1
|
Song W, Lee C, Jeong H, Kim S, Hwang NS. Sprayable anti-adhesive hydrogel for peritoneal macrophage scavenging in post-surgical applications. Nat Commun 2024; 15:8364. [PMID: 39333108 PMCID: PMC11436759 DOI: 10.1038/s41467-024-52753-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024] Open
Abstract
Post-surgical adhesions frequently occur after intra-abdominal surgery, leading to severe complications. Despite the development of various types of adhesion barriers to address post-surgical adhesions, several limitations persist, including off-target localization, handling difficulties, and potential immunogenicity. Here, we report a spray-type adhesion barrier for broad, fast application, forming two sequential networks. The first network is formed by a polyelectrolyte complex of sulfated hyaluronic acid and chitosan, while the second network is established through pluronic® F127 thermogelation. This sprayable barrier served as both a physical protector for the damaged peritoneum and an immunomodulator for peritoneal macrophages, as evidenced its effectiveness in a rat ischemic button model. Taken together, this efficient adhesion barrier presents a promising solution for post-surgical adhesions.
Collapse
Affiliation(s)
- Wonmoon Song
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Changyub Lee
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Haein Jeong
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Seoyeon Kim
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Nathaniel S Hwang
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea.
- School of Chemical and Biological Engineering, Institute for Chemical Processes, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhang K, Zheng J, Xu Y, Liao Z, Huang Y, Lu L. Enhanced fabrication of size-controllable chitosan-genipin nanoparticles using orifice-induced hydrodynamic cavitation: Process optimization and performance evaluation. ULTRASONICS SONOCHEMISTRY 2024; 106:106899. [PMID: 38733852 PMCID: PMC11103574 DOI: 10.1016/j.ultsonch.2024.106899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
Chitosan nanoparticles (NPs) possess great potential in biomedical fields. Orifice-induced hydrodynamic cavitation (HC) has been used for the enhancement of fabrication of size-controllable genipin-crosslinked chitosan (chitosan-genipin) NPs based on the emulsion cross-linking (ECLK). Experiments have been performed using various plate geometries, chitosan molecular weight and under different operational parameters such as inlet pressure (1-3.5 bar), outlet pressure (0-1.5 bar) and cross-linking temperature (40-70 °C). Orifice plate geometry was a crucial factor affecting the properties of NPs, and the optimized geometry of orifice plate was with single hole of 3.0 mm diameter. The size of NPs with polydispersity index of 0.359 was 312.6 nm at an optimized inlet pressure of 3.0 bar, and the maximum production yield reached 84.82 %. Chitosan with too high or too low initial molecular weight (e.g., chitosan oligosaccharide) was not applicable for producing ultra-fine and narrow-distributed NPs. There existed a non-linear monotonically-increasing relationship between cavitation number (Cv) and chitosan NP size. Scanning electron microscopy (SEM) test indicated that the prepared NPs were discrete with spherical shape. The study demonstrated the superiority of HC in reducing particle size and size distribution of NPs, and the energy efficiency of orifice type HC-processed ECLK was two orders of magnitude than that of ultrasonic horn or high shear homogenization-processed ECLK. In vitro drug-release studies showed that the fabricated NPs had great potential as a drug delivery system. The observations of this study can offer strong support for HC to enhance the fabrication of size-controllable chitosan-genipin NPs.
Collapse
Affiliation(s)
- Kunming Zhang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, China.
| | - Jianbin Zheng
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Yun Xu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Zicheng Liao
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, China.
