1
|
Feng S, Yi J, Ma Y, Bi J. Study on the ice crystals growth under pectin gels with different crosslinking strengths by modulating the degree of amidation in HG domain. Food Chem 2023; 428:136758. [PMID: 37413836 DOI: 10.1016/j.foodchem.2023.136758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/07/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
The ice crystal morphology formed under a series of amidated pectin gels with various crosslink strengths were investigated. The results showed that as the degree of amidation (DA) increased, pectin chains exhibited shorter homogalacturonan (HG) regions. Highly amidated pectin exhibited a faster gelation rate and a stronger gel micro-network via hydrogen bonds. Based on cryogenic scanning electron microscopy (cryo-SEM), smaller ice crystals were formed in frozen gel with low DA, suggesting that a weaker cross-linked gel micro-network was more effective at inhibiting crystallization. After sublimation, lyophilized gel scaffolds with high crosslink strength displayed less number of pores, high porosity, lower specific surface area, and greater mechanical strength. This study is expected to confirm that the microstructure and mechanical properties of freeze-dried pectin porous materials could be regulated by changing the crosslink strength of pectin chains, which is achieved by increasing the degree of amidation in the HG domains.
Collapse
Affiliation(s)
- Shuhan Feng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Jianyong Yi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Youchuan Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Jinfeng Bi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences (CAAS)/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
2
|
Budai L, Budai M, Fülöpné Pápay ZE, Vilimi Z, Antal I. Rheological Considerations of Pharmaceutical Formulations: Focus on Viscoelasticity. Gels 2023; 9:469. [PMID: 37367140 DOI: 10.3390/gels9060469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Controlling rheological properties offers the opportunity to gain insight into the physical characteristics, structure, stability and drug release rate of formulations. To better understand the physical properties of hydrogels, not only rotational but also oscillatory experiments should be performed. Viscoelastic properties, including elastic and viscous properties, are measured using oscillatory rheology. The gel strength and elasticity of hydrogels are of great importance for pharmaceutical development as the application of viscoelastic preparations has considerably expanded in recent decades. Viscosupplementation, ophthalmic surgery and tissue engineering are just a few examples from the wide range of possible applications of viscoelastic hydrogels. Hyaluronic acid, alginate, gellan gum, pectin and chitosan are remarkable representatives of gelling agents that attract great attention applied in biomedical fields. This review provides a brief summary of rheological properties, highlighting the viscoelasticity of hydrogels with great potential in biomedicine.
Collapse
Affiliation(s)
- Lívia Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - Marianna Budai
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | | | - Zsófia Vilimi
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| | - István Antal
- Department of Pharmaceutics, Semmelweis University, 1092 Budapest, Hungary
| |
Collapse
|
3
|
Feng S, Yi J, Ma Y, Bi J. The role of amide groups in the mechanism of acid-induced pectin gelation: A potential pH-sensitive hydrogel based on hydrogen bond interactions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
4
|
Wang Y, Zheng Q, Su H, Huang Z, Wang G. Synthesis and Characteristics of a pH-Sensitive Sol-Gel Transition Colloid for Coal Fire Extinguishing. Gels 2023; 9:gels9010069. [PMID: 36661835 PMCID: PMC9858249 DOI: 10.3390/gels9010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Coal fires, most of which are triggered by the spontaneous combustion of coal, cause a huge waste of resources and release poisonous and harmful substances into the environment, seriously threatening the safety of industrial production. Gel flame retardant plays a core role in coal fire prevention and extinguishing. Most gel flame retardants used in coal fires possess good sealing and oxygen isolation properties, but it is difficult for them to flow deep into fire areas due to their low fluidity. Some fire extinguishing agents with good fluidity lack leak-blocking performance. In order to simultaneously improve the fluidity, leakage sealing, and oxygen isolation effects of coal fire extinguishing colloids, a novel, pH-sensitive, sol-gel transition colloid was prepared using low methoxyl pectin (LMP), calcium bentonite (Ca-Bt), sodium bentonite (Na-Bt), and water as the main components. When the initial sol-state colloid absorbed acid gas products from coal combustion, the pH value decreased and a large amount of Ca2+ in Ca-Bt precipitated, thus immediately growing calcium bridges with LMP molecules that formed a three-dimensional network structure for gelation. The optimum ratio of the new colloid was determined through X-ray diffraction, tube inversion, shock shear-temperature scanning, and genetic algorithm. By testing the fire extinguishing performance of the colloid, the findings proved that the product had good oxygen isolation performance, strong adhesion ability, high thermal stability, and strong inhibition effects on coal combustion.
