1
|
Jhaveri R, Cannanbilla L, Bhat KSA, Sankaran M, Krishnadas M. Anatomical traits explain drought response of seedlings from wet tropical forests. Ecol Evol 2024; 14:e70155. [PMID: 39224158 PMCID: PMC11366499 DOI: 10.1002/ece3.70155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Water availability regulates plant community dynamics but the drought response of seedlings remains poorly known, despite their vulnerability, especially for the Asian tropics. In particular, discerning how functional traits of seedlings mediate drought response can aid generalizable predictions of tree responses to global environmental change. We assessed interspecific variation in drought response explained by above- and below-ground seedling traits. We conducted a dry-down experiment in the greenhouse using 16 tree species from the humid forests of Western Ghats in southern India, chosen to represent differences in affinity to conditions of high and low seasonal drought (seasonality affiliation). We compared survival, growth, and photosynthetic performance under drought and well-watered conditions and assessed the extent to which species' responses were explained by seasonality affiliation and 12 traits of root, stem and leaf. We found that the species from seasonally dry forest reduced photosynthetic rate in drought compared with well-watered conditions, but seasonality affiliation did not explain differences in growth and survival. Performance in drought vs well-watered conditions were best explained by anatomical traits of xylem, veins and stomata. Species with larger xylem reduced their growth and photosynthesis to tolerate desiccation. In drought, species with smaller stomata correlated with lower survival even though photosynthetic activity decreased by a larger extent with larger stomata. Overall, anatomical traits of xylem and stomata, directly related to water transport and gas-exchange, played a more prominent role than commonly used traits (e.g., specific leaf area, leaf dry matter content) in explaining species response to drought, and may offer a good proxy for physiological traits related to drought tolerance of seedlings.
Collapse
Affiliation(s)
- Rishiddh Jhaveri
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadIndia
| | - Lakshmipriya Cannanbilla
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- Chair of Plant EcologyUniversity of BayreuthBayreuthGermany
| | - K. S. Arpitha Bhat
- Department of Life ScienceBangalore UniversityBangaloreIndia
- Ashoka Trust for Research in Ecology and the Environment (ATREE)BangaloreIndia
| | | | - Meghna Krishnadas
- CSIR – Centre for Cellular and Molecular BiologyHyderabadIndia
- National Centre for Biological Sciences, TIFRBangaloreIndia
| |
Collapse
|
2
|
Leverett A, Borland AM. Elevated nocturnal respiratory rates in the mitochondria of CAM plants: current knowledge and unanswered questions. ANNALS OF BOTANY 2023; 132:855-867. [PMID: 37638861 PMCID: PMC10799998 DOI: 10.1093/aob/mcad119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Crassulacean acid metabolism (CAM) is a metabolic adaptation that has evolved convergently in 38 plant families to aid survival in water-limited niches. Whilst primarily considered a photosynthetic adaptation, CAM also has substantial consequences for nocturnal respiratory metabolism. Here, we outline the history, current state and future of nocturnal respiration research in CAM plants, with a particular focus on the energetics of nocturnal respiratory oxygen consumption. Throughout the 20th century, research interest in nocturnal respiration occurred alongside initial discoveries of CAM, although the energetic and mechanistic implications of nocturnal oxygen consumption and links to the operation of the CAM cycle were not fully understood. Recent flux balance analysis (FBA) models have provided new insights into the role that mitochondria play in the CAM cycle. Several FBA models have predicted that CAM requires elevated nocturnal respiratory rates, compared to C3 species, to power vacuolar malic acid accumulation. We provide physiological data, from the genus Clusia, to corroborate these modelling predictions, thereby reinforcing the importance of elevated nocturnal respiratory rates for CAM. Finally, we outline five unanswered questions pertaining to nocturnal respiration which must be addressed if we are to fully understand and utilize CAM plants in a hotter, drier world.
Collapse
Affiliation(s)
- Alistair Leverett
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Department of Plant Sciences, University of Cambridge, Downing St., Cambridge CB2 3EA, UK
| | - Anne M Borland
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
3
|
Mujawamariya M, Wittemann M, Dusenge ME, Manishimwe A, Ntirugulirwa B, Zibera E, Nsabimana D, Wallin G, Uddling J. Contrasting warming responses of photosynthesis in early- and late-successional tropical trees. TREE PHYSIOLOGY 2023:tpad035. [PMID: 36971469 DOI: 10.1093/treephys/tpad035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The productivity and climate feedbacks of tropical forests depend on tree physiological responses to warmer and, over large areas, seasonally drier conditions. However, knowledge regarding such responses is limited due to data scarcity. We studied the impact of growth temperature on net photosynthesis (An), maximum rates of Rubisco carboxylation at 25°C (Vcmax25), stomatal conductance (gs) and the slope parameter of the stomatal conductance-photosynthesis model (g1), in ten early- (ES) and eight late-successional (LS) tropical tree species grown at three sites along an elevation gradient in Rwanda, differing by 6.8°C in daytime ambient air temperature. The effect of seasonal drought on An was also investigated. We found that warm climate decreased wet-season An in LS species, but not in ES species. Values of Vcmax25 were lower at the warmest site across both successional groups, and An and Vcmax25 were higher in ES compared to LS species. Stomatal conductance exhibited no significant site differences and g1 was similar across both sites and successional groups. Drought strongly reduced An at warmer sites but not at the coolest montane site and this response was similar in both ES and LS species. Our results suggest that warming has negative effects on leaf-level photosynthesis in LS species, while both LS and ES species suffer photosynthesis declines in a warmer climate with more pronounced droughts. The contrasting responses of An between successional groups may lead to shifts in species' competitive balance in a warmer world, to the disadvantage of LS trees.
