurenine pathway through the action of two enzymes that mediate the first and rate-limiting step of the pathway: indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO). While IDO1 expression is restricted to peripheral sites of immune modulation, TDO is massively expressed in the liver and accounts for 90% of tryptophan catabolism. Recent data indicated that the stability of the TDO protein is regulated by tryptophan and that this regulation allows a tight control of tryptophanemia. TDO is stabilized when tryptophan is abundant in the plasma, resulting in rapid degradation of dietary tryptophan. In contrast, when tryptophan is scarce, TDO is degraded by the proteasome to avoid excessive tryptophan catabolism. This is triggered by the unmasking of a degron in a non-catalytic tryptophan-binding site, resulting in TDO ubiquitination by E3 ligase SKP1-CUL1-F-box. Deficiency in TDO or in the hepatic aromatic transporter SLC16A10 leads to severe hypertryptophanemia, which can disturb immune and neurological homeostasis.
Collapse
Affiliation(s)
- Simon Klaessens
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| | - Vincent Stroobant
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Etienne De Plaen
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
| | - Benoit J. Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium
- de Duve Institute, UCLouvain, Brussels, Belgium
- Walloon Excellence in Life Sciences and Biotechnology, Wavre, Belgium
- Nuffield Department of Clinical Medicine, Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
- *Correspondence: Simon Klaessens, ; Benoit J. Van den Eynde,
| |
Collapse
|
3
|
Kreitlow BL, Li W, Buchanan GF. Chronobiology of epilepsy and sudden unexpected death in epilepsy. Front Neurosci 2022; 16:936104. [PMID: 36161152 PMCID: PMC9490261 DOI: 10.3389/fnins.2022.936104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
Epilepsy is a neurological disease characterized by spontaneous, unprovoked seizures. Various insults render the brain hyperexcitable and susceptible to seizure. Despite there being dozens of preventative anti-seizure medications available, these drugs fail to control seizures in nearly 1 in 3 patients with epilepsy. Over the last century, a large body of evidence has demonstrated that internal and external rhythms can modify seizure phenotypes. Physiologically relevant rhythms with shorter periodic rhythms, such as endogenous circadian rhythms and sleep-state, as well as rhythms with longer periodicity, including multidien rhythms and menses, influence the timing of seizures through poorly understood mechanisms. The purpose of this review is to discuss the findings from both human and animal studies that consider the effect of such biologically relevant rhythms on epilepsy and seizure-associated death. Patients with medically refractory epilepsy are at increased risk of sudden unexpected death in epilepsy (SUDEP). The role that some of these rhythms play in the nocturnal susceptibility to SUDEP will also be discussed. While the involvement of some of these rhythms in epilepsy has been known for over a century, applying the rhythmic nature of such phenomenon to epilepsy management, particularly in mitigating the risk of SUDEP, has been underutilized. As our understanding of the physiological influence on such rhythmic phenomenon improves, and as technology for chronic intracranial epileptiform monitoring becomes more widespread, smaller and less invasive, novel seizure-prediction technologies and time-dependent chronotherapeutic seizure management strategies can be realized.
Collapse
Affiliation(s)
- Benjamin L. Kreitlow
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - William Li
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gordon F. Buchanan
- Medical Scientist Training Program, University of Iowa, Iowa City, IA, United States
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
- Department of Neurology, University of Iowa, Iowa City, IA, United States
- Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- *Correspondence: Gordon F. Buchanan, ; orcid.org/0000-0003-2371-4455
| |
Collapse
|
4
|
Joyal KG, Kreitlow BL, Buchanan GF. The role of sleep state and time of day in modulating breathing in epilepsy: implications for sudden unexpected death in epilepsy. Front Neural Circuits 2022; 16:983211. [PMID: 36082111 PMCID: PMC9445500 DOI: 10.3389/fncir.2022.983211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death among patients with refractory epilepsy. While the exact etiology of SUDEP is unknown, mounting evidence implicates respiratory dysfunction as a precipitating factor in cases of seizure-induced death. Dysregulation of breathing can occur in epilepsy patients during and after seizures as well as interictally, with many epilepsy patients exhibiting sleep-disordered breathing (SDB), such as obstructive sleep apnea (OSA). The majority of SUDEP cases occur during the night, with the victim found prone in or near a bed. As breathing is modulated in both a time-of-day and sleep state-dependent manner, it is relevant to examine the added burden of nocturnal seizures on respiratory function. This review explores the current state of understanding of the relationship between respiratory function, sleep state and time of day, and epilepsy. We highlight sleep as a particularly vulnerable period for individuals with epilepsy and press that this topic warrants further investigation in order to develop therapeutic interventions to mitigate the risk of SUDEP.
Collapse
Affiliation(s)
- Katelyn G. Joyal
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Benjamin L. Kreitlow
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Gordon F. Buchanan
- Interdisciplinary Graduate Program in Neuroscience, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
- *Correspondence: Gordon F. Buchanan
| |
Collapse
|
5
|
Indicators of Immune and Neurohumoral Profile in Women of Fertile Age with Functional Disorders of the Autonomic Nervous System Associated with Polymorphic Variants of the HTR2A (rs7997012) and TP53 (rs1042522) Genes. Bull Exp Biol Med 2022; 173:224-228. [DOI: 10.1007/s10517-022-05523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 10/17/2022]
|
6
|
|
7
|
Sex-based changes in rat brain serotonin and behavior in a model of altitude-related vulnerability to treatment-resistant depression. Psychopharmacology (Berl) 2021; 238:2867-2881. [PMID: 34159421 DOI: 10.1007/s00213-021-05902-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/08/2021] [Indexed: 01/03/2023]
Abstract
RATIONALE Rates of depression and suicide increase with altitude. In our animal model, rats housed at moderate altitude vs. at sea level exhibit increased depressive symptoms in the forced swim test (FST) and lack of response to selective serotonin reuptake inhibitors (SSRIs). Depression and SSRI resistance are linked to disrupted serotonergic function, and hypobaric hypoxia may reduce the oxygen-dependent synthesis of serotonin. We therefore tested brain serotonin in rats housed at altitude. METHODS Sprague-Dawley rats were housed at altitude (4,500 ft, 10,000 ft) vs. sea level for 7-36 days. Brain serotonin was measured by ELISA, or behavior evaluated in the FST, sucrose preference (SPT), or open-field tests (OFT). RESULTS After 2 weeks at 4,500 ft or 10,000ft vs. sea level, serotonin levels decreased significantly at altitude in the female prefrontal cortex, striatum, hippocampus, and brainstem, but increased with altitude in the male hippocampus and brainstem. Female brain serotonin decreased from 7 to 36 days at 4,500 ft, but males did not vary. At 2 weeks and 24 days, females at altitude exhibit lower brain serotonin and increased depressive symptoms in the FST and SPT, with motor behavior unaltered. In males, serotonin, passive coping in the FST and OFT immobility increased with altitude at 2 weeks, but not at 24 days. Male SPT behavior did not change with altitude. CONCLUSIONS Females may be more vulnerable to depressive symptoms at altitude, while males may be resilient. Chronic hypoxic stress at altitudes as low as 4,500 ft may cause a brain serotonin imbalance to worsen vulnerability to depression and SSRI resistance, and potentially worsen suicide risk.
Collapse
|
8
|
Shehata RSA, Mohamed Nour ZA, Abdelrahim Badr AM, Khalifa EM. Serotonin variations and sleep disorders among shift workers. A cross-sectional study. Toxicol Ind Health 2021; 37:603-609. [PMID: 34493125 DOI: 10.1177/07482337211033135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sleep disorders are prevalent occupational health problems among shift workers, especially healthcare workers with long shifts. Serotonin is a neurotransmitter related to circadian variations accompanied by shift work. A cross-sectional study was performed on 73 nurses at a tertiary hospital in Cairo, Egypt, to assess sleep quality among shift work nurses (SWNs), to determine blood serotonin level, and its relation to shift work and sleep quality. A demographic and occupational history questionnaire, Pittsburgh Sleep Quality Index (PSQI) questionnaire, and measurement of blood serotonin were carried out to the studied group. The data were analyzed using SPSS 25, and descriptive statistics, unpaired t-test, ANOVA, Kruskal-Wallis Test, Chi-square, Spearman correlation, and multivariate regression analysis were utilized. The results showed that the mean PSQI global score was significantly higher among SWNs than non-shift work nurses (NSWNs) and was the highest (10.32 ± 3.56 and 10.22 ± 2.4, respectively) among rotatory and fixed night shift nurses. Blood serotonin showed highly significant differences between SWNs over NSWNs (p = 0.001), and mostly reduced among rotatory and fixed night shift nurses (66.7% and 65%, respectively). Moreover, there were highly significant differences in serotonin levels between poor and good sleep quality nurses (p < 0.001), and most of the poor sleep quality nurses (62.7%) had low serotonin levels. Abnormal serotonin level (odds = 246.5) and working years (odds = 1.2) were statistically significant predictors of poor sleep quality. In conclusion, SWNs, especially rotating and night shift nurses, suffer from poor sleep quality associated with abnormal levels of blood serotonin.
Collapse
Affiliation(s)
| | | | | | - Eman Mahmoud Khalifa
- Occupational and Environmental Department, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
9
|
Kanekar S, Ettaro R, Hoffman MD, Ombach HJ, Brown J, Lynch C, Sheth CS, Renshaw PF. Sex-Based Impact of Creatine Supplementation on Depressive Symptoms, Brain Serotonin and SSRI Efficacy in an Animal Model of Treatment-Resistant Depression. Int J Mol Sci 2021; 22:ijms22158195. [PMID: 34360959 PMCID: PMC8348220 DOI: 10.3390/ijms22158195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Rates of major depressive disorder (MDD) increase with living at altitude. In our model, rats housed at moderate altitude (in hypobaric hypoxia) exhibit increased depression-like behavior, altered brain serotonin and a lack of antidepressant response to most selective serotonin reuptake inhibitors (SSRIs). A forebrain deficit in the bioenergetic marker creatine is noted in people living at altitude or with MDD. Methods: Rats housed at 4500 ft were given dietary creatine monohydrate (CRMH, 4% w/w, 5 weeks) vs. un-supplemented diet, and impact on depression-like behavior, brain bioenergetics, serotonin and SSRI efficacy assessed. Results: CRMH significantly improved brain creatine in a sex-based manner. At altitude, CRMH increased serotonin levels in the female prefrontal cortex and striatum but reduced male striatal and hippocampal serotonin. Dietary CRMH was antidepressant in the forced swim test and anti-anhedonic in the sucrose preference test in only females at altitude, with motor behavior unchanged. CRMH improved fluoxetine efficacy (20 mg/kg) in only males at altitude: CRMH + SSRI significantly improved male striatal creatine and serotonin vs. CRMH alone. Conclusions: Dietary CRMH exhibits sex-based efficacy in resolving altitude-related deficits in brain biomarkers, depression-like behavior and SSRI efficacy, and may be effective clinically for SSRI-resistant depression at altitude. This is the first study to link CRMH treatment to improving brain serotonin.
