1
|
Chu HW, Chen WJ, Liu KH, Mao JY, Harroun SG, Unnikrishnan B, Lin HJ, Ma YH, Chang HT, Huang CC. Carbonization of quercetin into nanogels: a leap in anticoagulant development. J Mater Chem B 2024; 12:5391-5404. [PMID: 38716492 DOI: 10.1039/d4tb00228h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Quercetin, a flavonoid abundantly found in onions, fruits, and vegetables, is recognized for its pharmacological potential, especially for its anticoagulant properties that work by inhibiting thrombin and coagulation factor Xa. However, its clinical application is limited due to poor water solubility and bioavailability. To address these limitations, we engineered carbonized nanogels derived from quercetin (CNGsQur) using controlled pyrolysis and polymerization techniques. This led to substantial improvements in its anticoagulation efficacy, water solubility, and biocompatibility. We generated a range of CNGsQur by subjecting quercetin to varying pyrolytic temperatures and then assessed their anticoagulation capacities both in vitro and in vivo. Coagulation metrics, including thrombin clotting time (TCT), activated partial thromboplastin time (aPTT), and prothrombin time (PT), along with a rat tail bleeding assay, were utilized to gauge the efficacy. CNGsQur showed a pronounced extension of coagulation time compared to uncarbonized quercetin. Specifically, CNGsQur synthesized at 270 °C (CNGsQur270) exhibited the most significant enhancement in TCT, with a binding affinity to thrombin exceeding 400 times that of quercetin. Moreover, variants synthesized at 310 °C (CNGsQur310) and 290 °C (CNGsQur290) showed the most substantial delays in PT and aPTT, respectively. Our findings indicate that the degree of carbonization significantly influences the transformation of quercetin into various CNGsQur forms, each affecting distinct coagulation pathways. Additionally, both intravenous and oral administrations of CNGsQur were found to extend rat tail bleeding times by up to fivefold. Our studies also demonstrate that CNGsQur270 effectively delays and even prevents FeCl3-induced vascular occlusion in a dose-dependent manner in mice. Thus, controlled pyrolysis offers an innovative approach for generating quercetin-derived CNGs with enhanced anticoagulation properties and water solubility, revealing the potential for synthesizing self-functional carbonized nanomaterials from other flavonoids for diverse biomedical applications.
Collapse
Affiliation(s)
- Han-Wei Chu
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Wan-Jyun Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Ko-Hsin Liu
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| | - Ju-Yi Mao
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Scott G Harroun
- Department of Engineering Physics, Polytechnique Montréal, Montréal, Québec H3T 1J4, Canada
| | - Binesh Unnikrishnan
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
| | - Han-Jia Lin
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Yunn-Hwa Ma
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Huan-Tsung Chang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Center for Advanced Biomaterials and Technology Innovation, Chang Gung University, Taoyuan 33302, Taiwan
- Division of Breast Surgery, Department of General Surgery, Chang-Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 202301, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202301, Taiwan
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
Jesus EGD, Souza FFD, Andrade JV, Andrade E Silva ML, Cunha WR, Ramos RC, Campos OS, Santos JAN, Santos MFC. In silico and in vitro elastase inhibition assessment assays of rosmarinic acid natural product from Rosmarinus officinalis Linn. Nat Prod Res 2024; 38:879-884. [PMID: 37004998 DOI: 10.1080/14786419.2023.2196077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/19/2023] [Indexed: 04/04/2023]
Abstract
The use of various herbs and their compounds has been a strategy widely used in the fight against various human diseases. For example, rosmarinic acid, a bioactive phenolic compound commonly found in Rosemary plants (Rosmarinus officinalis Labiatae), has multiple therapeutic benefits in different diseases, such as cancer. Therefore, the study aimed to evaluate in silico and in vitro the inhibition potential of the enzyme Elastase from the porcine pancreas by rosmarinic acid isolated from the plant species R. officinalis Linn. Through Molecular Docking, the mechanism of action was investigated. In addition, rosmarinic acid presented a range of 5-60 µg/mL and significantly inhibited Elastase. At 60 µg/mL, there was an inhibition of 55% on the enzymatic activity. The results demonstrate the inhibition of Elastase by rosmarinic acid, which can lead to the development of new enzyme inhibitors that can be an inspiration for developing various drugs, including anticancer drugs.
Collapse
Affiliation(s)
- Ester Gonçalves de Jesus
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Fernanda Fernandes de Souza
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - João Victor Andrade
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | | | - Wilson R Cunha
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Rafael Corrêa Ramos
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, Brazil
| | - Othon Souto Campos
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| | - Jorge Alexandre Nogueira Santos
- Departamento de Bioquímica, Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais, Minas Gerais, Brazil
| | - Mario F C Santos
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, Brazil
| |
Collapse
|
3
|
Williamson G, Clifford MN. A critical examination of human data for the biological activity of quercetin and its phase-2 conjugates. Crit Rev Food Sci Nutr 2024:1-37. [PMID: 38189312 DOI: 10.1080/10408398.2023.2299329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
This critical review examines evidence for beneficial effects of quercetin phase-2 conjugates from clinical intervention studies, volunteer feeding trials, and in vitro work. Plasma concentrations of quercetin-3-O-glucuronide (Q3G) and 3'-methylquercetin-3-O-glucuronide (3'MQ3G) after supplementation may produce beneficial effects in macrophages and endothelial cells, respectively, especially if endogenous deglucuronidation occurs, and lower blood uric acid concentration via quercetin-3'-O-sulfate (Q3'S). Unsupplemented diets produce much lower concentrations (<50 nmol/l) rarely investigated in vitro. At 10 nmol/l, Q3'S and Q3G stimulate or suppress, respectively, angiogenesis in endothelial cells. Statistically significant effects have been reported at 100 nmol/l in breast cancer cells (Q3G), primary neuron cultures (Q3G), lymphocytes (Q3G and3'MQ3G) and HUVECs (QG/QS mixture), but it is unclear whether these translate to a health benefit in vivo. More sensitive and more precise methods to measure clinically significant endpoints are required before a conclusion can be drawn regarding effects at normal dietary concentrations. Future requirements include better understanding of inter-individual and temporal variation in plasma quercetin phase-2 conjugates, their mechanisms of action including deglucuronidation and desulfation both in vitro and in vivo, tissue accumulation and washout, as well as potential for synergy or antagonism with other quercetin metabolites and metabolites of other dietary phytochemicals.
Collapse
Affiliation(s)
- Gary Williamson
- Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
| | - Michael N Clifford
- Department of Nutrition, Dietetics and Food, Faculty of Medicine Nursing and Health Sciences, Monash University, Notting Hill, VIC, Australia
- School of Bioscience and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| |
Collapse
|
4
|
Cheng H, Zhang D, Wu J, Liu J, Zhou Y, Tan Y, Feng W, Peng C. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154979. [PMID: 37552899 DOI: 10.1016/j.phymed.2023.154979] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Polyphenols are a class of naturally sourced compounds with widespread distribution and an extensive array of bioactivities. However, due to their complex constituents and weak absorption, a convincing explanation for their remarkable bioactivity remains elusive for a long time. In recent years, interaction with gut microbiota is hypothesized to be a reasonable explanation of the potential mechanisms for natural compounds especially polyphenols. OBJECTIVES This review aims to present a persuasive explanation for the contradiction between the limited bioavailability and the remarkable bioactivities of polyphenols by examining their interactions with gut microbiota. METHODS We assessed literatures published before April 10, 2023, from several databases, including Scopus, PubMed, Google Scholar, and Web of Science. The keywords used include "polyphenols", "gut microbiota", "short-chain fatty acids", "bile acids", "trimethylamine N-oxide", "lipopolysaccharides" "tryptophan", "dopamine", "intestinal barrier", "central nervous system", "lung", "anthocyanin", "proanthocyanidin", "baicalein", "caffeic acid", "curcumin", "epigallocatechin-3-gallate", "ferulic acid", "genistein", "kaempferol", "luteolin", "myricetin", "naringenin", "procyanidins", "protocatechuic acid", "pterostilbene", "quercetin", "resveratrol", etc. RESULTS: The review first demonstrates that polyphenols significantly alter gut microbiota diversity (α- and β-diversity) and the abundance of specific microorganisms. Polyphenols either promote or inhibit microorganisms, with various factors influencing their effects, such as dosage, treatment duration, and chemical structure of polyphenols. Furthermore, the review reveals that polyphenols regulate several gut microbiota metabolites, including short-chain fatty acids, dopamine, trimethylamine N-oxide, bile acids, and lipopolysaccharides. Polyphenols affect these metabolites by altering gut microbiota composition, modifying microbial enzyme activity, and other potential mechanisms. The changed microbial metabolites induced by polyphenols subsequently trigger host responses in various ways, such as acting as intestinal acid-base homeostasis regulators and activating on specific target receptors. Additionally, polyphenols are transformed into microbial derivatives by gut microbiota and these polyphenols' microbial derivatives have many potential advantages (e.g., increased bioactivity, improved absorption). Lastly, the review shows polyphenols maintain intestinal barrier, central nervous system, and lung function homeostasis by regulating gut microbiota. CONCLUSION The interaction between polyphenols and gut microbiota provides a credible explanation for the exceptional bioactivities of polyphenols. This review aids our understanding of the underlying mechanisms behind the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
5
|
