1
|
Hinks A, Dalton BE, Mashouri P, Flewwelling LD, Pyle WG, Cheng AJ, Power GA. Time course changes in in vivo muscle mechanical function and Ca 2+ regulation of force following experimentally induced gradual ovarian failure in mice. Exp Physiol 2024; 109:711-728. [PMID: 38500268 PMCID: PMC11061627 DOI: 10.1113/ep091735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
The abrupt cessation of ovarian hormone release is associated with declines in muscle contractile function, yet the impact of gradual ovarian failure on muscle contractility across peri-, early- and late-stage menopause remains unclear. In this study, a 4-vinylcyclohexene diepoxide (VCD)-induced ovarian failure mouse model was used to examine time course changes in muscle mechanical function. Plantar flexors of female mice (VCD: n = 10; CON: n = 8) were assessed at 40 (early perimenopause), 80 (late perimenopause), 120 (menopause onset) and 176 (late menopause) days post-initial VCD injection. A torque-frequency relationship was established across a range of frequencies (10-200 Hz). Isotonic dynamic contractions were elicited against relative loads (10-80% maximal isometric torque) to determine the torque-velocity-power relationship. Mice then performed a fatigue task using intermittent 100 Hz isometric contractions until torque dropped by 60%. Recovery of twitch, 10 Hz and 100 Hz torque were tracked for 10 min post-task failure. Additionally, intact muscle fibres from the flexor digitorum brevis underwent a fatigue task (50 repetitions at 70 Hz), and 10 and 100 Hz tetanic [Ca2+] were monitored for 10 min afterward. VCD mice exhibited 16% lower twitch torque than controls across all time points. Apart from twitch torque, 10 Hz torque and 10 Hz tetanic [Ca2+], where VCD showed greater values relative to pre-fatigue during recovery, no significant differences were observed between control and VCD mice during recovery. These results indicate that gradual ovarian failure has minimal detriments to in vivo muscle mechanical function, with minor alterations observed primarily for low-frequency stimulation during recovery from fatigue.
Collapse
Affiliation(s)
- Avery Hinks
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Benjamin E. Dalton
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Parastoo Mashouri
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| | - Luke D. Flewwelling
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of HealthYork UniversityTorontoCanada
| | - William Glen Pyle
- IMPART Team Canada, Dalhousie MedicineDalhousie UniversitySaint JohnNew BrunswickCanada
| | - Arthur J. Cheng
- Muscle Health Research Centre, School of Kinesiology and Health Sciences, Faculty of HealthYork UniversityTorontoCanada
| | - Geoffrey A. Power
- Department of Human Health and Nutritional Sciences, College of Biological SciencesUniversity of GuelphGuelphOntarioCanada
| |
Collapse
|
2
|
Oh S, Seo SB, Kim G, Batsukh S, Son KH, Byun K. Poly-D,L-Lactic Acid Stimulates Angiogenesis and Collagen Synthesis in Aged Animal Skin. Int J Mol Sci 2023; 24:ijms24097986. [PMID: 37175693 PMCID: PMC10178436 DOI: 10.3390/ijms24097986] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Angiogenesis promotes rejuvenation in multiple organs, including the skin. Heat shock protein 90 (HSP90), hypoxia-inducible factor-1 alpha (HIF-1α), and vascular endothelial growth factor (VEGF) are proangiogenic factors that stimulate the activities of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and extracellular signal-regulated kinase 1/2 (ERK1/2). Poly-D,L-lactic acid (PDLLA), polynucleotide (PN), and calcium hydroxyapatite (CaHA) are dermal fillers that stimulate the synthesis of dermal collagen. However, it is not yet known whether these compounds promote angiogenesis, which leads to skin rejuvenation. Here, we evaluated whether PDLLA, PN, and CaHA stimulate angiogenesis and skin rejuvenation using H2O2-treated senescent macrophages and endothelial cells as an in vitro model for skin aging, and we used young and aged C57BL/6 mice as an in vivo model. Angiogenesis was evaluated via endothelial cell migration length, proliferation, and tube formation after conditioned media (CM) from senescent macrophages was treated with PDLLA, PN, or CaHA. Western blot showed decreased expression levels of HSP90, HIF-1α, and VEGF in senescent macrophages, but higher expression levels of