1
|
Drumm BT, Gupta N, Mircea A, Griffin CS. Cells and ionic conductances contributing to spontaneous activity in bladder and urethral smooth muscle. J Physiol 2024. [PMID: 39323077 DOI: 10.1113/jp284744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Smooth muscle organs of the lower urinary tract comprise the bladder detrusor and urethral wall, which have a reciprocal contractile relationship during urine storage and micturition. As the bladder fills with urine, detrusor smooth muscle cells (DSMCs) remain relaxed to accommodate increases in intravesical pressure while urethral smooth muscle cells (USMCs) sustain tone to occlude the urethral orifice, preventing leakage. While neither organ displays coordinated regular contractions as occurs in small intestine, lymphatics or renal pelvis, they do exhibit patterns of rhythmicity at cellular and tissue levels. In rabbit and guinea-pig urethra, electrical slow waves are recorded from USMCs. This activity is linked to cells expressing vimentin, c-kit and Ca2+-activated Cl- channels, like interstitial cells of Cajal in the gastrointestinal tract. In mouse, USMCs are rhythmically active (firing propagating Ca2+ waves linked to contraction), and this cellular rhythmicity is asynchronous across tissues and summates to form tone. Experiments in mice have failed to demonstrate a voltage-dependent mechanism for regulating this rhythmicity or contractions in vitro, suggesting that urethral tone results from an intrinsic ability of USMCs to 'pace' their own Ca2+ mobilization pathways required for contraction. DSMCs exhibit spontaneous transient contractions, increases in intracellular Ca2+ and action potentials. Consistent across numerous species, including humans, this activity relies on voltage-dependent Ca2+ influx in DSMCs. While interstitial cells are present in the bladder, they do not 'pace' the organ in an excitatory manner. Instead, specialized cells (PDGFRα+ interstitial cells) may 'negatively pace' DSMCs to prevent bladder overexcitability.
Collapse
Affiliation(s)
- Bernard T Drumm
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Neha Gupta
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Alexandru Mircea
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| | - Caoimhin S Griffin
- Smooth Muscle Research Centre, Department of Life & Health Science, Dundalk Institute of Technology, Dundalk, Ireland
| |
Collapse
|
2
|
Jaczyńska R, Mikulska B, Nimer A, Mydlak D, Sawicka E, Maciejewski T. Prenatal ultrasound markers for prediction of complex gastroschisis-single-center retrospective cohort study. J Perinatol 2024; 44:1325-1334. [PMID: 38898181 DOI: 10.1038/s41372-024-02009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE To evaluate prenatal ultrasound markers for distinguishing simple gastroschisis (sGS) from complex gastroschisis (cGS) and identifying fetuses at risk of complications. STUDY DESIGN A retrospective cohort study analyzed 61 fetuses with isolated gastroschisis at a tertiary center from 2011 to 2021, utilizing serial ultrasounds from 14 to 35 weeks' gestation. A general linear model, quantile regression, and logistic regression assessed ultrasound markers, fetal weeks, and gastroschisis risk, yielding predictive models. RESULTS IABL dilatation showed the highest PPV but low NPV. Non-free floating bowel loops (NFFBL) indicated the best PPV to NPV ratio. Combinations of markers yielded the highest predictive value for cGS. EABL collapsed and non-free floating bowel loops were significant, consistent risk factors. CONCLUSIONS Prenatal ultrasounds can predict cGS risk, particularly using IABL dilatation and NFFBL as markers. Accurate assessment requires considering gestational age, qualitative symptoms, emphasizing experienced perinatologists' role and monitoring, particularly after 30 weeks of gestation.
Collapse
Affiliation(s)
- Renata Jaczyńska
- Department of Obstetrics and Gyneacology, Institute of Mother and Child, Warsaw, Poland.
| | - Boyana Mikulska
- Department of Obstetrics and Gyneacology, Institute of Mother and Child, Warsaw, Poland
| | - Anna Nimer
- Department of Obstetrics and Gyneacology, Institute of Mother and Child, Warsaw, Poland
| | - Dariusz Mydlak
- Department of Pediatric and Adolescent Surgery, Institute of Mother and Child, Warsaw, Poland
| | - Ewa Sawicka
- Department of Pediatric and Adolescent Surgery, Institute of Mother and Child, Warsaw, Poland
| | - Tomasz Maciejewski
- Department of Obstetrics and Gyneacology, Institute of Mother and Child, Warsaw, Poland
| |
Collapse
|
3
|
Shirose K, Yoshikawa M, Kan T, Miura M, Watanabe M, Matsuda M, Kobayashi H, Kawaguchi M, Ito K, Suzuki T. Imipramine Increases Norepinephrine and Serotonin in the Salivary Glands of Rats. BIOLOGY 2024; 13:679. [PMID: 39336106 PMCID: PMC11428968 DOI: 10.3390/biology13090679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
Xerostomia induced by antidepressants such as imipramine has long been thought to be due to their anticholinergic effects. However, even antidepressants with low anticholinergic effects may have a high incidence of xerostomia. In salivary glands, norepinephrine activates alpha-adrenergic receptors in blood vessels and beta-adrenergic receptors in acinar cells, respectively, causing a decrease in the blood flow and an increase in the protein secretion, resulting in the secretion of viscous saliva with low water content and high protein content. A previous study demonstrated that perfusion of the submandibular glands of rats with serotonin significantly decreased saliva secretion. The results of the present study revealed the following: (1) that norepinephrine and serotonin, but not epinephrine nor dopamine, were detected in the interstitial fluids in rat submandibular glands; (2) that norepinephrine and serotonin concentrations in the dialysate was 4.3 ± 2.8 nM and 32.3 ± 19.6 nM at stable level, respectively; (3) that infusion with imipramine, a reuptake inhibitor of norepinephrine and serotonin, significantly and dose-dependently increased both norepinephrine and serotonin concentrations in the dialysate; and (4) that intraperitoneal administration of imipramine significantly increased both norepinephrine and serotonin concentrations in the dialysate. These results suggested that one of the mechanisms of xerostomia induced by reuptake inhibitors of norepinephrine and serotonin involves the activation of adrenergic and serotonin receptors in the salivary glands, respectively.
Collapse
Affiliation(s)
- Kosuke Shirose
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| | - Masanobu Yoshikawa
- Department of Clinical Pharmacology, School of Medicine, Tokai University, Isehara 259-1193, Japan;
| | - Takugi Kan
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| | - Masaaki Miura
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| | - Mariko Watanabe
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| | - Mitsumasa Matsuda
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| | - Hiroyuki Kobayashi
- Department of Clinical Pharmacology, School of Medicine, Tokai University, Isehara 259-1193, Japan;
| | | | - Kenji Ito
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| | - Takeshi Suzuki
- Department of Anesthesiology, School of Medicine, Tokai University, Isehara 259-1193, Japan; (K.S.); (T.K.); (M.W.); (M.M.); (K.I.); (T.S.)
| |
Collapse
|
4
|
Hiroshige T, Uemura KI, Nakamura KI, Igawa T. Insights on Platelet-Derived Growth Factor Receptor α-Positive Interstitial Cells in the Male Reproductive Tract. Int J Mol Sci 2024; 25:4128. [PMID: 38612936 PMCID: PMC11012365 DOI: 10.3390/ijms25074128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Male infertility is a significant factor in approximately half of all infertility cases and is marked by a decreased sperm count and motility. A decreased sperm count is caused by not only a decreased production of sperm but also decreased numbers successfully passing through the male reproductive tract. Smooth muscle movement may play an important role in sperm transport in the male reproductive tract; thus, understanding the mechanism of this movement is necessary to elucidate the cause of sperm transport disorder. Recent studies have highlighted the presence of platelet-derived growth factor receptor α (PDGFRα)-positive interstitial cells (PICs) in various smooth muscle organs. Although research is ongoing, PICs in the male reproductive tract may be involved in the regulation of smooth muscle movement, as they are in other smooth muscle organs. This review summarizes the findings to date on PICs in male reproductive organs. Further exploration of the structural, functional, and molecular characteristics of PICs could provide valuable insights into the pathogenesis of male infertility and potentially lead to new therapeutic approaches.
Collapse
Affiliation(s)
- Tasuku Hiroshige
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Kei-Ichiro Uemura
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Cognitive and Molecular Research Institute of Brain Diseases, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Tsukasa Igawa
- Department of Urology, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
5
|
Saleem S, Aziz M, Khan AA, Williams MJ, Mathur P, Tansel A, Barber A, Abell TL. Gastric Electrical Stimulation for the Treatment of Gastroparesis or Gastroparesis-Like Symptoms: A Systemic Review and Meta-Analysis. Neuromodulation 2024; 27:221-228. [PMID: 36464562 DOI: 10.1016/j.neurom.2022.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/23/2022] [Accepted: 10/10/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND The effects of gastric electrical stimulation are not fully understood. We aimed to assess the efficacy of gastric electrical stimulation (GES) for patients with gastroparesis and gastroparesis-like symptoms. MATERIALS AND METHODS We searched PubMed, Scopus, Cochrane, Web of Science, Embase, and Science Direct to identify controlled trials and cohort studies. We used random effects models to estimate pooled effects. A total of nine studies met the criteria and were included for the final qualitative synthesis and the quantitative analysis. We examined the mean absolute differences (MD) and 95% CIs. RESULTS Nine studies (n = 730) met the criteria and were included for the final qualitative synthesis and the quantitative analysis. There was significant improvement in gastrointestinal (GI) total symptom score (TSS) with the GES group compared with controls during the randomized blind trials. This effect was sustained at 12 months after treatment compared with before treatment (MD = -6.07; 95% CI, -4.5 to -7.65; p < 0.00001). The pooled effect estimate showed a significant improvement in frequency of weekly vomiting episodes at 12 months compared with before treatment (MD = -15.59; 95% CI, -10.29 to -20.9; p < 0.00001). CONCLUSION GES appears beneficial, with significant improvement in GI TSS, weekly vomiting frequency, gastric emptying study, and quality of life.