Kolodziejczyk-Czepas J, Czepas J. Plant-Derived Compounds and Extracts as Modulators of Plasmin Activity-A Review. Molecules 2023; 28:molecules28041677. [PMID: 36838662 PMCID: PMC9965408 DOI: 10.3390/molecules28041677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Functionality of the fibrinolytic system is based on activity of its central enzyme, plasmin, responsible for the removal of fibrin clots. Besides the hemostasis, fibrinolytic proteins are also involved in many other physiological and pathological processes, including immune response, extracellular matrix degradation, cell migration, and tissue remodeling. Both the impaired and enhanced activity of fibrinolytic proteins may result in serious physiological consequences: prothrombotic state or excessive bleeding, respectively. However, current medicine offers very few options for treating fibrinolytic disorders, particularly in the case of plasmin inhibition. Although numerous attempts have been undertaken to identify natural or to develop engineered fibrinolytic system modulators, structural similarities within serine proteases of the hemostatic system and pleiotropic activity of fibrinolytic proteins constitute a serious problem in discovering anti- or profibrinolytic agents that could precisely affect the target molecules and reduce the risk of side effects. Therefore, this review aims to present a current knowledge of various classes of natural inhibitors and stimulators of the fibrinolytic system being well-defined low-molecular plant secondary metabolites or constituents of plant extracts as well as plant peptides. This work also discusses obstacles caused by low specificity of most of natural compounds and, hence, outlines recent trends in studies aimed at finding more efficient modulators of plasmin activity, including investigation of modifications of natural pharmacophore templates.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
- Correspondence:
| | - Jan Czepas
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
6
|
Rasouli H, Nayeri FD, Khodarahmi R. May phytophenolics alleviate aflatoxins-induced health challenges? A holistic insight on current landscape and future prospects. Front Nutr 2022; 9:981984. [PMID: 36386916 PMCID: PMC9649842 DOI: 10.3389/fnut.2022.981984] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/26/2022] [Indexed: 12/24/2022] Open
Abstract
The future GCC-connected environmental risk factors expedited the progression of nCDs. Indeed, the emergence of AFs is becoming a global food security concern. AFs are lethal carcinogenic mycotoxins, causing damage to the liver, kidney, and gastrointestinal organs. Long-term exposure to AFs leads to liver cancer. Almost a variety of food commodities, crops, spices, herbaceous materials, nuts, and processed foods can be contaminated with AFs. In this regard, the primary sections of this review aim to cover influencing factors in the occurrence of AFs, the role of AFs in progression of nCDs, links between GCC/nCDs and exposure to AFs, frequency of AFs-based academic investigations, and world distribution of AFs. Next, the current trends in the application of PPs to alleviate AFs toxicity are discussed. Nearly, more than 20,000 published records indexed in scientific databases have been screened to find recent trends on AFs and application of PPs in AFs therapy. Accordingly, shifts in world climate, improper infrastructures for production/storage of food commodities, inconsistency of global polices on AFs permissible concentration in food/feed, and lack of the public awareness are accounting for a considerable proportion of AFs damages. AFs exhibited their toxic effects by triggering the progression of inflammation and oxidative/nitrosative stress, in turn, leading to the onset of nCDs. PPs could decrease AFs-associated oxidative stress, genotoxic, mutagenic, and carcinogenic effects by improving cellular antioxidant balance, regulation of signaling pathways, alleviating inflammatory responses, and modification of gene expression profile in a dose/time-reliant fashion. The administration of PPs alone displayed lower biological properties compared to co-treatment of these metabolites with AFs. This issue might highlight the therapeutic application of PPs than their preventative content. Flavonoids such as quercetin and oxidized tea phenolics, curcumin and resveratrol were the most studied anti-AFs PPs. Our literature review clearly disclosed that considering PPs in antioxidant therapies to alleviate complications of AFs requires improvement in their bioavailability, pharmacokinetics, tissue clearance, and off-target mode of action. Due to the emergencies in the elimination of AFs in food/feedstuffs, further large-scale clinical assessment of PPs to decrease the consequences of AFs is highly required.
Collapse
Affiliation(s)
- Hassan Rasouli
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Dehghan Nayeri
- Department of Biotechnology, Faculty of Agricultural and Natural Sciences, Imam Khomeini International University (IKIU), Qazvin, Iran
| | - Reza Khodarahmi
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Sachetto ATA, Miyamoto JG, Tashima AK, de Souza AO, Santoro ML. The Bioflavonoids Rutin and Rutin Succinate Neutralize the Toxins of B. jararaca Venom and Inhibit its Lethality. Front Pharmacol 2022; 13:828269. [PMID: 35264963 PMCID: PMC8899467 DOI: 10.3389/fphar.2022.828269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
The venom of the Brazilian pit viper Bothrops jararaca (BjV) is a complex mixture of molecules, and snake venom metalloproteinases (SVMP) and serine proteinases (SVSP) are the most abundant protein families found therein. Toxins present in BjV trigger most of the deleterious disturbances in hemostasis observed in snakebites, i.e., thrombocytopenia, hypofibrinogenemia and bleedings. The treatment of patients bitten by snakes still poses challenges and the bioflavonoid rutin has already been shown to improve hemostasis in an experimental model of snakebite envenomation. However, rutin is poorly soluble in water; in this study, it was succinylated to generate its water-soluble form, rutin succinate (RS), which was analyzed comparatively regarding the chemical structure and characteristic features of rutin. Biological activities of rutin and RS were compared on hemostatic parameters, and against toxic activities of crude BjV in vitro. In vivo, C57BL/6 mice were injected i.p. with either BjV alone or pre-incubated with rutin, RS or 1,10-phenanthroline (o-phe, an SVMP inhibitor), and the survival rates and hemostatic parameters were analyzed 48 h after envenomation. RS showed the characteristic activities described for rutin - i.e., antioxidant and inhibitor of protein disulfide isomerase - but also prolonged the clotting time of fibrinogen and plasma in vitro. Differently from rutin, RS inhibited typical proteolytic activities of SVMP, as well as the coagulant activity of BjV. Importantly, both rutin and RS completely abrogated the lethal activity of BjV, in the same degree as o-phe. BjV induced hemorrhages, falls in RBC counts, thrombocytopenia and hypofibrinogenemia in mice. Rutin and RS also improved the recovery of platelet counts and fibrinogen levels, and the development of hemorrhages was totally blocked in mice injected with BjV incubated with RS. In conclusion, RS has anticoagulant properties and is a novel SVMP inhibitor. Rutin and RS showed different mechanisms of action on hemostasis. Only RS inhibited directly BjV biological activities, even though both flavonoids neutralized B. jararaca toxicity in vivo. Our results showed clearly that rutin and RS show a great potential to be used as therapeutic compounds for snakebite envenomation.
Collapse
Affiliation(s)
- Ana Teresa Azevedo Sachetto
- Laboratory of Pathophysiology, Institute Butantan, São Paulo, Brazil
- Department of Medical Sciences, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Jackson Gabriel Miyamoto
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, (EPM/UNIFESP), São Paulo, Brazil
| | - Alexandre Keiji Tashima
- Department of Biochemistry, Escola Paulista de Medicina, Federal University of São Paulo, (EPM/UNIFESP), São Paulo, Brazil
| | - Ana Olívia de Souza
- Laboratory of Development and Innovation, Institute Butantan, São Paulo, Brazil
| | - Marcelo Larami Santoro
- Laboratory of Pathophysiology, Institute Butantan, São Paulo, Brazil
- Department of Medical Sciences, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Esposito F, Giuffrida R, Raciti G, Puglisi C, Forte S. Wee1 Kinase: A Potential Target to Overcome Tumor Resistance to Therapy. Int J Mol Sci 2021; 22:ijms221910689. [PMID: 34639030 PMCID: PMC8508993 DOI: 10.3390/ijms221910689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
During the cell cycle, DNA suffers several lesions that need to be repaired prior to entry into mitosis to preserve genome integrity in daughter cells. Toward this aim, cells have developed complex enzymatic machinery, the so-called DNA damage response (DDR), which is able to repair DNA, temporarily stopping the cell cycle to provide more time to repair, or if the damage is too severe, inducing apoptosis. This DDR mechanism is considered the main source of resistance to DNA-damaging therapeutic treatments in oncology. Recently, cancer stem cells (CSCs), which are a small subset of tumor cells, were identified as tumor-initiating cells. CSCs possess self-renewal potential and persistent tumorigenic capacity, allowing for tumor re-growth and relapse. Compared with cancer cells, CSCs are more resistant to therapeutic treatments. Wee1 is the principal gatekeeper for both G2/M and S-phase checkpoints, where it plays a key role in cell cycle regulation and DNA damage repair. From this perspective, Wee1 inhibition might increase the effectiveness of DNA-damaging treatments, such as radiotherapy, forcing tumor cells and CSCs to enter into mitosis, even with damaged DNA, leading to mitotic catastrophe and subsequent cell death.
Collapse
|
9
|
Cui X, Lv Y, Wang Z, Li J, Li C. Regulating inhibitory activity of potato I-type proteinase inhibitor from buckwheat by rutin and quercetin. J Food Biochem 2021; 45:e13780. [PMID: 34028049 DOI: 10.1111/jfbc.13780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/28/2021] [Accepted: 05/04/2021] [Indexed: 12/23/2022]
Abstract
This study aims to investigate the effects of two flavonoids, rutin and quercetin, on inhibitory activity of recombinant buckwheat trypsin inhibitor (rBTI). We found that rutin and quercetin could quench the florescence of rBTI through the static quenching process. We also observed that upon binding to rutin or quercetin, rBTI underwent conformational changes. The results also suggested that rutin and quercetin bind to two different sites on rBTI through different interactions: rutin binds to rBTI through van der Waals forces and hydrogen bonds, whereas quercetin binds through hydrophobic interactions. Rutin and quercetin also markedly deactivated the trypsin inhibitory activity (TIA) of rBTI, while quercetin exhibited higher inactivation effect on rBTI than rutin due to its structure. Finally, the molecular docking revealed the molecular binding between the flavonoids and rBTI. These findings can be useful for the understanding of how flavonoid affects the inhibitory of rBTI.