these factors were found after treatment with PDLLA, PN, or CaHA. In addition, after exposure to CM from senescent macrophages treated with PDLLA, PN, or CaHA, senescent endothelial cells expressed higher levels of VEGF receptor 2 (VEGFR2), PI3K, phosphorylated AKT (pAKT), and phosphorylated ERK1/2 (pERK1/2) and demonstrated greater capacities for cell migration, cell proliferation, and tube formation. Based on the levels of 4-hydroxy-2-nonenal, the oxidative stress level was lower in the skin of aged mice injected with PDLLA, PN, or CaHA, while the tumor growth factor (TGF)-β1, TGF-β2, and TGF-β3 expression levels; the density of collagen fibers; and the skin elasticity were higher in the skin of aged mice injected with PDLLA, PN, or CaHA. These effects were greater in PDLLA than in PN or CaHA. In conclusion, our results are consistent with the hypothesis that PDLLA stimulates angiogenesis, leading to the rejuvenation of aged skin. Our study is the first to show that PDLLA, PN, or CaHA can result in angiogenesis in the aged skin, possibly by increasing the levels of HSP90, HIF-1α, and VEGF and increasing collagen synthesis.
Collapse
Affiliation(s)
- Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Suk Bae Seo
- SeoAh Song Dermatologic Clinic, Seoul 05557, Republic of Korea
| | - Gunpoong Kim
- VAIM Co., Ltd., Okcheon 29055, Republic of Korea
| | - Sosorburam Batsukh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
3
|
Lemieux P, Birot O. Altitude, Exercise, and Skeletal Muscle Angio-Adaptive Responses to Hypoxia: A Complex Story. Front Physiol 2021; 12:735557. [PMID: 34552509 PMCID: PMC8450406 DOI: 10.3389/fphys.2021.735557] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Hypoxia, defined as a reduced oxygen availability, can be observed in many tissues in response to various physiological and pathological conditions. As a hallmark of the altitude environment, ambient hypoxia results from a drop in the oxygen pressure in the atmosphere with elevation. A hypoxic stress can also occur at the cellular level when the oxygen supply through the local microcirculation cannot match the cells’ metabolic needs. This has been suggested in contracting skeletal myofibers during physical exercise. Regardless of its origin, ambient or exercise-induced, muscle hypoxia triggers complex angio-adaptive responses in the skeletal muscle tissue. These can result in the expression of a plethora of angio-adaptive molecules, ultimately leading to the growth, stabilization, or regression of muscle capillaries. This remarkable plasticity of the capillary network is referred to as angio-adaptation. It can alter the capillary-to-myofiber interface, which represent an important determinant of skeletal muscle function. These angio-adaptive molecules can also be released in the circulation as myokines to act on distant tissues. This review addresses the respective and combined potency of ambient hypoxia and exercise to generate a cellular hypoxic stress in skeletal muscle. The major skeletal muscle angio-adaptive responses to hypoxia so far described in this context will be discussed, including existing controversies in the field. Finally, this review will highlight the molecular complexity of the skeletal muscle angio-adaptive response to hypoxia and identify current gaps of knowledges in this field of exercise and environmental physiology.
Collapse
Affiliation(s)
- Pierre Lemieux
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Olivier Birot
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
4
|
Kwak SE, Cho SC, Bae JH, Lee J, Shin HE, Di Zhang D, Lee YI, Song W. Effects of exercise-induced apelin on muscle function and cognitive function in aged mice. Exp Gerontol 2019; 127:110710. [PMID: 31473200 DOI: 10.1016/j.exger.2019.110710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Seong Eun Kwak
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Sung Chun Cho
- Well Aging Research Center, DGIST, Daegu, South Korea
| | - Jun Hyun Bae
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Jihyun Lee
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Hyung Eun Shin
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Di Di Zhang
- Institute of Sport Science, Seoul National University, Seoul, South Korea
| | - Yun-Il Lee
- Well Aging Research Center, DGIST, Daegu, South Korea; Department of New Biology, DGIST, Daegu, South Korea.