Collapse
Affiliation(s)
- Saad Saleem
- Department of Internal Medicine, Sunrise Hospital and Medical Center, Las Vegas, NV
| | - Muhammad Aziz
- Division of Gastroenterology and Hepatology, University of Toledo Medical Center, Toledo, OH
| | - Aleena Ahmad Khan
- Department of Internal Medicine, Combined Military Hospital Lahore Medical College, Lahore, Pakistan
| | - Mary-Jane Williams
- Division of Gastroenterology and Hepatology, East Carolina University, Greenville, NC
| | - Prateek Mathur
- Department of Internal Medicine, University of Louisville, Louisville, KY
| | - Aylin Tansel
- Department of Gastroenterology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Annabel Barber
- Department of General Surgery, University of Nevada, Las Vegas, NV
| | - Thomas L Abell
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, KY.
| |
Collapse
|
6
|
Miao Z, Yu X, Zhang L, Zhu L, Sheng H. UPLC-Q-Exactive Orbitrap-MS and network pharmacology for deciphering the active compounds and mechanisms of stir-fried Raphani Semen in treating functional dyspepsia. Technol Health Care 2024; 32:2353-2379. [PMID: 38517816 DOI: 10.3233/thc-231122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND As a traditional digestive medicine, stir-fried Raphani Semen (SRS) has been used to treat food retention for thousands of years in China. Modern research has shown that SRS has a good therapeutic effect on functional dyspepsia (FD). However, the active components and mechanism of SRS in the treatment of FD are still unclear. OBJECTIVE The purpose of this study is to elucidate the material basis and mechanism of SRS for treating FD based on UPLC-Q-Exactive Orbitrap MS/MS combined with network pharmacology and molecular docking. METHODS The compounds of SRS water decoction were identified by UPLC-Q-Exactive Orbitrap MS/MS and the potential targets of these compounds were predicted by Swiss Target Prediction. FD-associated targets were collected from disease databases. The overlapped targets of SRS and FD were imported into STRING to construct Protein-Protein Interaction (PPI) network. Then, the Metascape was used to analyze Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway after introducing overlapped targets. Finally, the active components and core targets were obtained by analyzing the "component-target-pathway" network, and the affinity between them was verified by molecular docking. RESULTS 53 components were identified, and 405 targets and 1487 FD-related targets were collected. GO and KEGG analysis of 174 overlapped targets showed that SRS had important effects on hormone levels, serotonin synapses, calcium signaling pathway and cAMP signaling pathway. 7 active components and 15 core targets were screened after analyzing the composite network. Molecular docking results showed that multiple active components had high affinity with most core targets. CONCLUSION SRS can treat FD through a variety of pathways, which provides a direction for the modern application of SRS in FD treatment.
Collapse
Affiliation(s)
- Zhuang Miao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Xinyue Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Lizhen Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
7
|
Javan-Khoshkholgh A, Sassoon JC, Behbodikhah J, Dai W, Alemu S, Quadri S, Singh M, Savinova OV, Farajidavar A. Recording and analysis of slow waves of the small intestine of mice with heart failure. Neurogastroenterol Motil 2023; 35:e14514. [PMID: 36480434 DOI: 10.1111/nmo.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 10/18/2022] [Accepted: 11/23/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Gastrointestinal (GI) symptoms in heart failure (HF) patients are associated with increased morbidity and mortality. We hypothesized that HF reduces bioelectrical activity underlying peristalsis. In this study, we aimed to establish a method to capture and analyze slow waves (SW) in the small intestine in mice with HF. METHODS We established a model of HF secondary to coronary artery disease in mice overexpressing tissue-nonspecific alkaline phosphatase (TNAP) in endothelial cells. The myoelectric activity was recorded from the small intestine in live animals under anesthesia. The low- and high-frequency components of SW were isolated in MATLAB and compared between the control (n = 12) and eTNAP groups (n = 8). C-kit-positive interstitial cells of Cajal (ICC) and Pgp9.5-positive myenteric neurons were detected by immunofluorescence. Myenteric ganglia were assessed by hematoxylin and eosin (H&E) staining. RESULTS SW activity was successfully captured in vivo, with both high- and low-frequency components. Low-frequency component of SW was not different between endothelial TNAP (eTNAP) and control mice (mean[95% CI]: 0.032[0.025-0.039] vs. 0.040[0.028-0.052]). High-frequency component of SW showed a reduction eTNAP mice relative to controls (0.221[0.140-0.302] vs. 0.394[0.295-0.489], p < 0.01). Dysrhythmia was also apparent upon visual review of signals. The density of ICC and neuronal networks remained the same between the two groups. No significant reduction in the size of myenteric ganglia of eTNAP mice was observed. CONCLUSIONS A method to acquire SW activity from small intestines in vivo and isolate low- and high-frequency components was established. The results indicate that HF might be associated with reduced high-frequency SW activity.
Collapse
Affiliation(s)
- Amir Javan-Khoshkholgh
- Department of Materials Science and Biomedical Engineering, University of Wisconsin - Eau Claire, Eau Claire, Wisconsin, USA
| | - Joseph C Sassoon
- College of Engineering and Computing Sciences, Department of Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, New York, USA
| | - Jennifer Behbodikhah
- College of Osteopathic Medicine, Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Wenchen Dai
- College of Engineering and Computing Sciences, Department of Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, New York, USA
| | - Senayt Alemu
- College of Osteopathic Medicine, Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Saad Quadri
- College of Osteopathic Medicine, Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Mohnish Singh
- College of Osteopathic Medicine, Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Olga V Savinova
- College of Osteopathic Medicine, Department of Biomedical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Aydin Farajidavar
- College of Engineering and Computing Sciences, Department of Electrical and Computer Engineering, New York Institute of Technology, Old Westbury, New York, USA
| |
Collapse
|
8
|
Papenkort S, Borsdorf M, Böl M, Siebert T. A geometry model of the porcine stomach featuring mucosa and muscle layer thicknesses. J Mech Behav Biomed Mater 2023; 142:105801. [PMID: 37068433 DOI: 10.1016/j.jmbbm.2023.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/08/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023]
Abstract
The stomach is a vital organ responsible for food storage, digestion, and transport. Stomach diseases are of great economic and medical importance and require a large number of bariatric surgeries every year. To improve medical interventions, in silico modeling of the gastrointestinal tract has gained popularity in recent years to study stomach functioning. Because of the great structural and nutritional similarity between the porcine and human stomach, the porcine stomach is a suitable surrogate for the development and validation of gastric models. This study presents a realistic 3D geometry model of the porcine stomach based on a photogrammetric reconstruction of a real organ. Layer thicknesses of the stomach wall's mucosa and tunica muscularis were determined by more than 1900 manual measurements at different locations. Layer thickness distributions show mean mucosal and muscle thicknesses of 2.29 ± 0.45 mm and 2.83 ± 0.99 mm, respectively. In general, layer thicknesses increase from fundus (mucosa: 1.82 ± 0.19 mm, muscle layer: 2.59 ± 0.32 mm) to antrum (mucosa: 2.69 ± 0.31 mm, muscle layer: 3.73 ± 1.05 mm). The analysis of stomach asymmetry with respect to an idealized symmetrical stomach model, an approach often used in the literature, revealed volumetric deviations of 45%, 15%, and 92% for the antrum, corpus, and fundus, respectively. The present work also suggests an algorithm for the computation of longitudinal and circumferential directions at local points. These directions are useful for the implementation of material anisotropy. In addition, we present data on the passive pressure-volume relationship of the organ and perform an exemplary finite-element simulation, where we demonstrate the applicability of the model. We encourage others to utilize the geometry model featuring profound asymmetry for future model-based investigations on stomach functioning.
Collapse
|
9
|
Hwang SJ, Drumm BT, Kim MK, Lyu JH, Baker S, Sanders KM, Ward SM. Calcium transients in intramuscular interstitial cells of Cajal of the murine gastric fundus and their regulation by neuroeffector transmission. J Physiol 2022; 600:4439-4463. [PMID: 36057845 DOI: 10.1113/jp282876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The cells responsible for mediating enteric neuroeffector transmission remain controversial. In the stomach intramuscular interstitial cells of Cajal (ICC-IM) were the first ICC reported to receive cholinergic and nitrergic neural inputs. Utilization of a cell specific calcium biosensor, GCaMP6f, the activity and neuroeffector responses of ICC-IM were examined. ICC-IM were highly active, generating stochastic intracellular Ca2+ -transients. Stimulation of enteric motor nerves abolished Ca2+ -transients in ICC-IM. This inhibitory response was preceded by a global rise in intracellular Ca2+ . Individual ICC-IM responded to nerve stimulation with a rise in Ca2+ followed by inhibition of Ca2+ -transients. Inhibition of Ca2+ -transients was blocked by the nitric oxide synthase antagonist, L-NNA. The global rise in Ca2+ was inhibited by the muscarinic antagonist, atropine. Simultaneous intracellular recordings with video imaging revealed that the global rise in intracellular Ca2+ and inhibition of Ca2+ -transients was temporally associated with rapid excitatory junction potentials followed by more sustained inhibitory junction potentials. The data presented support the premise of serial innervation of ICC-IM in excitatory and inhibitory neuroeffector transmission in the proximal stomach. ABSTRACT Enteric neurotransmission is critical for coordinating motility throughout the gastrointestinal (GI) tract. However, there is considerable controversy regarding the cells that are responsible for the transduction of these neural inputs. In the present study, utilization of a cell-specific calcium biosensor GCaMP6f, the spontaneous activity and neuroeffector responses of intramuscular ICC (ICC-IM) to motor neural inputs was examined. Simultaneous intracellular microelectrode recordings and high-speed video-imaging during nerve stimulation was used to reveal the temporal relationship between changes in intracellular Ca2+ and post-junctional electrical responses to neural stimulation. ICC-IM were highly active, generating intracellular Ca2+ -transients that occurred stochastically, from multiple independent sites in single ICC-IM. Ca2+ -transients were not entrained in single ICC-IM or between neighboring ICC-IM. Activation of enteric motor neurons produced a dominant inhibitory response that abolished Ca2+ -transients in ICC-IM. This inhibitory response was often preceded by a summation of Ca2+ -transients that led to a global rise in Ca2+ . Individual ICC-IM responded to nerve stimulation by a global rise in Ca2+ followed by inhibition of Ca2+ -transients. The inhibition of Ca2+ -transients was blocked by the nitric oxide synthase antagonist, L-NNA. The global rise in intracellular Ca2+ was inhibited by the muscarinic antagonist, atropine. Simultaneous intracellular microelectrode recordings with video-imaging revealed that the rise in Ca2+ was temporally associated with rapid excitatory junction potentials and the inhibition of Ca2+ -transients with inhibitory junction potentials. These data support the premise of serial innervation of ICC-IM in excitatory and inhibitory neuroeffector transmission in the proximal stomach. Abstract figure legend Intramuscular interstitial cells of Cajal (ICC-IM) of the gastric fundus receive nitrergic inhibitory and cholinergic excitatory neuroeffector motor inputs. Using a genetically encoded calcium sensor we demonstrate that ICC-IM are highly active cells generating stochastic intracellular Ca2 -transients. Stimulation of enteric motor nerves abolished Ca2 -transients in ICC-IM, produced an inhibitory junction potential (IJP) and muscle relaxation that was mediated by nitric oxide (left hand side of figure). This inhibitory response was often preceded by a global rise in intracellular Ca2 in ICC-IM, a rapid excitatory junction potential (EJP) and muscle contraction, that was mediated by acetylcholine (right hand side of figure). Individual ICC-IM could respond to both excitatory and inhibitory neural inputs. These data support the premise of serial innervation of ICC-IM in excitatory and inhibitory neuroeffector transmission in the proximal stomach. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sung Jin Hwang
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Bernard T Drumm
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Min Kyung Kim
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Ju Hyeong Lyu
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Sal Baker
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| | - Sean M Ward
- Department of Physiology & Cell Biology, Reno School of Medicine, University of Nevada, Reno, NV, 89557, USA
| |
Collapse
|
10
|
Prosiegel M. Neuroanatomie des Schluckens. SCHLUCKSTÖRUNGEN 2022:53-66. [DOI: 10.1016/b978-3-437-44418-0.00003-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Otsuka Y, Bai X, Tanaka Y, Ihara E, Chinen T, Ogino H, Ogawa Y. Involvement of interstitial cells of Cajal in nicotinic acetylcholine receptor-induced relaxation of the porcine lower esophageal sphincter. Eur J Pharmacol 2021; 910:174491. [PMID: 34506779 DOI: 10.1016/j.ejphar.2021.174491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 08/27/2021] [Accepted: 09/03/2021] [Indexed: 11/15/2022]
Abstract
The interstitial cells of Cajal (ICCs) play an important role in coordinated gastrointestinal motility. The present study aimed to elucidate whether or how ICCs are involved in the lower esophageal sphincter (LES) relaxation induced by stimulation of the nicotinic acetylcholine receptor. The application of 1,1-dimethyl-4-phenyl-piperazinium (DMPP; a nicotinic acetylcholine receptor agonist) induced a transient relaxation in the circular smooth muscle of the porcine LES. DMPP-induced relaxation was abolished by not only 1 μM tetrodotoxin but also the inhibition of ICC activity by pretreatment with 100 μM carbenoxolone (a gap junction inhibitor), pretreatment with 100 μM CaCCinh-A01 (an anoctamin-1 blocker acting as a calcium-activated chloride channel inhibitor), and pretreatment with Cl--free solution. However, pretreatment with 100 μM Nω-nitro-L-arginine methyl ester had little effect on DMPP-induced relaxation. Furthermore, DMPP-induced relaxation was inhibited by pretreatment with 1 mM suramin, a purinergic P2 receptor antagonist, but not by 1 μM VIP (6-28), a vasoactive intestinal peptide (VIP) receptor antagonist. Stimulation of the purinergic P2 receptor with adenosine triphosphate (ATP) induced relaxation, which was abolished by the inhibition of ICC activity by pretreatment with CaCCinh-A01. In conclusion, membrane hyperpolarization of the ICCs via the activation of anoctamin-1 plays a central role in DMPP-induced relaxation. ATP may be a neurotransmitter for inhibitory enteric neurons, which stimulate the ICCs. The ICCs act as the interface of neurotransmission of nicotinic acetylcholine receptor in order to induce LES relaxation.