Collapse
Affiliation(s)
- Shami Kanekar
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
- VISN19 MIRECC, 500 Foothill Drive, Salt Lake City, UT 84148, USA
- Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA
- Correspondence: ; Tel.: +1-801-587-1477 or +1-801-585-5375
| | - Robert Ettaro
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Michael D. Hoffman
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Hendrik J. Ombach
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Jadeda Brown
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Cayla Lynch
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Chandni S. Sheth
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
| | - Perry F. Renshaw
- Diagnostic Neuroimaging, Department of Psychiatry, University of Utah, Salt Lake City, UT 84108, USA; (R.E.); (M.D.H.); (H.J.O.); (J.B.); (C.L.); (C.S.S.); (P.F.R.)
- VISN19 MIRECC, 500 Foothill Drive, Salt Lake City, UT 84148, USA
- Veterans Affairs Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City, UT 84148, USA
| |
Collapse
|
10
|
Minliang C, Chengwei M, Lin C, Zeng AP. Integrated laboratory evolution and rational engineering of GalP/Glk-dependent Escherichia coli for higher yield and productivity of L-tryptophan biosynthesis. Metab Eng Commun 2021; 12:e00167. [PMID: 33665119 PMCID: PMC7907822 DOI: 10.1016/j.mec.2021.e00167] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 01/01/2023] Open
Abstract
L-Tryptophan (Trp) is a high-value aromatic amino acid with diverse applications in food and pharmaceutical industries. Although production of Trp by engineered Escherichia coli has been extensively studied, the need of multiple precursors for its synthesis and the complex regulations of the biosynthetic pathways make the achievement of a high product yield still very challenging. Metabolic flux analysis suggests that the use of a phosphoenolpyruvate:sugar phosphotransferase system (PTS) independent glucose uptake system, i.e. the galactose permease/glucokinase (GalP/Glk) system, can theoretically double the Trp yield from glucose. To explore this possibility, a PTS- and GalP/Glk-dependent E. coli strain was constructed from a previously rationally developed Trp producer strain S028. However, the growth rate of the S028 mutant was severely impaired. To overcome this problem, promoter screening for modulated gene expression of GalP/Glk was carried out, following by a batch mode of adaptive laboratory evolution (ALE) which resulted in a strain K3 with a similar Trp yield and concentration as S028. In order to obtain a more efficient Trp producer, a novel continuous ALE system was developed by combining CRISPR/Cas9-facilitated in vivo mutagenesis with real-time measurement of cell growth and online monitoring of Trp-mediated fluorescence intensity. With the aid of this automatic system (auto-CGSS), a promising strain T5 was obtained and fed-batch fermentations showed an increase of Trp yield by 19.71% with this strain compared with that obtained by the strain K3 (0.164 vs. 0.137 g/g). At the same time, the specific production rate was increased by 52.93% (25.28 vs. 16.53 mg/g DCW/h). Two previously engineered enzyme variants AroGD6G-D7A and AnTrpCR378F were integrated into the strain T5, resulting in a highly productive strain T5AA with a Trp yield of 0.195 g/g and a specific production rate of 28.83 mg/g DCW/h.
Collapse
Affiliation(s)
- Chen Minliang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany
| | - Ma Chengwei
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany
| | - Chen Lin
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, D-21073, Hamburg, Germany
| |
Collapse
|
11
|
Han D, Choi JH, Kim S, Park SM, Shin DG, Kang MK, Choi S, Lee N, Cho JR. Changes in serum serotonin levels in patients with acute coronary syndrome and stable angina undergoing percutaneous coronary intervention. J Int Med Res 2021; 48:300060520970104. [PMID: 33284714 PMCID: PMC7724410 DOI: 10.1177/0300060520970104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Activated platelets release serotonin, causing platelet aggregation and vasoconstriction. Serotonin levels were investigated in patients with acute coronary syndrome (ACS) and chronic stable angina (CSA) treated with percutaneous coronary intervention (PCI). METHODS Consecutive patients undergoing PCI for either ACS or CSA were enrolled between July 2009 and April 2010. Patients were pre-treated with dual antiplatelet agents (aspirin and clopidogrel) before PCI. Serum serotonin levels, measured at baseline, pre- and post-PCI, and at 90 min, and 6, 12, 24 and 48 h following PCI, were compared between ACS and CSA groups. RESULTS Sixty-three patients with ACS and 60 with CSA were included. Overall baseline characteristics were similar between the two groups. Serotonin levels at post-PCI (55.2 ± 120.0 versus 20.1 ± 24.0) and at peak (regardless of timepoint; 94.0 ± 170.9 versus 38.8 ± 72.3) were significantly higher in the ACS versus CSA group. At 90 min and 6, 24 and 48 h post-PCI, serum serotonin was numerically, but not significantly, higher in patients with ACS. Serotonin levels fluctuated in both groups, showing an initial rise and fall, rebound at 24 h and drop at 48 h post-PCI. CONCLUSIONS In patients undergoing PCI, serum serotonin was more elevated in patients with ACS than those with CSA, suggesting the need for more potent and sustained platelet inhibition, particularly in patients with ACS.
Collapse
Affiliation(s)
- Donghoon Han
- Cardiology Division, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Jae Hyuk Choi
- Cardiovascular Centre, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Korea
| | - Sehun Kim
- Cardiovascular Centre, Seongnam Citizens Medical Centre, Seongnam, Korea
| | - Sang Min Park
- Cardiovascular Centre, Nowon Eulji Hospital, Eulji University College of Medicine, Seoul, Korea
| | - Dong Geum Shin
- Cardiology Division, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Min-Kyung Kang
- Cardiology Division, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Seonghoon Choi
- Cardiology Division, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Namho Lee
- Cardiology Division, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Jung Rae Cho
- Cardiology Division, Department of Internal Medicine, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
12
|
Tavolieri MV, Kanagalingam T. Elucidation of a proposed cardiorespiratory circadian rhythm impacting survival in SUDEP. J Physiol 2021; 599:2997-2998. [PMID: 33894696 DOI: 10.1113/jp281562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/15/2021] [Indexed: 11/08/2022] Open
|
13
|
Ugartemendia L, Bravo R, Reuter M, Castaño MY, Plieger T, Zamoscik V, Kirsch P, Rodríguez AB. SLC6A4 polymorphisms modulate the efficacy of a tryptophan-enriched diet on age-related depression and social cognition. Clin Nutr 2021; 40:1487-1494. [PMID: 33743283 DOI: 10.1016/j.clnu.2021.02.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/25/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND & AIMS In a placebo controlled study we sought to determine if a four-weeks tryptophan-enriched diet is able to improve age-related depression or social cognitive impairment, depending on polymorphisms located in the promoter region of Solute Carrier Family 6 Member 4 (SLC6A4), also known as serotonin transporter (SERT1) gene. METHODS 91 young volunteers (age: 21 ± 2 yrs) and 127 above 50 years old (58 ± 6 yrs) healthy volunteers completed the study. Participants from the placebo and tryptophan group followed the same protocol. Before starting the study blood samples, to measure serotonin-transporter-linked polymorphic region (5-HTTLPR) and rs25531 polymorphisms, were collected. In addition, before and after completing the study urine samples (to measure 5-hydroxyindolacetic acid (5-HIAA) were taken, while psychological questionnaires (to assess depression and social cognition levels), and a one week dietary record (to calculate the tryptophan (TRP) intake) were assessed. RESULTS The triallelic approach of SLC6A4 showed that in S'S´ subjects there was a positive correlation between TRP intake and 5-HIAA levels. Age of participants, SLC6A4 genotype, and experimental condition were important factors contributing to the outcome of depression and social cognition. CONCLUSIONS 5-HTTLPR and rs25531 polymorphisms play a key role in the response to the TRP- based nutritional intervention, improving only age-related depressive symptoms and empathy in S'S´ subjects who have a higher risk to show signs of depression during their lifetime.
Collapse
Affiliation(s)
- Lierni Ugartemendia
- Department of Physiology, Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, Badajoz, Spain
| | - Rafael Bravo
- Department of Physiology, Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, Badajoz, Spain.
| | - Martin Reuter
- Biological & Personality Psychology, Laboratory of Neurogenetics, Department of Psychology, University of Bonn, Bonn, Germany
| | - M Yolanda Castaño
- Department of Physiology, Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, Badajoz, Spain
| | - Thomas Plieger
- Biological & Personality Psychology, Laboratory of Neurogenetics, Department of Psychology, University of Bonn, Bonn, Germany
| | - Vera Zamoscik
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Ana B Rodríguez
- Department of Physiology, Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, Badajoz, Spain
| |
Collapse
|
14
|
Purnell BS, Petrucci AN, Li R, Buchanan GF. The effect of time-of-day and circadian phase on vulnerability to seizure-induced death in two mouse models. J Physiol 2021; 599:1885-1899. [PMID: 33501667 DOI: 10.1113/jp280856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/18/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Sudden unexpected death in epilepsy (SUDEP) is the leading cause of premature death in patients with refractory epilepsy. SUDEP typically occurs during the night, although the reason for this is unclear. We found that, in normally entrained mice, time-of-day alters vulnerability to seizure-induced death. We found that, in free-running mice, circadian phase alters the vulnerability to seizure-induced death. These findings suggest that circadian rhythmicity may be responsible for the increased night-time prevalence of SUDEP ABSTRACT: Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death. SUDEP typically occurs during the night following a seizure. Many aspects of mammalian physiology are regulated by circadian rhythms in ways that might make seizures occuring during the night more dangerous. Using two mouse models of seizure-induced death, we demonstrate that time-of-day and circadian rhythms alter vulnerability to seizure-induced death. We exposed normally entrained DBA/1 mice to a potentially seizure-inducing acoustic stimulus at different times of day and compared the characteristics and outcomes of the seizures. Time-of-day did not alter the probability of a seizure but it did alter the probability of seizure-induced death. To determine whether circadian rhythms alter vulnerability to seizure-induced death, we induced maximal electroshock seizures in free-running C57BL/6J mice at different circadian time points at the same time as measuring breathing via whole body plethysmography. Circadian phase did not affect seizure severity but it did alter postictal respiratory outcomes and the probability of seizure-induced death. By contrast to our expectations, in entrained and free-running mice, vulnerability to seizure-induced death was greatest during the night and subjective night, respectively. These findings suggest that circadian rhythmicity may be responsible for the increased night-time prevalence of SUDEP and that the underlying mechanism is phase conserved between nocturnal and diurnal mammals. All of the seizures in the present study were induced during wakefulness, indicating that the effect of time point on vulnerability to seizure-induced death was not the result of sleep. Understanding why SUDEP occurs more frequently during the night may inform future preventative countermeasures.