| | - Wook Song
- Institute of Sport Science, Seoul National University, Seoul, South Korea; Institue on Aging, Seoul National University, Seoul, South Korea.
| |
Collapse
|
5
|
Nie Y, Sato Y, Garner RT, Kargl C, Wang C, Kuang S, Gilpin CJ, Gavin TP. Skeletal muscle-derived exosomes regulate endothelial cell functions via reactive oxygen species-activated nuclear factor-κB signalling. Exp Physiol 2019; 104:1262-1273. [PMID: 31115069 DOI: 10.1113/ep087396] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 05/21/2019] [Indexed: 12/13/2022]
Abstract
NEW FINDINGS What is the central question of this study? Capillary rarefaction is found in diabetic and aged muscle, whereas exercise increases skeletal muscle angiogenesis. The association implies a crosstalk between muscle cells and endothelial cells. The underlying mechanisms mediating the crosstalk between these cells remains to be elucidated fully. What is the main finding and its importance? Endothelial cell functions are regulated by skeletal muscle cell-derived exosomes via a vascular endothelial growth factor-independent pathway. This study reveals a new mechanism mediating the crosstalk between skeletal muscle cells and endothelial cells. ABSTRACT Loss of skeletal muscle capillarization, known as capillary rarefaction, is found in type 2 diabetes, chronic heart failure and healthy ageing and is associated with impaired delivery of substrates to the muscle. However, the interaction and communication of skeletal muscle with endothelial cells in the regulation of capillaries surrounding the muscle remains elusive. Exosomes are a type of secreted extracellular vesicle containing mRNAs, proteins and, especially, microRNAs that exert paracrine and endocrine effects. In this study, we investigated whether skeletal muscle-derived exosomes (SkM-Exo) regulate the endothelial cell functions of angiogenesis. We demonstrated that C2C12 myotube-derived exosomes improved endothelial cell functions, assessed by the proliferation, migration and tube formation of human umbilical vein endothelial cells (HUVECs), which were increased by 20, 23 and 40%, respectively, after SkM-Exo exposure. The SkM-Exo failed to activate HUVEC vascular endothelial growth factor (VEGF) signalling. The SkM-Exo increased HUVEC reactive oxygen species and activated the nuclear factor-κB pathway, suggesting that SkM-Exo-induced angiogenesis was mediated by a VEGF-independent pathway. In addition, several angiogenic microRNAs were packaged in SkM-Exo, with miR-130a being particularly enriched and successfully transferred from SkM-Exo to HUVECs. Delivery of miRNAs into endothelial cells might explain the enhancement of reactive oxygen species production and angiogenesis by SkM-Exo. The potential angiogenic effect of SkM-Exo could provide an effective therapy for promoting skeletal muscle angiogenesis in diseases characterized by capillary rarefaction or inadequate angiogenesis.