Collapse
Affiliation(s)
- Yiru Wang
- School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
- Key Laboratory of Deep Geodrilling Technology, Ministry of Natural Resources, China University of Geosciences, Beijing 100083, China
| | - Qinglin Zheng
- School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China
| | - Hetao Su
- School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
- Key Laboratory of Deep Geodrilling Technology, Ministry of Natural Resources, China University of Geosciences, Beijing 100083, China
- Correspondence: ; Tel./Fax: +86-198-01307501
| | - Zijun Huang
- School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
- Key Laboratory of Deep Geodrilling Technology, Ministry of Natural Resources, China University of Geosciences, Beijing 100083, China
| | - Gengyu Wang
- School of Engineering and Technology, China University of Geosciences, Beijing 100083, China
- Key Laboratory of Deep Geodrilling Technology, Ministry of Natural Resources, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
5
|
Rheological characterization of low methoxyl pectin extracted from durian rind. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2023. [DOI: 10.1016/j.carpta.2023.100290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
6
|
A novel pectic polysaccharide-based hydrogel derived from okra (Abelmoschus esculentusL. Moench) for chronic diabetic wound healing. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Comparison of Analytical Methods for Determining Methylesterification and Acetylation of Pectin. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104461] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The esterification of galacturonic acid with methanol and/or acetic acid is important for the structural analysis of pectin. Although several methods have been reported for determining the degree of methylesterification (DM) and acetylation (DAc), the present study compares and optimizes three methods (titration, FT-IR and HPLC) using commercial citrus pectin (CP). Our results showed that the DM of CP was 47.0%, 47.6% and 48.0% as determined by titration, FT-IR and HPLC, respectively, suggesting that DM determination is nearly identical using any of these methods. However, the titration approach requires more sample than the other two. HPLC showed that the DAc of CP was 1.6%, an approach that can be used to determine the DM and DAc of pectin simultaneously. Here, we simplified and optimized sample treatment for HPLC analysis and compared it with the reported literature. Our results provide useful information for choosing appropriate methods for determining the DM and DAc of pectin based on various sample properties and experimental conditions.
Collapse
|
8
|
Synytsya A, Poučková P, Zadinová M, Troshchynska Y, Štětina J, Synytsya A, Saloň I, Král V. Hydrogels based on low-methoxyl amidated citrus pectin and flaxseed gum formulated with tripeptide glycyl-l-histidyl-l-lysine improve the healing of experimental cutting wounds in rats. Int J Biol Macromol 2020; 165:3156-3168. [PMID: 33031852 DOI: 10.1016/j.ijbiomac.2020.09.251] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 09/06/2020] [Accepted: 09/29/2020] [Indexed: 12/19/2022]
Abstract
Hydrogels based on natural and modified polysaccharides represent growing group of suitable matrices for the construction of effective wound healing materials. Bioactive tripeptide glycyl-l-histidyl-l-lysine and amino acid α-l-arginine are known to accelerate wound healing and skin repair. In this study, hydrogels based on low-methoxyl amidated citrus pectin or flaxseed gum were prepared and used for the transport of these healing agents to the experimental cutting wounds affected by extensive skin damage. Fourier-transform infrared spectroscopy, rheology, differential scanning calorimetry, scanning electron microscopy, swelling and release tests confirmed that these hydrogels differed in structure and physical properties. The cationic tripeptide was found to bind to carboxylic groups in LMA pectin, and the C3OH hydroxyl and ring oxygen O5 are involved in this interaction. The pectin hydrogel showed high viscosity and strong elastic properties, while the flaxseed gum hydrogel was characterised as a viscoelastic system of much lower viscosity. The former hydrogel released the drugs very slowly, while the latter hydrogel demonstrated zero order releasing kinetics optimal for drug delivery. In the in vivo wound healing testing on rats, both polysaccharide hydrogels improved the healing process mediated by the mentioned biomolecules. The tripeptide applied in the hydrogels showed significantly higher healing degree and lower healing time than in the control animals without treatment and when it was applied in an aqueous solution. Despite the absence of a synergistic effect, the mixture of the tripeptide and α-l-arginine in the hydrogels was also quite effective in wound healing. According to histological analysis, complete healing was achieved only when using the tripeptide in the flaxseed gum hydrogel. These observations might have an important prospect in clinical application of polysaccharide hydrogels.