Collapse
Affiliation(s)
- Benton S Purnell
- Interdisciplinary Graduate Program in Neuroscience, Iowa City, IA, USA.,Iowa Neuroscience Institute, Iowa City, IA, USA.,Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, Iowa City, IA, USA.,Iowa Neuroscience Institute, Iowa City, IA, USA.,Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rui Li
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, Iowa City, IA, USA.,Iowa Neuroscience Institute, Iowa City, IA, USA.,Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
15
|
Merchán A, Pérez-Fernández C, López MJ, Moreno J, Moreno M, Sánchez-Santed F, Flores P. Dietary tryptophan depletion alters the faecal bacterial community structure of compulsive drinker rats in schedule-induced polydipsia. Physiol Behav 2021; 233:113356. [PMID: 33577871 DOI: 10.1016/j.physbeh.2021.113356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/29/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022]
Abstract
RATIONALE Compulsive behaviour, present in different psychiatric disorders such as obsessive-compulsive disorder, schizophrenia and drug abuse, is associated with altered levels of serotonin (5-hydroxytryptamine, 5-HT). The gut microbiota regulates tryptophan (TRP) metabolism and may affect global 5-H synthesis in the enteric and central nervous systems, suggesting a possible involvement of gut microbiota in compulsive spectrum disorders. OBJECTIVES The present study investigated whether chronic TRP depletion by diet alters the faecal bacterial community profiles of compulsive versus non-compulsive rats in schedule-induced polydipsia (SIP). Peripheral plasma 5-HT and brain-derived neurotrophic factor (BDNF) levels were evaluated. METHODS Wistar rats were selected as High Drinkers (HD) or Low Drinkers (LD) according to their SIP behaviour and were fed for 14 days with either a TRP-free diet (T-) or a TRP-supplemented diet (T+). The faecal bacterial community structure was investigated with 16S rRNA gene-targeted denaturing gradient gel electrophoresis (DGGE) fingerprinting analysis. RESULTS Compulsive HD rats showed a lower bacterial diversity than LD rats, irrespectively of the diet. The TRP-depleted HD rats, the only group increasing compulsive licking in SIP, showed a reduction of bacterial evenness and a highly functionally organized community compared with the other groups, indicating that this bacterial community is more fragile to external changes due to the dominance of a low number of species. The chronic TRP depletion by diet effectively reduced peripheral plasma 5-HT levels in both HD and LD rats, while plasma BDNF levels were not altered. CONCLUSIONS These results highlight the possible implication of reduced microbial diversity in compulsive behaviour and the involvement of the serotonergic system in modulating the gut brain-axis in compulsive spectrum disorders.
Collapse
Affiliation(s)
- A Merchán
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - C Pérez-Fernández
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - M J López
- Department of Biology and Geology and CIAMBITAL, University of Almería & CeiA3, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - J Moreno
- Department of Biology and Geology and CIAMBITAL, University of Almería & CeiA3, Ctra. Sacramento s/n, 04120, Almería, Spain
| | - M Moreno
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - F Sánchez-Santed
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain
| | - P Flores
- Department of Psychology and Health Research Center (CEINSA), University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain.
| |
Collapse
|
16
|
Serotonin and Tryptophan Serum Concentrations in Shelter Dogs Showing Different Behavioural Responses to a Potentially Stressful Procedure. Vet Sci 2020; 8:vetsci8010001. [PMID: 33374183 PMCID: PMC7824451 DOI: 10.3390/vetsci8010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 11/25/2022] Open
Abstract
In mammals, serotonin (5-HT) levels depend on the availability of tryptophan (TRP). Low 5-HT concentrations have been linked to behavioural disorders in dogs. This study aimed at investigating possible differences in dogs’ serum TRP and 5-HT concentrations according to their behavioural response to a potentially stressful procedure. Thirty-nine physically healthy shelter dogs, 15 females and 24 males, mean age = 5.6 years, were categorized by a certified veterinary behaviourist according to their behavioural response to medical examination and blood collection, in: relaxation, stress signals, tension without growling, tension with growling, escape attempts, and aggression attempts. Extraction and quantification of 5-HT and TRP were performed using a HLPC method. Data were statistically analysed, applying Chi-square and Spearman tests. Results showed no significant difference in TRP (χ2 = 2.084, p = 0.555) nor 5-HT (χ2 = 0.972, p = 0.808) serum concentrations among different categories of dogs; however, some categories were underrepresented (relaxation = 20.5%, stress signals = 30.8%, tension without growling = 43.6%, tension with growling = 5.1%, escape attempts = 0%, aggression attempts = 0%). No correlation between serum TRP and 5-HT concentrations was found (ρ = 0.086, p = 0.602). Serum 5-HT levels do not seem to be associated with dogs’ behavioural response to a stressful situation nor with serum TRP concentrations. The relationship between serum TRP and 5-HT concentrations and behaviour needs further research.
Collapse
|
17
|
Abad C, Karahoda R, Kastner P, Portillo R, Horackova H, Kucera R, Nachtigal P, Staud F. Profiling of Tryptophan Metabolic Pathways in the Rat Fetoplacental Unit During Gestation. Int J Mol Sci 2020; 21:ijms21207578. [PMID: 33066440 PMCID: PMC7589826 DOI: 10.3390/ijms21207578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 01/11/2023] Open
Abstract
Placental homeostasis of tryptophan is essential for fetal development and programming. The two main metabolic pathways (serotonin and kynurenine) produce bioactive metabolites with immunosuppressive, neurotoxic, or neuroprotective properties and their concentrations in the fetoplacental unit must be tightly regulated throughout gestation. Here, we investigated the expression/function of key enzymes/transporters involved in tryptophan pathways during mid-to-late gestation in rat placenta and fetal organs. Quantitative PCR and heatmap analysis revealed the differential expression of several genes involved in serotonin and kynurenine pathways. To identify the flux of substrates through these pathways, Droplet Digital PCR, western blot, and functional analyses were carried out for the rate-limiting enzymes and transporters. Our findings show that placental tryptophan metabolism to serotonin is crucial in mid-gestation, with a subsequent switch to fetal serotonin synthesis. Concurrently, at term, the close interplay between transporters and metabolizing enzymes of both placenta and fetal organs orchestrates serotonin homeostasis and prevents hyper/hypo-serotonemia. On the other hand, the placental production of kynurenine increases during pregnancy, with a low contribution of fetal organs throughout gestation. Any external insult to this tightly regulated harmony of transporters and enzymes within the fetoplacental unit may affect optimal in utero conditions and have a negative impact on fetal programming.
Collapse
Affiliation(s)
- Cilia Abad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
| | - Petr Kastner
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (P.K.); (R.K.)
| | - Ramon Portillo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
| | - Hana Horackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
| | - Radim Kucera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (P.K.); (R.K.)
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
- Correspondence: ; Tel.: +420-495-067-407
| |
Collapse
|
18
|
Puri S, El-Chami M, Shaheen D, Ivers B, Panza GS, Badr MS, Lin HS, Mateika JH. Variations in loop gain and arousal threshold during NREM sleep are affected by time of day over a 24-hour period in participants with obstructive sleep apnea. J Appl Physiol (1985) 2020; 129:800-809. [PMID: 32790595 DOI: 10.1152/japplphysiol.00376.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated whether time of day affects loop gain (LG) and the arousal threshold (AT) during non-rapid eye movement (NREM) sleep. Eleven men with obstructive sleep apnea (apnea-hypopnea index > 5 events/h) completed a constant-routine protocol that comprised 3-h sleep sessions in the evening [10 PM (1) to 1 AM], morning (6 AM to 9 AM), afternoon (2 PM to 5 PM), and subsequent evening [10 PM (2) to 1 AM]. During each sleep session LG and the AT were measured during NREM sleep with a model-based approach. Our results showed the presence of a rhythmicity in both LG (P < 0.0001) and the AT (P < 0.001) over a 24-h period. In addition, LG and the AT were greater in the morning compared with both evening sessions [6 AM vs. 10 PM (1) vs. 10 PM (2): LG (1 cycle/min): 0.71 ± 0.23 vs. 0.60 ± 0.22 (P = 0.01) vs. 0.56 ± 0.10 (P < 0.001), AT (fraction of eupneic breathing): 1.45 ± 0.47 vs. 1.28 ± 0.36 (P = 0.02) vs. 1.20 ± 0.18 (P = 0.001)]. No difference in LG and the AT existed between the evening sessions (LG: P = 0.27; AT: P = 0.24). LG was correlated to measures of the hypocapnic ventilatory response (i.e., a measure of chemoreflex sensitivity) (r = 0.72 and P = 0.045) and the critical closing pressure (i.e., a measure of airway collapsibility) (r = 0.77 and P = 0.02) that we previously published. We conclude that time of day, independent of hallmarks of sleep apnea, affects LG and the AT during NREM sleep. These modifications may contribute to increases in breathing instability in the morning compared with other periods throughout the day/night cycle in individuals with obstructive sleep apnea. In addition, efficaciousness of treatments for obstructive sleep apnea that target LG and the AT may be modified by a rhythmicity in these variables.NEW & NOTEWORTHY Loop gain and the arousal threshold during non-rapid eye movement (NREM) sleep are greater in the morning compared with the afternoon and evening. Loop gain measures are correlated to chemoreflex sensitivity and the critical closing pressure measured during NREM sleep in the evening, morning, and afternoon. Breathing (in)stability and efficaciousness of treatments for obstructive sleep apnea may be modulated by a circadian rhythmicity in loop gain and the arousal threshold.