Collapse
Affiliation(s)
- Myriam Mujawamariya
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Center of Excellence in Biodiversity Conservation and Natural Resources Management, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| | - Maria Wittemann
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| | - Mirindi Eric Dusenge
- Western Center for Climate Change, Sustainable Livelihoods and Health, Department of Geography, The University of Western Ontario, London, Ontario, Canada
- College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, United Kingdom
| | - Aloysie Manishimwe
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Center of Excellence in Biodiversity Conservation and Natural Resources Management, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| | - Bonaventure Ntirugulirwa
- Department of Biology, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
- Rwanda Forestry Authority, Muhanga P.O. Box 46, Rwanda
| | - Etienne Zibera
- School of Forestry and Biodiversity, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze P.O. Box 210, Rwanda
| | - Donat Nsabimana
- Center of Excellence in Biodiversity Conservation and Natural Resources Management, College of Science and Technology, University of Rwanda, Avenue de l'Armée, Kigali P.O.Box 3900, Rwanda
- School of Forestry and Biodiversity, College of Agriculture, Animal Sciences and Veterinary Medicine, University of Rwanda, Musanze P.O. Box 210, Rwanda
| | - Göran Wallin
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, OX1 3QY, United Kingdom
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, P.O. Box 461, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
4
|
Phillips T, Gaoue OG, Lenhart S, Strickland WC. Modeling the effects of size-dependent harvesting strategies on the population dynamics of tropical trees. Math Biosci 2023; 355:108953. [PMID: 36513148 DOI: 10.1016/j.mbs.2022.108953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/29/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Several forest plant species are harvested both lethally for their timber and non-lethally for their non-timber forest products by the local people for cultural and economic reasons. To maximize yield, harvesters target various life stages of these species including both adults and juveniles particularly when the number of harvestable adults decline. The demographic consequences of harvesting various plant sizes differ based on what life stage is targeted. In this paper, we develop a size-structured, seasonal system of difference equations and corresponding matrix model with time-varying harvest to model the effects of size-dependent harvesting strategies on the population dynamics of tropical trees. We illustrate numerically our work specifically on African mahogany, Khaya senegalensis, a tropical tree in Benin. Novel applications and combinations of previously established matrix compression algorithms are presented to determine certain rates in our model, with other rates coming from the use of generalized linear modeling and ordinary least squares estimation incorporating observed population data. Harvesting rates for two types of populations are estimated, one with simulated harvest and the other experiencing natural harvest. Eigenvalue analysis suggests that for the populations in our study, harvesting may not have a drastic effect on the long-term persistence of the population. However, this should be taken with caution given that our model does not account for stochastic environmental variations that can interactively reduce population growth rates.
Collapse
Affiliation(s)
- Tricia Phillips
- Department of Mathematics, Birmingham-Southern College, 900 Arkadelphia Road, Birmingham, AL, 35254 USA.
| | - Orou G Gaoue
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996 USA; Faculty of Agronomy, University of Parakou, 01 BP 123, Parakou, Benin; Department of Geography, Environmental and Management and Energy Studies, University of Johannesburg, APK Campus, Johannesburg, South Africa.
| | - Suzanne Lenhart
- Department of Mathematics, University of Tennessee, 1403 Circle Drive, Knoxville, TN, 37996 USA.
| | - W Christopher Strickland
- Department of Ecology and Evolutionary Biology, University of Tennessee, 1416 Circle Drive, Knoxville, TN, 37996 USA; Department of Mathematics, University of Tennessee, 1403 Circle Drive, Knoxville, TN, 37996 USA.
| |
Collapse
|
5
|
de Souza AC, Donohue K, de Mattos EA. The effect of seed-dispersal timing on seedling recruitment is modulated by environmental conditions that vary across altitude in a threatened palm. ANNALS OF BOTANY 2022; 129:839-856. [PMID: 35325032 PMCID: PMC9292616 DOI: 10.1093/aob/mcac038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/22/2022] [Indexed: 05/29/2023]
Abstract
BACKGROUND AND AIMS The timing of seed dispersal determines the environmental conditions that plants face during early life stages. In seasonal environments, selection is expected to favour dispersal timing that is matched to environmental conditions suitable for successful recruitment. Our aim here was to test whether the timing of seed dispersal influences seedling establishment success in two populations of Euterpe edulis that are located at contrasting altitudes, have different seed-dispersal phenologies and are subjected to distinct climatic conditions. METHODS We sowed E. edulis seeds in contrasting altitudes on different dates, and monitored seed germination, emergence and seedling establishment at each altitude over 4 years. At the high-altitude site, five seed-dispersal cohorts were established during the natural dispersal period. At the low-altitude site, three seed-dispersal cohorts were established during natural dispersal, and two were established either before or after natural dispersal. KEY RESULTS At the high-altitude site, seed-dispersal timing did not affect seed germination, seedling emergence or seedling establishment success. In contrast, at the low-altitude site, late seed dispersal near the end of the wet season resulted in a lower probability of seedling establishment, possibly due to the exposure of seeds, germinants and seedlings to unfavourable drought conditions. In addition, at the low-altitude site, the natural seed-dispersal period was poorly matched to favourable environmental conditions for seedling establishment. CONCLUSIONS The greater effect of seed-dispersal timing on seedling establishment at the low-altitude site is probably related to a more seasonal and drought-prone environment that favours a restricted period of seed dispersal. The magnitude of the effect of dispersal timing on seedling establishment success was modulated by environmental conditions that vary across altitude. Furthermore, reproductive phenology appears to be subject to more intense selection at the lower limit of the altitudinal range, due to a more restrictive window of opportunity for successful seedling establishment.