Collapse
Affiliation(s)
- Yoshihiro Otsuka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Xiaopeng Bai
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshimasa Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Takatoshi Chinen
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Haruei Ogino
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
12
|
Rosa I, Marini M, Manetti M. Telocytes: An Emerging Component of Stem Cell Niche Microenvironment. J Histochem Cytochem 2021; 69:795-818. [PMID: 34165348 DOI: 10.1369/00221554211025489] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Telocytes (TCs) are newly identified interstitial cells characterized by thin and long cytoplasmic processes, called telopodes, which exhibit a distinctive moniliform shape and, often, a sinuous trajectory. Telopodes typically organize in intricate networks within the stromal space of most organs, where they communicate with neighboring cells by means of specialized cell-to-cell junctions or shedding extracellular vesicles. Hence, TCs are generally regarded as supporting cells that help in the maintenance of local tissue homeostasis, with an ever-increasing number of studies trying to explore their functions both in physiological and pathological conditions. Notably, TCs appear to be part of stem cell (SC) niches in different organs, including the intestine, skeletal muscle, heart, lung, and skin. Indeed, growing evidence points toward a possible implication of TCs in the regulation of the activity of tissue-resident SCs and in shaping the SC niche microenvironment, thus contributing to tissue renewal and repair. Here, we review how the introduction of TCs into the scientific literature has deepened our knowledge of the stromal architecture focusing on the intestine and skeletal muscle, two organs in which the recently unveiled unique relationship between TCs and SCs is currently in the spotlight as potential target for tissue regenerative purposes.
Collapse
Affiliation(s)
- Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| |
Collapse
|
13
|
Identification of PDGFRα-positive interstitial cells in the distal segment of the murine vas deferens. Sci Rep 2021; 11:7553. [PMID: 33824385 PMCID: PMC8024294 DOI: 10.1038/s41598-021-87049-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/23/2021] [Indexed: 01/17/2023] Open
Abstract
Platelet-derived growth factor receptor-α (PDGFRα)-positive interstitial cells (ICs) are widely distributed in various organs and may be involved in the motility of various tubular organs. We, for the first time, aimed to investigate the distribution, immunohistochemical characteristics, and ultrastructure of PDGFRα-positive ICs in murine vas deferens, using confocal laser scanning microscopy, transmission electron microscopy (TEM), and immuno-electron microscopy (immuno-EM). For immunofluorescence, we used antibodies against PDGFRα and other markers of ICs. PDGFRα-positive ICs were distributed widely in the lamina propria, smooth muscles, and serosal layers. Although most PDGFRα-positive ICs labeled CD34, they did not label CD34 in the subepithelial layers. Additionally, PDGFRα-positive ICs were in close proximity to each other, as also to the surrounding cells. TEM and immuno-EM findings revealed that PDGFRα-positive ICs established close physical interactions with adjacent ICs. Extracellular vesicles were also detected around the PDGFRα-positive ICs. Our morphological findings suggest that PDGFRα-positive ICs may have several subpopulations, which can play an important role in intercellular signaling via direct contact with the IC network and the extracellular vesicles in the murine vas deferens. Further investigation on PDGFRα-positive ICs in the vas deferens may lead to understanding the vas deferens mortility.
Collapse
|
14
|
Gastric Sensory and Motor Functions and Energy Intake in Health and Obesity-Therapeutic Implications. Nutrients 2021; 13:nu13041158. [PMID: 33915747 PMCID: PMC8065811 DOI: 10.3390/nu13041158] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 01/19/2023] Open
Abstract
Sensory and motor functions of the stomach, including gastric emptying and accommodation, have significant effects on energy consumption and appetite. Obesity is characterized by energy imbalance; altered gastric functions, such as rapid gastric emptying and large fasting gastric volume in obesity, may result in increased food intake prior to reaching usual fullness and increased appetite. Thus, many different interventions for obesity, including different diets, anti-obesity medications, bariatric endoscopy, and surgery, alter gastric functions and gastrointestinal motility. In this review, we focus on the role of the gastric and intestinal functions in food intake, pathophysiology of obesity, and obesity management.
Collapse
|
15
|
Parsons SP, Huizinga JD. Nitric Oxide Is Essential for Generating the Minute Rhythm Contraction Pattern in the Small Intestine, Likely via ICC-DMP. Front Neurosci 2021; 14:592664. [PMID: 33488345 PMCID: PMC7817771 DOI: 10.3389/fnins.2020.592664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Nitrergic nerves have been proposed to play a critical role in the orchestration of peristaltic activities throughout the gastrointestinal tract. In the present study, we investigated the role of nitric oxide, using spatiotemporal mapping, in peristaltic activity of the whole ex vivo mouse intestine. We identified a propulsive motor pattern in the form of propagating myogenic contractions, that are clustered by the enteric nervous system into a minute rhythm that is dependent on nitric oxide. The cluster formation was abolished by TTX, lidocaine and nitric oxide synthesis inhibition, whereas the myogenic contractions, occurring at the ICC-MP initiated slow wave frequency, remained undisturbed. Cluster formation, inhibited by block of nitric oxide synthesis, was fully restored in a highly regular rhythmic fashion by a constant level of nitric oxide generated by sodium nitroprusside; but the action of sodium nitroprusside was inhibited by lidocaine indicating that it was relying on neural activity, but not rhythmic nitrergic nerve activity. Hence, distention-induced activity of cholinergic nerves and/or a co-factor within nitrergic nerves such as ATP is also a requirement for the minute rhythm. Cluster formation was dependent on distention but was not evoked by a distention reflex. Block of gap junction conductance by carbenoxolone, dose dependently inhibited, and eventually abolished clusters and contraction waves, likely associated, not with inhibition of nitrergic innervation, but by abolishing ICC network synchronization. An intriguing feature of the clusters was the presence of bands of rhythmic inhibitions at 4-8 cycles/min; these inhibitory patches occurred in the presence of tetrodotoxin or lidocaine and hence were not dependent on nitrergic nerves. We propose that the minute rhythm is generated by nitric oxide-induced rhythmic depolarization of the musculature via ICC-DMP.
Collapse
Affiliation(s)
- Sean P. Parsons
- Department of Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| | - Jan D. Huizinga
- Department of Medicine and School of Biomedical Engineering, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
16
|
Hannigan KI, Bossey AP, Foulkes HJL, Drumm BT, Baker SA, Ward SM, Sanders KM, Keef KD, Cobine CA. A novel intramuscular Interstitial Cell of Cajal is a candidate for generating pacemaker activity in the mouse internal anal sphincter. Sci Rep 2020; 10:10378. [PMID: 32587396 PMCID: PMC7316801 DOI: 10.1038/s41598-020-67142-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
The internal anal sphincter (IAS) generates phasic contractions and tone. Slow waves (SWs) produced by interstitial cells of Cajal (ICC) underlie phasic contractions in other gastrointestinal regions. SWs are also present in the IAS where only intramuscular ICC (ICC-IM) are found, however the evidence linking ICC-IM to SWs is limited. This study examined the possible relationship between ICC-IM and SWs by recording Ca2+ transients in mice expressing a genetically-encoded Ca2+-indicator in ICC (Kit-Cre-GCaMP6f). A role for L-type Ca2+ channels (CavL) and anoctamin 1 (ANO1) was tested since each is essential for SW and tone generation. Two distinct ICC-IM populations were identified. Type I cells (36% of total) displayed localised asynchronous Ca2+ transients not dependent on CavL or ANO1; properties typical of ICC-IM mediating neural responses in other gastrointestinal regions. A second novel sub-type, i.e., Type II cells (64% of total) generated rhythmic, global Ca2+ transients at the SW frequency that were synchronised with neighbouring Type II cells and were abolished following blockade of either CavL or ANO1. Thus, the spatiotemporal characteristics of Type II cells and their dependence upon CavL and ANO1 all suggest that these cells are viable candidates for the generation of SWs and tone in the IAS.
Collapse
Affiliation(s)
- Karen I Hannigan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Aaron P Bossey
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Holly J L Foulkes
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Kathleen D Keef
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA
| | - Caroline A Cobine
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, 89557, USA.
| |
Collapse
|
17
|
Vannucchi MG. The Telocytes: Ten Years after Their Introduction in the Scientific Literature. An Update on Their Morphology, Distribution, and Potential Roles in the Gut. Int J Mol Sci 2020; 21:E4478. [PMID: 32599706 PMCID: PMC7352570 DOI: 10.3390/ijms21124478] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022] Open
Abstract
Ten years ago, the term 'telocyte' was introduced in the scientific literature to describe a 'new' cell type described in the connective tissue of several organs by Popescu and Faussone-Pellegrini (2010). Since then, 368 papers containing the term 'telocyte' have been published, 261 of them in the last five years. These numbers underscore the growing interest in this cell type in the scientific community and the general acceptance of the name telocyte to indicate this interstitial cell. Most of these studies, while confirming the importance of transmission electron microscopy to identify the telocytes with certainty, highlight the variability of their immune phenotypes. This variability was interpreted as due to (i) the ability of the telocytes to adapt to the different sites in which they reside; (ii) the distinct functions they are likely to perform; and (iii) the existence of telocyte subtypes. In the present paper, an overview of the last 10 years of literature on telocytes located in the gut will be attempted, confining the revision to the morphological findings. A distinct chapter will be dedicated to the recently hypothesized role of the telocytes the intestinal mucosa. Through this review, it will be shown that telocytes, despite their variability, are a unique interstitial cell.