Collapse
Affiliation(s)
- Shipra Puri
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohamad El-Chami
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - David Shaheen
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Blake Ivers
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Gino S Panza
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - M Safwan Badr
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan.,Department of Biomedical Engineering, Wayne State University, Detroit, Michigan
| | - Ho-Sheng Lin
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, Michigan
| | - Jason H Mateika
- John D. Dingell Department of Veterans Affairs Medical Center, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
19
|
Hartsock MJ, Spencer RL. Memory and the circadian system: Identifying candidate mechanisms by which local clocks in the brain may regulate synaptic plasticity. Neurosci Biobehav Rev 2020; 118:134-162. [PMID: 32712278 DOI: 10.1016/j.neubiorev.2020.07.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
The circadian system is an endogenous biological network responsible for coordinating near-24-h cycles in behavior and physiology with daily timing cues from the external environment. In this review, we explore how the circadian system regulates memory formation, retention, and recall. Circadian rhythms in these memory processes may arise through several endogenous pathways, and recent work highlights the importance of genetic timekeepers found locally within tissues, called local clocks. We evaluate the circadian memory literature for evidence of local clock involvement in memory, identifying potential nodes for direct interactions between local clock components and mechanisms of synaptic plasticity. Our discussion illustrates how local clocks may pervasively modulate neuronal plastic capacity, a phenomenon that we designate here as circadian metaplasticity. We suggest that this function of local clocks supports the temporal optimization of memory processes, illuminating the potential for circadian therapeutic strategies in the prevention and treatment of memory impairment.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| | - Robert L Spencer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309, United States.
| |
Collapse
|
20
|
Petrucci AN, Joyal KG, Purnell BS, Buchanan GF. Serotonin and sudden unexpected death in epilepsy. Exp Neurol 2020; 325:113145. [PMID: 31866464 PMCID: PMC7029792 DOI: 10.1016/j.expneurol.2019.113145] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/12/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Epilepsy is a highly prevalent disease characterized by recurrent, spontaneous seizures. Approximately one-third of epilepsy patients will not achieve seizure freedom with medical management and become refractory to conventional treatments. These patients are at greatest risk for sudden unexpected death in epilepsy (SUDEP). The exact etiology of SUDEP is unknown, but a combination of respiratory, cardiac, neuronal electrographic dysfunction, and arousal impairment is thought to underlie SUDEP. Serotonin (5-HT) is involved in regulation of breathing, sleep/wake states, arousal, and seizure modulation and has been implicated in the pathophysiology of SUDEP. This review explores the current state of understanding of the relationship between 5-HT, epilepsy, and respiratory and autonomic control processes relevant to SUDEP in epilepsy patients and in animal models.
Collapse
Affiliation(s)
- Alexandra N Petrucci
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Katelyn G Joyal
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Benton S Purnell
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America
| | - Gordon F Buchanan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, United States of America; Department of Neurology, University of Iowa, Iowa City, IA 52242, United States of America; Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, United States of America.
| |
Collapse
|
21
|
Lacerda DC, Manhães-de-Castro R, Gouveia HJCB, Tourneur Y, Costa de Santana BJ, Assunção Santos RE, Olivier-Coq J, Ferraz-Pereira KN, Toscano AE. Treatment with the essential amino acid L-tryptophan reduces masticatory impairments in experimental cerebral palsy. Nutr Neurosci 2019; 24:927-939. [PMID: 31766953 DOI: 10.1080/1028415x.2019.1695360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Purpose Children with cerebral palsy (CP) often exhibit difficulties in feeding resulting from deficits in chewing. This study investigates the therapeutic potential of L-tryptophan (TRI) to reduce deficits in chewing in rats subjected to an experimental model of CP.Methods A total of 80 Wistar albino rats were used. Pups were randomly assigned to 4 experimental groups: Control Saline, Control TRI, CP Saline, and CP TRI groups. The experimental model of CP was based on the combination of perinatal anoxia associated with postnatal sensorimotor restriction of the hind limbs. TRI was administered subcutaneously during the lactation period. Anatomical and behavioral parameters were evaluated during maturation, including body weight gain, food intake, chewing movements, relative weight and the distribution of the types of masseter muscle fibers.Results The induction of CP limited body weight gain, decreased food intake and led to impairment in the morphological and functional parameters of chewing. Moreover, for a comparable amount of food ingested, CP TRI animals grew the most. In addition, supplementation with TRI improved the number of chewing movements, and increased the weight and proportion of type IIB fibers of the masseter in rats subjected to CP.Conclusion These results demonstrate that experimental CP impaired the development of mastication and that TRI supplementation increased masticatory maturation in animals subjected to CP.
Collapse
Affiliation(s)
- Diego Cabral Lacerda
- Post Graduate Program in Nutrition, Federal University of Pernambuco Recife, Brazil
| | | | | | | | | | | | - Jacques Olivier-Coq
- Institut de Neuroscience de la Timone (INT), UMR 7289, CNRS Aix Marseille Université, Marseille, France
| | | | - Ana Elisa Toscano
- Department of Nursing, CAV, Federal University of Pernambuco Recife, Brazil
| |
Collapse
|
22
|
Pinheiro IL, da Silva AI, Reginato A, da Silva Filho RC, Galindo LCM, Matos RJB, de Souza Ferraz JC, Toscano Meneses da Silva Castro AE, Milanski Ferreira M, Manhães de Castro R, de Souza SL. Neonatal fluoxetine exposure modulates serotonergic neurotransmission and disturb inhibitory action of serotonin on food intake. Behav Brain Res 2019; 357-358:65-70. [DOI: 10.1016/j.bbr.2017.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/12/2017] [Accepted: 07/25/2017] [Indexed: 12/15/2022]
|
23
|
Mateika JH, Komnenov D, Pop A, Kuhn DM. Genetic depletion of 5-HT increases central apnea frequency and duration and dampens arousal but does not impact the circadian modulation of these variables. J Appl Physiol (1985) 2019; 126:1-10. [DOI: 10.1152/japplphysiol.00724.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We examined the impact of serotonin (5-HT) on the frequency and duration of central apneic events and the frequency of accompanying arousals during nonrapid and rapid eye movement (NREM and REM, respectively) sleep across the light/dark cycle. Electroencephalography, electromyography, core body temperature, and activity were recorded for 24 h following implantation of telemeters in wild-type (Tph2+/+) and tryptophan hydroxylase 2 knockout (Tph2−/−) male mice. The frequency and duration of central apneic events were increased, the number of apneic events coupled to an arousal was decreased, and the ventilatory sensitivity to hypoxia and hypercapnia was decreased in the Tph2−/− compared with the Tph2+/+ mice during NREM sleep. Apnea frequency and duration were similar in the Tph2−/− and Tph2+/+ mice during REM sleep. The duration of apneic events during REM compared with NREM sleep was similar in the Tph2−/− mice. In contrast, the duration was greater during REM sleep in the Tph2+/+ mice. Our results also revealed that apnea frequency was greater during the light compared with the dark cycle. Circadian modulation of this variable was evident in both the Tph2−/− and Tph2+/+ mice during NREM and REM sleep. We conclude that depletion of 5-HT increases the frequency and duration of central apneic events, dampens arousal, and blunts the ventilatory response to hypoxia and hypercapnia during NREM sleep but is not essential for the circadian modulation of these variables. NEW & NOTEWORTHY The presence of serotonin (5-HT) in the central nervous system diminishes the frequency of central apneic events. This neuromodulator also moderates the duration of central apneic events and promotes arousal from central events if they occur during nonrapid eye movement (NREM) sleep. However, 5-HT is not responsible for the circadian modulation of apnea frequency, which we found was greater during NREM sleep in the light compared with the dark cycle.
Collapse
Affiliation(s)
- Jason H. Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - Dragana Komnenov
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Alexandru Pop
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Donald M. Kuhn
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
24
|
Purnell BS, Thijs RD, Buchanan GF. Dead in the Night: Sleep-Wake and Time-Of-Day Influences on Sudden Unexpected Death in Epilepsy. Front Neurol 2018; 9:1079. [PMID: 30619039 PMCID: PMC6297781 DOI: 10.3389/fneur.2018.01079] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/27/2018] [Indexed: 11/13/2022] Open
Abstract
Sudden unexpected death in epilepsy (SUDEP) is the leading cause of epilepsy-related death in patients with refractory epilepsy. Convergent lines of evidence suggest that SUDEP occurs due to seizure induced perturbation of respiratory, cardiac, and electrocerebral function as well as potential predisposing factors. It is consistently observed that SUDEP happens more during the night and the early hours of the morning. The aim of this review is to discuss evidence from patient cases, clinical studies, and animal research which is pertinent to the nocturnality of SUDEP. There are a number of factors which might contribute to the nighttime predilection of SUDEP. These factors fall into four categories: influences of (1) being unwitnessed, (2) lying prone in bed, (3) sleep-wake state, and (4) circadian rhythms. During the night, seizures are more likely to be unwitnessed; therefore, it is less likely that another person would be able to administer a lifesaving intervention. Patients are more likely to be prone on a bed following a nocturnal seizure. Being prone in the accouterments of a bed during the postictal period might impair breathing and increase SUDEP risk. Sleep typically happens at night and seizures which emerge from sleep might be more dangerous. Lastly, there are circadian changes to physiology during the night which might facilitate SUDEP. These possible explanations for the nocturnality of SUDEP are not mutually exclusive. The increased rate of SUDEP during the night is likely multifactorial involving both situational factors, such as being without a witness and prone, and physiological changes due to the influence of sleep and circadian rhythms. Understanding the causal elements in the nocturnality of SUDEP may be critical to the development of effective preventive countermeasures.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Neuroscience Program, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Roland D Thijs
- Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands.,NIHR University College London Hospitals Biomedical Research Centre, UCL Institute of Neurology, London, United Kingdom.,Department of Neurology, LUMC Leiden University Medical Center, Leiden, Netherlands
| | - Gordon F Buchanan
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Neuroscience Program, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
25
|
The Antidepressant-Like Effect of Lactate in an Animal Model of Menopausal Depression. Biomedicines 2018; 6:biomedicines6040108. [PMID: 30469388 PMCID: PMC6316721 DOI: 10.3390/biomedicines6040108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/12/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND This study aimed to investigate the antidepressant-like effect of lactate and elucidate its mechanisms in ovariectomized rats with repeated stress. METHODS Two experiments were conducted on female rats in which all groups, except normal, were ovariectomized and underwent immobilization for 14 days. Lactate was administered orally (100, 250, and 500 mg/kg) for 14 consecutive days, and the rats' cutaneous body temperature was measured during the same period. Depression-like behavior in rats was assessed by the tail suspension test (TST) and forced swimming test (FST). Furthermore, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were conducted to evaluate the changes that occurred in the neurotransmitter levels and activity. RESULTS The lactate 100 and 250 groups had reduced time spent immobile in TST and FST and decreased peripheral body temperature. In ELISA tests, the lactate 250 group expressed elevated levels of serotonin and dopamine in many brain areas. Tyrosine hydroxylase (TH), tryptophan hydroxylase (TPH), and protein kinase C (PKC) immunoreactive cells showed increased density and cell counts in lactate administered groups. CONCLUSION Results indicated that lactate has an antidepressant effect that is achieved by activation of PKC and upregulation of TH and TPH expression, which eventually leads to enhanced serotonin and dopamine levels in the menopausal rat's brain.