Collapse
Affiliation(s)
- Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Yifan Lv
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Zhuanhua Wang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jiao Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Chen Li
- School of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
10
|
Effect of phenolic compounds on the activity of proteolytic enzymes during rennet induced coagulation of milk and ripening of miniature cheese. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
11
|
Kim KJ, Jeong ES, Lee KH, Na JR, Park S, Kim JS, Na CS, Kim YR, Kim S. Unripe Rubus coreanus Miquel Extract Containing Ellagic Acid Promotes Lipolysis and Thermogenesis In Vitro and In Vivo. Molecules 2020; 25:molecules25245954. [PMID: 33339214 PMCID: PMC7766442 DOI: 10.3390/molecules25245954] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023] Open
Abstract
Previously, we demonstrated that a 5% ethanol extract of unripe Rubus coreanus (5-uRCK) and ellagic acid has hypocholesterolemic and antiobesity activity, at least partially mediated by the downregulation of adipogenic and lipogenic gene expression in high-fat diet (HFD)-fed animals. The present study investigated the thermogenic and lipolytic antiobesity effects of 5-uRCK and ellagic acid in HFD-induced obese C57BL/6 mice and explored its mechanism of action. Mice fed an HFD received 5-uRCK or ellagic acid as a post-treatment or pretreatment. Both post-treated and pretreated mice showed significant reductions in body weight and adipose tissue mass compared to the HFD-fed mice. The protein levels of lipolysis-associated proteins, such as adipose triglyceride lipase (ATGL), phosphorylated hormone-sensitive lipase (p-HSL), and perilipin1 (PLIN1), were significantly increased in both the 5-uRCK- and ellagic acid-treated mouse epididymal white adipose tissue (eWAT). Additionally, thermogenesis-associated proteins, such as peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyl transferase-1 (CPT1), uncoupling protein 1 (UCP1), and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α), in inguinal white adipose tissue (ingWAT) were clearly increased in both the 5-uRCK- and ellagic acid-treated mice compared to HFD-fed mice. These results suggest that 5-uRCK and ellagic acid are effective for suppressing body weight gain and enhancing the lipid profile.
Collapse
Affiliation(s)
- Kyeong Jo Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
| | - Eui-Seon Jeong
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
| | - Ki Hoon Lee
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
| | - Ju-Ryun Na
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
| | - Soyi Park
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
| | - Jin Seok Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
| | - Chang-Su Na
- College of Korean Medicine, Dongshin University, Naju-si, Jeollanam-do 58245, Korea;
| | - Young Ran Kim
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea
- Correspondence: (Y.R.K.); (S.K.); Tel.: +82-(62)-528-2201 (S.K.); Fax: +82-(62)-528-2202 (S.K.)
| | - Sunoh Kim
- Central R&D Center, Bioresources and Technology (B&Tech) Co., Ltd., Gwangju 61239, Korea; (K.J.K.); (E.-S.J.); (K.H.L.); (J.-R.N.); (S.P.); (J.S.K.)
- Correspondence: (Y.R.K.); (S.K.); Tel.: +82-(62)-528-2201 (S.K.); Fax: +82-(62)-528-2202 (S.K.)
| |
Collapse
|
12
|
Du X, Li J, Luo X, Li R, Li F, Zhang Y, Shi J, He J. Structure-activity relationships of Wee1 inhibitors: A review. Eur J Med Chem 2020; 203:112524. [PMID: 32688199 DOI: 10.1016/j.ejmech.2020.112524] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/05/2023]
Abstract
Wee1 kinase plays an important role in regulating G2/M checkpoint and S phase, and the inhibition of it will lead to mitotic catastrophe in cancer cells with p53 mutation or deletion. Therefore, the mechanism of Wee1 kinase in cancer treatment and the development of its inhibitors have become a research hotspot. However, although a variety of Wee1 inhibitors with different scaffolds and considerable activity have been successfully identified, so far no one has systematically summarized the structure-activity relationships (SARs) of Wee1 inhibitors. Previous reviews mainly focused on its mechanism and clinical application. To facilitate the rational design and development of Wee1 inhibitors in the future, this paper systematically summarizes its structural types, SARs and binding modes according to the Wee1 inhibitors reported in scientific journals, and also summarizes the regulatory effect of Wee1 kinase on cell cycle and the progress of its inhibitors in clinical application.
Collapse
Affiliation(s)
- Xingkai Du
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Jian Li
- Department of Pharmacy, West China Hospital Sichuan University, Chengdu, 610041, China
| | - Xiaojiao Luo
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Rong Li
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Feng Li
- West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yiwen Zhang
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, 610072, China.
| | - Jun He
- State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
13
|
Study on Structure Activity Relationship of Natural Flavonoids against Thrombin by Molecular Docking Virtual Screening Combined with Activity Evaluation In Vitro. Molecules 2020; 25:molecules25020422. [PMID: 31968628 PMCID: PMC7024217 DOI: 10.3390/molecules25020422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 12/24/2022] Open
Abstract
Thrombin, a key enzyme of the serine protease superfamily, plays an integral role in the blood coagulation cascade and thrombotic diseases. In view of this, it is worthwhile to establish a method to screen thrombin inhibitors (such as natural flavonoid-type inhibitors) as well as investigate their structure activity relationships. Virtual screening using molecular docking technique was used to screen 103 flavonoids. Out of this number, 42 target compounds were selected, and their inhibitory effects on thrombin assayed by chromogenic substrate method. The results indicated that the carbon-carbon double bond group at the C2, C3 sites and the carbonyl group at the C4 sites of flavones were essential for thrombin inhibition, whereas the methoxy and O-glycosyl groups reduced thrombin inhibition. Noteworthy, introduction of OH groups at different positions on flavonoids either decreased or increased anti-thrombin potential. Myricetin exhibited the highest inhibitory potential against thrombin with an IC50 value of 56 μM. Purposively, the established molecular docking virtual screening method is not limited to exploring flavonoid structure activity relationships to anti-thrombin activity but also usefully discovering other natural active constituents.
Collapse
|
14
|
Zhou Y, Chen D, Xue G, Yu S, Yuan C, Huang M, Jiang L. Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast cancer by inhibiting uPA. RSC Adv 2020; 10:34517-34526. [PMID: 35514369 PMCID: PMC9056791 DOI: 10.1039/d0ra04231e] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancer (TNBC) is one kind of breast cancer that demonstrates highly aggressive tumor biology. The high heterogeneity of TNBC makes its individual clinical treatment extremely blind and limited, which also introduces more challenges into the diagnosis and treatment of diseases. Urokinase-type plasminogen activator (uPA) is a high level marker for breast cancer, which mediates tumor growth and metastasis. Quercetin is a plant-derived flavonoid in many plants, which inhibits uPA and has low bioavailability and mediocre pharmaceutical efficacy. Thus, we herein developed polymeric nanoparticulate systems from PLGA-TPGS (Qu-NPs) for quercetin oral delivery and evaluated the anticancer effect of this formulation on TNBC in vitro and in vivo. Qu-NPs have a uniform spherical morphology with a mean diameter of 198.4 ± 7.8 nm and good drug loading capacity (8.1 ± 0.4%). Moreover, Qu-NPs exhibited significantly improved inhibition on the growth and metastasis in TNBC cells. Following oral gavage, a remarkable antitumor effect of Qu-NPs on 4T1-bearing mice was observed with a tumor inhibition ratio of 67.88% and fewer lung metastatic colonies. Furthermore, the inhibitory effect of quercetin on the migration of uPA knockdown MDA-MB231 cells was greatly attenuated. Together, Qu-NPs improved the significant antitumor and antimetastatic effects by inhibiting uPA, which provides a new strategy for the treatment of TNBC. Triple negative breast cancer (TNBC) is one kind of breast cancer that demonstrates highly aggressive tumor biology.![]()
Collapse
Affiliation(s)
- Yang Zhou
- College of Chemistry
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies
- Fuzhou University
- Fuzhou
- China
| | - Dan Chen
- College of Chemistry
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies
- Fuzhou University
- Fuzhou
- China
| | - Guangpu Xue
- College of Chemistry
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies
- Fuzhou University
- Fuzhou
- China
| | - Shujuan Yu
- College of Chemistry
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies
- Fuzhou University
- Fuzhou
- China
| | - Cai Yuan
- College of Biological Science and Engineering
- Fuzhou University
- Fuzhou
- China
| | - Mingdong Huang
- College of Chemistry
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies
- Fuzhou University
- Fuzhou
- China
| | - Longguang Jiang
- College of Chemistry
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies
- Fuzhou University
- Fuzhou
- China
| |
Collapse
|
15
|