Collapse
Affiliation(s)
| | | | - Eduardo A de Mattos
- Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Overcoming the regeneration barriers of tropical dry forest: effects of water stress and herbivory on seedling performance and allocation of key tree species for restoration. JOURNAL OF TROPICAL ECOLOGY 2022. [DOI: 10.1017/s0266467422000074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
Tropical dry forests (TDF) are one of the most threatened and poorly protected ecosystems in the Americas. Although there are international efforts for the restoration of TDF, how stress factors such as herbivory or water limitation due to changes in precipitation, impact the regeneration dynamics of these forests is poorly understood. Specifically, how seedlings of key tree species for TDF restoration cope with current abiotic pressures such as the intensification of climatic events, and biotic factors like herbivory, is not yet fully understood. Here, we compared seedling performance, and allocation of biomass, and water to roots vs. shoots for three legume, and one non-legume TDF tree species, as a response to water limitation and herbivory in an 8-month greenhouse experiment. Contrary to our expectations, we found that the non-legume species, G. ulmifolia, had the best performance compared to legumes, while N-fixing and non-fixing legumes showed similar performance. Based on our findings, we suggest the use of G. ulmifolia in TDF restoration projects due to its high performance despite abiotic and biotic stress factors, its allocation of biomass and water to belowground structures. We also recommend the use of N-fixing legume species owing to their ability to fix nitrogen, which guarantees an N input to the soil, important in the first stages of succession. However, the legume species used in this experiment do not appear to resist the abiotic and biotic stressors studied. Thus, more studies exploring the response of dry forest plant species to stress factors are key for informing and assuring more effective TDF restoration efforts.
Collapse
|
7
|
Kenzo T, Yoneda R, Azani MA. Artificial shade shelters mitigate harsh microclimate conditions and enhance growth in tropical tree seedlings planted in degraded land. TROPICS 2021. [DOI: 10.3759/tropics.ms20-07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
| | - Reiji Yoneda
- Shikoku Research Center, Forestry and Forest Products Research Institute
| | | |
Collapse
|
8
|
Stomatal and Leaf Morphology Response of European Beech (Fagus sylvatica L.) Provenances Transferred to Contrasting Climatic Conditions. FORESTS 2020. [DOI: 10.3390/f11121359] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Climate change-induced elevated temperatures and drought are considered to be serious threats to forest ecosystems worldwide, negatively affecting tree growth and viability. We studied nine European beech (Fagus sylvatica L.) provenances located in two provenance trial plots with contrasting climates in Central Europe. Stomata play a vital role in the water balance of plants by regulating gaseous exchanges between plants and the atmosphere. Therefore, to explain the possible adaptation and acclimation of provenances to climate conditions, stomatal (stomatal density, the length of guard cells, and the potential conductance index) and leaf morphological traits (leaf size, leaf dry weight and specific leaf area) were assessed. The phenotypic plasticity index was calculated from the variability of provenances’ stomatal and leaf traits between the provenance plots. We assessed the impact of various climatic characteristics and derived indices (e.g., ecodistance) on intraspecific differences in stomatal and leaf traits. Provenances transferred to drier and warmer conditions acclimated through a decrease in stomatal density, the length of guard cells, potential conductance index, leaf size and leaf dry weight. The reduction in stomatal density and the potential conductance index was proportional to the degree of aridity difference between the climate of origin and conditions of the new site. Moreover, we found that the climate heterogeneity and latitude of the original provenance sites influence the phenotypic plasticity of provenances. Provenances from lower latitudes and less heterogeneous climates showed higher values of phenotypic plasticity. Furthermore, we observed a positive correlation between phenotypic plasticity and mortality in the arid plot but not in the more humid plot. Based on these impacts of the climate on stomatal and leaf traits of transferred provenances, we can improve the predictions of provenance reactions for future scenarios of global climate change.