Collapse
|
26
|
Carneiro IBC, Toscano AE, Lacerda DC, da Cunha MDSB, de Castro RM, Deiró TCBDJ, Medeiros JMB. L-tryptophan administration and increase in cerebral serotonin levels: Systematic review. Eur J Pharmacol 2018; 836:129-135. [PMID: 30098308 DOI: 10.1016/j.ejphar.2018.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/05/2018] [Accepted: 08/06/2018] [Indexed: 11/27/2022]
Abstract
The amino acid tryptophan (2-Amino-3-(lH-indol-3-yl)-propanoic acid; Trp) is a precursor of the neurotransmitter serotonin (5-hydroxytryptamine; 5-HT) that performs various brain functions. The administration of Trp is used in experimental studies to manipulate the serotonergic system, however the dose of Trp required to raise brain 5-HT levels is controversial. The aim of this study was to systemically review the effect of the administration of different doses of Trp on cerebral 5-HT levels. Two independent authors conducted a systematic review in the electronic databases. Twenty-five studies were included in the present review. Trp was administered orally, intraperitoneally or subcutaneous in adult animals. The brain 5-HT levels elevated after Trp administration in different intensities, dependent of the brain region evaluated and the time of administration. Further studies are needed to assess the dose-response of Trp administration to brain 5-HT levels.
Collapse
Affiliation(s)
- Isadora Braga Contreiras Carneiro
- Graduate Program in Nutrition, Federal University of Bahia, Av Araújo Pinho, 32 - Canela, 40110-150 Salvador, Bahia, Brazil; Center for Biological and Health Sciences, Federal University of Western Bahia, Estrada da Prainha s/n, 47805-000 Barreiras, Bahia, Brazil.
| | - Ana Elisa Toscano
- Department of Nursing, CAV, Federal University of Pernambuco, 55608-680 Vitória de Santo Antão, PE, Brazil.
| | - Diego Cabral Lacerda
- Graduate Program in Nutrition, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, 50670-901 Recife, PE, Brazil.
| | - Marcela de Sá Barreto da Cunha
- Center for Biological and Health Sciences, Federal University of Western Bahia, Estrada da Prainha s/n, 47805-000 Barreiras, Bahia, Brazil.
| | - Raul Manhães de Castro
- Graduate Program in Nutrition, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, 50670-901 Recife, PE, Brazil.
| | | | - Jairza Maria Barreto Medeiros
- Graduate Program in Nutrition, Federal University of Bahia, Av Araújo Pinho, 32 - Canela, 40110-150 Salvador, Bahia, Brazil.
| |
Collapse
|
27
|
The Timing of Melatonin Administration Is Crucial for Its Antidepressant-Like Effect in Mice. Int J Mol Sci 2018; 19:ijms19082278. [PMID: 30081472 PMCID: PMC6121277 DOI: 10.3390/ijms19082278] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Melatonin is synthesized by the pineal gland with a circadian rhythm in synchrony with the environmental light/dark cycle. A gradual increase in circulating levels of melatonin occur after lights off, reaching its maximum around the middle of the dark phase. Agonists of melatonin receptors have proved effectiveness as antidepressants in clinical trials. However, there is contradictory evidence about the potential antidepressant effect of melatonin itself. Herein we studied melatonin administration in mice at two zeitgeber times (ZT; ZT = 0 lights on; 12:12 L/D), one hour before the beginning (ZT11) and at the middle (ZT18) of the dark phase after either a single or a three-dose protocol. Behavioral despair was assessed through a forced-swimming test (FST) or a tail suspension test (TST), at ZT18.5. A single dose of 4 mg/kg melatonin at ZT11 was effective to reduce the immobility time in both tests. However, acute administration of melatonin at ZT18 was not effective in mice subjected to FST, and a higher dose (16 mg/kg) was required to reduce immobility time in the TST. A three-dose administration protocol of 16 mg/kg melatonin (ZT18, ZT11, and ZT18) significantly reduced immobility time in FST. Data indicate that the timely administration of melatonin could improve its antidepressant-like effect.
Collapse
|
28
|
Tachibana T, Kadomoto Y, Khan MSI, Makino R, Cline MA. Effect of l-tryptophan and its metabolites on food passage from the crop in chicks. Domest Anim Endocrinol 2018; 64:59-65. [PMID: 29753195 DOI: 10.1016/j.domaniend.2018.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/09/2018] [Accepted: 03/11/2018] [Indexed: 11/27/2022]
Abstract
l-tryptophan (l-Trp), an essential amino acid, is well known as a precursor of 5-hydroxytryptamine (5-HT) and melatonin. In mammals, l-Trp itself has been reported to suppress gastric emptying in mammals. In addition, 5-HT and melatonin are found in the gastrointestinal tract and affect food passage from the digestive tract in mammals. While the function of these factors in mammals is documented, there is little knowledge on their function in the digestive tract of birds. Therefore, the purpose of the present study was to determine if l-Trp and its metabolites affect the crop emptying rate in chicks (Gallus gallus). We also investigated the effects of kynurenic acid (KYNA) and quinolinic acid (QA), which are metabolites of the kynurenine pathway for l-Trp. Oral administration of l-Trp significantly reduced the crop emptying rate in chicks. Among the metabolites, intraperitoneal injection of 5-HT and melatonin significantly reduced the crop emptying rate, whereas KYNA and QA had no effect. The present study suggests that l-Trp, 5-HT, and melatonin inhibit the movement of food in the digestive tract and thereby affect the utilization of nutrients in the diet of chicks.
Collapse
Affiliation(s)
- T Tachibana
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan.
| | - Y Kadomoto
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - M S I Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon 791-0295, Ehime, Japan
| | - R Makino
- Department of Agrobiological Science, Faculty of Agriculture, Ehime University, Matsuyama 790-8566, Japan
| | - M A Cline
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
29
|
Impact of a Specific Amino Acid Composition with Micronutrients on Well-Being in Subjects with Chronic Psychological Stress and Exhaustion Conditions: A Pilot Study. Nutrients 2018; 10:nu10050551. [PMID: 29710825 PMCID: PMC5986431 DOI: 10.3390/nu10050551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/16/2018] [Accepted: 04/25/2018] [Indexed: 12/22/2022] Open
Abstract
Chronic work-life stress leads to dysfunction of the hypothalamus–pituitary–adrenal axis, the autonomic nervous system, and the serotonergic system, with resultant impairment of overall well-being. Aim of the study was to improve perceived stress by a specific amino acid composition with micronutrients in the verum versus placebo group. A total of 59 participants (18–65 years) with self-reported perceived chronic stress and exhaustion conditions participated in this randomized, double-blind, placebo-controlled study. The Perceived Stress Questionnaire (PSQ30), amino acid profile, anthropometric, clinical, blood, urine parameters, and dietary intake were assessed. After 12 weeks, the verum group achieved significantly greater improvements in the total PSQ30 score compared with the placebo group. In the verum group, serum taurine concentration, folic acid concentration, urinary magnesium excretion, and the ratio of l-tryptophan to the sum of competing amino acids rose significantly. In the placebo group, serum concentrations of serotonin, protein, and magnesium decreased significantly, whereas the cardiometabolic risk parameters body weight, body mass index, waist circumference, and waist-to-height ratio increased significantly. Compared with placebo, the verum supplementation resulted in a higher improvement in perceived stress. Beneficial effects on the serotonergic system and preventive effects on magnesium homeostasis and some cardiometabolic risk factors were supposed. Additional effects might be caused by the optimized food intake.