Collapse
Affiliation(s)
- Alla Synytsya
- Department of Analytical Chemistry, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic; BIOCEV, 1st Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic.
| | - Pavla Poučková
- Institute of Biophysics and Informatics, 1st Faculty of Medicine, Charles University, Kateřinská 1660/32, 121 08 Prague 2, Czech Republic
| | - Marie Zadinová
- Institute of Biophysics and Informatics, 1st Faculty of Medicine, Charles University, Kateřinská 1660/32, 121 08 Prague 2, Czech Republic
| | - Yana Troshchynska
- Department of Dairy, Fat and Cosmetics, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic; Department of Carbohydrates and Cereals, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jiří Štětina
- Department of Dairy, Fat and Cosmetics, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Andriy Synytsya
- Department of Carbohydrates and Cereals, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Ivan Saloň
- Department of Chemical Engineering, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Vladimír Král
- Department of Analytical Chemistry, UCT Prague, Technická 5, 166 28 Prague 6, Czech Republic; BIOCEV, 1st Faculty of Medicine, Charles University, Průmyslová 595, 252 50 Vestec, Czech Republic
| |
Collapse
|
9
|
Flash extraction optimization of low-temperature soluble pectin from passion fruit peel (Passiflora edulis f. flavicarpa) and its soft gelation properties. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Egg-box model-based gelation of alginate and pectin: A review. Carbohydr Polym 2020; 242:116389. [PMID: 32564839 DOI: 10.1016/j.carbpol.2020.116389] [Citation(s) in RCA: 300] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/24/2020] [Accepted: 04/24/2020] [Indexed: 01/08/2023]
Abstract
Alginate and pectin are emblematic natural polyuronates that have been widely used in food, cosmetics and medicine. Ca-dependent gelation is one of their most important functional properties. The gelation mechanisms of alginate and pectin, known as egg-box model, were believed to be basically the same, because their Ca-binding sites show a mirror symmetric conformation. However, studies have found that the formation and the structure of egg-box dimmers between alginate and pectin were different. Very few studies have reviewed those differences. Therefore, this study was proposed to first summarize the intrinsic and extrinsic factors that can influence the gelation of alginate and pectin. The differences in the effect of these factors on the gelation of alginate and pectin were then discussed. Meanwhile, the similarity and difference in their gelation mechanism was also summarized. The knowledge gained in this review would provide useful information for the practical applications of alginate and pectin.
Collapse
|
11
|
Wang H, Fei S, Wang Y, Zan L, Zhu J. Comparative study on the self-assembly of pectin and alginate molecules regulated by calcium ions investigated by atomic force microscopy. Carbohydr Polym 2020; 231:115673. [DOI: 10.1016/j.carbpol.2019.115673] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
|
12
|
Byun C, Zheng Y, Pierce A, Wagner WL, Scheller HV, Mohnen D, Ackermann M, Mentzer SJ. The Effect of Calcium on the Cohesive Strength and Flexural Properties of Low-Methoxyl Pectin Biopolymers. Molecules 2019; 25:E75. [PMID: 31878302 PMCID: PMC6982731 DOI: 10.3390/molecules25010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 11/23/2022] Open
Abstract
Abstract: Pectin binds the mesothelial glycocalyx of visceral organs, suggesting its potential role as a mesothelial sealant. To assess the mechanical properties of pectin films, we compared pectin films with a less than 50% degree of methyl esterification (low-methoxyl pectin, LMP) to films with greater than 50% methyl esterification (high-methoxyl pectin, HMP). LMP and HMP polymers were prepared by step-wise dissolution and high-shear mixing. Both LMP and HMP films demonstrated a comparable clear appearance. Fracture mechanics demonstrated that the LMP films had a lower burst strength than HMP films at a variety of calcium concentrations and hydration states. The water content also influenced the extensibility of the LMP films with increased extensibility (probe distance) with an increasing water content. Similar to the burst strength, the extensibility of the LMP films was less than that of HMP films. Flexural properties, demonstrated with the 3-point bend test, showed that the force required to displace the LMP films increased with an increased calcium concentration (p < 0.01). Toughness, here reflecting deformability (ductility), was variable, but increased with an increased calcium concentration. Similarly, titrations of calcium concentrations demonstrated LMP films with a decreased cohesive strength and increased stiffness. We conclude that LMP films, particularly with the addition of calcium up to 10 mM concentrations, demonstrate lower strength and toughness than comparable HMP films. These physical properties suggest that HMP has superior physical properties to LMP for selected biomedical applications.