Collapse
|
9
|
Tysklind N, Etienne MP, Scotti-Saintagne C, Tinaut A, Casalis M, Troispoux V, Cazal SO, Brousseau L, Ferry B, Scotti I. Microgeographic local adaptation and ecotype distributions: The role of selective processes on early life-history traits in sympatric, ecologically divergent Symphonia populations. Ecol Evol 2020; 10:10735-10753. [PMID: 33072293 PMCID: PMC7548183 DOI: 10.1002/ece3.6731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 11/11/2022] Open
Abstract
Trees are characterized by the large number of seeds they produce. Although most of those seeds will never germinate, plenty will. Of those which germinate, many die young, and eventually, only a minute fraction will grow to adult stage and reproduce. Is this just a random process? Do variations in germination and survival at very young stages rely on variations in adaptations to microgeographic heterogeneity? and do these processes matter at all in determining tree species distribution and abundance? We have studied these questions with the Neotropical Symphonia tree species. In the Guiana shield, Symphonia are represented by at least two sympatric taxa or ecotypes, Symphonia globulifera found almost exclusively in bottomlands, and a yet undescribed more generalist taxon/ecotype, Symphonia sp1. A reciprocal transplantation experiment (510 seeds, 16 conditions) was set up and followed over the course of 6 years to evaluate the survival and performance of individuals from different ecotypes and provenances. Germination, survival, growth, and herbivory showed signs of local adaptation, with some combinations of ecotypes and provenances growing faster and surviving better in their own habitat or provenance region. S. globulifera was strongly penalized when planted outside its home habitat but showed the fastest growth rates when planted in its home habitat, suggesting it is a specialist of a high‐risk high‐gain strategy. Conversely, S. sp1 behaved as a generalist, performing well in a variety of environments. The differential performance of seeds and seedlings in the different habitats matches the known distribution of both ecotypes, indicating that environmental filtering at the very early stages can be a key determinant of tree species distributions, even at the microgeographic level and among very closely related taxa. Furthermore, such differential performance also contributes to explain, in part, the maintenance of the different Symphonia ecotypes living in intimate sympatry despite occasional gene flow.
Collapse
Affiliation(s)
- Niklas Tysklind
- INRAE UMR0745 EcoFoG AgroParisTech Cirad CNRS Université des Antilles Université de Guyane Kourou Cedex France
| | | | | | - Alexandra Tinaut
- INRAE UMR0745 EcoFoG AgroParisTech Cirad CNRS Université des Antilles Université de Guyane Kourou Cedex France.,Université de Guyane UMR0745 EcoFoG INRAE AgroParisTech Cirad CNRS Université des Antilles Kourou Cedex France
| | - Maxime Casalis
- INRAE UMR0745 EcoFoG AgroParisTech Cirad CNRS Université des Antilles Université de Guyane Kourou Cedex France.,Université de Guyane UMR0745 EcoFoG INRAE AgroParisTech Cirad CNRS Université des Antilles Kourou Cedex France
| | - Valerie Troispoux
- INRAE UMR0745 EcoFoG AgroParisTech Cirad CNRS Université des Antilles Université de Guyane Kourou Cedex France
| | - Saint-Omer Cazal
- INRAE UMR0745 EcoFoG AgroParisTech Cirad CNRS Université des Antilles Université de Guyane Kourou Cedex France
| | - Louise Brousseau
- INRAE UMR0745 EcoFoG AgroParisTech Cirad CNRS Université des Antilles Université de Guyane Kourou Cedex France.,Present address: UMR AMAP IRD Cirad CNRS INRAE Université Montpellier Montpellier France
| | - Bruno Ferry
- AgroParisTech INRAE UMR SILVA Université de Lorraine Nancy France
| | - Ivan Scotti
- INRAE UR629 Ecologie des Forêts Méditerranéennes (URFM) Avignon France
| |
Collapse
|
10
|
Bongalov B, Burslem DFRP, Jucker T, Thompson SED, Rosindell J, Swinfield T, Nilus R, Clewley D, Phillips OL, Coomes DA. Reconciling the contribution of environmental and stochastic structuring of tropical forest diversity through the lens of imaging spectroscopy. Ecol Lett 2019; 22:1608-1619. [PMID: 31347263 PMCID: PMC6852337 DOI: 10.1111/ele.13357] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/08/2019] [Accepted: 07/01/2019] [Indexed: 11/29/2022]
Abstract
Both niche and stochastic dispersal processes structure the extraordinary diversity of tropical plants, but determining their relative contributions has proven challenging. We address this question using airborne imaging spectroscopy to estimate canopy β-diversity for an extensive region of a Bornean rainforest and challenge these data with models incorporating niches and dispersal. We show that remotely sensed and field-derived estimates of pairwise dissimilarity in community composition are closely matched, proving the applicability of imaging spectroscopy to provide β-diversity data for entire landscapes of over 1000 ha containing contrasting forest types. Our model reproduces the empirical data well and shows that the ecological processes maintaining tropical forest diversity are scale dependent. Patterns of β-diversity are shaped by stochastic dispersal processes acting locally whilst environmental processes act over a wider range of scales.