| | - Lijin Lu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| |
Collapse
|
3
|
Ogazi AC, Osifo PO. Effects of dimethylacetamide on chitosan/
AgNP
/
GO
fluid properties for
3D
printing of water filtration membranes. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.5964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Anthony C. Ogazi
- Department of Chemical Engineering Vaal University of Technology Vanderbijlpark South Africa
| | - Peter O. Osifo
- Department of Chemical Engineering Vaal University of Technology Vanderbijlpark South Africa
| |
Collapse
|
4
|
Pang M, Zheng D, Jia P, Cao L. Novel Water-in-Oil Emulsions for Co-Loading Sialic Acid and Chitosan: Formulation, Characterization, and Stability Evaluation. Foods 2022; 11:foods11060873. [PMID: 35327295 PMCID: PMC8951255 DOI: 10.3390/foods11060873] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
This study was designed to co-load sialic acid (SA) and chitosan in a water-in-oil (W/O) emulsion and investigated its characterization and stability. Emulsions were prepared using two different oils (olive oil and maize oil) and polyglycerol polyricinoleate (PGPR) alone or in combination with lecithin (LE) as emulsifiers. The results revealed that the aqueous phase of 5% (w/v) SA and 2% (w/v) chitosan could form a stable complex and make the aqueous phase into a transparent colloidal state. Increasing the concentration of PGPR and LE presented different effects on emulsion formation between olive oil-base and maize oil-base. Two stable W/O emulsions that were olive oil-based with 1.5% (w/v) PGPR+ 0.5% (w/v) LE and maize oil-based with 2% (w/v) PGPR+ 0% (w/v) LE were obtained. Initial droplet size distribution curves of the two stable emulsions displayed unimodal distribution, and the rheological curves displayed the characteristics of shear thinning and low static shear viscosity. Moreover, the storage stability showed that there was no significant change in droplet size distribution and Sauter mean diameter of the emulsions at room temperature (25 °C) for 30 days. These results indicated that the W/O emulsions could effectively co-load and protect sialic acid and chitosan and thus could be a novel method for increasing the stability of these water-soluble bioactive compounds.
Collapse
Affiliation(s)
- Min Pang
- School of Food Science and Bioengineering, Hefei University of Technology, Hefei 230009, China; (M.P.); (D.Z.); (P.J.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Donglei Zheng
- School of Food Science and Bioengineering, Hefei University of Technology, Hefei 230009, China; (M.P.); (D.Z.); (P.J.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Pengpeng Jia
- School of Food Science and Bioengineering, Hefei University of Technology, Hefei 230009, China; (M.P.); (D.Z.); (P.J.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
| | - Lili Cao
- School of Food Science and Bioengineering, Hefei University of Technology, Hefei 230009, China; (M.P.); (D.Z.); (P.J.)
- Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei 230009, China
- Correspondence:
| |
Collapse
|
5
|
Zhang K, Xu Y, Lu L, Shi C, Huang Y, Mao Z, Duan C, Ren X, Guo Y, Huang C. Hydrodynamic cavitation: A feasible approach to intensify the emulsion cross-linking process for chitosan nanoparticle synthesis. ULTRASONICS SONOCHEMISTRY 2021; 74:105551. [PMID: 33894557 PMCID: PMC8091060 DOI: 10.1016/j.ultsonch.2021.105551] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 05/08/2023]
Abstract
Chitosan nanoparticles (NPs) exhibit great potential in drug-controlled release systems. A controlled hydrodynamic cavitation (HC) technique was developed to intensify the emulsion crosslinking process for the synthesis of chitosan NPs. Experiments were performed using a circular venturi and under varying operating conditions, i.e., types of oil, addition mode of glutaraldehyde (Glu) solution, inlet pressure (Pin), and rheological properties of chitosan solution. Palm oil was more appropriate for use as the oil phase for the HC-intensified process than the other oil types. The addition mode of water-in-oil (W/O) emulsion containing Glu (with Span 80) was more favorable than the other modes for obtaining a narrow distribution of chitosan NPs. The minimum size of NPs with polydispersity index of 0.342 was 286.5 nm, and the maximum production yield (Py) could reach 47.26%. A positive correlation was found between the size of NPs and the droplet size of W/O emulsion containing chitosan at increasing Pin. Particle size, size distribution, and the formation of NPs were greatly dependent on the rheological properties of the chitosan solution. Fourier transform infrared spectroscopy (FTIR) analysis indicated that the molecular structure of palm oil was unaffected by HC-induced effects. Compared with ultrasonic horn, stirring-based, and conventional drop-by-drop processes, the application of HC to intensify the emulsion crosslinking process allowed the preparation of a finer and a narrower distribution of chitosan NPs in a more energy-efficient manner. The novel route developed in this work is a viable option for chitosan NP synthesis.