Collapse
|
18
|
Seifi M, Rodaway S, Rudolph U, Swinny JD. GABA A Receptor Subtypes Regulate Stress-Induced Colon Inflammation in Mice. Gastroenterology 2018; 155:852-864.e3. [PMID: 29802853 DOI: 10.1053/j.gastro.2018.05.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/30/2018] [Accepted: 05/18/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS Psychological stress, in early life or adulthood, is a significant risk factor for inflammatory disorders, including inflammatory bowel diseases. However, little is known about the mechanisms by which emotional factors affect the immune system. γ-Aminobutyric acid type A receptors (GABAARs) regulate stress and inflammation, but it is not clear whether specific subtypes of GABAARs mediate stress-induced gastrointestinal inflammation. We investigated the roles of different GABAAR subtypes in mouse colon inflammation induced by 2 different forms of psychological stress. METHODS C57BL/6J mice were exposed to early-life stress, and adult mice were exposed to acute-restraint stress; control mice were not exposed to either form of stress. We collected colon tissues and measured contractility using isometric tension recordings; colon inflammation, based on levels of cluster of differentiation 163 and tumor necrosis factor messenger RNA (mRNA) and protein and myeloperoxidase activity; and permeability, based on levels of tight junction protein 1 and occludin mRNA and protein. Mice were given fluorescently labeled dextran orally and systemic absorption was measured. We also performed studies of mice with disruption of the GABAAR subunit α3 gene (Gabra3-/- mice). RESULTS Mice exposed to early-life stress had significantly altered GABAAR-mediated colonic contractility and impaired barrier function, and their colon tissue had increased levels of Gabra3 mRNA compared with control mice. Restraint stress led to colon inflammation in C57/BL6J mice but not Gabra3-/- mice. Colonic inflammation was induced in vitro by an α3-GABAAR agonist, showing a proinflammatory role for this receptor subtype. In contrast, α1/4/5-GABAAR ligands decreased the expression of colonic inflammatory markers. CONCLUSIONS We found stress to increase expression of Gabra3 and induce inflammation in mouse colon, together with impaired barrier function. The in vitro pharmacologic activation of α3-GABAARs recapitulated colonic inflammation, whereas α1/4/5-GABAAR ligands were anti-inflammatory. These proteins might serve as therapeutic targets for treatment of colon inflammation or inflammatory bowel diseases.
Collapse
Affiliation(s)
- Mohsen Seifi
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Scott Rodaway
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Uwe Rudolph
- Laboratory of Genetic Neuropharmacology, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jerome D Swinny
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
19
|
Genetic Polymorphisms Associated With Constipation and Anticholinergic Symptoms in Patients Receiving Clozapine. J Clin Psychopharmacol 2018; 38:193-199. [PMID: 29620694 DOI: 10.1097/jcp.0000000000000885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Clozapine impairs gastrointestinal motility owing to its anticholinergic and antiserotonergic properties. This commonly leads to constipation and potentially to more severe complications such as bowel obstruction and ischemia. The aim of this study was to determine whether genetic variations in the genes encoding muscarinic and serotonergic receptors (CHRM2, CHRM3, HTR2, HTR3, HTR4, and HTR7) explain the variations in incidence of constipation and anticholinergic symptoms during clozapine treatment. Genes associated with opiate-induced constipation were also included in this analysis (TPH1, OPRM1, ABCB1, and COMT). PROCEDURES Blood samples from 176 clozapine-treated, Finnish, white patients with schizophrenia were genotyped. Constipation and anticholinergic symptoms were rated using the Liverpool University Neuroleptic Side Effect Rating Scale self-report questionnaire. In total, 192 single-nucleotide polymorphisms (SNPs) were detected and grouped to formulate a weighted genetic-risk score (GRS). RESULTS No significant associations between individual SNPs or GRSs and constipation or laxative use were observed. A GRS of 19 SNPs in CHRM2, CHRM3, HTR3C, HTR7, ABCB1, OPRM1, and TPH1 was associated with anticholinergic symptoms in a generalized linear univariate model, with body mass index, clozapine monotherapy, and GRS as explaining variables (permuted P = 0.014). Generalized linear univariate model analysis performed on the opiate-induced constipation-associated SNPs and a single CHRM3 SNP revealed an association between anticholinergic symptoms and a score of 8 SNPs (adjusted P = 0.038, permuted P = 0.002). CONCLUSIONS Two GRSs are able to predict the risk of anticholinergic symptoms in patients receiving clozapine and possibly an increased risk of gastrointestinal hypomotility.
Collapse
|
20
|
Liu Z, Zheng G, Liu J, Liu S, Xu G, Wang Q, Guo M, Lian X, Zhang H, Feng F. Clinicopathological features, surgical strategy and prognosis of duodenal gastrointestinal stromal tumors: a series of 300 patients. BMC Cancer 2018; 18:563. [PMID: 29764388 PMCID: PMC5952823 DOI: 10.1186/s12885-018-4485-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/08/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The relatively low incidence of duodenal gastrointestinal stromal tumors (GISTs) and the unique anatomy make the surgical management and outcomes of this kind of tumor still under debate. Thus, this study aimed to explore the optimal surgical strategy and prognosis of duodenal GISTs. METHODS A total of 300 cases of duodenal GISTs were obtained from our center (37 cases) and from case reports or series (263 cases) extracted from MEDLINE. Clinicopathological features, type of resections and survivals of duodenal GISTs were analyzed. RESULTS The most common location of duodenal GISTs was descending portion (137/266, 51.5%). The median tumor size was 4 cm (0.1-28). Most patients (66.3%) received limited resection (LR). Pancreaticoduodenectomy (PD) was mainly performed for GISTs with larger tumor size or arose from descending portion (both P < 0.05). For both the entire cohort and tumors located in the descending portion, PD was not an independent risk factor for disease-free survival (DFS) and disease-specific survival (DSS) (both P > 0.05). Duodenal GISTs were significantly different from gastric GISTs with respect to tumor size, mitotic index and NIH risk category (all P < 0.05). The DFS and DSS of duodenal GISTs was significantly worse than that of gastric GISTs (both P < 0.05). CONCLUSIONS LR was a more prevalent surgical procedure and PD was mainly performed for tumors with larger diameter or located in descending portion. Type of resection was not an independent risk factor for the prognosis of duodenal GISTs. Prognosis of duodenal GISTs was significantly worse than that of gastric GISTs.
Collapse
Affiliation(s)
- Zhen Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
- Department of General Surgery, No.1 Hospital of PLA, 74 Jingning Road, Lanzhou, 730030 China
| | - Gaozan Zheng
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| | - Jinqiang Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
- Cadre’ s sanitarium, 62101 Army of PLA, 67 Nahu Road, Xinyang, 464000 Henan China
| | - Shushang Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| | - Guanghui Xu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| | - Qiao Wang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
- Department of General Surgery, No. 91 Hospital of PLA, 239 Gongye Road, Jiaozuo, 454000 Henan China
| | - Man Guo
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| | - Xiao Lian
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| | - Hongwei Zhang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| | - Fan Feng
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, the Fourth Military Medical University, 127 West Changle Road, 710032, Xi’an, Shaanxi Province China
| |
Collapse
|
21
|
Prosiegel M. Neuroanatomie des Schluckens. SCHLUCKSTÖRUNGEN 2018:47-60. [DOI: 10.1016/b978-3-437-44417-3.00003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
22
|
|
23
|
Abdominal Manual Therapy Repairs Interstitial Cells of Cajal and Increases Colonic c-Kit Expression When Treating Bowel Dysfunction after Spinal Cord Injury. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1492327. [PMID: 29349063 PMCID: PMC5733934 DOI: 10.1155/2017/1492327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/02/2017] [Accepted: 11/02/2017] [Indexed: 01/26/2023]
Abstract
Background This study aimed to evaluate the therapeutic effects of abdominal manual therapy (AMT) on bowel dysfunction after spinal cord injury (SCI), investigating interstitial cells of Cajal (ICCs) and related c-kit expression. Methods Model rats were divided as SCI and SCI with drug treatment (intragastric mosapride), low-intensity (SCI + LMT; 50 g, 50 times/min), and high-intensity AMT (SCI + HMT; 100 g, 150 times/min). After 14 days of treatment, weight, improved Basso-Beattie-Bresnahan (BBB) locomotor score, and intestinal movement were evaluated. Morphological structure of spinal cord and colon tissues were examined. Immunostaining, RT-PCR, and western blot were used to assess c-kit expression. Results In SCI rats, AMT could not restore BBB, but it significantly increased weight, shortened time to defecation, increased feces amounts, and improved fecal pellet traits and colon histology. AMT improved the number, distribution, and ultrastructure of colonic ICCs, increasing colonic c-kit mRNA and protein levels. Compared with the SCI + Drug and SCI + LMT groups, the SCI + HMT group showed better therapeutic effect in improving intestinal transmission function and promoting c-kit expression. Conclusions AMT is an effective therapy for recovery of intestinal transmission function. It could repair ICCs and increase c-kit expression in colon tissues after SCI, in a frequency-dependent and pressure-dependent manner.
Collapse
|
24
|
Martinez-Pereira MA, Franceschi RDC, Coelho BP, Zancan DM. The Stomatogastric and Enteric Nervous System of the Pulmonate SnailMegalobulimus abbreviatus: A Neurochemical Analysis. Zoolog Sci 2017; 34:300-311. [DOI: 10.2108/zs160136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Malcon Andrei Martinez-Pereira
- Center of Rural Sciences, Federal University of Santa Catarina, 89.520-000, Curitibanos, SC, Brazil
- Neuroscience Graduate Program, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), 90050-170, Porto Alegre, RS, Brazil
- Laboratory of Comparative Neurobiology, Department of Physiology, ICBS, UFRGS, 90050-170, Porto Alegre, RS, Brazil
| | - Raphaela da Cunha Franceschi
- Neuroscience Graduate Program, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), 90050-170, Porto Alegre, RS, Brazil
- Laboratory of Comparative Neurobiology, Department of Physiology, ICBS, UFRGS, 90050-170, Porto Alegre, RS, Brazil
| | - Bárbara Paranhos Coelho
- Laboratory of Comparative Neurobiology, Department of Physiology, ICBS, UFRGS, 90050-170, Porto Alegre, RS, Brazil
| | - Denise M. Zancan
- Neuroscience Graduate Program, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), 90050-170, Porto Alegre, RS, Brazil
- Laboratory of Comparative Neurobiology, Department of Physiology, ICBS, UFRGS, 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Wong KKL, Tang LCY, Zhou J, Ho V. Analysis of spatiotemporal pattern and quantification of gastrointestinal slow waves caused by anticholinergic drugs. Organogenesis 2017; 13:39-62. [PMID: 28277890 DOI: 10.1080/15476278.2017.1295904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Anticholinergic drugs are well-known to cause adverse effects, such as constipation, but their effects on baseline contractile activity in the gut driven by slow waves is not well established. In a video-based gastrointestinal motility monitoring (GIMM) system, a mouse's small intestine was placed in Krebs solution and recorded using a high definition camera. Untreated controls were recorded for each specimen, then treated with a therapeutic concentration of the drug, and finally, treated with a supratherapeutic dose of the drug. Next, the video clips showing gastrointestinal motility were processed, giving us the segmentation motions of the intestine, which were then converted via Fast Fourier Transform (FFT) into their respective frequency spectrums. These contraction quantifications were analyzed from the video recordings under standardised conditions to evaluate the effect of drugs. Six experimental trials were included with benztropine and promethazine treatments. Only the supratherapeutic dose of benztropine was shown to significantly decrease the amplitude of contractions; at therapeutic doses of both drugs, neither frequency nor amplitude was significantly affected. We have demonstrated that intestinal slow waves can be analyzed based on the colonic frequency or amplitude at a supratherapeutic dose of the anticholinergic medications. More research is required on the effects of anticholinergic drugs on these slow waves to ascertain the true role of ICC in neurologic control of gastrointestinal motility.