Yildirim-Elikoglu S, Vural H. Binding characteristics of polyphenols as milk plasmin inhibitors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6922-6930. [PMID: 31393601 DOI: 10.1002/jsfa.9978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/31/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The potential use of polyphenols to improve the functional characteristics of dairy products has gained much attention. However, the effects of the polyphenols on naturally occurring enzymes in milk have not been studied extensively. Excess plasmin activity in dairy products might result in several quality defects. The objective of this study was to assess the ability of polyphenols to inhibit plasmin in milk using a molecular and kinetic approach. RESULTS Epicatechin gallate (ECG), epigallocatechin gallate (EGCG), quercetin (QUER), and myricetin (MYR) caused a significant decrease in plasmin activity by 60, 86, 65, and 90%, respectively. The inhibition rates were alleviated in the presence of milk proteins. EGCG, QUER, and MYR, exhibited noncompetitive inhibition against plasmin, whereas ECG caused a mixed-type inhibition. A decrease in the random structure of plasmin upon the complex formation with ECG, EGCG, QUER, and MYR was found. The other phenolics that were evaluated did not cause any significant changes in plasmin conformation. The observed inhibitory phenolic-plasmin interactions were dominated by H-bonds and electrostatic attractions. Green tea extract (GTE) rich in catechins also inhibited plasmin activity in the milk. CONCLUSION Significant changes in the secondary structure of plasmin upon binding of ECG, EGCG, QUER, and MYR led to diminished plasmin activity both in the absence and presence of milk proteins. These flavonoids with promising plasmin inhibitory potential could be used in new dairy formulations leading to controlled undesired consequences of plasmin activity. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Seda Yildirim-Elikoglu
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| | - Halil Vural
- Department of Food Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey
| |
Collapse
|
16
|
Ravishankar D, Albadawi DAI, Chaggar V, Patra PH, Williams HF, Salamah M, Vaiyapuri R, Dash PR, Patel K, Watson KA, Vaiyapuri S. Isorhapontigenin, a resveratrol analogue selectively inhibits ADP-stimulated platelet activation. Eur J Pharmacol 2019; 862:172627. [PMID: 31461638 DOI: 10.1016/j.ejphar.2019.172627] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/17/2019] [Accepted: 08/23/2019] [Indexed: 12/13/2022]
Abstract
Isorhapontigenin is a polyphenolic compound found in Chinese herbs and grapes. It is a methoxylated analogue of a stilbenoid, resveratrol, which is well-known for its various beneficial effects including anti-platelet activity. Isorhapontigenin possesses greater oral bioavailability than resveratrol and has also been identified to possess anti-cancer and anti-inflammatory properties. However, its effects on platelet function have not been reported previously. In this study, we report the effects of isorhapontigenin on the modulation of platelet function. Isorhapontigenin was found to selectively inhibit ADP-induced platelet aggregation with an IC50 of 1.85 μM although it displayed marginal inhibition on platelet aggregation induced by other platelet agonists at 100 μM. However, resveratrol exhibited weaker inhibition on ADP-induced platelet aggregation (IC50 > 100 μM) but inhibited collagen induced platelet aggregation at 50 μM and 100 μM. Isorhapontigenin also inhibited integrin αIIbβ3 mediated inside-out and outside-in signalling and dense granule secretion in ADP-induced platelet activation but interestingly, no effect was observed on α-granule secretion. Isorhapontigenin did not exert any cytotoxicity on platelets at the concentrations of up to 100 μM. Furthermore, it did not affect haemostasis in mice at the IC50 concentration (1.85 μM). In addition, the mechanistic studies demonstrated that isorhapontigenin increased cAMP levels and VASP phosphorylation at Ser157 and decreased Akt phosphorylation. This suggests that isorhapontigenin may interfere with cAMP and PI3K signalling pathways that are associated with the P2Y12 receptor. Molecular docking studies emphasised that isorhapontigenin has greater binding affinity to P2Y12 receptor than resveratrol. Our results demonstrate that isorhapontigenin has selective inhibitory effects on ADP-stimulated platelet activation possibly via P2Y12 receptor.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Philip R Dash
- School of Biological Sciences, University of Reading, Reading, UK
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading, UK
| | | | | |
Collapse
|
17
|
Lamponi S, Aloisi AM, Bonechi C, Consumi M, Donati A, Leone G, Rossi C, Tamasi G, Ghiandai L, Ferrini E, Fiorenzani P, Ceccarelli I, Magnani A. Evaluation of in vitro cell and blood compatibility and in vivo analgesic activity of plant-derived dietary supplements. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2019; 17:213-220. [DOI: 10.1016/j.joim.2019.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/29/2018] [Indexed: 12/21/2022]
|
18
|
Kolodziejczyk-Czepas J, Pasiński B, Ponczek MB, Moniuszko-Szajwaj B, Kowalczyk M, Pecio Ł, Nowak P, Stochmal A. Bufadienolides from Kalanchoe daigremontiana modulate the enzymatic activity of plasmin - In vitro and in silico analyses. Int J Biol Macromol 2018; 120:1591-1600. [PMID: 30261260 DOI: 10.1016/j.ijbiomac.2018.09.143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 09/07/2018] [Accepted: 09/23/2018] [Indexed: 01/23/2023]
Abstract
Plasmin (EC 3.4.21.7) is a key enzyme of the fibrinolytic system, responsible for the degradation of fibrin clot and maintaining blood fluidity. Hence, alterations of the fibrinolytic capacity of blood plasma may contribute to thrombotic or bleeding complications. The aim of this study was to determine effects of a bufadienolide-rich fraction, isolated from roots of Kalanchoe daigremontiana (0.05-50 μg/ml) on enzymatic properties of plasmin. Hydrolysis of a synthetic substrate S-2251 (H-D-Valyl-l-leucyl-l-lysine-p-nitroaniline dihydrochloride) by plasmin revealed that the bufadienolide-rich fraction had a diverse effect on this enzyme, dependently on the concentration range. While the lower concentrations of the examined fraction (0.05-2.5 μg/ml) significantly enhanced the amidolytic activity of plasmin, at 25-50 μg/ml concentrations, the enzyme was evidently inhibited (by about 60%). The Lineweaver-Burk plot indicated on an uncompetitive inhibition of plasmin. Inhibitory effects (up to 80%) were also found in the streptokinase-induced plasminogen activation to plasmin. Docking results suggest that only some of compounds (mostly bersaldegenin 1-acetate (10), bryotoxin (13) and hovetrichoside C (17)) were bound to plasminogen/plasmin, depending on the presence or absence of the substrate in the active site. The obtained findings suggest allosteric regulation of plasminogen activation and plasmin activity by components of the examined fraction.
Collapse
Affiliation(s)
- Joanna Kolodziejczyk-Czepas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Bartłomiej Pasiński
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Michal B Ponczek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Barbara Moniuszko-Szajwaj
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - Mariusz Kowalczyk
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - Łukasz Pecio
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| | - Pawel Nowak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Anna Stochmal
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, Czartoryskich 8, 24-100 Pulawy, Poland
| |
Collapse
|
19
|
Tresserra-Rimbau A, Lamuela-Raventos RM, Moreno JJ. Polyphenols, food and pharma. Current knowledge and directions for future research. Biochem Pharmacol 2018; 156:186-195. [PMID: 30086286 DOI: 10.1016/j.bcp.2018.07.050] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/31/2018] [Indexed: 12/19/2022]
Abstract
Polyphenols are a large family of phytochemicals with great chemical diversity, known to be bioactive compounds of foods, species, medicinal plants and nutraceuticals. These compounds are ingested through the diet in significant amounts, around 1 g per day, an amount that be may be increased through supplements. The in vitro action of many representative polyphenols has been reported. However, their beneficial effects and their role in modulating the risk of high-prevalence diseases are difficult to demonstrate due to the wide variability of polyphenol structures and bioactive actions; the complexity of estimating the polyphenol content of food as a result of their variability in foods and cooked dishes; the potential modulation of the effects of polyphenols by food matrices; the addition of polyphenols and their synergistic interactions with each other and with other dietary bioactive components; the modulation of polyphenol bioavailability as a consequence of food composition and culinary techniques; their metabolism by the human body and the polyphenol gut microbiota metabolism in each metabotypes. Computational strategies, including virtual screening, shape-similarity-screening and molecular docking, were recently used to identify potential targets of polyphenols and thus gain a better understanding of the therapeutic effects exerted of polyphenols and modify natural polyphenol structures to potentiate specific activities. Here, we present the most relevant current knowledge and propose directions for future research in these fields, from the culinary world to the clinical setting. We hope this commentary will prompt scientists and clinicians to consider the therapeutic value of bioactive polyphenols and help shed some light on how much scientific truth lies in Hippocrates' famous quote: "Let your food be your medicine".