Collapse
Affiliation(s)
- Kunming Zhang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China.
| | - Yun Xu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Lijin Lu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Changcan Shi
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, China.
| | - Zhijuan Mao
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Chao Duan
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Xian'e Ren
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Yan Guo
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Chengdu Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| |
Collapse
|
6
|
Marquez-Bravo S, Doench I, Molina P, Bentley FE, Tamo AK, Passieux R, Lossada F, David L, Osorio-Madrazo A. Functional Bionanocomposite Fibers of Chitosan Filled with Cellulose Nanofibers Obtained by Gel Spinning. Polymers (Basel) 2021; 13:polym13101563. [PMID: 34068136 PMCID: PMC8152965 DOI: 10.3390/polym13101563] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Extremely high mechanical performance spun bionanocomposite fibers of chitosan (CHI), and cellulose nanofibers (CNFs) were successfully achieved by gel spinning of CHI aqueous viscous formulations filled with CNFs. The microstructural characterization of the fibers by X-ray diffraction revealed the crystallization of the CHI polymer chains into anhydrous chitosan allomorph. The spinning process combining acidic-basic-neutralization-stretching-drying steps allowed obtaining CHI/CNF composite fibers of high crystallinity, with enhanced effect at incorporating the CNFs. Chitosan crystallization seems to be promoted by the presence of cellulose nanofibers, serving as nucleation sites for the growing of CHI crystals. Moreover, the preferential orientation of both CNFs and CHI crystals along the spun fiber direction was revealed in the two-dimensional X-ray diffraction patterns. By increasing the CNF amount up to the optimum concentration of 0.4 wt % in the viscous CHI/CNF collodion, Young's modulus of the spun fibers significantly increased up to 8 GPa. Similarly, the stress at break and the yield stress drastically increased from 115 to 163 MPa, and from 67 to 119 MPa, respectively, by adding only 0.4 wt % of CNFs into a collodion solution containing 4 wt % of chitosan. The toughness of the CHI-based fibers thereby increased from 5 to 9 MJ.m-3. For higher CNFs contents like 0.5 wt %, the high mechanical performance of the CHI/CNF composite fibers was still observed, but with a slight worsening of the mechanical parameters, which may be related to a minor disruption of the CHI matrix hydrogel network constituting the collodion and gel fiber, as precursor state for the dry fiber formation. Finally, the rheological behavior observed for the different CHI/CNF viscous collodions and the obtained structural, thermal and mechanical properties results revealed an optimum matrix/filler compatibility and interface when adding 0.4 wt % of nanofibrillated cellulose (CNF) into 4 wt % CHI formulations, yielding functional bionanocomposite fibers of outstanding mechanical properties.
Collapse
Affiliation(s)
- Sofia Marquez-Bravo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Ingo Doench
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Pamela Molina
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Flor Estefany Bentley
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Arnaud Kamdem Tamo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
| | - Renaud Passieux
- Laboratoire Ingénierie des Matériaux Polymères IMP, CNRS UMR 5223, University of Lyon, University Claude Bernard Lyon 1, CEDEX, 69622 Villeurbanne, France; (R.P.); (L.D.)
| | | | - Laurent David
- Laboratoire Ingénierie des Matériaux Polymères IMP, CNRS UMR 5223, University of Lyon, University Claude Bernard Lyon 1, CEDEX, 69622 Villeurbanne, France; (R.P.); (L.D.)
| | - Anayancy Osorio-Madrazo
- Institute of Microsystems Engineering IMTEK, University of Freiburg, 79110 Freiburg, Germany; (S.M.-B.); (I.D.); (P.M.); (F.E.B.); (A.K.T.)