Collapse
Affiliation(s)
- Boris Bongalov
- Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - David F R P Burslem
- School of Biological Sciences, University of Aberdeen, Cruickshank Building, St Machar Drive, Aberdeen, UK
| | - Tommaso Jucker
- Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.,School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Samuel E D Thompson
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK.,National University of Singapore, 21 Lower Kent Ridge Road, 119077, Singapore
| | - James Rosindell
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Tom Swinfield
- Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.,Centre for Conservation Science, Royal Society for Protection of Birds, David Attenborough Building, Cambridge, CB2 3QZ, UK
| | - Reuben Nilus
- Forest Research Centre, Sabah Forestry Department, Sandakan, Malaysia
| | | | | | - David A Coomes
- Forest Ecology and Conservation Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
11
|
Effects of Five Growing Media and Two Fertilizer Levels on Polybag—Raised Camden Whitegum (Eucalyptus benthamii Maiden & Cambage) Seedling Morphology and Drought Hardiness. FORESTS 2019. [DOI: 10.3390/f10070543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In developing countries, tree seedlings are often produced in polybags filled with mixtures of locally available materials. Seedling growth and quality can be affected by the type and amount of these substrates used in the mixture. Differences in seedling growth and quality can also be significantly affected when fertilization is employed during the nursery growing period. In this study, we assessed the effects of five different growing media and two fertilization regimes on nursery growth, seedling morphology and early post-planting response to drought of Eucalyptus benthamii (Maiden & Cambage) seedlings. First, we evaluated the effects of each media by fertilizer treatment combination on morphological attributes during a nursery growing period. Seedlings raised in fertilized media without rice hulls yielded higher growth, root dry mass, shoot dry mass, total dry mass, Dickson quality index (DQI) scores, and number of first order lateral roots (FOLRs). Root to shoot ratio (R:S ratio) was, however, greater in non-fertilized media that contained rice hulls. We then conducted a simulated outplanting and drought hardiness experiment, in which seedlings were planted in 13.2 L containers and irrigated for one month, followed by the imposition of drought stress. Seedlings in fertilized media composed of sand, topsoil and compost showed greater growth than those in rice hull-containing media, during the irrigation phase. With the discontinuation of irrigation and prevention of precipitation reaching the seedlings, seedlings grown in non-fertilized media containing rice hulls survived longer than those in other media. There were no large differences in survival among other media or between fertilized and other non-fertilized seedlings. Seedling total size and shoot height at the time of planting played a major role in survival. Smaller seedlings with smaller shoot sizes and greater R:S ratios survived longer. This study demonstrates that growing media and fertilization can be manipulated to affect seedling morphology in the nursery and, ultimately, seedling performance and survival under water stressed conditions.
Collapse
|
12
|
Dry-forest tree species with large seeds and low stem specific density show greater survival under drought. JOURNAL OF TROPICAL ECOLOGY 2019. [DOI: 10.1017/s0266467418000421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractTree establishment in tropical dry forests is constrained by drought-related seedling mortality during early stages of recruitment. Predicted increases in the duration of growing-season droughts in the future pose a significant threat to these ecosystems that could significantly alter their vegetation structure and composition. Here, we examined drought tolerance in seedlings of seven common dry-forest tree species from the Indian subcontinent. We conducted a dry-down experiment on 3-wk-old seedlings, and asked whether the key plant functional traits, specific leaf area (SLA), leaf dry matter content (LDMC), seed size and stem specific density (SSD) were good predictors of seedling growth under well-watered conditions, and survival during drought. Seedlings displayed substantial drought tolerance with most seedlings surviving for more than 2 wk under protracted drought. Seed size in combination with SLA predicted seedling growth under well-watered conditions and seed size predicted survival under drought. In contrast to our expectations, seedlings with lower SSD survived for longer without water. Our results suggest that dry-forest species will be differentially affected by the predicted increases in the duration of growing-season droughts, and detrimental effects will be more severe for species with smaller seeds.
Collapse
|
13
|
Early establishment and survival of the neotropical dry deciduous forest treeLysiloma microphyllumfrom mountainous Bajio Queretano, Mexico. JOURNAL OF TROPICAL ECOLOGY 2017. [DOI: 10.1017/s0266467417000116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract:The tropical dry deciduous forest (TDF) of the semi-arid region of Bajio in Mexico is dominated by successional communities, in whichLysiloma microphyllumis irregularly distributed, however the environmental factors influencing its establishment have been poorly studied. We conducted field experiments to isolate the impact of three factors on the early life-history stages of this tree. Over a 2-y period, we monitored the effects of (1) predation, (2) understorey light and (3) aspect on germination, seed-to-seedling transition (establishment) and seedling survival, and we found that open space negatively affected germination (14.9 ± 1.5% vs 96 ± 1.5% in shade; mean ± SE), while shade increased seedling establishment and survival (36.9 ± 8.2% vs 4.7 ± 3.8% in open sites). Predation decreased survival and was strongest in open conditions (0 vs 62.7 ± 9.4% in shaded exclosures). In contrast, aspect had little influence on germination and survival. The results suggest that shaded microsites positively affect the early life stages ofL. microphyllum, a key process in TDF recovery.
Collapse
|
14
|
Variant responses of tree seedling to seasonal drought stress along an elevational transect in tropical montane forests. Sci Rep 2016; 6:36438. [PMID: 27819274 PMCID: PMC5098249 DOI: 10.1038/srep36438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 10/14/2016] [Indexed: 11/29/2022] Open
Abstract
Seasonal drought is a common phenomenon in many forests predominated by monsoon climate. The impact of seasonal drought, however, may vary with elevations, and tree species of forests hence may differ in their response to elevations. In this study, we monitored the seasonal variation of seedling species composition, and their relative growth rate (RGR) along an elevational transect in tropical forests of southwest China for two years. We found tree seedling species richness declined with rising elevation. Seedling abundance and species richness increased significantly from dry season to rainy season. In dry season, RGR declined progressively from low to high elevational bands, while positive RGR occurred in each elevation in rainy season. We grouped seedling species into low and high elevation specialists based on their elevational distributions. Seasonal variance in soil moisture may lead to seasonal dynamics of seedling community in this area. Our results suggest that the observed change in local climate over the last 40 years tends to allow the tree species from high elevation to expand their distribution to the lower elevation, while the ranges of those at low elevations could be compressed or at the risk of extinction.