Collapse
Affiliation(s)
- Kelvin K L Wong
- a School of Medicine, Western Sydney University , Campbelltown , NSW , Australia
| | - Lauren C Y Tang
- a School of Medicine, Western Sydney University , Campbelltown , NSW , Australia
| | - Jerry Zhou
- a School of Medicine, Western Sydney University , Campbelltown , NSW , Australia
| | - Vincent Ho
- a School of Medicine, Western Sydney University , Campbelltown , NSW , Australia
| |
Collapse
|
26
|
Vannucchi MG, Traini C. Interstitial cells of Cajal and telocytes in the gut: twins, related or simply neighbor cells? Biomol Concepts 2017; 7:93-102. [PMID: 26992201 DOI: 10.1515/bmc-2015-0034] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/22/2016] [Indexed: 01/01/2023] Open
Abstract
In the interstitium of the connective tissue several types of cells occur. The fibroblasts, responsible for matrix formation, the mast cells, involved in local response to inflammatory stimuli, resident macrophages, plasma cells, lymphocytes, granulocytes and monocytes, all engaged in immunity responses. Recently, another type of interstitial cell, found in all organs so far examined, has been added to the previous ones, the telocytes (TC). In the gut, in addition to the cells listed above, there are also the interstitial cells of Cajal (ICC), a peculiar type of cell exclusively detected in the alimentary tract with multiple functions including pace-maker activity. The possibility that TC and ICC could correspond to a unique cell type, where the former would represent an ICC variant outside the gut, was initially considered, however, further studies have clearly shown that ICC and TC are two distinct types of cells. In the gut, while the features and the roles of the ICC are established, part of the scientific community is still disputing these 'new' interstitial cells to which several names such as fibroblast-like cells (FLCs), interstitial Cajal-like cells or, most recently, PDGFRα+ cells have been attributed. This review will detail the main features and roles of the TC and ICC with the aim to establish their relationships and hopefully define the identity of the TC in the gut.
Collapse
|
27
|
Changes in the Interstitial Cells of Cajal and Immunity in Chronic Psychological Stress Rats and Therapeutic Effects of Acupuncture at the Zusanli Point (ST36). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1935372. [PMID: 27594888 PMCID: PMC4987473 DOI: 10.1155/2016/1935372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/03/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023]
Abstract
Now, chronic psychological stress (CPS) related diseases are increasing. Many CPS patients have gastrointestinal complaints, immune suppression, and immune imbalance. Increasing evidence is indicating that acupuncture (AP) at the Zusanli point (ST36) can alleviate functional gastrointestinal disorders (FGID), immune suppression, and immune imbalance. However, few studies have investigated the potential mechanisms. In this study, CPS rat models were established, and electroacupuncture (EA) at ST36 was done for CPS rats. Daily food intake, weight, intestinal sensitivity, the morphology of interstitial cell of Cajal (ICC) in the small intestine, and serum indexes were measured. The study found that, in CPS rats, EA at ST36 could improve food intake, weight, visceral hypersensitivity, and immunity; in CPS rats, in small intestine, the morphology of ICCs was abnormal and the number was decreased, which may be part causes of gastrointestinal motility dysfunction. EA at ST36 showed useful therapeutic effects. The mechanisms may be partially related to its repairing effects on ICCs damages; in CPS rats, there were immune suppression and immune imbalance, which may be part causes of visceral hypersensitivity. EA at ST36 showed useful therapeutic effects. The mechanisms may be partially related to its regulation on immunity.
Collapse
|
28
|
Ramalhosa F, Soares-Cunha C, Seixal RM, Sousa N, Carvalho AF. The Impact of Prenatal Exposure to Dexamethasone on Gastrointestinal Function in Rats. PLoS One 2016; 11:e0161750. [PMID: 27584049 PMCID: PMC5008745 DOI: 10.1371/journal.pone.0161750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 08/11/2016] [Indexed: 01/23/2023] Open
Abstract
Antenatal treatment with synthetic glucocorticoids is commonly used in pregnant women at risk of preterm delivery to accelerate tissue maturation. Exposure to glucocorticoids during development has been hypothesized to underlie different functional gastrointestinal (GI) and motility disorders. Herein, we investigated the impact of in utero exposure to synthetic glucocorticoids (iuGC) on GI function of adult rats. Wistar male rats, born from pregnant dams treated with dexamethasone (DEX), were studied at different ages. Length, histologic analysis, proliferation and apoptosis assays, GI transit, permeability and serotonin (5-HT) content of GI tract were measured. iuGC treatment decreased small intestine size and decreased gut transit. However, iuGC had no impact on intestinal permeability. iuGC differentially impacts the structure and function of the GI tract, which leads to long-lasting alterations in the small intestine that may predispose subjects prone to disorders of the GI tract.
Collapse
Affiliation(s)
- Fátima Ramalhosa
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biometrics Associate Laboratory, Braga/Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biometrics Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Miguel Seixal
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biometrics Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biometrics Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Franky Carvalho
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute/Biomaterials, Biodegradables and Biometrics Associate Laboratory, Braga/Guimarães, Portugal
- General Surgery Department, Hospital of Braga, Braga, Portugal
| |
Collapse
|
29
|
Abstract
Functions of the gastrointestinal tract include motility, digestion and absorption of nutrients. These functions are mediated by several specialized cell types including smooth muscle cells, neurons, interstitial cells and epithelial cells. In gastrointestinal diseases, some of the cells become degenerated or fail to accomplish their normal functions. Surgical resection of the diseased segments of the gastrointestinal tract is considered the gold-standard treatment in many cases, but patients might have surgical complications and quality of life can remain low. Tissue engineering and regenerative medicine aim to restore, repair, or regenerate the function of the tissues. Gastrointestinal tissue engineering is a challenging process given the specific phenotype and alignment of each cell type that colonizes the tract - these properties are critical for proper functionality. In this Review, we summarize advances in the field of gastrointestinal tissue engineering and regenerative medicine. Although the findings are promising, additional studies and optimizations are needed for translational purposes.
Collapse
Affiliation(s)
- Khalil N Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way NE, Winston Salem, North Carolina 27101, USA.,Department of Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston Salem, North Carolina 27157, USA.,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, 391 Technology Way NE, Winston Salem, North Carolina 27101, USA
| | - Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, 391 Technology Way NE, Winston Salem, North Carolina 27101, USA.,Department of Molecular Medicine and Translational Sciences, Wake Forest School of Medicine, 1 Medical Center Blvd, Winston Salem, North Carolina 27157, USA
| |
Collapse
|
30
|
The dual anti-inflammatory and antioxidant activities of natural honey promote cell proliferation and neural regeneration in a rat model of colitis. Acta Histochem 2016; 118:588-595. [PMID: 27378376 DOI: 10.1016/j.acthis.2016.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/16/2016] [Accepted: 06/20/2016] [Indexed: 12/14/2022]
Abstract
A decreased antioxidant capacity and excessive inflammation are well-known features in the pathogenesis of ulcerative colitis (UC). Recent evidence has suggested a role of honey in reducing colitis-induced inflammatory and oxidative stress markers. In this study, we examined whether the anti-inflammatory and anti-oxidative properties of honey have a beneficial effect on the enteric innervation and cellular proliferation of UC in rat. The colitis was induced in rats by dextran sodium sulphate (DSS). The effect of natural honey on induced colitis was assessed by the following parameters in colonic samples: tissue injury, inflammatory infiltration, interleukin-1β and -6, superoxide dismutase and reduced glutathione. In addition, the expression of tumour necrosis factor-α, inducible NO synthase, caspase-3, CD34, Ki67, S100, c-kit, and neuron-specific enolase were examined by immunohistochemistry. Compared to the DSS-induced colitis group, the honey-treated group had significantly improved macroscopic and microscopic scores and exhibited the down-regulation of oxidative, inflammatory, and apoptotic markers. In addition, up-regulation of intrinsic muscular innervation and epithelial cellular proliferation markers was detected. These results provide new insight into the beneficial role of natural honey in the treatment of DSS-induced colitis via the inhibition of colonic motor dysfunction and the inflammatory-oxidative-apoptotic cascade. In addition, the role of honey in epithelial regeneration was clarified.