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies FIT, University of Freiburg, 79110 Freiburg, Germany
- Correspondence: ; Tel.: +49-761-203-67363
| |
Collapse
|
7
|
Soares LDS, Tonole B, Milião GL, Teixeira ÁVNDC, Coimbra JSDR, de Oliveira EB. Aqueous solutions of glycolic, propionic, or lactic acid in substitution of acetic acid to prepare chitosan dispersions: a study based on rheological and physicochemical properties. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:1797-1807. [PMID: 33897016 DOI: 10.1007/s13197-020-04691-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Chitosan (CH) is a biopolymer derived from chitin, which is the second most abundant polysaccharide in nature, after cellulose. Their functional groups -NH2 and -OH can form intermolecular interactions with water and other molecules, enabling a variety of applications for CH. -NH2 groups become protonated in acidic solutions, causing an increase in electrostatic repulsion between CH chains, which facilitates their dispersion in aqueous media. Aqueous solutions of acetic acid and/or acetates buffers have been used to disperse CH, but may not be adequate for technological applications, espeacially because of the strong flavor this acid confers to formulations. In this study, 0.125; 0.250; 0.500; 0.750 and 1.000 g (100 g)-1 CH dispersions were prepared in acidic aqueous media (50 mmol L-1), not only with acetic (AA), but also with glycolic (GA), propionic (PA), or lactic (LA), acid aiming to evaluate the effects of biopolymer concentration and type of organic acid on: electrical conductivity, pH, density and rheological characteristics of dispersions. Moreover, ζ potential values of CH chains dispersed in these acidic aqueous media were assessed. pH, density and consistency index were influenced by the biopolymer concentration, but not by the acid type. At a given biopolymer concentration, ζ potential signs (+) and values suggested that electrostatic interactions between CH chains and counter-anions occurred, regardless of the type of the organic acid. Thus, at least from a physicochemical point of view, GA, PA or LA showed to be suitable to replace AA when preparing dispersions containing from 0.125 to 1.000 g (100 g)-1 CH for technological purposes, such as thickening or stabilizer in formulated food products.
Collapse
Affiliation(s)
- Lucas de Souza Soares
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG 36570-000 Brazil
| | - Bruna Tonole
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG 36570-000 Brazil
| | - Gustavo Leite Milião
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG 36570-000 Brazil
| | | | - Jane Sélia Dos Reis Coimbra
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG 36570-000 Brazil
| | - Eduardo Basílio de Oliveira
- Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa (UFV), Av. Peter Henry Rolfs, s/n, Campus Universitário, Viçosa, MG 36570-000 Brazil
| |
Collapse
|
8
|
Tang G, Tan Z, Zeng W, Wang X, Shi C, Liu Y, He H, Chen R, Ye X. Recent Advances of Chitosan-Based Injectable Hydrogels for Bone and Dental Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:587658. [PMID: 33042982 PMCID: PMC7527831 DOI: 10.3389/fbioe.2020.587658] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023] Open
Abstract
Traditional strategies of bone repair include autografts, allografts and surgical reconstructions, but they may bring about potential hazard of donor site morbidity, rejection, risk of disease transmission and repetitive surgery. Bone tissue engineering (BTE) is a multidisciplinary field that offers promising substitutes in biopharmaceutical applications, and chitosan (CS)-based bone reconstructions can be a potential candidate in regenerative tissue fields owing to its low immunogenicity, biodegradability, bioresorbable features, low-cost and economic nature. Formulations of CS-based injectable hydrogels with thermo/pH-response are advantageous in terms of their high-water imbibing capability, minimal invasiveness, porous networks, and ability to mold perfectly into an irregular defect. Additionally, CS combined with other naturally-derived or synthetic polymers and bioactive agents has proven to be an effective alternative to autologous bone and dental grafts. In this review, we will highlight the current progress in the development of preparation methods, physicochemical properties and applications of CS-based injectable hydrogels and their perspectives in bone and dental regeneration. We believe this review is intended as starting point and inspiration for future research effort to develop the next generation of tissue-engineering scaffold materials.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Tan
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
| | - Wusi Zeng
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong He
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rui Chen
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Zhang K, Mao Z, Huang Y, Xu Y, Huang C, Guo Y, Ren X, Liu C. Ultrasonic assisted water-in-oil emulsions encapsulating macro-molecular polysaccharide chitosan: Influence of molecular properties, emulsion viscosity and their stability. ULTRASONICS SONOCHEMISTRY 2020; 64:105018. [PMID: 32070902 DOI: 10.1016/j.ultsonch.2020.105018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 02/03/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