Collapse
Affiliation(s)
- Anna Tresserra-Rimbau
- Human Nutrition Unit, University Hospital of Sant Joan de Reus, Department of Biochemistry and Biotechnology, Faculty of Medicine and Health Sciences, Pere Virgili Health Research Center, University Rovira i Virgili, Reus, Spain; CIBER Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa M Lamuela-Raventos
- CIBER Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain; Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Juan J Moreno
- CIBER Fisiopatologia de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Department of Nutrition, Food Sciences and Gastronomy, University of Barcelona, Barcelona, Spain; Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
20
|
Sun J, Wu Y, Dong S, Li X, Gao W. Influence of the drying method on the bioactive compounds and pharmacological activities of rhubarb. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:3551-3562. [PMID: 29315599 DOI: 10.1002/jsfa.8871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
BACKGROUND Raw rhubarb samples that have been subjected to different drying procedures will have different therapeutic effects, possibly due to processing-induced variations in the chemical composition. In the present work, the fresh materials were processed by smoking, sun-drying, shade-drying and oven-drying at low, moderate and high temperatures. To facilitate the selection of a suitable drying method for rhubarb, the quality of rhubarb processed under various drying conditions was evaluated based on the simultaneous determination of multiple bioactive constituents in combination with bioactivity assays. RESULTS The total concentrations of 12 compounds in smoked rhubarb were higher than the concentrations of the same components in raw rhubarb and rhubarb products processed using other drying techniques. Smoked rhubarb was found to substantially inhibit Na+ /K+ -ATPase and thrombin. In addition, higher content of anthraquinones led to higher Na+ /K+ -ATPase inhibitory activities, and higher gallic acid content increased the antithrombin capacity. CONCLUSION The results confirmed that post-harvest fresh plant materials, especially roots, were still physiologically active organs that could undergo series of anti-dehydration mechanisms, including the production of related secondary metabolites during the early stages of dehydration. Therefore, the proper design of drying processes could enhance the quality of rhubarb as well as other similar medicinal plants. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiachen Sun
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Yueting Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
| | - Shengjie Dong
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Xia Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Wenyuan Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, PR China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
21
|
Vander dos Santos R, Villalta-Romero F, Stanisic D, Borro L, Neshich G, Tasic L. Citrus bioflavonoid, hesperetin, as inhibitor of two thrombin-like snake venom serine proteases isolated from Crotalus simus. Toxicon 2018; 143:36-43. [DOI: 10.1016/j.toxicon.2018.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/20/2017] [Accepted: 01/10/2018] [Indexed: 01/09/2023]
|
22
|
Pereira B, Brazón J, Rincón M, Vonasek E. Browplasminin, a condensed tannin with anti-plasmin activity isolated from an aqueous extract of Brownea grandiceps Jacq. flowers. JOURNAL OF ETHNOPHARMACOLOGY 2017; 198:282-290. [PMID: 28089737 DOI: 10.1016/j.jep.2017.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/26/2016] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Following Venezuelan traditional medicine, females with heavy menstrual blood loss (menorrhagia) drink Brownea grandiceps Jacq. flowers (BG) decoctions to reduce the bleeding. In a previous study, we demonstrated that BG aqueous extract (E) possesses a potent anti-fibrinolytic activity capable of inhibiting plasmin, the main serine-protease that degrades fibrin. It is widely known that plasmin inhibitors are often used as anti-fibrinolytics to reduce bleeding during surgeries with high risk of blood loss such as cardiac, liver, vascular, tooth extraction and large orthopedic procedures, as well as for menorrhagia treatments. The aim of this work was to isolate and characterize from BGE the compound responsible for the reported anti-fibrinolytic activity. MATERIALS AND METHODS A decoction of BG was prepared; then it was homogenized, centrifuged and lyophilized to obtain BGE. Subsequently the extract was fractionated by gel filtration and reverse phase using HPLC and the active compound was characterized by MALDI-ToF MS. The kinetic parameters of anti-plasmin activity were evaluated by an amidolytic assay using a chromogenic substrate; also the anti-plasmin activity was estimated by fibrin plate method. Data were analyzed by nonparametric statistics. RESULTS The active compound was a condensed tannin denominated Browplasminin, which is capable of inhibiting the plasmin activity in a dose-dependent manner when measured in fibrin plates or by the amidolytic activity method; it also has a minor effect on the FXa activity. However, it does not affect the activity of other serine-proteases such as trypsin, t-PA or u-PA. Browplasminin consists predominately of heteroflavan-3-ols of catechin with B-type linkages, and extents up to heptadecamers (~ 5000Da), with hexose residues attached to the polymer that presents a high degree of galloylation. Its IC50 for plasmin was 47.80μg/mL and for FXa was 237.08μg/mL, while the Ki were 0.76 and 61.61μg/mL for plasmin and FXa, respectively. CONCLUSIONS The overall outcome of this study suggests that Browplasminin could be responsible for reducing heavy menstrual bleeding in women because its kinetic parameters showed that is a good plasmin inhibitor.
Collapse
Affiliation(s)
- Betzabeth Pereira
- Laboratorio de Neurofarmacología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020-A, Venezuela
| | - Josmary Brazón
- Laboratorio de Neurofarmacología Celular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020-A, Venezuela.
| | - Mónica Rincón
- Unidad de Proteómica, Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020-A, Venezuela
| | - Eva Vonasek
- Unidad de Proteómica, Centro de Biología Estructural, Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020-A, Venezuela
| |
Collapse
|
23
|
Xue G, Gong L, Yuan C, Xu M, Wang X, Jiang L, Huang M. A structural mechanism of flavonoids in inhibiting serine proteases. Food Funct 2017. [DOI: 10.1039/c6fo01825d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The crystal structure of quercerin:uPA reveals that catechol serves as the functional group in inhibiting serine proteases.
Collapse
Affiliation(s)
- Guangpu Xue
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Lihu Gong
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Cai Yuan
- College of Biological Science and Engineering
- Fuzhou University
- Fuzhou 350116
- China
| | - Mingming Xu
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | - Xu Wang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| | | | - Mingdong Huang
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
- China
| |
Collapse
|
24
|
Popular naturally occurring antioxidants as potential anticoagulant drugs. Chem Biol Interact 2016; 257:35-45. [PMID: 27475864 DOI: 10.1016/j.cbi.2016.07.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 07/05/2016] [Accepted: 07/18/2016] [Indexed: 01/11/2023]
Abstract
Blood coagulation is a physiological process whose main task is prevention of blood loss from injured vessels. This process consists of a series of zymogens proteolytic activation leading to the generation of the main coagulation enzyme - thrombin. Besides its important role in blood coagulation process, thrombin is involved in many cardiovascular diseases, which are responsible for almost half of fatalities in economically developed countries. The evidence for the increased generation and in vivo activity of thrombin was observed in the plasma of individuals at high risk for clinically significant venous and arterial thromboembolic complications. Antioxidants activity of plants extracts has been well known for many years and was confirmed by many publications. However, during the last decade many research centers presented results suggesting anticoagulant potential of various plant extracts. Many researchers have also provided evidence that polyphenol compounds are able to inhibit the activity of many enzymes, including serine proteases. All research described in this review clearly indicate that polyphenols and polyphenol-rich extracts possess not only antioxidative but also anticoagulant properties and may be useful in creation of new therapeutic agents or dietary supplements. Based on described properties polyphenols would be very helpful with both prevention and treatment of thromboembolic complications associated with multiple failures of haemostasis, because the available therapeutic agents do not offer such double-effects (antioxidant and anticoagulant).
Collapse
|
25
|
Mahanti M, Bhakat S, Nilsson UJ, Söderhjelm P. Flap Dynamics in Aspartic Proteases: A Computational Perspective. Chem Biol Drug Des 2016; 88:159-77. [PMID: 26872937 DOI: 10.1111/cbdd.12745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances in biochemistry and drug design have placed proteases as one of the critical target groups for developing novel small-molecule inhibitors. Among all proteases, aspartic proteases have gained significant attention due to their role in HIV/AIDS, malaria, Alzheimer's disease, etc. The binding cleft is covered by one or two β-hairpins (flaps) which need to be opened before a ligand can bind. After binding, the flaps close to retain the ligand in the active site. Development of computational tools has improved our understanding of flap dynamics and its role in ligand recognition. In the past decade, several computational approaches, for example molecular dynamics (MD) simulations, coarse-grained simulations, replica-exchange molecular dynamics (REMD) and metadynamics, have been used to understand flap dynamics and conformational motions associated with flap movements. This review is intended to summarize the computational progress towards understanding the flap dynamics of proteases and to be a reference for future studies in this field.
Collapse
Affiliation(s)
- Mukul Mahanti
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Soumendranath Bhakat
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-22100, Lund, Sweden
| | - Ulf J Nilsson
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, PO Box 124, SE-221 00, Lund, Sweden
| | - Pär Söderhjelm
- Division of Biophysical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-22100, Lund, Sweden
| |
Collapse
|
26
|
GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity. J Nutr Biochem 2015; 26:1156-65. [PMID: 26140983 DOI: 10.1016/j.jnutbio.2015.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 05/02/2015] [Accepted: 05/08/2015] [Indexed: 11/21/2022]
Abstract
Flavonoids reduce cardiovascular disease risk through anti-inflammatory, anti-coagulant and anti-platelet actions. One key flavonoid inhibitory mechanism is blocking kinase activity that drives these processes. Flavonoids attenuate activities of kinases including phosphoinositide-3-kinase, Fyn, Lyn, Src, Syk, PKC, PIM1/2, ERK, JNK and PKA. X-ray crystallographic analyses of kinase-flavonoid complexes show that flavonoid ring systems and their hydroxyl substitutions are important structural features for their binding to kinases. A clearer understanding of structural interactions of flavonoids with kinases is necessary to allow construction of more potent and selective counterparts. We examined flavonoid (quercetin, apigenin and catechin) interactions with Src family kinases (Lyn, Fyn and Hck) applying the Sybyl docking algorithm and GRID. A homology model (Lyn) was used in our analyses to demonstrate that high-quality predicted kinase structures are suitable for flavonoid computational studies. Our docking results revealed potential hydrogen bond contacts between flavonoid hydroxyls and kinase catalytic site residues. Identification of plausible contacts indicated that quercetin formed the most energetically stable interactions, apigenin lacked hydroxyl groups necessary for important contacts and the non-planar structure of catechin could not support predicted hydrogen bonding patterns. GRID analysis using a hydroxyl functional group supported docking results. Based on these findings, we predicted that quercetin would inhibit activities of Src family kinases with greater potency than apigenin and catechin. We validated this prediction using in vitro kinase assays. We conclude that our study can be used as a basis to construct virtual flavonoid interaction libraries to guide drug discovery using these compounds as molecular templates.