Collapse
Affiliation(s)
- Christine Byun
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.B.); (Y.Z.); (A.P.); (W.L.W.)
| | - Yifan Zheng
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.B.); (Y.Z.); (A.P.); (W.L.W.)
| | - Aidan Pierce
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.B.); (Y.Z.); (A.P.); (W.L.W.)
| | - Willi L. Wagner
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.B.); (Y.Z.); (A.P.); (W.L.W.)
- Department of Diagnostic and Interventional Radiology, Translational Lung Research Center, University of Heidelberg, 69115 Heidelberg, Germany
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville CA and the Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94701, USA;
| | - Debra Mohnen
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA;
| | - Maximilian Ackermann
- Institute of Functional and Clinical Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Steven J. Mentzer
- Laboratory of Adaptive and Regenerative Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA; (C.B.); (Y.Z.); (A.P.); (W.L.W.)
| |
Collapse
|
13
|
Zheng J, Liu M, Zhang M, Kan J, Zhang F. Effects of Pectin on the Pasting, Rheological, and Textural Properties of Lotus Root Starch. STARCH-STARKE 2018. [DOI: 10.1002/star.201700347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Jiong Zheng
- College of Food Science; Southwest University; Chongqing 400715 China
- Chongqing Engineering Research Center of Regional Food; Chongqing 400715 China
| | - Min Liu
- College of Food Science; Southwest University; Chongqing 400715 China
| | - Meixia Zhang
- School of Forestry and Life Science; Chongqing University of Arts and Sciences; Chongqing 402160 China
| | - Jianquan Kan
- College of Food Science; Southwest University; Chongqing 400715 China
- Chongqing Engineering Research Center of Regional Food; Chongqing 400715 China
| | - Fusheng Zhang
- College of Food Science; Southwest University; Chongqing 400715 China
- Chongqing Engineering Research Center of Regional Food; Chongqing 400715 China
| |
Collapse
|
14
|
Protte K, Ruf T, Atamer Z, Sonne A, Weiss J, Hinrichs J. Influence of shear stress, pectin type and calcium chloride on the process stability of thermally stabilised whey protein–pectin complexes. FOOD STRUCTURE-NETHERLANDS 2017. [DOI: 10.1016/j.foostr.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Chan SY, Choo WS, Young DJ, Loh XJ. Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydr Polym 2016; 161:118-139. [PMID: 28189220 DOI: 10.1016/j.carbpol.2016.12.033] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/16/2016] [Indexed: 11/30/2022]
Abstract
Pectins are a diverse family of biopolymers with an anionic polysaccharide backbone of α-1,4-linked d-galacturonic acids in common. They have been widely used as emulsifiers, gelling agents, glazing agents, stabilizers, and/or thickeners in food, pharmaceutical, personal care and polymer products. Commercial pectin is classified as high methoxy pectin (HMP) with a degree of methylation (DM) >50% and low methoxy pectin (LMP) with a DM <50%. Amidated low methoxy pectins (ALMP) can be obtained through aminolysis of HMP. Gelation of HMP occurs by cross-linking through hydrogen bonds and hydrophobic forces between the methyl groups, assisted by a high co-solute concentration and low pH. In contrast, gelation of LMP occurs by the formation of ionic linkages via calcium bridges between two carboxyl groups from two different chains in close proximity, known as the 'egg-box' model. Pectin gels exhibit Newtonian behaviour at low shear rates and shear-thinning behaviour when the shear rate is increased. An overview of pectin from its origin to its physicochemical properties is presented in this review.