An ultrasonic technique was applied to formulation of two-phase water-in-paraffin oil emulsions loading a high-molecular polysaccharide chitosan (CS) and stabilized by an oil-soluble surfactant (Span80) at different operational conditions. The influence of chitosan molecular properties, phase volume ratio (φw), Span80 volume fraction (φs) and ultrasonic processing parameters were systemically investigated on the basis of mean droplet diameter (MDD) and polydispersity index (PDI) of emulsions. It was observed that the molecular weight (Mw) of CS was an important influential factor to MDD due to the non-Newtonian properties of CS solution varying with Mw. The minimum MDD of 198.5 nm with PDI of 0.326 was obtained with ultrasonic amplitude of 32% for 15 min at an optimum φw of 35%, φs of 8%, probe position of 2.2 cm to the top of emulsion, while CS with Mw of 400 kDa and deacetylation degree of 84.6% was used. The rise of emulsion viscosity and the reduction of negative zeta potential at φw increasing from 5% to 35% were beneficial to obtain finer droplets and more uniform distribution of emulsions, and emulsion viscosity could be represented as a monotonically-decreasing power function of MDD at the same φw. FTIR analysis indicated that the molecular structure of paraffin oil was unaffected during ultrasonication. Moreover, the emulsions exhibited a good stability at 4 °C with a slight phase separation at 25 °C after 24 h of storage. By analyzing the evolution of MDD, PDI and sedimentation index (SI) with time, coalescence model showed better fitting results as comparison to Ostwald ripening model, which demonstrated that the coalescence or flocculation was the dominant destabilizing mechanism for such W/O emulsions encapsulating CS. This study may provide a valuable contribution for the application of a non-Newtonian macromolecule solution as dispersed phase to generate nano-size W/O emulsions via ultrasound, and widen knowledge and interest of such emulsions in the functional biomaterial field.
Collapse
Affiliation(s)
- Kunming Zhang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China.
| | - Zhijuan Mao
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Yongchun Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China; Province and Ministry Co-sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004, China
| | - Yun Xu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Chengdu Huang
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Yan Guo
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China
| | - Xian'e Ren
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| | - Chunyou Liu
- School of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China; Guangxi Key Laboratory of Green Processing of Sugar Resources, Liuzhou 545006, China; Guangxi Liuzhou Luosifen Research Center of Engineering Technology, Liuzhou 545006, China
| |
Collapse
|
10
|
Ahmed J, Mulla M, Maniruzzaman M. Rheological and Dielectric Behavior of 3D-Printable Chitosan/Graphene Oxide Hydrogels. ACS Biomater Sci Eng 2020; 6:88-99. [PMID: 33463220 DOI: 10.1021/acsbiomaterials.9b00201] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of concentration, temperature, and the addition of graphene oxide (GO) nanosheets on the rheological and dielectric behavior of chitosan (CS) solutions, which influences the formation of the blend materials for various applications including 3D printing and packaging, was studied. Among tested acid solutions, the rheological behavior of 1% CS in acetic and lactic acid solutions was found to be similar, whereas the hydrochloric acid solution showed an abnormal drop in the dynamic moduli. Oscillatory rheology confirmed a distinct gel point for the CS solutions at below 10 °C. Both the G' and G″ of the solutions increased with the loading concentrations of GO between 0.5 and 1%, and it marginally dropped at the loading concentration of 2%, which is consistent with AFM observation. The steady-shear flow data fitted the Carreau model. Dielectric property measurement further confirmed that both the dielectric constant, ε' and the loss factor, ε″ for the CS in hydrochloric acid solutions behaved differently from others. Addition of GO significantly improved both ε' and ε″, indicating an improvement in the dielectric properties of CS/GO solutions. The dispersion of GO into the CS matrix was assessed by measuring XRD, FTIR, and microscopy of the film prepared from the solutions. Furthermore, the inclusion of GO into CS solution containing pluronic F127 (F127) base for potential 3D printing application showed positive results in terms of the printing accuracy and shape fidelity of the printed objects (films and scaffolds). The optimized composition with homogeneous particle distribution indicated that up to ∼50 mg/mL GO concentration (w/v of F127 base) was suitable to print both films and scaffolds for potential biomedical applications.