Collapse
|
27
|
Pereira B, Brazón J. Aqueous extract from Brownea grandiceps flowers with effect on coagulation and fibrinolytic system. JOURNAL OF ETHNOPHARMACOLOGY 2015; 160:6-13. [PMID: 25460592 DOI: 10.1016/j.jep.2014.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Brownea grandiceps flowers are used in Venezuelan folk medicine as anti-hemorrhagic in women with heavy menstrual blood loss (menorrhagia). However, prior to this study, there were no scientific investigations to support this fact, because the aqueous extract from Brownea grandiceps flowers had not been previously evaluated neither phytochemically nor biologically. The objective of this work was to evaluate in vitro the effects of aqueous extract from Brownea grandiceps flowers on the coagulation system and fibrinolysis. MATERIALS AND METHODS An infusion of Brownea grandiceps flowers (160g) was performed; then, it was homogenized, centrifuged and lyophilized to obtain the aqueous extract, and this was called BGE. Subsequently, the extract was characterized on the one hand, phytochemically and on the other hand, biologically, employing prothrombin time (PT), partial thromboplastin time (PTT) and thrombin time (TT) to determine the effects on extrinsic, intrinsic and common coagulation pathways, respectively. In addition to that, the fibrinogenolytic and fibronectinase activity was evaluated by SDS-PAGE using Tris-Tricine system and analyzed by densitometric study utilizing ImageJ program. Also, by using specific chromogenic substrates for Factor Xa (FXa), thrombin, tissue plasminogen activator (t-PA), urokinase plasminogen activator (u-PA) and plasmin, it was assessed whether BGE exhibited some enzyme-like activity, and inhibitory activity of the afore mentioned enzymes. Fibrinolytic and antifibrinolytic activities were determined by a fibrin plate method. Data were analyzed by an nonparametric method. RESULTS BGE presented tannins, saponins, glycosides, alkaloids, flavonoids, coumarins, and did not contain triterpenoids and steroids. Also, BGE at low concentrations (250-1250µg/mL) reduced the PT, while higher concentrations (15000-25000µg/mL) prolonged this time. However, BGE concentrations between 1250 and 25000µg/mL prolonged the PTT. Prolongation of PT and PTT was observed at high concentrations and was due to FXa inhibitor found in BGE and this effect could be strengthened by degradation of fibrinogen and fibronectin, which were also produced by BGE. Moreover, BGE did not clot fibrinogen or human plasma, and neither did it cleave the chromogenic substrates specific to FXa nor thrombin. These results suggest the pro-coagulant components could be acting on some factor of the extrinsic pathway, since only PT was shortened. Furthermore, BGE did not hydrolyze the chromogenic substrate specific to plasmin, t-PA and u-PA nor did it produce fibrin degradation. However, all BGE concentrations tested inhibited the plasmin activity in a dose-dependent manner. CONCLUSIONS The outcomes of this study reveal the presence of fibrinogenolytic, fibronectinase and anti-FXa components in BGE, plus anti-plasmin compounds that could be acting as antifibrinolytic, thus delaying the fibrin degradation in pathophysiological processes, as it has been observed in women presenting with menorrhagia due to a high plasmin concentration. Where this anti-plasmin compound, along with pro-coagulant components also present in BGE, could be made responsible for reducing heavy menstrual bleeding in women, since a deficiency in one or more blood coagulation factors such as factor VII, V or X, is a potential cause of menorrhagia.
Collapse
Affiliation(s)
- Betzabeth Pereira
- Laboratorio de Neurofarmacología Celular, Centro de Biofísica y Bioquímica. Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020-A, Bolivarian Republic of Venezuela
| | - Josmary Brazón
- Laboratorio de Neurofarmacología Celular, Centro de Biofísica y Bioquímica. Instituto Venezolano de Investigaciones Científicas (IVIC), Apartado 20632, Caracas 1020-A, Bolivarian Republic of Venezuela.
| |
Collapse
|
28
|
Wright B, Tindall MJ, Lovegrove JA, Gibbins JM. Investigating flavonoids as molecular templates for the design of small-molecule inhibitors of cell signaling. J Food Sci 2014; 78:N1921-8. [PMID: 24329957 DOI: 10.1111/1750-3841.12293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 09/20/2013] [Indexed: 01/03/2023]
Abstract
Epidemiological and clinical trials reveal compelling evidence for the ability of dietary flavonoids to lower cardiovascular disease risk. The mechanisms of action of these polyphenolic compounds are diverse, and of particular interest is their ability to function as protein and lipid kinase inhibitors. We have previously described structure-activity studies that reinforce the possibility for using flavonoid structures as templates for drug design. In the present study, we aim to begin constructing rational screening strategies for exploiting these compounds as templates for the design of clinically relevant, antiplatelet agents. We used the platelet as a model system to dissect the structural influence of flavonoids, stilbenes, anthocyanidins, and phenolic acids on inhibition of cell signaling and function. Functional groups identified as relevant for potent inhibition of platelet function included at least 2 benzene rings, a hydroxylated B ring, a planar C ring, a C ring ketone group, and a C-2 positioned B ring. Hydroxylation of the B ring with either a catechol group or a single C-4' hydroxyl may be required for efficient inhibition of collagen-stimulated tyrosine phosphorylated proteins of 125 to 130 kDa, but may not be necessary for that of phosphotyrosine proteins at approximately 29 kDa. The removal of the C ring C-3 hydroxyl together with a hydroxylated B ring (apigenin) may confer selectivity for 37 to 38 kDa phosphotyrosine proteins. We conclude that this study may form the basis for construction of maps of flavonoid inhibitory activity on kinase targets that may allow a multitargeted therapeutic approach with analogue counterparts and parent compounds.
Collapse
Affiliation(s)
- Bernice Wright
- Inst. for Cardiovascular and Metabolic Research (ICMR), School of Biological Sciences, Univ. of Reading, Reading, RG6 6UB Berkshire, U.K
| | | | | | | |
Collapse
|
29
|
Bijak M, Ponczek MB, Nowak P. Polyphenol compounds belonging to flavonoids inhibit activity of coagulation factor X. Int J Biol Macromol 2014; 65:129-35. [PMID: 24444877 DOI: 10.1016/j.ijbiomac.2014.01.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/26/2013] [Accepted: 01/09/2014] [Indexed: 11/29/2022]
Abstract
Blood coagulation consists of series of zymogens which can be converted by limited proteolysis to active enzymes leading to the generation of thrombin and conversion of fibrinogen into fibrin by this enzyme. The activated factor X (FXa) forms prothrombinase complex on phosphatidylserine containing surface which is responsible for conversion of prothrombin to thrombin. One molecule of FXa generates more than 1000 thrombin molecules. Therefore FXa is a novel target for modern anticoagulant therapy. The aim of our present study is to examine the effects of the well-known plant polyphenolic compounds on factor Xa amidolytic activity and characterization of these interactions using bioinformatic ligand docking method. We observed that only four polyphenols belonging to flavonoids group: procyanidin B2, cyanidin, quercetin and silybin, had inhibitory effect on FXa activity. Bioinformatic analyses revealed that procyanidin B2, cyanidin, quercetin and silybin bound in the S1-S4 pockets located in vicinity of the FXa active site and blocked access of substrates to Ser195. The results presented here showed that flavonoids might be potential structural bases for design of new nature-based, safe, orally bioavailable direct FXa inhibitors.
Collapse
Affiliation(s)
- Michal Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Michal Blazej Ponczek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Pawel Nowak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
30
|
Ellagic Acid Reduces Adipogenesis through Inhibition of Differentiation-Prevention of the Induction of Rb Phosphorylation in 3T3-L1 Adipocytes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:287534. [PMID: 24302962 PMCID: PMC3835195 DOI: 10.1155/2013/287534] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 09/07/2013] [Accepted: 09/09/2013] [Indexed: 01/16/2023]
Abstract
Ellagic acid (EA) present in many fruits and nuts serves as antiproliferation, anti-inflammatory, and antitumorigenic properties. However, the effect of EA on preadipocytes adipogenesis and its mechanism(s) have not been elucidated. The present study was designed to examine the effect of EA on adipogenesis in 3T3-L1 preadipocytes and underlying mechanism(s) of action involved. Data show that EA administration decreased the accumulation of lipid droplets. The inhibition was diminished when the addition of EA was delayed to days 2–4 of differentiation. Clonal expansion was reduced in the presence of EA. FACS analysis showed that EA blocked the cell cycle at the G1/S transition. EdU incorporation also confirmed that EA refrained cell from entering S phase. Our data also revealed that the differentiation-induced protein expression of Cyclin A and phosphorylation of the retinoblastoma protein (Rb) were impaired by EA. Differentiation-dependent expression and DNA-binding ability of C/EBPα were also inhibited by EA. Alterations in cell cycle-associated proteins may be important with respect to the antiadipogenic action of EA. In conclusion, EA is capable of inhibiting adipogenesis in 3T3-L1 adipocytes possibly through reduction of Cyclin A protein expression and Rb phosphorylation. With the blocking of G1/S phase transition, EA suppresses terminal differentiation and lipid accumulation in 3T3-L1 adipocytes.
Collapse
|
31
|
Bijak M, Ziewiecki R, Saluk J, Ponczek M, Pawlaczyk I, Krotkiewski H, Wachowicz B, Nowak P. Thrombin inhibitory activity of some polyphenolic compounds. Med Chem Res 2013; 23:2324-2337. [PMID: 24610996 PMCID: PMC3939009 DOI: 10.1007/s00044-013-0829-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/03/2013] [Indexed: 01/21/2023]
Abstract
Thrombin, also known as an active plasma coagulation factor II, belongs to the family of serine proteases and plays a crucial role in blood coagulation process. The process of thrombin generation is the central event of the hemostatic process and regulates blood coagulant activity. For this reason, thrombin inhibition is key to successful novel antithrombotic pharmacotherapy. The aim of our present study was to examine the effects of the well-known polyphenolic compounds on the activity of thrombin, by characterization of its interaction with selected polyphenols using different biochemical methods and biosensor BIAcore analyses. Only six compounds, cyanidin, quercetin, silybin, cyanin, (+)-catechin and (-)-epicatechin, of all examined in this study polyphenols caused the inhibition of thrombin amidolytic activity. But only three of the six compounds (cyanidin, quercetin and silybin) changed thrombin proteolytic activity. BIAcore analyses demonstrated that cyanidin and quercetin caused a strong response in the interaction with immobilized thrombin, while cyanin and (-)-epicatechin induced a low response. Lineweaver-Burk curves show that used polyphenol aglycones act as competitive thrombin inhibitors. Our results suggest that polyphenolic compounds might be potential structural bases and source to find and project nature-based, safe, orally bioavailable direct thrombin inhibitors.