Collapse
|
15
|
Amissah L, Mohren GMJ, Kyereh B, Poorter L. The effects of drought and shade on the performance, morphology and physiology of Ghanaian tree species. PLoS One 2015; 10:e0121004. [PMID: 25836337 PMCID: PMC4383566 DOI: 10.1371/journal.pone.0121004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 02/09/2015] [Indexed: 11/24/2022] Open
Abstract
In tropical forests light and water availability are the most important factors for seedling growth and survival but an increasing frequency of drought may affect tree regeneration. One central question is whether drought and shade have interactive effects on seedling growth and survival. Here, we present results of a greenhouse experiment, in which seedlings of 10 Ghanaian tree species were exposed to combinations of strong seasonal drought (continuous watering versus withholding water for nine weeks) and shade (5% irradiance versus 20% irradiance). We evaluated the effects of drought and shade on seedling survival and growth and plasticity of 11 underlying traits related to biomass allocation, morphology and physiology. Seedling survival under dry conditions was higher in shade than in high light, thus providing support for the "facilitation hypothesis" that shade enhances plant performance through improved microclimatic conditions, and rejecting the trade-off hypothesis that drought should have stronger impact in shade because of reduced root investment. Shaded plants had low biomass fraction in roots, in line with the trade-off hypothesis, but they compensated for this with a higher specific root length (i.e., root length per unit root mass), resulting in a similar root length per plant mass and, hence, similar water uptake capacity as high-light plants. The majority (60%) of traits studied responded independently to drought and shade, indicating that within species shade- and drought tolerances are not in trade-off, but largely uncoupled. When individual species responses were analysed, then for most of the traits only one to three species showed significant interactive effects between drought and shade. The uncoupled response of most species to drought and shade should provide ample opportunity for niche differentiation and species coexistence under a range of water and light conditions. Overall our greenhouse results suggest that, in the absence of root competition shaded tropical forest tree seedlings may be able to survive prolonged drought.
Collapse
Affiliation(s)
- Lucy Amissah
- Council for Scientific and Industrial Research—Forestry Research Institute of Ghana, KNUST, Kumasi, Ghana
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Godefridus M. J. Mohren
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| | - Boateng Kyereh
- College of Agriculture and Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
16
|
Effects of ENSO and temporal rainfall variation on the dynamics of successional communities in old-field succession of a tropical dry forest. PLoS One 2013; 8:e82040. [PMID: 24349179 PMCID: PMC3861369 DOI: 10.1371/journal.pone.0082040] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/20/2013] [Indexed: 11/19/2022] Open
Abstract
The effects of temporal variation of rainfall on secondary succession of tropical dry ecosystems are poorly understood. We studied effects of inter-seasonal and inter-year rainfall variation on the dynamics of regenerative successional communities of a tropical dry forest in Mexico. We emphasized the effects caused by the severe El Niño Southern Oscillation (ENSO) occurred in 2005. We established permanent plots in sites representing a chronosequence of Pasture (abandoned pastures, 0–1 years fallow age), Early (3–5), Intermediate (8–12), and Old-Growth Forest categories (n = 3 per category). In total, 8210 shrubs and trees 10 to 100-cm height were identified, measured, and monitored over four years. Rates of plant recruitment, growth and mortality, and gain and loss of species were quantified per season (dry vs. rainy), year, and successional category, considering whole communities and separating seedlings from sprouts and shrubs from trees. Community rates changed with rainfall variation without almost any effect of successional stage. Mortality and species loss rates peaked during the ENSO year and the following year; however, after two rainy years mortality peaked in the rainy season. Such changes could result from the severe drought in the ENSO year, and of the outbreak of biotic agents during the following rainy years. Growth, recruitment and species gain rates were higher in the rainy season but they were significantly reduced after the ENSO year. Seedlings exhibited higher recruitment and mortality rate than sprouts, and shrubs showed higher recruitment than trees. ENSO strongly impacted both the dynamics and trajectory of succession, creating transient fluctuations in the abundance and species richness of the communities. Overall, there was a net decline in plant and species density in most successional stages along the years. Therefore, strong drought events have critical consequences for regeneration dynamics, delaying the successional process and modifying the resilience of these systems.
Collapse
|
17
|
Wyse SV, Macinnis-Ng CMO, Burns BR, Clearwater MJ, Schwendenmann L. Species assemblage patterns around a dominant emergent tree are associated with drought resistance. TREE PHYSIOLOGY 2013; 33:1269-1283. [PMID: 24299988 DOI: 10.1093/treephys/tpt095] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Water availability has long been recognized as an important driver of species distribution patterns in forests. The conifer Agathis australis (D. Don) Lindl. (kauri; Araucariaceae) grows in the species-rich forests of northern New Zealand. It is accompanied by distinctive species assemblages, and during summer the soil beneath A. australis is often significantly drier than soils beneath surrounding broadleaved angiosperm canopy species. We used a shade house dry-down experiment to determine whether species that grow close to A. australis differed in drought tolerance physiology compared with species that rarely grow close to A. australis. Stomatal conductance (g(s)) was plotted against leaf water potential (ψ) to identify drought tolerance strategies. Seedlings of species that occur in close spatial association with A. australis (including A. australis seedlings) were most resistant to drought stress, and all displayed a drought avoidance strategy of either declining gs to maintain ψ or simultaneous declines in g(s) and ψ. The species not commonly occurring beneath A. australis, but abundant in the surrounding forest, were the most drought-sensitive species and succumbed relatively quickly to drought-induced mortality with rapidly declining gs and ψ values. These results were confirmed with diurnal measurements of g(s) and assimilation rates throughout the day, and leaf wilting analysis. We conclude that the varied abilities of the species to survive periods of drought stress as seedlings shapes the composition of the plant communities beneath A. australis trees. Furthermore, forest diversity may be impacted by climate change as the predicted intensification of droughts in northern New Zealand is likely to select for drought-tolerant species over drought-intolerant species.