Collapse
Affiliation(s)
- Siew Yin Chan
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Wee Sim Choo
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - David James Young
- School of Science, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia; Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore; Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576, Singapore; Singapore Eye Research Institute (SERI), 11 Third Hospital Avenue, Singapore 168751, Singapore.
| |
Collapse
|
16
|
Gorshkov VY, Daminova AG, Mikshina PV, Petrova OE, Ageeva MV, Salnikov VV, Gorshkova TA, Gogolev YV. Pathogen-induced conditioning of the primary xylem vessels - a prerequisite for the formation of bacterial emboli by Pectobacterium atrosepticum. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:609-17. [PMID: 26992469 DOI: 10.1111/plb.12448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 03/15/2016] [Indexed: 06/05/2023]
Abstract
Representatives of Pectobacterium genus are some of the most harmful phytopathogens in the world. In the present study, we have elucidated novel aspects of plant-Pectobacterium atrosepticum interactions. This bacterium was recently demonstrated to form specific 'multicellular' structures - bacterial emboli in the xylem vessels of infected plants. In our work, we showed that the process of formation of these structures includes the pathogen-induced reactions of the plant. The colonisation of the plant by P. atrosepticum is coupled with the release of a pectic polysaccharide, rhamnogalacturonan I, into the vessel lumen from the plant cell wall. This polysaccharide gives rise to a gel that serves as a matrix for bacterial emboli. P. atrosepticum-caused infection involves an increase of reactive oxygen species (ROS) levels in the vessels, creating the conditions for the scission of polysaccharides and modification of plant cell wall composition. Both the release of rhamnogalacturonan I and the increase in ROS precede colonisation of the vessels by bacteria and occur only in the primary xylem vessels, the same as the subsequent formation of bacterial emboli. Since the appearance of rhamnogalacturonan I and increase in ROS levels do not hamper the bacterial cells and form a basis for the assembly of bacterial emboli, these reactions may be regarded as part of the susceptible response of the plant. Bacterial emboli thus represent the products of host-pathogen integration, since the formation of these structures requires the action of both partners.
Collapse
Affiliation(s)
- V Y Gorshkov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Kazan Federal University, Kazan, Russia
| | - A G Daminova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - P V Mikshina
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - O E Petrova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - M V Ageeva
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - V V Salnikov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Kazan Federal University, Kazan, Russia
| | - T A Gorshkova
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Y V Gogolev
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
- Kazan Federal University, Kazan, Russia
| |
Collapse
|
17
|
Wu P, Dhital S, Williams BA, Chen XD, Gidley MJ. Rheological and microstructural properties of porcine gastric digesta and diets containing pectin or mango powder. Carbohydr Polym 2016; 148:216-26. [PMID: 27185134 DOI: 10.1016/j.carbpol.2016.04.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 11/28/2022]
Abstract
Hydrated polysaccharides and their assemblies are known to modulate gastric emptying rate due to their capacity to change the structural and rheological properties of gastric contents (digesta). In the present study, we investigated the rheological and microstructural properties of gastric digesta from pigs fed with diets incorporating mango powder or pectin, and compared results with those from hydrated diets of the same water content, in order to investigate the origins for rheological changes in the pig stomach. All of the hydrated diets and gastric digesta were particle-dominated suspensions, generally showing weak gel or more solid-like behavior with the storage modulus (G') always greater than loss modulus (G") under small deformation oscillatory measurements, and with small deformation viscosity greater than steady shear viscosity (i.e. non-Cox-Merz superposition). Although significant rheological differences were observed between the hydrated diets, rheological parameters for gastric digesta were similar for all diets, indicative of a rheological homeostasis in the pig stomach. Whilst the addition of gastric mucin (20mg/mL) to control and mango diets altered the rheology to match the gastric digesta rheology, the effect of mucin on the pectin-containing diet was negligible. The viscous effect of pectin also hindered the action of alpha amylase as observed from relatively less damaged starch granules in pectin digesta compared to mango and control digesta. Based on the experimental findings that the rheology of gastric digesta differs from hydrated diets of the same water content, the current study revealed composition-dependent complex behavior of gastric digesta in vivo, suggesting that the rheology of food products or ingredients may not necessarily reflect the rheological effect when ingested.