Collapse
Affiliation(s)
- Jasim Ahmed
- Food and Nutrition Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Mehrajfatema Mulla
- Food and Nutrition Program, Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Mohammed Maniruzzaman
- Department of Pharmacy (Chemistry), School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
| |
Collapse
|
11
|
Doench I, Torres-Ramos MEW, Montembault A, Nunes de Oliveira P, Halimi C, Viguier E, Heux L, Siadous R, Thiré RMSM, Osorio-Madrazo A. Injectable and Gellable Chitosan Formulations Filled with Cellulose Nanofibers for Intervertebral Disc Tissue Engineering. Polymers (Basel) 2018; 10:E1202. [PMID: 30961127 PMCID: PMC6290636 DOI: 10.3390/polym10111202] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/21/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
The development of non-cellularized injectable suspensions of viscous chitosan (CHI) solutions (1.7⁻3.3% (w/w)), filled with cellulose nanofibers (CNF) (0.02⁻0.6% (w/w)) of the type nanofibrillated cellulose, was proposed for viscosupplementation of the intervertebral disc nucleus pulposus tissue. The achievement of CNF/CHI formulations which can gel in situ at the disc injection site constitutes a minimally-invasive approach to restore damaged/degenerated discs. We studied physico-chemical aspects of the sol and gel states of the CNF/CHI formulations, including the rheological behavior in relation to injectability (sol state) and fiber mechanical reinforcement (gel state). CNF-CHI interactions could be evidenced by a double flow behavior due to the relaxation of the CHI polymer chains and those interacting with the CNFs. At high shear rates resembling the injection conditions with needles commonly used in surgical treatments, both the reference CHI viscous solutions and those filled with CNFs exhibited similar rheological behavior. The neutralization of the flowing and weakly acidic CNF/CHI suspensions yielded composite hydrogels in which the nanofibers reinforced the CHI matrix. We performed evaluations in relation to the biomedical application, such as the effect of the intradiscal injection of the CNF/CHI formulation in pig and rabbit spine models on disc biomechanics. We showed that the injectable formulations became hydrogels in situ after intradiscal gelation, due to CHI neutralization occurring in contact with the body fluids. No leakage of the injectate through the injection canal was observed and the gelled formulation restored the disc height and loss of mechanical properties, which is commonly related to disc degeneration.
Collapse
Affiliation(s)
- Ingo Doench
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| | - Maria E W Torres-Ramos
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| | - Alexandra Montembault
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne Cedex, France.
| | - Paula Nunes de Oliveira
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne Cedex, France.
| | - Celia Halimi
- Ingénierie des Matériaux Polymères (IMP), CNRS UMR 5223, Université Claude Bernard Lyon 1, Université de Lyon, 69622 Villeurbanne Cedex, France.
| | - Eric Viguier
- VetAgro Sup, Veterinary School, University of Lyon, 69280 Marcy l'Etoile, France.
| | - Laurent Heux
- Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS UPR 5301 Université Grenoble-Alpes, 38041 Grenoble, France.
| | - Robin Siadous
- INSERM U1026 Bioingénierie tissulaire, Université Bordeaux, 33000 Bordeaux, France.
| | - Rossana M S M Thiré
- COPPE/Program of Metallurgical and Materials Engineering, Federal University of Rio de Janeiro, P.O. Box 68505, 21941-972 Rio de Janeiro, Brazil.
| | - Anayancy Osorio-Madrazo
- Institute of Microsystems Engineering IMTEK, Laboratory for Sensors, University of Freiburg, 79110 Freiburg, Germany.
- Freiburg Materials Research Center FMF, University of Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
12
|
Zambelli RA, Galvão AMMT, de Mendonça LG, Leão MVDS, Carneiro SV, Lima ACS, Melo CAL. Effect of Different Levels of Acetic, Citric and Lactic Acid in the Cassava Starch Modification on Physical, Rheological, Thermal and Microstructural Properties. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2018. [DOI: 10.3136/fstr.24.747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Taherian AR, Lacasse P, Bisakowski B, Pelletier M, Lanctôt S, Fustier P. Rheological and thermogelling properties of commercials chitosan/β-glycerophosphate: Retention of hydrogel in water, milk and UF-milk. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.09.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Halimi C, Montembault A, Guerry A, Delair T, Viguier E, Fulchiron R, David L. Chitosan solutions as injectable systems for dermal filler applications: Rheological characterization and biological evidence. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:2596-9. [PMID: 26736823 DOI: 10.1109/embc.2015.7318923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A new generation of dermal filler for wrinkle filler based on chitosan was compared to current hyaluronic acid-based dermal fillers by using a new rheological performance criterion based on viscosity during injection related to Newtonian viscosity. In addition an in vivo evaluation was performed for preclinical evidence of chitosan use as dermal filler. In this way, biocompatibility and dermis reconstruction was evaluated on a pig model.