Collapse
Affiliation(s)
- M Bijak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - R Ziewiecki
- Organic and Pharmaceutical Technology Group, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - J Saluk
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - M Ponczek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - I Pawlaczyk
- Organic and Pharmaceutical Technology Group, Faculty of Chemistry, Wroclaw University of Technology, Wybrzeze Wyspianskiego 29, 50-370 Wroclaw, Poland
| | - H Krotkiewski
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland
| | - B Wachowicz
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - P Nowak
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
32
|
Patiño AC, Benjumea DM, Pereañez JA. Inhibition of venom serine proteinase and metalloproteinase activities by Renealmia alpinia (Zingiberaceae) extracts: comparison of wild and in vitro propagated plants. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:590-596. [PMID: 23916793 DOI: 10.1016/j.jep.2013.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 07/23/2013] [Accepted: 07/28/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The plant Renealmia alpinia has been used in folk medicine to treat snakebites in the northwest region of Colombia. In addition, it has been shown to neutralize edema-forming, hemorrhagic, lethal, and defibrin(ogen)ating activities of Bothrops asper venom. In this work, extracts of Renealmia alpinia obtained by micropropagation (in vitro) and from specimens collected in the wild were tested and compared in their capacity to inhibit enzymatic and toxic activities of a snake venom metalloproteinase isolated from Bothrops atrox (Batx-I) venom and a serine proteinase (Cdc SII) from Crotalus durissus cumanensis venom. MATERIALS AND METHODS We have investigated the inhibition capacity of Renealmia alpinia extracts on enzymatic and toxic actions of isolated toxins, a metalloproteinase and a serine proteinase. The protocols investigated included inhibition of proteolytic activity on azocasein, inhibition of proteolytic activity on fibrinogen, inhibition of pro-coagulant activity, inhibition of hemorrhagic activity and inhibition of edema-forming activity. RESULTS Colorimetric assays detected the presence of terpenoids, flavonoids, tannins and coumarins in Renealmia alpinia extracts. Renealmia alpinia extracts inhibited the enzymatic, hemorrhagic and fibrinogenolytic activities of Batx-I. Extracts also inhibited coagulant, defibrin(ogen)ating and edema-forming activities of Cdc SII. Results highlight that Renealmia alpinia in vitro extract displayed comparable inhibitory capacity on venom proteinases that Renealmia alpinia wild extract. No alteration was observed in the electrophoretic pattern of venom proteinases after incubation with Renealmia alpinia extracts, thus excluding proteolytic degradation or protein denaturation/precipitation as a mechanism of inhibition. CONCLUSIONS Our results showed that Renealmia alpinia wild and in vitro extracts contain compounds that neutralize metallo- and serine proteinases present in snake venoms. The mechanism of inhibition is not related to proteolytic degradation of the enzymes nor protein aggregation, but is likely to depend on molecular interactions of secondary metabolites in the plant with these venom proteinases.
Collapse
Affiliation(s)
- Arley Camilo Patiño
- Departamento de Farmacia, Facultad de Química Farmacéutica, Universidad de Antioquia UdeA, Medellín, Colombia.
| | | | | |
Collapse
|
33
|
Wright B, Spencer JPE, Lovegrove JA, Gibbins JM. Insights into dietary flavonoids as molecular templates for the design of anti-platelet drugs. Cardiovasc Res 2013; 97:13-22. [PMID: 23024269 PMCID: PMC3527766 DOI: 10.1093/cvr/cvs304] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/19/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022] Open
Abstract
Flavonoids are low-molecular weight, aromatic compounds derived from fruits, vegetables, and other plant components. The consumption of these phytochemicals has been reported to be associated with reduced cardiovascular disease (CVD) risk, attributed to their anti-inflammatory, anti-proliferative, and anti-thrombotic actions. Flavonoids exert these effects by a number of mechanisms which include attenuation of kinase activity mediated at the cell-receptor level and/or within cells, and are characterized as broad-spectrum kinase inhibitors. Therefore, flavonoid therapy for CVD is potentially complex; the use of these compounds as molecular templates for the design of selective and potent small-molecule inhibitors may be a simpler approach to treat this condition. Flavonoids as templates for drug design are, however, poorly exploited despite the development of analogues based on the flavonol, isoflavonone, and isoflavanone subgroups. Further exploitation of this family of compounds is warranted due to a structural diversity that presents great scope for creating novel kinase inhibitors. The use of computational methodologies to define the flavonoid pharmacophore together with biological investigations of their effects on kinase activity, in appropriate cellular systems, is the current approach to characterize key structural features that will inform drug design. This focussed review highlights the potential of flavonoids to guide the design of clinically safer, more selective, and potent small-molecule inhibitors of cell signalling, applicable to anti-platelet therapy.
Collapse
Affiliation(s)
- Bernice Wright
- Institute for Cardiovascular and Metabolic Research, Schools of Biological Sciences, University of Reading, Berkshire, Reading RG6 6UB, UK.
| | | | | | | |
Collapse
|
34
|
Actions of the Kunitz-type serine protease inhibitor Amblyomin-X on VEGF-A-induced angiogenesis. Toxicon 2012; 60:333-40. [PMID: 22575283 DOI: 10.1016/j.toxicon.2012.04.349] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/17/2012] [Accepted: 04/24/2012] [Indexed: 11/22/2022]
Abstract
Amblyomin-X is a Kunitz-type serine protease inhibitor (Kunitz-type SPI) designed from the cDNA library of the Amblyomma cajennense tick, which displays in vivo anti-tumor activities. Here, the mechanisms of actions of Amblyomin-X in vascular endothelial growth factor A (VEGF-A)-induced angiogenesis were characterized. Topical application of Amblyomin-X (10 or 100 ng/10 μl; each 48 h) inhibited VEGF-A-induced (10 ng/10 μl; each 48 h) angiogenesis in the dorsal subcutaneous tissue in male Swiss mice. Moreover, similar effect was observed in the VEGF-A-induced angiogenesis in the chicken chorioallantoic membrane (CAM). Additional in vitro assays in t-End cells showed that Amblyomin-X treatment delayed the cell cycle, by maintaining them in G0/G1 phase, and inhibited cell proliferation and adhesion, tube formation and membrane expression of the adhesion molecule platelet-endothelial cell adhesion molecule-1 (PECAM-1), regardless of mRNA synthesis. Together, results herein reveal the role of Kunitz-type SPI on in vivo VEGF-A-induced angiogenesis, by exerting modulatory actions on endothelial cell proliferation and adhesion, especially on membrane expression of PECAM-1. These data provide further mechanisms of actions of Kunitz-type SPI, corroborating their relevance as scientific tools in the design of therapeutic molecules.
Collapse
|
35
|
Krishnamoorthy G, Sehgal PK, Mandal AB, Sadulla S. Studies on collagen-tannic acid-collagenase ternary system: Inhibition of collagenase against collagenolytic degradation of extracellular matrix component of collagen. J Enzyme Inhib Med Chem 2011; 27:451-7. [PMID: 21823836 DOI: 10.3109/14756366.2011.596834] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
We report the detailed studies on the inhibitory effect of tannic acid (TA) on Clostridium histolyticum collagenase (ChC) activity against degradation of extracellular matrix component of collagen. The TA treated collagen exhibited 64% resistance against collagenolytic hydrolysis by ChC, whereas direct interaction of TA with ChC exhibited 99% inhibition against degradation of collagen and the inhibition was found to be concentration dependant. The kinetic inhibition of ChC has been deduced from the extent of hydrolysis of N-[3-(2-furyl) acryloyl]-Leu-Gly-Pro-Ala (FALGPA). This data provides a selective competitive mode of inhibition on ChC activity seems to be influenced strongly by the nature and structure of TA. TA showed inhibitor activity against the ChC by molecular docking method. This result demonstrated that TA containing digalloyl radical possess the ability to inhibit the ChC. The inhibition of ChC in gaining new insight into the mechanism of stabilization of collagen by TA is discussed.
Collapse
Affiliation(s)
- Ganesan Krishnamoorthy
- Bioproducts Laboratory-Biomaterial Development Division, Central Leather Research Institute (Council of Scientific & Industrial Research), Chennai, Tamil Nadu, India
| | | | | | | |
Collapse
|
36
|
Chang L, Miyata Y, Ung PMU, Bertelsen EB, McQuade TJ, Carlson HA, Zuiderweg ERP, Gestwicki JE. Chemical screens against a reconstituted multiprotein complex: myricetin blocks DnaJ regulation of DnaK through an allosteric mechanism. ACTA ACUST UNITED AC 2011; 18:210-21. [PMID: 21338918 DOI: 10.1016/j.chembiol.2010.12.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/03/2010] [Accepted: 12/06/2010] [Indexed: 12/31/2022]
Abstract
DnaK is a molecular chaperone responsible for multiple aspects of bacterial proteostasis. The intrinsically slow ATPase activity of DnaK is stimulated by its co-chaperone, DnaJ, and these proteins often work in concert. To identify inhibitors we screened plant-derived extracts against a reconstituted mixture of DnaK and DnaJ. This approach resulted in the identification of flavonoids, including myricetin, which inhibited activity by up to 75%. Interestingly, myricetin prevented DnaJ-mediated stimulation of ATPase activity, with minimal impact on either DnaK's intrinsic turnover rate or its stimulation by another co-chaperone, GrpE. Using NMR, we found that myricetin binds DnaK at an unanticipated site between the IB and IIB subdomains and that it allosterically blocked binding of DnaK to DnaJ. Together, these results highlight a "gray box" screening approach, which might facilitate the identification of inhibitors of other protein-protein interactions.