Collapse
|
30
|
Gul S, Saleem D, Haleem MA, Haleem DJ. Inhibition of hormonal and behavioral effects of stress by tryptophan in rats. Nutr Neurosci 2017; 22:409-417. [DOI: 10.1080/1028415x.2017.1395551] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sumera Gul
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, University of Karachi, Karachi 75270, Pakistan
- Department of Physiology, Wah Medical College, Wah Cantt, Pakistan
| | - Darakhshan Saleem
- Department of Biomedical Engineering, Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan
| | - Muhammad A. Haleem
- Department of Biomedical Engineering, Sir Syed University of Engineering and Technology, Karachi 75300, Pakistan
| | - Darakhshan Jabeen Haleem
- Neuroscience Research Laboratory, Dr. Panjwani Center for Molecular Medicine and Drug Research, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
31
|
El-Chami M, Sudan S, Lin HS, Mateika JH. Exposure to intermittent hypoxia and sustained hypercapnia reduces therapeutic CPAP in participants with obstructive sleep apnea. J Appl Physiol (1985) 2017; 123:993-1002. [DOI: 10.1152/japplphysiol.00204.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 12/31/2022] Open
Abstract
Our purpose was to determine whether exposure to mild intermittent hypoxia leads to a reduction in the therapeutic continuous positive airway pressure required to eliminate breathing events. Ten male participants were treated with twelve 2-min episodes of hypoxia ([Formula: see text] ≈50 mmHg) separated by 2-min intervals of normoxia in the presence of [Formula: see text] that was sustained 3 mmHg above baseline. During recovery from the last episode, the positive airway pressure was reduced in a stepwise fashion until flow limitation was evident. The participants also completed a sham protocol under normocapnic conditions, which mimicked the time frame of the intermittent hypoxia protocol. After exposure to intermittent hypoxia, the therapeutic pressure was significantly reduced (i.e., 5 cmH2O) without evidence of flow limitation (103.4 ± 6.3% of baseline, P = 0.5) or increases in upper airway resistance (95.6 ± 15.0% of baseline, P = 0.6). In contrast, a similar decrease in pressure was accompanied by flow limitation (77.0 ± 1.8% of baseline, P = 0.001) and an increase in upper airway resistance (167.2 ± 17.5% of baseline, P = 0.01) after the sham protocol. Consistent with the initiation of long-term facilitation of upper airway muscle activity, exposure to intermittent hypoxia reduced the therapeutic pressure required to eliminate apneic events that could improve treatment compliance. This possibility, coupled with the potentially beneficial effects of intermittent hypoxia on comorbidities linked to sleep apnea, suggests that mild intermittent hypoxia may have a multipronged therapeutic effect on sleep apnea. NEW & NOTEWORTHY Our new finding is that exposure to mild intermittent hypoxia reduced the therapeutic pressure required to treat sleep apnea. These findings are consistent with previous results, which have shown that long-term facilitation of upper muscle activity can be initiated following exposure to intermittent hypoxia in humans.
Collapse
Affiliation(s)
- Mohamad El-Chami
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sukhesh Sudan
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Ho-Sheng Lin
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, Michigan
| | - Jason H. Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan; and
| |
Collapse
|
32
|
Mateika JH, Komnenov D. Intermittent hypoxia initiated plasticity in humans: A multipronged therapeutic approach to treat sleep apnea and overlapping co-morbidities. Exp Neurol 2016; 287:113-129. [PMID: 27170208 DOI: 10.1016/j.expneurol.2016.05.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/18/2016] [Accepted: 05/03/2016] [Indexed: 10/21/2022]
Abstract
Over the past three decades exposure to intermittent hypoxia (IH) has generally been considered a stimulus associated with a number of detrimental outcomes. However, there is sufficient evidence to link IH to many beneficial outcomes but they have largely been ignored, particularly in the field of sleep medicine in the United States. Recent reviews have postulated that this apparent contradiction is related to the severity and duration of exposure to IH; mild forms of IH initiate beneficial outcomes while severe forms of IH are coupled to detrimental consequences. In the present review we explore the role that IH has in initiating respiratory plasticity and the potential this form of plasticity has to mitigate obstructive sleep apnea (OSA) in humans. In taking this approach, we address the possibility that IH could serve as an adjunct therapy coupled with continuous positive airway pressure (CPAP) to treat OSA. Our working hypothesis is that exposure to mild IH leads to respiratory plasticity that manifests in increased stability of the upper airway, which could ultimately reduce the CPAP required to treat OSA. In turn, this reduction could increase CPAP compliance and extend the length of treatment each night, which might improve the magnitude of outcome measures. Improved treatment compliance coupled with the direct effect that IH has on numerous overlapping conditions (i.e. asthma, chronic obstructive pulmonary disease, spinal cord injury) may well lead to substantial improvements that exceed outcomes following treatment with CPAP alone. Overall, this review will consider evidence from the published literature which suggests that IH could serve as an effective multipronged therapeutic approach to treat sleep apnea and its overlapping co-morbidities.
Collapse
Affiliation(s)
- Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| | - Dragana Komnenov
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| |
Collapse
|
33
|
|
34
|
El-Chami M, Shaheen D, Ivers B, Syed Z, Badr MS, Lin HS, Mateika JH. Time of day affects the frequency and duration of breathing events and the critical closing pressure during NREM sleep in participants with sleep apnea. J Appl Physiol (1985) 2015; 119:617-26. [PMID: 26183479 DOI: 10.1152/japplphysiol.00346.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 07/15/2015] [Indexed: 12/28/2022] Open
Abstract
We investigated if the number and duration of breathing events coupled to upper airway collapsibility were affected by the time of day. Male participants with obstructive sleep apnea completed a constant routine protocol that consisted of sleep sessions in the evening (10 PM to 1 AM), morning (6 AM to 9 AM), and afternoon (2 PM to 5 PM). On one occasion the number and duration of breathing events was ascertained for each sleep session. On a second occasion the critical closing pressure that demarcated upper airway collapsibility was determined. The duration of breathing events was consistently greater in the morning compared with the evening and afternoon during N1 and N2, while an increase in event frequency was evident during N1. The critical closing pressure was increased in the morning (2.68 ± 0.98 cmH2O) compared with the evening (1.29 ± 0.91 cmH2O; P ≤ 0.02) and afternoon (1.25 ± 0.79; P ≤ 0.01). The increase in the critical closing pressure was correlated to the decrease in the baseline partial pressure of carbon dioxide in the morning compared with the afternoon and evening (r = -0.73, P ≤ 0.005). Our findings indicate that time of day affects the duration and frequency of events, coupled with alterations in upper airway collapsibility. We propose that increases in airway collapsibility in the morning may be linked to an endogenous modulation of baseline carbon dioxide levels and chemoreflex sensitivity (12), which are independent of the consequences of sleep apnea.
Collapse
Affiliation(s)
- Mohamad El-Chami
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - David Shaheen
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Blake Ivers
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Ziauddin Syed
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - M Safwan Badr
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; Department of Biomedical Engineering, Wayne State University Detroit, Michigan
| | - Ho-Sheng Lin
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; Department of Otolaryngology-Head and Neck Surgery, Wayne State University School of Medicine and Karmanos Cancer Institute, Detroit, Michigan; and
| | - Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan;
| |
Collapse
|
35
|
Musumeci G, Imbesi R, Trovato FM, Szychlinska MA, Aiello FC, Buffa P, Castrogiovanni P. Importance of serotonin (5-HT) and its precursor l-tryptophan for homeostasis and function of skeletal muscle in rats. A morphological and endocrinological study. Acta Histochem 2015; 117:267-74. [PMID: 25805417 DOI: 10.1016/j.acthis.2015.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 01/08/2023]
Abstract
Serotonin (5-HT) is a neurotransmitter, synthesized in serotonergic neurons of the central nervous system and in enterochromaffin cells of the gastrointestinal tract, which is involved in the regulation of several body functions, including muscle tissue development and growth and its contractile response. l-Tryptophan (l-Trp) is an essential amino acid and precursor of 5-HT. The aim of the present study was to better understand the mechanisms that govern neuroendocrine homeostasis of muscle tissue and emphasize the importance of a diet, complete in all its elements, referring specifically to the essential amino acids such as l-Trp, crucial in several neuroendocrine functions.We analyzed the possible consequences of l-Trp-free diet on 5-HT production and on skeletal muscle morphology and function in young female rats. We also evaluated the eventual alterations of hormone production such as growth hormone (GH), thyroid stimulating hormone (TSH) and thyroid hormones (T3 and T4) that control and regulate growth, metabolism and efficiency of the skeletal muscle. Our results showed a strong decrease of 5-HT, GH, TSH, T3 and T4 levels associated to a clear difference in body weight between experimental and control rats. Moreover, the muscle samples of experimental rats showed histological and ultrastructural alterations. These findings thus supported a strong link between l-Trp, serotonergic system, hormone secretion and morphology of skeletal muscle tissue and thus, the importance of a balanced daily diet.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Rosa Imbesi
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Francesca Maria Trovato
- Department of Clinical and Experimental Medicine, Internal Medicine Division, University of Catania, Via S. Sofia 78, 95123 Catania, Italy
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Flavia Concetta Aiello
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| | - Pietro Buffa
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy
| |
Collapse
|
36
|
Mateika JH, El-Chami M, Shaheen D, Ivers B. Intermittent hypoxia: a low-risk research tool with therapeutic value in humans. J Appl Physiol (1985) 2014; 118:520-32. [PMID: 25549763 DOI: 10.1152/japplphysiol.00564.2014] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Intermittent hypoxia has generally been perceived as a high-risk stimulus, particularly in the field of sleep medicine, because it is thought to initiate detrimental cardiovascular, respiratory, cognitive, and metabolic outcomes. In contrast, the link between intermittent hypoxia and beneficial outcomes has received less attention, perhaps because it is not universally understood that outcome measures following exposure to intermittent hypoxia may be linked to the administered dose. The present review is designed to emphasize the less recognized beneficial outcomes associated with intermittent hypoxia. The review will consider the role intermittent hypoxia has in cardiovascular and autonomic adaptations, respiratory motor plasticity, and cognitive function. Each section will highlight the literature that contributed to the belief that intermittent hypoxia leads primarily to detrimental outcomes. The second segment of each section will consider the possible risks associated with experimentally rather than naturally induced intermittent hypoxia. Finally, the body of literature indicating that intermittent hypoxia initiates primarily beneficial outcomes will be considered. The overarching theme of the review is that the use of intermittent hypoxia in research investigations, coupled with reasonable safeguards, should be encouraged because of the potential benefits linked to the administration of a variety of low-risk intermittent hypoxia protocols.
Collapse
Affiliation(s)
- Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and Department of Internal Medicine, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohamad El-Chami
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| | - David Shaheen
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| | - Blake Ivers
- John D. Dingell Veterans Affairs Medical Center, Detroit, Michigan; Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan; and
| |
Collapse
|
37
|
Diurnal profiles of melatonin synthesis-related indoles, catecholamines and their metabolites in the duck pineal organ. Int J Mol Sci 2014; 15:12604-30. [PMID: 25032843 PMCID: PMC4139863 DOI: 10.3390/ijms150712604] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/01/2014] [Accepted: 07/03/2014] [Indexed: 11/17/2022] Open
Abstract
This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime.