Collapse
Affiliation(s)
- Sarah V Wyse
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | | | | | | |
Collapse
|
18
|
Pineda-García F, Paz H, Meinzer FC. Drought resistance in early and late secondary successional species from a tropical dry forest: the interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. PLANT, CELL & ENVIRONMENT 2013; 36:405-18. [PMID: 22812458 DOI: 10.1111/j.1365-3040.2012.02582.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The mechanisms of drought resistance that allow plants to successfully establish at different stages of secondary succession in tropical dry forests are not well understood. We characterized mechanisms of drought resistance in early and late-successional species and tested whether risk of drought differs across sites at different successional stages, and whether early and late-successional species differ in resistance to experimentally imposed soil drought. The microenvironment in early successional sites was warmer and drier than in mature forest. Nevertheless, successional groups did not differ in resistance to soil drought. Late-successional species resisted drought through two independent mechanisms: high resistance of xylem to embolism, or reliance on high stem water storage capacity. High sapwood water reserves delayed the effects of soil drying by transiently decoupling plant and soil water status. Resistance to soil drought resulted from the interplay between variations in xylem vulnerability to embolism, reliance on sapwood water reserves and leaf area reduction, leading to a tradeoff of avoidance against tolerance of soil drought, along which successional groups were not differentiated. Overall, our data suggest that ranking species' performance under soil drought based solely on xylem resistance to embolism may be misleading, especially for species with high sapwood water storage capacity.
Collapse
Affiliation(s)
- Fernando Pineda-García
- Centro de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, campus Morelia, Morelia, Mexico.
| | | | | |
Collapse
|
19
|
Maza-Villalobos S, Balvanera P, Martínez-Ramos M. Early Regeneration of Tropical Dry Forest from Abandoned Pastures: Contrasting Chronosequence and Dynamic Approaches. Biotropica 2011. [DOI: 10.1111/j.1744-7429.2011.00755.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Balvanera P, Quijas S, Pérez-Jiménez A. Distribution Patterns of Tropical Dry Forest Trees Along a Mesoscale Water Availability Gradient. Biotropica 2010. [DOI: 10.1111/j.1744-7429.2010.00712.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest. JOURNAL OF TROPICAL ECOLOGY 2010. [DOI: 10.1017/s0266467410000271] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Abstract:We determined seasonal variation in soil matric potentials (ψsoil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y−1 rain) and moist forest (1580 mm y−1). In each forest we analysed the effect of drought on predawn leaf water potentials (ψpd) and drought response (midday leaf water potential at a standardized ψpd of −0.98 MPa; ψmd) of saplings of three tree species, varying in shade-tolerance and leaf phenology. ψsoil changed during the dry season and most extreme in the dry forest. Crests were drier than slopes and valleys. Dry-forest top soil was drier than deep soil in the dry season, the inverse was found in the wet season. In the moist forest the drought-deciduous species, Sweetia fruticosa, occupied dry sites. In the dry forest the short-lived pioneer, Solanum riparium, occupied wet sites and the shade-tolerant species, Acosmium cardenasii drier sites. Moist-forest species had similar drought response. The dry-forest pioneer showed a larger drought response than the other two species. Heterogeneity in soil water availability and interspecific differences in moisture requirements and drought response suggest great potential for niche differentiation. Species may coexist at different topographical locations, by extracting water from different soil layers and/or by doing so at different moments in time.
Collapse
|
22
|
Drought-deciduous behavior reduces nutrient losses from temperate deciduous trees under severe drought. Oecologia 2010; 163:845-54. [PMID: 20364272 DOI: 10.1007/s00442-010-1614-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/13/2010] [Indexed: 10/19/2022]
Abstract
Nutrient resorption from senescing leaves is an important mechanism of nutrient conservation in temperate deciduous forests. Resorption, however, may be curtailed by climatic events that cause rapid leaf death, such as severe drought, which has been projected to double by the year 2100 in the eastern United States. During a record drought in the southeastern US, we studied 18 common temperate winter-deciduous trees and shrubs to understand how extreme drought affects nutrient resorption of the macronutrients N, P, K, and Ca. Four species exhibited drought-induced leaf senescence and maintained higher leaf water potentials than the remaining 14 species (here called drought-evergreen species). This strategy prevented extensive leaf desiccation during the drought and successfully averted large nutrient losses caused by leaf desiccation. These four drought-deciduous species were also able to resorb N, P, and K from drought-senesced leaves, whereas drought-evergreen species did not resorb any nutrients from leaves lost to desiccation during the drought. For Oxydendrum arboreum, the species most severely affected by the drought, our results indicate that trees lost 50% more N and P due to desiccation than would have been lost from fall senescence alone. For all drought-deciduous species, resorption of N and P in fall-senesced leaves was highly proficient, whereas resorption was incomplete for drought-evergreen species. The lower seasonal nutrient losses of drought-deciduous species may give them a competitive advantage over drought-evergreen species in the years following the drought, thereby impacting species composition in temperate deciduous forests in the future.