Collapse
|
31
|
Baker SA, Drumm BT, Saur D, Hennig GW, Ward SM, Sanders KM. Spontaneous Ca(2+) transients in interstitial cells of Cajal located within the deep muscular plexus of the murine small intestine. J Physiol 2016; 594:3317-38. [PMID: 26824875 DOI: 10.1113/jp271699] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 01/24/2016] [Indexed: 01/13/2023] Open
Abstract
KEY POINTS Interstitial cells of Cajal at the level of the deep muscular plexus (ICC-DMP) in the small intestine generate spontaneous Ca(2+) transients that consist of localized Ca(2+) events and limited propagating Ca(2+) waves. Ca(2+) transients in ICC-DMP display variable characteristics: from discrete, highly localized Ca(2+) transients to regionalized Ca(2+) waves with variable rates of occurrence, amplitude, duration and spatial spread. Ca(2+) transients fired stochastically, with no cellular or multicellular rhythmic activity being observed. No correlation was found between the firing sites in adjacent cells. Ca(2+) transients in ICC-DMP are suppressed by the ongoing release of inhibitory neurotransmitter(s). Functional intracellular Ca(2+) stores are essential for spontaneous Ca(2+) transients, and the sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump is necessary for maintenance of spontaneity. Ca(2+) release mechanisms involve both ryanodine receptors (RyRs) and inositol triphosphate receptors (InsP3 Rs). Release from these channels is interdependent. ICC express transcripts of multiple RyRs and InsP3 Rs, with Itpr1 and Ryr2 subtypes displaying the highest expression. ABSTRACT Interstitial cells of Cajal in the deep muscular plexus of the small intestine (ICC-DMP) are closely associated with varicosities of enteric motor neurons and generate responses contributing to neural regulation of intestinal motility. Responses of ICC-DMP are mediated by activation of Ca(2+) -activated Cl(-) channels; thus, Ca(2+) signalling is central to the behaviours of these cells. Confocal imaging was used to characterize the nature and mechanisms of Ca(2+) transients in ICC-DMP within intact jejunal muscles expressing a genetically encoded Ca(2+) indicator (GCaMP3) selectively in ICC. ICC-DMP displayed spontaneous Ca(2+) transients that ranged from discrete, localized events to waves that propagated over variable distances. The occurrence of Ca(2+) transients was highly variable, and it was determined that firing was stochastic in nature. Ca(2+) transients were tabulated in multiple cells within fields of view, and no correlation was found between the events in adjacent cells. TTX (1 μm) significantly increased the occurrence of Ca(2+) transients, suggesting that ICC-DMP contributes to the tonic inhibition conveyed by ongoing activity of inhibitory motor neurons. Ca(2+) transients were minimally affected after 12 min in Ca(2+) free solution, indicating these events do not depend immediately upon Ca(2+) influx. However, inhibitors of sarco/endoplasmic reticulum Ca(2+) -ATPase (SERCA) pump and blockers of inositol triphosphate receptor (InsP3 R) and ryanodine receptor (RyR) channels blocked ICC Ca(2+) transients. These data suggest an interdependence between RyR and InsP3 R in the generation of Ca(2+) transients. Itpr1 and Ryr2 were the dominant transcripts expressed by ICC. These findings provide the first high-resolution recording of the subcellular Ca(2+) dynamics that control the behaviour of ICC-DMP in situ.
Collapse
Affiliation(s)
- Salah A Baker
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Bernard T Drumm
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Dieter Saur
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar der TU München, München, Germany
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
32
|
Chen JH, Yang Z, Yu Y, Huizinga JD. Haustral boundary contractions in the proximal 3-taeniated rabbit colon. Am J Physiol Gastrointest Liver Physiol 2016; 310:G181-92. [PMID: 26635318 DOI: 10.1152/ajpgi.00171.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023]
Abstract
The rabbit proximal colon is similar in structure to the human colon. Our objective was to study interactions of different rhythmic motor patterns focusing on haustral boundary contractions, which create the haustra, using spatiotemporal mapping of video recordings. Haustral boundary contractions were seen as highly rhythmic circumferential ring contractions that propagated slowly across the proximal colon, preferentially but not exclusively in the anal direction, at ∼0.5 cycles per minute; they were abolished by nerve conduction blockers. When multiple haustral boundary contractions propagated in the opposite direction, they annihilated each other upon encounter. Ripples, myogenic propagating ring contractions at ∼9 cycles per min, induced folding and unfolding of haustral muscle folds, creating an anarchic appearance of contractile activity, with different patterns in the three intertaenial regions. Two features of ripple activity were prominent: frequent changes in propagation direction and the occurrence of dislocations showing a frequency gradient with the highest intrinsic frequency in the distal colon. The haustral boundary contractions showed an on/off/on/off pattern at the ripple frequency, and the contraction amplitude at any point of the colon showed waxing and waning. The haustral boundary contractions are therefore shaped by interaction of two pacemaker activities hypothesized to occur through phase-amplitude coupling of pacemaker activities from interstitial cells of Cajal of the myenteric plexus and of the submuscular plexus. Video evidence shows the unique role haustral folds play in shaping contractile activity within the haustra. Muscarinic agents not only enhance the force of contraction, they can eliminate one and at the same time induce another neurally dependent motor pattern.
Collapse
Affiliation(s)
- Ji-Hong Chen
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China; and Farncombe Family Digestive Health Research Institute, McMaster University Department of Medicine, Hamilton, Ontario, Canada
| | - Zixian Yang
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China; and
| | - Yuanjie Yu
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China; and
| | - Jan D Huizinga
- Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, Hubei Province, China; and Farncombe Family Digestive Health Research Institute, McMaster University Department of Medicine, Hamilton, Ontario, Canada
| |
Collapse
|
33
|
Effect of da-cheng-qi decoction on the repair of the injured enteric nerve-interstitial cells of cajal-smooth muscle cells network in multiple organ dysfunction syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:596723. [PMID: 25477993 PMCID: PMC4247919 DOI: 10.1155/2014/596723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 01/22/2023]
Abstract
Wistar rats were randomly divided into control group, multiple organ dysfunction syndrome (MODS) group, and Da-Cheng-Qi decoction (DCQD) group. The network of enteric nerves-interstitial cells of Cajal- (ICC-) smooth muscle cells (SMC) in small intestine was observed using confocal laser scanning microscopy and transmission electron microscopy. The results showed that the numbers of cholinergic/nitriergic nerves, and the deep muscular plexus of ICC (ICC-DMP) and connexin43 (Cx43) in small intestine with MODS were significantly decreased. The network integrity of enteric nerves-ICC-SMC was disrupted. The ultrastructures of ICC-DMP, enteric nerves, and SMC were severely damaged. After treatment with DCQD, the damages were repaired and the network integrity of enteric nerves ICC-SMC was significantly recovered. In conclusion, the pathogenesis of gastrointestinal motility dysfunction in MODS in part may be due to the damages to enteric nerves-ICC-SMC network and gap junctions. The therapeutic mechanism of DCQD in part may be that it could repair the damages and maintain the integrity of enteric nerves ICC-SMC network.
Collapse
|
34
|
Jabari S, da Silveira ABM, de Oliveira EC, Quint K, Wirries A, Neuhuber W, Brehmer A. Interstitial cells of Cajal: crucial for the development of megacolon in human Chagas' disease? Colorectal Dis 2014; 15:e592-8. [PMID: 23810202 DOI: 10.1111/codi.12331] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 03/02/2013] [Indexed: 02/08/2023]
Abstract
AIM Megacolon, chronic dilation of a colonic segment,is accompanied by extensive myenteric neuron loss. However, this fails to explain unequivocally the formation of megacolon. We aimed to study further enteric structures that are directly or indirectly involved in colonic motility. METHOD From surgically removed megacolon segments of seven Chagasic patients, three sets of cryosections from oral, megacolonic and anal zones were immunohistochemically quadruple-stained for smooth-muscle actin (SMA), synaptophysin (SYN, for nerve fibres), S100 (glia) and c-Kit (interstitial cells of Cajal, ICCs). Values of area measurements were related to the appropriate muscle layer areas and these proportions were compared with those of seven non-Chagasic control patients. RESULTS Whereas nerve and glia profile proportions did not mirror unequivocally the changes of Chagasic colon calibre (nondilation/dilation/nondilation), the proportions of SMA (i.e. muscle tissue density) and c-Kit (i.e. ICC density) did so: they decreased from the oral to the megacolonic segment but increased to the anal zones (muscle tissue density: control 68.3%, oral 54.3%, mega 42.1%, anal 47.6%; ICC-density: control 1.8%, oral 1.1%, mega 0.4, anal 0.8%). CONCLUSION Of the parameters evaluated, muscle tissue and ICC densities may be involved in the formation of Chagasic megacolon, although the mechanism of destruction cannot be deduced.
Collapse
Affiliation(s)
- S Jabari
- Institute of Anatomy I, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Mazet B. Gastrointestinal motility and its enteric actors in mechanosensitivity: past and present. Pflugers Arch 2014; 467:191-200. [PMID: 25366494 DOI: 10.1007/s00424-014-1635-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 10/14/2014] [Accepted: 10/19/2014] [Indexed: 12/14/2022]
Abstract
Coordinated contractions of the smooth muscle layers of the gastrointestinal (GI) tract are required to produce motor patterns that ensure normal GI motility. The crucial role of the enteric nervous system (ENS), the intrinsic ganglionated network located within the GI wall, has long been recognized in the generation of the main motor patterns. However, devising an appropriate motility requires the integration of informations emanating from the lumen of the GI tract. As already found more than half a century ago, the ability of the GI tract to respond to mechanical forces such as stretch is not restricted to neuronal mechanisms. Instead, mechanosensitivity is now recognized as a property of several non-neuronal cell types, the excitability of which is probably involved in shaping the motor patterns. This brief review gives an overview on how mechanosensitivity of different cell types in the GI tract has been established and, whenever available, on what ionic conductances are involved in mechanotransduction and their potential impact on normal GI motility.
Collapse
Affiliation(s)
- Bruno Mazet
- Aix Marseille Université, CNRS, CRN2M UMR 7286, CS80011 Bd Pierre Dramard, 13344, Marseille Cedex 15, France,
| |
Collapse
|
36
|
Mutafova-Yambolieva VN, Durnin L. The purinergic neurotransmitter revisited: a single substance or multiple players? Pharmacol Ther 2014; 144:162-91. [PMID: 24887688 PMCID: PMC4185222 DOI: 10.1016/j.pharmthera.2014.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022]
Abstract
The past half century has witnessed tremendous advances in our understanding of extracellular purinergic signaling pathways. Purinergic neurotransmission, in particular, has emerged as a key contributor in the efficient control mechanisms in the nervous system. The identity of the purine neurotransmitter, however, remains controversial. Identifying it is difficult because purines are present in all cell types, have a large variety of cell sources, and are released via numerous pathways. Moreover, studies on purinergic neurotransmission have relied heavily on indirect measurements of integrated postjunctional responses that do not provide direct information for neurotransmitter identity. This paper discusses experimental support for adenosine 5'-triphosphate (ATP) as a neurotransmitter and recent evidence for possible contribution of other purines, in addition to or instead of ATP, in chemical neurotransmission in the peripheral, enteric and central nervous systems. Sites of release and action of purines in model systems such as vas deferens, blood vessels, urinary bladder and chromaffin cells are discussed. This is preceded by a brief discussion of studies demonstrating storage of purines in synaptic vesicles. We examine recent evidence for cell type targets (e.g., smooth muscle cells, interstitial cells, neurons and glia) for purine neurotransmitters in different systems. This is followed by brief discussion of mechanisms of terminating the action of purine neurotransmitters, including extracellular nucleotide hydrolysis and possible salvage and reuptake in the cell. The significance of direct neurotransmitter release measurements is highlighted. Possibilities for involvement of multiple purines (e.g., ATP, ADP, NAD(+), ADP-ribose, adenosine, and diadenosine polyphosphates) in neurotransmission are considered throughout.