Collapse
Affiliation(s)
- Lyra Chang
- Chemical Biology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bazzaro M, Anchoori RK, Mudiam MKR, Issaenko O, Kumar S, Karanam B, Lin Z, Isaksson Vogel R, Gavioli R, Destro F, Ferretti V, Roden RBS, Khan SR. α,β-Unsaturated carbonyl system of chalcone-based derivatives is responsible for broad inhibition of proteasomal activity and preferential killing of human papilloma virus (HPV) positive cervical cancer cells. J Med Chem 2010; 54:449-56. [PMID: 21186794 DOI: 10.1021/jm100589p] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Proteasome inhibitors have potential for the treatment of cervical cancer. We describe the synthesis and biological characterization of a new series of 1,3-diphenylpropen-1-one (chalcone) based derivatives lacking the boronic acid moieties of the previously reported chalcone-based proteasome inhibitor 3,5-bis(4-boronic acid benzylidene)-1-methylpiperidin-4-one and bearing a variety of amino acid substitutions on the amino group of the 4-piperidone. Our lead compound 2 (RA-1) inhibits proteasomal activity and has improved dose-dependent antiproliferative and proapoptotic properties in cervical cancer cells containing human papillomavirus. Further, it induces synergistic killing of cervical cancer cell lines when tested in combination with an FDA approved proteasome inhibitor. Exploration of the potential mechanism of proteasomal inhibition by our lead compound using in silico docking studies suggests that the carbonyl group of its oxopiperidine moiety is susceptible to nucleophilic attack by the γ-hydroxythreonine side chain within the catalytic sites of the proteasome.
Collapse
Affiliation(s)
- Martina Bazzaro
- Masonic Cancer Center and Department of Obstetrics, Gynecology and Women's Heath, University of Minnesota Twin Cities, Minneapolis, Minnesota 55455, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Saragusti AC, Ortega MG, Cabrera JL, Estrin DA, Marti MA, Chiabrando GA. Inhibitory effect of quercetin on matrix metalloproteinase 9 activity molecular mechanism and structure-activity relationship of the flavonoid-enzyme interaction. Eur J Pharmacol 2010; 644:138-45. [PMID: 20619256 DOI: 10.1016/j.ejphar.2010.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/19/2010] [Accepted: 07/01/2010] [Indexed: 12/31/2022]
Abstract
Epidemiological studies have demonstrated an inverse association between the consumption of flavonoid-rich diets and the risk of atherosclerosis. In addition, an increased activity of the matrix metalloproteinase 9 (MMP-9) has been implicated in the development and progression of atherosclerotic lesions. Even though the relationship between flavonoid chemical structure and the inhibitory property on MMP activity has been established, the molecular mechanisms of this inhibition are still unknown. Herein, we first evaluated the inhibitory effect of quercetin on MMP-9 activity by zymography and a fluorescent gelatin dequenching assay, secondly we determined the most probable sites and modes of quercetin interaction with the MMP-9 catalytic domain by using molecular modelling techniques, and finally, we investigated the structure-activity relationship of the inhibitory effect of flavonoids on MMP-9 activity. We show that quercetin inhibited MMP-9 activity with an IC(50) value of 22 microM. By using docking and molecular dynamics simulations, it was shown that quercetin interacted in the S1' subsite of the MMP-9 active site. Moreover, the structure-activity relationship analysis demonstrated that flavonoid R(3)(')-OH and R(4)(')-OH substitutions were relevant to the inhibitory property against MMP-9 activity. In conclusion, our data constitute the first evidence about the quercetin and MMP-9 interaction, suggesting a mechanism to explain the inhibitory effect of the flavonoid on the enzymatic activity of MMP-9, which provides an additional molecular target for the cardioprotective activity of quercetin.
Collapse
Affiliation(s)
- Alejandra C Saragusti
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | | | | | | |
Collapse
|
39
|
Lamoral-Theys D, Pottier L, Kerff F, Dufrasne F, Proutière F, Wauthoz N, Neven P, Ingrassia L, Van Antwerpen P, Lefranc F, Gelbcke M, Pirotte B, Kraus JL, Nève J, Kornienko A, Kiss R, Dubois J. Simple di- and trivanillates exhibit cytostatic properties toward cancer cells resistant to pro-apoptotic stimuli. Bioorg Med Chem 2010; 18:3823-33. [PMID: 20466556 PMCID: PMC4966668 DOI: 10.1016/j.bmc.2010.04.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 04/08/2010] [Accepted: 04/16/2010] [Indexed: 01/20/2023]
Abstract
A series of 33 novel divanillates and trivanillates were synthesized and found to possess promising cytostatic rather than cytotoxic properties. Several compounds under study decreased by >50% the activity of Aurora A, B, and C, and WEE1 kinase activity at concentrations <10% of their IC(50) growth inhibitory ones, accounting, at least partly, for their cytostatic effects in cancer cells and to a lesser extent in normal cells. Compounds 6b and 13c represent interesting starting points for the development of cytostatic agents to combat cancers, which are naturally resistant to pro-apoptotic stimuli, including metastatic malignancies.
Collapse
Affiliation(s)
- Delphine Lamoral-Theys
- Laboratoire de Chimie Analytique, Toxicologie et Chimie Physique Appliquée, Institut de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurent Pottier
- Laboratoire de Toxicologie, Institut de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Frédéric Kerff
- Centre d'Ingéniérie des Protéines, Institut de Chimie B6, Université de Liège, Liège, Belgium
| | - François Dufrasne
- Laboratoire de Chimie Pharmaceutique Organique, Institut de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fabien Proutière
- Laboratoire de Toxicologie, Institut de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Nathalie Wauthoz
- Laboratoire de Pharmacie Galénique et Biopharmacie, Institut de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Philippe Neven
- Laboratoire de Chimie Pharmaceutique, Centre Interfacultaire de Recherche du Médicament, Faculté de Médecine et de Pharmacie, Université de Liège, Liège, Belgium
| | - Laurent Ingrassia
- Laboratoire de Toxicologie, Institut de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pierre Van Antwerpen
- Laboratoire de Chimie Pharmaceutique Organique, Institut de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Florence Lefranc
- Laboratoire de Toxicologie, Institut de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Michel Gelbcke
- Laboratoire de Chimie Pharmaceutique Organique, Institut de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Bernard Pirotte
- Laboratoire de Chimie Pharmaceutique, Centre Interfacultaire de Recherche du Médicament, Faculté de Médecine et de Pharmacie, Université de Liège, Liège, Belgium
| | - Jean-Louis Kraus
- Laboratoire de Chimie Biomoléculaire, CNRS, IBDML-UMR-6216, Campus de Luminy Case 907 13288, Marseille cedex 09, France
| | - Jean Nève
- Laboratoire de Chimie Pharmaceutique Organique, Institut de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alexander Kornienko
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA
| | - Robert Kiss
- Laboratoire de Toxicologie, Institut de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jacques Dubois
- Laboratoire de Chimie Analytique, Toxicologie et Chimie Physique Appliquée, Institut de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
40
|
Cudic M, Burstein GD, Fields GB, Lauer-Fields J. Analysis of flavonoid-based pharmacophores that inhibit aggrecanases (ADAMTS-4 and ADAMTS-5) and matrix metalloproteinases through the use of topologically constrained peptide substrates. Chem Biol Drug Des 2009; 74:473-82. [PMID: 19793184 DOI: 10.1111/j.1747-0285.2009.00885.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Polyphenolic natural products from green tea and red wine have been identified as metalloproteinase inhibitors. Members from the flavonoid and stilbene families found to possess metalloproteinase inhibitory activities include (-)-epigallocatechin gallate, (-)-epicatechin gallate and piceatannol, but their minimally active pharmacophores have not been evaluated. The present study has examined compounds that are structural components of or structurally related to (-)-epigallocatechin gallate, (-)-epicatechin gallate and piceatannol for inhibition of aggrecanases and four representative matrix metalloproteinases. Piceatannol and pyrogallol were found to inhibit all aggrecanases and matrix metalloproteinases studied, indicating a crucial reliance on multiple hydroxyl groups for (-)-epigallocatechin gallate, (-)-epicatechin gallate and piceatannol activity. Differences in K(i) values for pyrogallol as determined with two structurally distinct substrates indicated the likelihood that this compound binds in a non-competitive modality. Further analysis showed that pyrogallol acts as an exosite inhibitor, consistent with the action of (-)-epigallocatechin gallate. In contrast, piceatannol was shown to be a competitive binding inhibitor and showed no differences in apparent K(i) values as determined by distinct substrates, illustrating the benefits of using two structurally distinct substrates to assist the analysis of protease inhibitors. The compounds identified here could be utilized to develop novel metalloproteinase probes or as fragment components of more active inhibitors.
Collapse
Affiliation(s)
- Mare Cudic
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, 33431, USA
| | | | | | | |
Collapse
|