Collapse
Affiliation(s)
- Peng Wu
- Department of Chemical Engineering and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sushil Dhital
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Barbara A Williams
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, 4072, QLD, Australia
| | - Xiao Dong Chen
- Department of Chemical Engineering and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Michael J Gidley
- ARC Centre of Excellence in Plant Cell Walls, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, 4072, QLD, Australia.
| |
Collapse
|
18
|
Mikshina PV, Petrova AA, Faizullin DA, Zuev YF, Gorshkova TA. Tissue-specific rhamnogalacturonan I forms the gel with hyperelastic properties. BIOCHEMISTRY (MOSCOW) 2015; 80:915-24. [DOI: 10.1134/s000629791507010x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Linares-García JA, Ramos-Ramírez EG, Salazar-Montoya JA. Viscoelastic properties and textural characterisation of high methoxyl pectin of hawthorn (Crataegus pubescens) in a gelling system. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- José Antonio Linares-García
- Department of Biotechnology and Bioengineering; CINVESTAV-IPN; Av. IPN 2508 Col. San Pedro Zacatenco C.P. 07360 México D. F México
| | - Emma Gloria Ramos-Ramírez
- Department of Biotechnology and Bioengineering; CINVESTAV-IPN; Av. IPN 2508 Col. San Pedro Zacatenco C.P. 07360 México D. F México
| | - Juan Alfredo Salazar-Montoya
- Department of Biotechnology and Bioengineering; CINVESTAV-IPN; Av. IPN 2508 Col. San Pedro Zacatenco C.P. 07360 México D. F México
| |
Collapse
|
20
|
Jamsazzadeh Kermani Z, Shpigelman A, Pham HTT, Van Loey AM, Hendrickx ME. Functional properties of citric acid extracted mango peel pectin as related to its chemical structure. Food Hydrocoll 2015. [DOI: 10.1016/j.foodhyd.2014.10.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Guo X, Duan H, Wang C, Huang X. Characteristics of two calcium pectinates prepared from citrus pectin using either calcium chloride or calcium hydroxide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6354-6361. [PMID: 24916205 DOI: 10.1021/jf5004545] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Calcium pectinate (CaP) was prepared from citrus pectin using either calcium chloride (C-CaP) or calcium hydroxide (HO-CaP) as the source of calcium for the reaction. The production yields and the rates of decalcification for the two calcium pectinates were compared and both found to be lower for C-CaP than for HO-CaP. In an attempt to explain these differences, certain chemical and structural characteristics of the two products, including functional groups (-CH3, C═O, COO-), rheological properties, morphology, and egg-box junction zones, were investigated by Fourier transformation infrared (FTIR) spectroscopy, rheology, scanning electron microscopy (SEM), and X-ray diffraction (XRD). The results from FTIR showed that, with an increase in calcium content, the wavenumber values and peak areas of FTIR for -CH3, C═O, and COO- groups all changed dramatically for C-CaP, while they were virtually unchanged for HO-CaP. Rheological analysis of the CaP gel showed that C-CaP had a stronger cross-linked network structure and a greater range of elastic behavior as compared to HO-CaP. SEM images of two CaP gels showed irregular membranes. C-CaP maintained a tight structure and a smooth surface, whereas HO-CaP was loose and rough. The results from XRD revealed a higher degree of crystallinity within C-CaP than within HO-CaP, which indicated that C-CaP possessed compact, ordered, and stable egg-box junction zones while the junction zones in HO-CaP were metastable and loose.
Collapse
Affiliation(s)
- Xiujun Guo
- Department of Food Science and Engineering, Jinan University , Guangzhou 510632, China
| | | | | | | |
Collapse
|
22
|
Javanmard M, Chin N, Yusof Y, Endan J. Application of sago starch as a gelling agent in jam. CYTA - JOURNAL OF FOOD 2012. [DOI: 10.1080/19476337.2011.653693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
23
|
YU JINGHU, SANTOS P, CAMPANELLA O. A STUDY TO CHARACTERIZE THE MECHANICAL BEHAVIOR OF SEMISOLID VISCOELASTIC SYSTEMS UNDER COMPRESSION CHEWING - CASE STUDY OF AGAR GEL. J Texture Stud 2012. [DOI: 10.1111/j.1745-4603.2012.00356.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|