Collapse
|
23
|
Baltzer JL, Grégoire DM, Bunyavejchewin S, Noor NSM, Davies SJ. Coordination of foliar and wood anatomical traits contributes to tropical tree distributions and productivity along the Malay-Thai Peninsula. AMERICAN JOURNAL OF BOTANY 2009; 96:2214-23. [PMID: 21622337 DOI: 10.3732/ajb.0800414] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Drought is a critical factor in plant species distributions. Much research points to its relevance even in moist tropical regions. Recent studies have begun to elucidate mechanisms underlying the distributions of tropical tree species with respect to drought; however, how such desiccation tolerance mechanisms correspond with the coordination of hydraulic and photosynthetic traits in determining species distributions with respect to rainfall seasonality deserves attention. In the present study, we used a common garden approach to quantify inherent differences in wood anatomical and foliar physiological traits in 21 tropical tree species with either widespread (occupying both seasonal and aseasonal climates) or southern (restricted to aseasonal forests) distributions with respect to rainfall seasonality. Use of congeneric species pairs and phylogenetically independent contrast analyses allowed examination of this question in a phylogenetic framework. Widespread species opted for wood traits that provide biomechanical support and prevent xylem cavitation and showed associated reductions in canopy productivity and consequently growth rates compared with southern species. These data support the hypothesis that species having broader distributions with respect to climatic variability will be characterized by traits conducive to abiotic stress tolerance. This study highlights the importance of the well-established performance vs. stress tolerance trade-off as a contributor to species distributions at larger scales.
Collapse
Affiliation(s)
- Jennifer L Baltzer
- Biology Department, 63B York Street, Mount Allison University, Sackville, New Brunswick, E4L 1G7 Canada
| | | | | | | | | |
Collapse
|
24
|
Seasonal differences in leaf-level physiology give lianas a competitive advantage over trees in a tropical seasonal forest. Oecologia 2009; 161:25-33. [PMID: 19418072 PMCID: PMC2700874 DOI: 10.1007/s00442-009-1355-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 04/13/2009] [Indexed: 11/24/2022]
Abstract
Lianas are an important component of most tropical forests, where they vary in abundance from high in seasonal forests to low in aseasonal forests. We tested the hypothesis that the physiological ability of lianas to fix carbon (and thus grow) during seasonal drought may confer a distinct advantage in seasonal tropical forests, which may explain pan-tropical liana distributions. We compared a range of leaf-level physiological attributes of 18 co-occurring liana and 16 tree species during the wet and dry seasons in a tropical seasonal forest in Xishuangbanna, China. We found that, during the wet season, lianas had significantly higher CO2 assimilation per unit mass (Amass), nitrogen concentration (Nmass), and δ13C values, and lower leaf mass per unit area (LMA) than trees, indicating that lianas have higher assimilation rates per unit leaf mass and higher integrated water-use efficiency (WUE), but lower leaf structural investments. Seasonal variation in CO2 assimilation per unit area (Aarea), phosphorus concentration per unit mass (Pmass), and photosynthetic N-use efficiency (PNUE), however, was significantly lower in lianas than in trees. For instance, mean tree Aarea decreased by 30.1% from wet to dry season, compared with only 12.8% for lianas. In contrast, from the wet to dry season mean liana δ13C increased four times more than tree δ13C, with no reduction in PNUE, whereas trees had a significant reduction in PNUE. Lianas had higher Amass than trees throughout the year, regardless of season. Collectively, our findings indicate that lianas fix more carbon and use water and nitrogen more efficiently than trees, particularly during seasonal drought, which may confer a competitive advantage to lianas during the dry season, and thus may explain their high relative abundance in seasonal tropical forests.
Collapse
|
25
|
Potential effects of arboreal and terrestrial avian dispersers on seed dormancy, seed germination and seedling establishment in Ormosia (Papilionoideae) species in Peru. JOURNAL OF TROPICAL ECOLOGY 2008. [DOI: 10.1017/s0266467408005439] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract:The relative effectiveness of arboreal or terrestrial birds at dispersing seeds of Ormosia macrocalyx and O. bopiensis (Fabaceae: Papilionoideae) were studied in south-eastern Peru. Seeds of both species were either scarified, to represent seed condition after dispersal by terrestrial birds, or left intact, to represent seed condition after dispersal by arboreal birds. Seeds were distributed along forest transects, and germination, seedling development and mortality were monitored to determine the successes of the two groups at producing seedlings. Scarified seeds germinated with the early rains of the dry-to-wet-season transition, when erratic rainfall was interspersed with long dry spells. Intact seeds germinated 30 d later when the rain was more plentiful and regular. Intact seeds of O. macrocalyx gave rise to significantly more seedlings (41.1% vs. 25.5%) than did scarified seeds, in part, because significantly more seedlings from scarified seeds (n = 20) than from intact seeds (n = 3) died from desiccation when their radicles failed to enter the dry ground present during the dry-to-wet-season transition. Also, seedlings from scarified seeds were neither larger nor more robust than those from intact seeds despite their longer growing period. Results are consistent with the hypothesis that dispersal effectiveness of arboreal birds, at least for O. macrocalyx, is greater than that of terrestrial birds. Screen-house experiments in which seedlings developed under different watering regimes supported this result. Numbers of seedlings developing from intact and scarified seeds of O. bopiensis did not differ significantly.
Collapse
|
26
|
|
27
|
Baltzer JL, Davies SJ, Bunyavejchewin S, Noor NSM. The role of desiccation tolerance in determining tree species distributions along the Malay–Thai Peninsula. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2007.01374.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|