Collapse
|
38
|
Sadeghiyan-Rizi T, Fooladi J, Momhed Heravi M, Sadrai S. Optimization of L-Tryptophan Biosynthesis From L-Serine of Processed Iranian Beet and Cane Molasses and Indole by Induced Escherichia coli ATCC 11303 Cells. Jundishapur J Microbiol 2014; 7:e10589. [PMID: 25371801 PMCID: PMC4217663 DOI: 10.5812/jjm.10589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/25/2013] [Accepted: 05/05/2013] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND L-tryptophan is an important ingredient in medicines, especially in neuromedicines such as antidepressants. Many commercial processes employ various microorganisms with high tryptophan synthase activity to produce L-tryptophan from indole and L-serine, but these processes are very costly due to the costs of precursors, especially L-serine. OBJECTIVES For this reason, we studied the ability to use processed Iranian cane and beet molasses as L-serine sources for L-tryptophan production, which enables us to reach a cost-effective process. MATERIALS AND METHODS Whole cells of Escherichia coli ATCC 11303 were induced for L-tryptophan synthase by addition of indole to the growth medium and bacterial cells harvested from the growth medium were used as biocatalysts in the production medium. Conditions of the production medium were optimized and Iranian cane and beet molasses were processed by solvent extraction with ethanol and n-butanol and used as L-serine sources of the production medium. Amount of L-tryptophan and theoretical yield of L-tryptophan production were determined by High Performance Liquid Chromatography and by a colorimetrical method on the basis of the remaining indole assay, respectively. RESULTS L-tryptophan production increased by 15 folds, when indole was used as an inducer. L-tryptophan was produced from processed Iranian beet molasses in satisfactory amounts (0.53 mM) and no exogenous pyridoxal phosphate was required as a cofactor under our experimental conditions. CONCLUSIONS The obtained results proved that Iranian beet molasses include significant amounts of L-serine that makes them a suitable substitution for L-serine. Findings of the present study give impetus to use of Iranian beet molasses for cost-effective L-Trp production in the amino acid industry.
Collapse
Affiliation(s)
- Tahereh Sadeghiyan-Rizi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Jamshid Fooladi
- Department of Biology, National Laboratory of Industrial Microbiology, Faculty of Science, Alzahra University, Tehran, IR Iran
| | - Majid Momhed Heravi
- Department of Chemistry, Faculty of Science, Alzahra University, Tehran, IR Iran
| | - Sima Sadrai
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
39
|
Serotonin (5HT) expression in rat pups treated with high-tryptophan diet during fetal and early postnatal development. Acta Histochem 2014; 116:335-43. [PMID: 24071520 DOI: 10.1016/j.acthis.2013.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/18/2013] [Accepted: 08/19/2013] [Indexed: 01/01/2023]
Abstract
Serotonin (5HT) is a neurotransmitter synthesized in serotonergic neurons of the central nervous system and in the enterochromaffin cells of the gastrointestinal tract. 5HT regulates growth and maturation of some cerebral regions in the developing brain as well as the secretion of pituitary growth hormone. This hormone is necessary for development and growth through the stimulation of insulin-like growth factor synthesis. The precursor of 5HT, tryptophan (Trp), is an essential amino acid, since the human organism is unable to synthesize it and it is assumed only through diet. The aim of our study was to analyze how a high-tryptophan diet in pregnant rats affects growth and survival of pups until weaning. We monitored the number and weight of pups until weaning. Then, we detected serotonin and growth hormone levels in whole blood by ELISA of surviving pups at the end of the lactation period. We also analyzed by means of immunohistochemistry and Western blot the expression of serotonin in rat gastric tissue and the morphological structure of skeletal muscle tissue of both control and experimental pups. Hyperserotonemia and very low levels of growth hormone were detected in experimental pups compared to controls. Immunohistochemistry demonstrated a strong serotonin expression in stomach samples confirming that a high intake of tryptophan increases the production of serotonin in enterochromaffin cells, thereby resulting in hyperserotonemia in pups. These data were also strengthened by Western blot analysis. Histological alterations of skeletal muscle fibers in experimental pups were found and showed that in experimental samples the muscle tissue demonstrated deleterious alterations, being less developed and defined. Our data suggest that a high-tryptophan diet in pregnant rats induces hyperserotonemia in the fetus. Hyperserotonemia results in an excess of serotonin in the brain where it has a negative influence on development of serotonergic neurons and consequently on growth hormone production.
Collapse
|
40
|
Garrido M, Terrón MP, Rodríguez AB. Chrononutrition against oxidative stress in aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:729804. [PMID: 23861994 PMCID: PMC3703798 DOI: 10.1155/2013/729804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/30/2013] [Accepted: 06/02/2013] [Indexed: 01/27/2023]
Abstract
Free radicals and oxidative stress have been recognized as important factors in the biology of aging and in many age-associated degenerative diseases. Antioxidant systems deteriorate during aging. It is, thus, considered that one way to reduce the rate of aging and the risk of chronic disease is to avoid the formation of free radicals and reduce oxidative stress by strengthening antioxidant defences. Phytochemicals present in fruits, vegetables, grains, and other foodstuffs have been linked to reducing the risk of major oxidative stress-induced diseases. Some dietary components of foods possess biological activities which influence circadian rhythms in humans. Chrononutrition studies have shown that not only the content of food, but also the time of ingestion contributes to the natural functioning of the circadian system. Dietary interventions with antioxidant-enriched foods taking into account the principles of chrononutrition are of particular interest for the elderly since they may help amplify the already powerful benefits of phytochemicals as natural instruments with which to prevent or delay the onset of common age-related diseases.
Collapse
Affiliation(s)
- M Garrido
- Department of Physiology, Neuroimmunophysiology and Chrononutrition Research Group, Faculty of Science, University of Extremadura, 06006 Badajoz, Spain.
| | | | | |
Collapse
|
41
|
Castrogiovanni P, Musumeci G, Trovato FM, Avola R, Magro G, Imbesi R. Effects of high-tryptophan diet on pre- and postnatal development in rats: a morphological study. Eur J Nutr 2013; 53:297-308. [PMID: 23644750 DOI: 10.1007/s00394-013-0528-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/17/2013] [Indexed: 01/16/2023]
Abstract
PURPOSE Tryptophan is an essential amino acid, precursor of serotonin. Serotonin (5HT) regulates the secretion of pituitary growth hormone (GH), which in turn stimulates the liver to produce insulin-like growth factor-I (IGF-I) that is necessary for development and growth. The aim of our study was to investigate the effects of an excess of tryptophan in the diet of pregnant rats on the differentiation of skeletal muscle tissue. METHODS We conducted an immunohistochemical study on the IGF-I expression in hepatic and muscle tissues in offspring, and then, we associated this molecular data with morphological effects on the structure of the muscle fibers and hepatic tissue at different postnatal weeks, from birth to sexual maturity. Measurements of 5HT, GH in blood, and of tryptophan hydroxylase (Tph) activity in gastrointestinal tracts tissue were also taken. RESULTS Hyperserotonemia and higher values of Tph activity were detected in both pregnant rats and pups. Very low levels of GH were detected in experimental pups. Morphological alterations of the muscle fibers and lower IGF-I expression in hepatic and muscle tissue in pups were found. CONCLUSIONS Our data suggest that an excess of tryptophan in the diet causes hyperserotonemia in fetus. Hyperserotonemia results in an excess of serotonin in the brain where it has an adverse effect on the development of serotonergic neurons. The affected neurons do not regulate optimally the secretion of pituitary GH that consequently decreases. This limits stimulation in the liver to produce IGF-I, crucial for development and growth of pups.
Collapse
Affiliation(s)
- Paola Castrogiovanni
- Department of Bio-Medical Science, Section of Human Anatomy and Histology, University of Catania, Via S. Sofia 87, 95123, Catania, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Mateika JH, Syed Z. Intermittent hypoxia, respiratory plasticity and sleep apnea in humans: present knowledge and future investigations. Respir Physiol Neurobiol 2013; 188:289-300. [PMID: 23587570 DOI: 10.1016/j.resp.2013.04.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/28/2013] [Accepted: 04/06/2013] [Indexed: 11/18/2022]
Abstract
This review examines the role that respiratory plasticity has in the maintenance of breathing stability during sleep in individuals with sleep apnea. The initial portion of the review considers the manner in which repetitive breathing events may be initiated in individuals with sleep apnea. Thereafter, the role that two forms of respiratory plasticity, progressive augmentation of the hypoxic ventilatory response and long-term facilitation of upper airway and respiratory muscle activity, might have in modifying breathing events in humans is examined. In this context, present knowledge regarding the initiation of respiratory plasticity in humans during wakefulness and sleep is addressed. Also, published findings which reveal that exposure to intermittent hypoxia promotes breathing instability, at least in part, because of progressive augmentation of the hypoxic ventilatory response and the absence of long-term facilitation, are considered. Next, future directions are presented and are focused on the manner in which forms of plasticity that stabilize breathing might be promoted while diminishing destabilizing forms, concurrently. These future directions will consider the potential role of circadian rhythms in the promotion of respiratory plasticity and the role of respiratory plasticity in enhancing established treatments for sleep apnea.
Collapse
Affiliation(s)
- Jason H Mateika
- John D. Dingell Veterans Affairs Medical Center, Detroit, MI 48201, United States; Department of Physiology, Wayne State University School of Medicine, Detroit, MI 48201, United States; Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, United States.
| | | |
Collapse
|
43
|
Nascimento E, Guzman-Quevedo O, Delacourt N, da Silva Aragão R, Perez-Garcia G, de Souza SL, Manhães-de-Castro R, Bolaños-Jiménez F, Kaeffer B. Long-lasting effect of perinatal exposure to L-tryptophan on circadian clock of primary cell lines established from male offspring born from mothers fed on dietary protein restriction. PLoS One 2013; 8:e56231. [PMID: 23460795 PMCID: PMC3584092 DOI: 10.1371/journal.pone.0056231] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 01/11/2013] [Indexed: 01/26/2023] Open
Abstract
Background & Aims Maternal undernutrition programs metabolic adaptations which are ultimately detrimental to adult. L-tryptophan supplementation was given to manipulate the long-term sequelae of early-life programming by undernutrition and explore whether cultured cells retain circadian clock dysregulation. Methods Male rat pups from mothers fed on low protein (8%, LP) or control (18%, CP) diet were given, one hour before light off, an oral bolus of L-tryptophan (125 mg/kg) between Day-12 and Day-21 of age. Body weight, food intake, blood glucose along with the capacity of colonization of primary cells from biopsies were measured during the young (45–55 days) and adult (110–130 days) phases. Circadian clock oscillations were re-induced by a serum shock over 30 hours on near-confluent cell monolayers to follow PERIOD1 and CLOCK proteins by Fluorescent Linked ImmunoSorbent Assay (FLISA) and period1 and bmal1 mRNA by RT-PCR. Cell survival in amino acid-free conditions were used to measure circadian expression of MAP-LC3B, MAP-LC3B-FP and Survivin. Results Tryptophan supplementation did not alter body weight gain nor feeding pattern. By three-way ANOVA of blood glucose, sampling time was found significant during all phases. A significant interaction between daily bolus (Tryptophan, saline) and diets (LP, CP) were found during young (p = 0.0291) and adult (p = 0.0285) phases. In adult phase, the capacity of colonization at seeding of primary cells was twice lower for LP rats. By three-way ANOVA of PERIOD1 perinuclear/nuclear immunoreactivity during young phase, we found a significant effect of diets (p = 0.049), daily bolus (p<0.0001) and synchronizer hours (p = 0.0002). All factors were significantly interacting (p = 0.0148). MAP-LC3B, MAP-LC3B-FP and Survivin were altered according to diets in young phase. Conclusions Sequelae of early-life undernutrition and the effects of L-tryptophan supplementation can be monitored non-invasively by circadian sampling of blood D-glucose and on the expression of PERIOD1 protein in established primary cell lines.