Collapse
Affiliation(s)
| | - Leonie Durnin
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV 89557, United States
| |
Collapse
|
37
|
Molecular and functional diversity of GABA-A receptors in the enteric nervous system of the mouse colon. J Neurosci 2014; 34:10361-78. [PMID: 25080596 DOI: 10.1523/jneurosci.0441-14.2014] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The enteric nervous system (ENS) provides the intrinsic neural control of the gastrointestinal tract (GIT) and regulates virtually all GI functions. Altered neuronal activity within the ENS underlies various GI disorders with stress being a key contributing factor. Thus, elucidating the expression and function of the neurotransmitter systems, which determine neuronal excitability within the ENS, such as the GABA-GABAA receptor (GABAAR) system, could reveal novel therapeutic targets for such GI disorders. Molecular and functionally diverse GABAARs modulate rapid GABAergic-mediated regulation of neuronal excitability throughout the nervous system. However, the cellular and subcellular GABAAR subunit expression patterns within neurochemically defined cellular circuits of the mouse ENS, together with the functional contribution of GABAAR subtypes to GI contractility remains to be determined. Immunohistochemical analyses revealed that immunoreactivity for the GABAAR gamma (γ) 2 and alphas (α) 1, 2, 3 subunits was located on somatodendritic surfaces of neurochemically distinct myenteric plexus neurons, while being on axonal compartments of submucosal plexus neurons. In contrast, immunoreactivity for the α4-5 subunits was only detected in myenteric plexus neurons. Furthermore, α-γ2 subunit immunoreactivity was located on non-neuronal interstitial cells of Cajal. In organ bath studies, GABAAR subtype-specific ligands had contrasting effects on the force and frequency of spontaneous colonic longitudinal smooth muscle contractions. Finally, enhancement of γ2-GABAAR function with alprazolam reversed the stress-induced increase in the force of spontaneous colonic contractions. The study demonstrates the molecular and functional diversity of the GABAAR system within the mouse colon providing a framework for developing GABAAR-based therapeutics in GI disorders.
Collapse
|
38
|
Brijs J, Hennig GW, Axelsson M, Olsson C. Effects of feeding on in vivo motility patterns in the proximal intestine of shorthorn sculpin (Myoxocephalus scorpius). J Exp Biol 2014; 217:3015-27. [PMID: 24948631 PMCID: PMC4148186 DOI: 10.1242/jeb.101741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 06/10/2014] [Indexed: 01/16/2023]
Abstract
This is the first study to catalogue the diverse array of in vivo motility patterns in a teleost fish and how they are affected by feeding. Video recordings of exteriorised proximal intestine from fasted and fed shorthorn sculpin (Myoxocephalus scorpius) were used to generate spatio-temporal maps to portray and quantify motility patterns. Propagating and non-propagating contractions were observed to occur at different frequencies and durations. The most apparent difference between the feeding states was that bands of relatively high amplitude contractions propagating slowly in the anal direction were observed in all fasted fish (N=10) but in only 35% of fed fish (N=11). Additionally, fed fish displayed a reduced frequency (0.21±0.03 versus 0.32±0.06 contractions min(-1)) and rhythmicity of these contractions compared with fasted fish. Although the underlying mechanisms of these slow anally propagating contractions differ from those of mammalian migrating motor complexes, we believe that they may play a similar role in shorthorn sculpin during the interdigestive period, to potentially remove food remnants and prevent the establishment of pathogens. 'Ripples' were the most prevalent contraction type in shorthorn sculpin and may be important during mixing and absorption. The persistence of shallow ripples and pendular movements of longitudinal muscle after tetrodotoxin (1 μmol l(-1)) treatment suggests these contractions were myogenic in origin. The present study highlights both similarities and differences in motility patterns between shorthorn sculpin and other vertebrates, as well as providing a platform to examine other aspects of gastrointestinal functions in fish, including the impact of environmental changes.
Collapse
Affiliation(s)
- Jeroen Brijs
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Reno, NV, USA
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Catharina Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Abstract
Megacolon, the irreversible dilation of a colonic segment, is a structural sign associated with various gastrointestinal disorders. In its hereditary, secondary form (e.g. in Hirschsprung's disease), dilation occurs in an originally healthy colonic segment due to an anally located, aganglionic zone. In contrast, in chronic Chagas' disease, the dilated segment itself displays pathohistological changes, and the earliest and most prominent being found was massive loss of myenteric neurons. This neuron loss was partial and selective, i.e. some neurons containing neuronal nitric oxide synthase and/or vasoactive intestinal peptide (VIP) were spared from neuron death. This disproportionate survival of inhibitory neurons, however, did not completely correlate with the calibre change along the surgically removed, megacolonic segments. A better correlation was observed as to potentially contractile muscle tissue elements and the interstitial cells of Cajal. Therefore, the decreased densities of α-smooth muscle actin- and c-kit-immunoreactive profiles were estimated along resected megacolonic segments. Their lowest values were observed in the megacolonic zones itself, whereas less pronounced decreases were found in the non-dilated, transitional zones (oral and anal to dilation). In contrast to the myenteric plexus, the submucosal plexus displayed only a moderate neuron loss. Neurons co-immunoreactive for VIP and calretinin survived disproportionately. As a consequence, these neurons may have contributed to maintain the epithelial barrier and allowed the chagasic patients to survive for decades, despite their severe disturbance of colonic motility. Due to its neuroprotective and neuroeffectory functions, VIP may play a key role in the development and duration of chagasic megacolon.
Collapse
|
40
|
Peng MF, Li K, Wang C, Zhu XY, Yang Z, Zhang GH, Wang PH, Wang YH, Tang LJ, Zhang L. Therapeutic effect and mechanism of electroacupuncture at Zusanli on plasticity of interstitial cells of Cajal: a study of rat ileum. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:186. [PMID: 24908398 PMCID: PMC4096531 DOI: 10.1186/1472-6882-14-186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 05/21/2014] [Indexed: 12/13/2022]
Abstract
Background Electroacupuncture (EA) is one of the techniques of acupuncture and is believed to be an effective alternative and complementary treatment in many disorders. The aims of this study were to investigate the effects and mechanisms of EA at acupoint Zusanli (ST36) on the plasticity of interstitial cells of Cajal (ICCs) in partial bowel obstruction. Methods A Sprague Dawley rat model of partial bowel obstruction was established and EA was conducted at Zusanli (ST36) and Yinglingquan (SP9) in test and control groups, respectively. Experiments were performed to study the effects and mechanisms of EA at Zusanli on intestinal myoelectric activity, distribution and alteration of ICCs, expression of inflammatory mediators, and c-Kit expression. Results 1) EA at Zusanli somewhat improved slow wave amplitude and frequency in the partial obstruction rats. 2) EA at Zusanli significantly stimulated the recovery of ICC networks and numbers. 3) the pro-inflammatory mediator TNF-α and NO activity were significantly reduced after EA at Zusanli, However, no significant changes were observed in the anti-inflammatory mediator IL-10 activity. 4) EA at Zusanli re-expressed c-Kit protein. However, EA at the control acupoint, SP9, significantly improved slow wave frequency and amplitude, but had no effect on ICC or inflammatory mediators. Conclusions We concluded that EA at Zusanli might have a therapeutic effect on ICC plasticity, and that this effect might be mediated via a decrease in pro-inflammatory mediators and through the c-Kit signaling pathway, but that the relationship between EA at different acupoints and myoelectric activity needs further study.
Collapse
|
41
|
Márquez S, Galotta JM, Gálvez GA, Portiansky E, Barbeito CG. Presence of c-kit positive cells in fetal and adult bovine forestomachs. Biotech Histochem 2014; 89:591-601. [DOI: 10.3109/10520295.2014.919023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
42
|
Bitar KN, Raghavan S, Zakhem E. Tissue engineering in the gut: developments in neuromusculature. Gastroenterology 2014; 146:1614-24. [PMID: 24681129 PMCID: PMC4035447 DOI: 10.1053/j.gastro.2014.03.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
The complexity of the gastrointestinal (GI) tract lies in its anatomy as well as in its physiology. Several different cell types populate the GI tract, adding to the complexity of cell sourcing for regenerative medicine. Each cell layer has a specialized function in mediating digestion, absorption, secretion, motility, and excretion. Tissue engineering and regenerative medicine aim to regenerate the specific layers mimicking architecture and recapitulating function. Gastrointestinal motility is the underlying program that mediates the diverse functions of the intestines, as an organ. Hence, the first logical step in GI regenerative medicine is the reconstruction of the tubular smooth musculature along with the drivers of their input, the enteric nervous system. Recent advances in the field of GI tissue engineering have focused on the use of scaffolding biomaterials in combination with cells and bioactive factors. The ability to innervate the bioengineered muscle is a critical step to ensure proper functionality. Finally, in vivo studies are essential to evaluate implant integration with host tissue, survival, and functionality. In this review, we focus on the tubular structure of the GI tract, tools for innervation, and, finally, evaluation of in vivo strategies for GI replacements.
Collapse
Affiliation(s)
- Khalil N. Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Shreya Raghavan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| |
Collapse
|
43
|
Krebs T, Boettcher M, Schäfer H, Eschenburg G, Wenke K, Appl B, Roth B, Andreas T, Schmitz C, Fahje R, Jacobsen B, Tiemann B, Reinshagen K, Hecher K, Bergholz R. Gut inflammation and expression of ICC in a fetal lamb model of fetoscopic intervention for gastroschisis. Surg Endosc 2014; 28:2437-42. [DOI: 10.1007/s00464-014-3494-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/20/2014] [Indexed: 11/30/2022]
|
44
|
Winston JH, Chen J, Shi XZ, Sarna SK. Inflammation induced by mast cell deficiency rather than the loss of interstitial cells of Cajal causes smooth muscle dysfunction in W/W(v) mice. Front Physiol 2014; 5:22. [PMID: 24550836 PMCID: PMC3912454 DOI: 10.3389/fphys.2014.00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/09/2014] [Indexed: 01/19/2023] Open
Abstract
The initial hypothesis suggested that the interstitial cells of Cajal (ICC) played an essential role in mediating enteric neuronal input to smooth muscle cells. Much information for this hypothesis came from studies in W/Wv mice lacking ICC. However, mast cells, which play critical roles in regulating inflammation in their microenvironment, are also absent in W/Wv mice. We tested the hypothesis that the depletion of mast cells in W/Wv mice generates inflammation in fundus muscularis externa (ME) that impairs smooth muscle reactivity to Ach, independent of the depletion of ICC. We performed experiments on the fundus ME from wild type (WT) and W/Wv mice before and after reconstitution of mast cells by bone marrow transplant. We found that mast cell deficiency in W/Wv mice significantly increased COX-2 and iNOS expression and decreased smooth muscle reactivity to Ach. Mast cell reconstitution or concurrent blockade of COX-2 and iNOS restored smooth muscle contractility without affecting the suppression of c-kit in W/Wv mice. The expression of nNOS and ChAT were suppressed in W/Wv mice; mast cell reconstitution did not restore them. We conclude that innate inflammation induced by mast cell deficiency in W/Wv mice impairs smooth muscle contractility independent of ICC deficiency. The impairment of smooth muscle contractility and the suppression of the enzymes regulating the synthesis of Ach and NO in W/Wv mice need to be considered in evaluating the role of ICC in regulating smooth muscle and enteric neuronal function in W/Wv mice.