Collapse
|
15
|
Shangguan Y, Liu M, Luo G, Zheng Q. Shear induced self-thickening of chitosan/β-cyclodextrin compound solution. RSC Adv 2016. [DOI: 10.1039/c6ra24608g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
16
|
The influence of chitosan on the structural properties of whey protein and wheat starch composite systems. Food Chem 2015; 179:60-7. [DOI: 10.1016/j.foodchem.2015.01.121] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/23/2014] [Accepted: 01/27/2015] [Indexed: 11/20/2022]
|
17
|
Jin L, Tan Y, Shangguan Y, Lin Y, Xu B, Wu Q, Zheng Q. Multiregion Shear Thinning for Subsequent Static Self-Thickening in Chitosan-graft-polyacrylamide Aqueous Solution. J Phys Chem B 2013; 117:15111-21. [DOI: 10.1021/jp408782e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lei Jin
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yeqiang Tan
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yonggang Shangguan
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yu Lin
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bo Xu
- School
of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Qiang Wu
- College
of Engineering, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China
| | - Qiang Zheng
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
18
|
Desorme M, Montembault A, Lucas JM, Rochas C, Bouet T, David L. Spinning of hydroalcoholic chitosan solutions. Carbohydr Polym 2013; 98:50-63. [PMID: 23987316 DOI: 10.1016/j.carbpol.2013.04.070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/27/2013] [Accepted: 04/23/2013] [Indexed: 11/25/2022]
Abstract
We investigated the spinning of hydroalcoholic chitosan solutions. The dope composition was optimized in order to obtain a continuous alcogel fiber by water evaporation on heating the extruded hydroalcoholic solution. This alcogel fiber was then neutralized in aqueous alkali baths and washed in water to eliminate the residual alcohol and salts before final drying. Depending on the alcohol content in the filament at the neutralization step, on specific alcohol-chitosan interactions and on the nature and concentration of the coagulation base, the process yielded semicrystalline chitosan fibers with different proportions of anhydrous and hydrated allomorphs. Contrarily to the classical annealing method, the formation of mainly anhydrous crystals was obtained without significant molecular weight decrease by neutralizing the polymer in hydrophobic conditions. The control of allomorph content was shown to be related to the hydrophobicity of the solvent (alcohol fraction) at the neutralization step.
Collapse
Affiliation(s)
- Mylène Desorme
- Université de Lyon, Université Claude Bernard Lyon 1, UMR CNRS 5223, Ingénierie des Matériaux Polymères IMP@Lyon1, 15 bd Latarjet, 69622 Villeurbanne Cedex, France
| | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Testouri A, Honorez C, Barillec A, Langevin D, Drenckhan W. Highly Structured Foams from Chitosan Gels. Macromolecules 2010. [DOI: 10.1021/ma100819j] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Testouri
- Laboratoire de Physique des Solides, Université Paris-Sud, UMR8502 Orsay, France
| | - C. Honorez
- Laboratoire de Physique des Solides, Université Paris-Sud, UMR8502 Orsay, France
| | - A. Barillec
- Laboratoire de Physique des Solides, Université Paris-Sud, UMR8502 Orsay, France
| | - D. Langevin
- Laboratoire de Physique des Solides, Université Paris-Sud, UMR8502 Orsay, France
| | - W. Drenckhan
- Laboratoire de Physique des Solides, Université Paris-Sud, UMR8502 Orsay, France
| |
Collapse
|
21
|
Martínez-Ruvalcaba A, Chornet E, Rodrigue D. Viscoelastic properties of dispersed chitosan/xanthan hydrogels. Carbohydr Polym 2007. [DOI: 10.1016/j.carbpol.2006.06.033] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|