Collapse
Affiliation(s)
- Elizabeth Nascimento
- Departamento de Nutrição, Centro de Ciências da Saude, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Omar Guzman-Quevedo
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
| | - Nellie Delacourt
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
| | - Raquel da Silva Aragão
- Departamento de Nutrição, Centro de Ciências da Saude, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Georgina Perez-Garcia
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
| | - Sandra Lopes de Souza
- Departamento de Anatomia, Centro de Ciências Biologicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Raul Manhães-de-Castro
- Departamento de Nutrição, Centro de Ciências da Saude, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Francisco Bolaños-Jiménez
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
| | - Bertrand Kaeffer
- Unité Mixte de Recherche-1280, Physiologie des Adaptations Nutritionnelles, Institut National Recherche Agronomique, Université de Nantes, France
- * E-mail:
| |
Collapse
|
44
|
Garrido M, Espino J, González-Gómez D, Lozano M, Barriga C, Paredes SD, Rodríguez AB. The consumption of a Jerte Valley cherry product in humans enhances mood, and increases 5-hydroxyindoleacetic acid but reduces cortisol levels in urine. Exp Gerontol 2012; 47:573-80. [DOI: 10.1016/j.exger.2012.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 04/06/2012] [Accepted: 05/04/2012] [Indexed: 01/23/2023]
|
45
|
A cherry nutraceutical modulates melatonin, serotonin, corticosterone, and total antioxidant capacity levels: effect on ageing and chronotype. J Appl Biomed 2012. [DOI: 10.2478/v10136-011-0016-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
46
|
Delgado J, Terrón MP, Garrido M, Pariente JA, Barriga C, Rodríguez AB, Paredes SD. Diets enriched with a Jerte Valley cherry-based nutraceutical product reinforce nocturnal behaviour in young and old animals of nocturnal (Rattus norvegicus) and diurnal (Streptopelia risoria) chronotypes. J Anim Physiol Anim Nutr (Berl) 2011; 97:137-45. [PMID: 22074327 DOI: 10.1111/j.1439-0396.2011.01251.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The decline in melatonin secretion with age seems to be one of the major reasons for increased sleep disruption in older animals. Previously, we showed that the administration with melatonin or its precursor, tryptophan, improved activity/rest rhythms in aged individuals. Here, it was evaluated the effect of a 10-day consumption of a Jerte Valley cherry-based nutraceutical product (patent no. ES2342141B1), which contains high levels of tryptophan, serotonin and melatonin, on the activity/rest rhythms of young and old rats (Rattus norvegicus) and ringdoves (Streptopelia risoria) as representatives of animals with nocturnal and diurnal habits, respectively, and its possible relationship with the serum levels of melatonin and glucose. Total diurnal and nocturnal activity pulses were logged at control, during, and up to 3 days after the treatment. Melatonin and glucose were measured with ELISA and testing kits respectively. In both young and old rats, the intake of the cherry nutraceutical decreased diurnal activity, whereas nocturnal activity increased. The opposite effect was observed for ringdoves. The treatment increased the circulating levels of melatonin in both species and restored the amplitude of the activity rhythm in the old animals to that of the non-treated young groups. The consumption of a Jerte Valley cherry-based nutraceutical product may help to counteract the impaired activity/rest rhythm found in aged animals.
Collapse
Affiliation(s)
- J Delgado
- Technological Institute of Food and Agriculture of Extremadura, Badajoz, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Gerst DG, Yokhana SS, Carney LM, Lee DS, Badr MS, Qureshi T, Anthouard MN, Mateika JH. The hypoxic ventilatory response and ventilatory long-term facilitation are altered by time of day and repeated daily exposure to intermittent hypoxia. J Appl Physiol (1985) 2011; 110:15-28. [PMID: 20724571 PMCID: PMC3785116 DOI: 10.1152/japplphysiol.00524.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 08/10/2010] [Indexed: 01/08/2023] Open
Abstract
This study examined whether time of day and repeated exposure to intermittent hypoxia have an impact on the hypoxic ventilatory response (HVR) and ventilatory long-term facilitation (vLTF). Thirteen participants with sleep apnea were exposed to twelve 4-min episodes of isocapnic hypoxia followed by a 30-min recovery period each day for 10 days. On days 1 (initial day) and 10 (final day) participants completed the protocol in the evening (PM); on the remaining days the protocol was completed in the morning (AM). The HVR was increased in the morning compared with evening on the initial (AM 0.83 ± 0.08 vs. PM 0.64 ± 0.11 l·min⁻¹·%SaO₂⁻¹; P ≤ 0.01) and final days (AM 1.0 ± 0.08 vs. PM 0.81 ± 0.09 l·min⁻¹·%SaO₂⁻¹; P ≤ 0.01, where %SaO₂ refers to percent arterial oxygen saturation). Moreover, the magnitude of the HVR was enhanced following daily exposure to intermittent hypoxia in the morning (initial day 0.83 ± 0.08 vs. final day 1.0 ± 0.08 l·min⁻¹·%SaO₂⁻¹; P ≤ 0.03) and evening (initial day 0.64 ± 0.11 vs. final day 0.81 ± 0.09 l·min⁻¹·%SaO₂⁻¹; P ≤ 0.03). vLTF was reduced in the morning compared with the evening on the initial (AM 19.03 ± 0.35 vs. PM 22.30 ± 0.49 l/min; P ≤ 0.001) and final (AM 20.54 ± 0.32 vs. PM 23.11 ± 0.54 l/min; P ≤ 0.01) days. Following daily exposure to intermittent hypoxia, vLTF was enhanced in the morning (initial day 19.03 ± 0.35 vs. final day 20.54 ± 0.32 l/min; P ≤ 0.01). We conclude that the HVR is increased while vLTF is decreased in the morning compared with the evening in individuals with sleep apnea and that the magnitudes of these phenomena are enhanced following daily exposure to intermittent hypoxia.
Collapse
Affiliation(s)
- David G Gerst
- John D. Dingell VA Medical Center, Detroit, MI 48201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bach AG, Mühlbauer E, Peschke E. Adrenoceptor expression and diurnal rhythms of melatonin and its precursors in the pineal gland of type 2 diabetic goto-kakizaki rats. Endocrinology 2010; 151:2483-93. [PMID: 20371702 DOI: 10.1210/en.2009-1299] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A decrease in the nighttime release of the pineal hormone melatonin is associated with aging and chronic diseases in animals an humans. Melatonin has a protective role in type 2 diabetes; however, its synthesis itself is affected in the disease. The aim of this study was to detect crucially impaired steps in the pineal melatonin synthesis of type 2 diabetic Goto-Kakizaki (GK) rats. Therefore, plasma melatonin concentrations and the pineal content of melatonin and its precursors (tryptophan, 5-hydroxytryptophan, serotonin, and N-acetylserotonin) were quantified in GK rats compared with Wistar rats (each group 8 and 50 wk old) in a diurnal manner (four animals per group and per time point). Additionally, the expression of pineal adrenoceptor subtype mRNA was investigated. We found that in diabetic GK rats, 1) inhibitory alpha-2-adrenoceptors are significantly more strongly expressed than in Wistar rats, 2) the formation of 5-hydroxytryptophan is crucially impaired, and 3) the pineal gland protein content is significantly reduced compared with that in Wistar rats. This is the first time that melatonin synthesis is examined in a type 2 diabetic rat model in a diurnal manner. The present data unveil several reasons for a reduced melatonin secretion in diabetic animals and present an important link in the interaction between melatonin and insulin.
Collapse
Affiliation(s)
- Andreas Gunter Bach
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06097 Halle/Saale, Germany.
| | | | | |
Collapse
|
49
|
Paredes SD, Barriga C, Reiter RJ, Rodríguez AB. Assessment of the Potential Role of Tryptophan as the Precursor of Serotonin and Melatonin for the Aged Sleep-wake Cycle and Immune Function: Streptopelia Risoria as a Model. Int J Tryptophan Res 2009; 2:23-36. [PMID: 22084580 PMCID: PMC3195230 DOI: 10.4137/ijtr.s1129] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In the present review we summarize the relationship between the amino acid, tryptophan, the neurotransmitter, serotonin, and the indole, melatonin, with the rhythms of sleep/wake and the immune response along with the possible connections between the alterations in these rhythms due to aging and the so-called “serotonin and melatonin deficiency state.” The decrease associated with aging of the brain and circulating levels of serotonin and melatonin seemingly contributes to the alterations of both the sleep/wake cycle and the immune response that typically accompany old age. The supplemental administration of tryptophan, e.g. the inclusion of tryptophan-enriched food in the diet, might help to remediate these age-related alterations due to its capacity of raise the serotonin and melatonin levels in the brain and blood. Herein, we also summarize a set of studies related to the potential role that tryptophan, and its derived product melatonin, may play in the restoration of the aged circadian rhythms of sleep/wake and immune response, taking the ringdove (Streptopeliarisoria) as a suitable model.
Collapse
Affiliation(s)
- Sergio D Paredes
- Department of Physiology (Neuroimmunophysiology Research Group), Faculty of Science, University of Extremadura, Badajoz, Spain
| | | | | | | |
Collapse
|