Collapse
Affiliation(s)
- John H Winston
- Division of Gastroenterology, Department of Internal Medicine, Enteric Neuromuscular Disorders and Visceral Pain Center, The University of Texas Medical Branch at Galveston Galveston, TX, USA
| | - Jinghong Chen
- Division of Gastroenterology, Department of Internal Medicine, Enteric Neuromuscular Disorders and Visceral Pain Center, The University of Texas Medical Branch at Galveston Galveston, TX, USA
| | - Xuan-Zheng Shi
- Division of Gastroenterology, Department of Internal Medicine, Enteric Neuromuscular Disorders and Visceral Pain Center, The University of Texas Medical Branch at Galveston Galveston, TX, USA
| | - Sushil K Sarna
- Division of Gastroenterology, Department of Internal Medicine, Enteric Neuromuscular Disorders and Visceral Pain Center, The University of Texas Medical Branch at Galveston Galveston, TX, USA
| |
Collapse
|
45
|
Fu XY, Li Z, Zhang N, Yu HT, Wang SR, Liu JR. Effects of gastrointestinal motility on obesity. Nutr Metab (Lond) 2014; 11:3. [PMID: 24398016 PMCID: PMC3891996 DOI: 10.1186/1743-7075-11-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 12/31/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Changes of gastrointestinal motility, which are important related to the food digestion and absorption in the gastrointestinal tract, may be one of the factors in obesity-formation. AIMS The changes of gastrointestinal motility were explored in the rats from diet-induced obesity (DIO), diet-induced obese resistant (DR) or control (CON) by diet intervention. METHODS After fed with a high fat diet (HFD), 100 male Sprague-Dawley rats were divided into DIO, DR and CON groups. The rats from DIO and DR groups were fed with HFD, and CON with a basic diet (BD) for 6 weeks. Body weight, energy intake, gastric emptying, intestinal transit, motility of isolated small intestine segments and colon's function were measured in this study. Expression of interstitial cells of Cajal (ICCs) and enteric nervous system (ENS) - choline acetyltransferase (ChAT), vasoactive intestinal peptides (VIP), substance P (SP) and NADPH-d histochemistry of nitric oxide synthase (NOS) were determined by immunohistochemistry. RESULTS Body weight and intake energy in the DIO group were higher than those in the DR group (p < 0.05). Gastric emptying of DIO group rats (78.33 ± 4.95%) was significantly faster than that of DR group (51.79 ± 10.72%) (p < 0.01). The peak value of motility in rat's duodenum from the DR group was significantly higher than that in the DIO group (p < 0.05). In addition, the expression of interstitial cells of Cajal (ICC), choline acetyltransferase (ChAT), substance P (SP), vasoactive intestinal peptides (VIP) and neuronal nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) in the intestine of rats were significantly increased in the DIO group when compared to the DR group (p < 0.05). CONCLUSION A faster gastric emptying, a weaker contraction of duodenum movement, and a stronger contraction and relaxation of ileum movement were found in the rats from the DIO group. It indicated that there has effect of gastrointestinal motility on obesity induced by HFD.
Collapse
Affiliation(s)
- Xiao-Yi Fu
- School of Public Health, JiLin Medical College, 5 JiLin street, JiLin, JiLin Province 132013, The People’s Republic of China
| | - Ze Li
- School of Public Health, Harbin Medical University, 157 BaoJian Road, Harbin, HeiLongJiang Province 150081, The People’s Republic of China
| | - Na Zhang
- School of Public Health, Harbin Medical University, 157 BaoJian Road, Harbin, HeiLongJiang Province 150081, The People’s Republic of China
| | - Hai-Tao Yu
- School of Public Health, JiLin Medical College, 5 JiLin street, JiLin, JiLin Province 132013, The People’s Republic of China
| | - Shu-Ran Wang
- School of Public Health, JiLin Medical College, 5 JiLin street, JiLin, JiLin Province 132013, The People’s Republic of China
| | - Jia-Ren Liu
- Boston Children’s Hospital and Harvard Medical School, 300 LongWood Ave, Boston 02115, USA
| |
Collapse
|
46
|
The possible roles of hyperpolarization-activated cyclic nucleotide channels in regulating pacemaker activity in colonic interstitial cells of Cajal. J Gastroenterol 2014; 49:1001-10. [PMID: 23780559 PMCID: PMC4048466 DOI: 10.1007/s00535-013-0849-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 06/05/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Hyperpolarization-activated cyclic nucleotide (HCN) channels are pacemaker channels that regulate heart rate and neuronal rhythm in spontaneously active cardiac and neuronal cells. Interstitial cells of Cajal (ICCs) are also spontaneously active pacemaker cells in the gastrointestinal tract. Here, we investigated the existence of HCN channel and its role on pacemaker activity in colonic ICCs. METHODS We performed whole-cell patch clamp, RT-PCR, and Ca(2+)-imaging in cultured ICCs from mouse mid colon. RESULTS SQ-22536 and dideoxyadenosine (adenylate cyclase inhibitors) decreased the frequency of pacemaker potentials, whereas both rolipram (cAMP-specific phosphodiesterase inhibitor) and cell-permeable 8-bromo-cAMP increased the frequency of pacemaker potentials. CsCl, ZD7288, zatebradine, clonidine (HCN channel blockers), and genistein (a tyrosine kinase inhibitor) suppressed the pacemaker activity. RT-PCR revealed expression of HCN1 and HCN3 channels in c-kit and Ano1 positive colonic ICCs. In recordings of spontaneous intracellular Ca(2+) [Ca(2+)]i oscillations, rolipram and 8-bromo-cAMP increased [Ca(2+)]i oscillations, whereas SQ-22536, CsCl, ZD7288, and genistein decreased [Ca(2+)]i oscillations. CONCLUSIONS HCN channels in colonic ICCs are tonically activated by basal cAMP production and participate in regulation of pacemaking activity.
Collapse
|
47
|
Li ZP, Qiu Y, Peng Y. Relationship between interstitial cells of Cajal and irritable bowel syndrome. Shijie Huaren Xiaohua Zazhi 2013; 21:3965-3970. [DOI: 10.11569/wcjd.v21.i35.3965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Interstitial cells of Cajal are the pacemaker of gastrointestinal tract, which can generate electrical signals, conduct slow waves and regulate neurotransmitters. Irritable bowel syndrome (IBS) is a common gastrointestinal disease whose pathogenesis is very complicated, involving gastrointestinal motility disorders, visceral hypersensitivity, infection and abnormal secretion of gastrointestinal hormones. In recent years, it has been found that there are associations between interstitial cells of Cajal and gastrointestinal motility disorders, visceral hypersensitivity and abnormal secretion of gastrointestinal hormones. In this paper, we will review the recent progress in understanding the relationship between interstitial cells of Cajal and IBS.
Collapse
|
48
|
Townsley MI. Structure and composition of pulmonary arteries, capillaries, and veins. Compr Physiol 2013; 2:675-709. [PMID: 23606929 DOI: 10.1002/cphy.c100081] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pulmonary vasculature comprises three anatomic compartments connected in series: the arterial tree, an extensive capillary bed, and the venular tree. Although, in general, this vasculature is thin-walled, structure is nonetheless complex. Contributions to structure (and thus potentially to function) from cells other than endothelial and smooth muscle cells as well as those from the extracellular matrix should be considered. This review is multifaceted, bringing together information regarding (i) classification of pulmonary vessels, (ii) branching geometry in the pulmonary vascular tree, (iii) a quantitative view of structure based on morphometry of the vascular wall, (iv) the relationship of nerves, a variety of interstitial cells, matrix proteins, and striated myocytes to smooth muscle and endothelium in the vascular wall, (v) heterogeneity within cell populations and between vascular compartments, (vi) homo- and heterotypic cell-cell junctional complexes, and (vii) the relation of the pulmonary vasculature to that of airways. These issues for pulmonary vascular structure are compared, when data is available, across species from human to mouse and shrew. Data from studies utilizing vascular casting, light and electron microscopy, as well as models developed from those data, are discussed. Finally, the need for rigorous quantitative approaches to study of vascular structure in lung is highlighted.
Collapse
Affiliation(s)
- Mary I Townsley
- University of South Alabama, Department of Physiology, and Center for Lung Biology, Mobile, Alabama, USA.
| |
Collapse
|
49
|
Li X, Xue H, Kang Q, Sun H, Yang S, Zhang G, Zhou D. Alterations of the interstitial cells of Cajal and the microstructure of the gastrointestinal tract in KIT distal kinase mutant mice. Cell Tissue Res 2013; 355:49-58. [PMID: 24169863 DOI: 10.1007/s00441-013-1737-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/25/2013] [Indexed: 11/25/2022]
Abstract
The development and maintenance of interstitial cells of Cajal (ICC) are closely associated with SCF/KIT signal activity. In this study, we evaluate the distribution of ICC in KIT distal kinase domain mutant mice (Wads) and determine whether the loss-of-function mutations in KIT easily lead to gastrointestinal (GI) disorders. ICC were examined by anti-KIT immunohistochemistry and western blotting. The GI microstructure of wild-type (WT) and Wads mice in normal intestines and incomplete intestinal obstruction was evaluated by hematoxylin and eosin staining. The results in Wads(m/m) mice were as follows. Myenteric ICC were obviously decreased in the stomach and colon and were totally absent in the small intestine. Intramuscular ICC were nearly absent in the stomach and irregularly distributed in the colon. Moreover, the smooth muscle thickness of the small intestine was increased 1.3-fold in Wads(m/m), compared to WT and Wads(m/+) mice and the diameter of the intestinal lumen was also enlarged in Wads(m/m) mice. When constructing an incomplete intestinal obstruction model, the extent of distention involved was greater in Wads mice (1.6-fold in Wads(m/+) mice and 1.8-fold in Wads(m/m) mice vs. WT mice). Meanwhile, the intestinal lumen expansion and decrease in ICC were more pronounced in Wads mice than in WT mice. Our results suggest that the KIT distal kinase domain mutation leads to an ICC loss in a subtype and location-specific pattern in Wads(m/m) mice. The injury of the KIT signaling in mutant mice results in more serious pathological manifestations after being exposed to pathogenic factors.
Collapse
Affiliation(s)
- Xiaoshuang Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
50
|
Interstitial cells of Cajal integrate excitatory and inhibitory neurotransmission with intestinal slow-wave activity. Nat Commun 2013; 4:1630. [PMID: 23535651 DOI: 10.1038/ncomms2626] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/20/2013] [Indexed: 12/27/2022] Open
Abstract
The enteric nervous system contains excitatory and inhibitory neurons, which control contraction and relaxation of smooth muscle cells as well as gastrointestinal motor activity. Little is known about the exact cellular mechanisms of neuronal signal transduction to smooth muscle cells in the gut. Here we generate a c-Kit(CreERT2) knock-in allele to target a distinct population of pacemaker cells called interstitial cells of Cajal. By genetic loss-of-function studies, we show that interstitial cells of Cajal, which generate spontaneous electrical slow waves and thus rhythmic contractions of the smooth musculature, are essential for transmission of signals from enteric neurons to gastrointestinal smooth muscle cells. Interstitial cells of Cajal, therefore, integrate excitatory and inhibitory neurotransmission with slow-wave activity to orchestrate peristaltic motor activity of the gut. Impairment of the function of interstitial cells of Cajal causes severe gastrointestinal motor disorders. The results of our study show at the genetic level that these disorders are not only due to loss of slow-wave activity but also due to disturbed neurotransmission.
Collapse
|