Collapse
Affiliation(s)
- Yaohui Nie
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, 47907.,Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, Indiana, 47907.,Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Yoriko Sato
- Department of United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Ron T Garner
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, 47907.,Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, Indiana, 47907
| | - Christopher Kargl
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, 47907.,Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, Indiana, 47907
| | - Chao Wang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Christopher J Gilpin
- Agricultural Research and Graduate Education, Purdue University, West Lafayette, Indiana, USA
| | - Timothy P Gavin
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, 47907.,Max E. Wastl Human Performance Laboratory, Purdue University, West Lafayette, Indiana, 47907
| |
Collapse
|
6
|
Nagahisa H, Miyata H. Influence of hypoxic stimulation on angiogenesis and satellite cells in mouse skeletal muscle. PLoS One 2018; 13:e0207040. [PMID: 30408093 PMCID: PMC6224099 DOI: 10.1371/journal.pone.0207040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/23/2018] [Indexed: 01/22/2023] Open
Abstract
We clarified in our previous study that hypoxic training promotes angiogenesis in skeletal muscle, but the mechanism of angiogenesis in skeletal muscle remains unknown. In this study, we investigated the influence of differences in hypoxia exposure on angiogenesis in skeletal muscles at differing ages and metabolic characteristics at which the production of reactive oxygen species and nitric oxide may differ. Ten-week-old (young) and 20-month-old (old) mice were separated into control (N), continuous hypoxia (H), and intermittent hypoxia (IH) groups. The H group was exposed to 16% O2 hypoxia for 5 days and the IH group was exposed to 16% O2 hypoxia at one-hour intervals during the light period for 5 days. After completion of hypoxia exposure, the soleus and gastrocnemius muscles were immediately excised, and mRNA expression of angiogenesis- and satellite cell-related genes was investigated using real-time RT-PCR. In addition, muscle fiber type composition, muscle fiber area, number of satellite cells, and capillary density were measured immunohistochemically. In the young soleus muscle, the muscle fiber area was decreased in the H group, and mRNA expression of satellite cell activation-related MyoD, MHCe, and BDNF was significantly increased. On the other hand, in the old soleus muscle, nNOS and VEGF-A mRNA expression, and the capillary density were significantly increased in the H group. In the superficial portion of the gastrocnemius, mRNA expression of FGF2, an angiogenic factor secreted by satellite cells, was significantly increased in the young IH group. In addition, a positive correlation between VEGF-A mRNA expression and nNOS mRNA expression in the soleus muscle and eNOS mRNA expression in the superficial portion of the gastrocnemius was noted. These data demonstrated that age, hypoxia exposure method and muscle metabolic characteristics are related, which results in significant differences in angiogenesis.
Collapse
Affiliation(s)
- Hiroshi Nagahisa
- Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Hirofumi Miyata
- Biological Sciences, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
- * E-mail:
| |
Collapse
|
7
|
Tamura Y, Matsunaga Y, Kitaoka Y, Hatta H. Effects of Heat Stress Treatment on Age-dependent Unfolded Protein Response in Different Types of Skeletal Muscle. J Gerontol A Biol Sci Med Sci 2017; 72:299-308. [PMID: 27071782 DOI: 10.1093/gerona/glw063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/22/2016] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial and endoplasmic reticulum (ER) stress, and subsequently activated responses (mitochondrial/ER unfolded protein responses; UPRmt/UPRER), are involved in the pathogenesis of sarcopenia. To extend both basic and translational knowledge, we examined (i) whether age-induced mitochondrial and ER stress depend on skeletal muscle type in mice and (ii) whether heat stress treatment, a suggested strategy for sarcopenia, improves age-induced mitochondrial and ER stress. Aged (21-month-old) mice showed more severe mitochondrial stress and UPRmt than young (12-week-old) mice, based on increased oxidative stress, mitochondrial proteases, and mitochondrial E3 ubiquitin ligase. The aged mice also showed ER stress and UPRER, based on decreased ER enzymes and increased ER stress-related cell death. These changes were much more evident in soleus muscle than in gastrocnemius and plantaris muscles. After daily heat stress treatment (40 °C chamber for 30 minutes per day) for 4 weeks, mice showed remarkable improvements in age-related changes in soleus muscle. Heat stress had only minor effects in gastrocnemius and plantaris muscles. Based on these findings, age-associated mitochondrial stress, ER stress, and UPRmt/ER vary qualitatively with skeletal muscle type. Our results suggest a molecular basis for the beneficial effects of heat stress on muscle atrophy with age in soleus muscle.
Collapse
Affiliation(s)
- Yuki Tamura
- Department of Sports Sciences, The University of Tokyo, Japan
| | | | - Yu Kitaoka
- Department of Sports Sciences, The University of Tokyo, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, Japan
| |
Collapse
|
8
|
Joanisse S, Nederveen JP, Snijders T, McKay BR, Parise G. Skeletal Muscle Regeneration, Repair and Remodelling in Aging: The Importance of Muscle Stem Cells and Vascularization. Gerontology 2016; 63:91-100. [PMID: 27760421 DOI: 10.1159/000450922] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/20/2016] [Indexed: 11/19/2022] Open
Abstract
Sarcopenia is the age-related loss of skeletal muscle mass and strength. Ultimately, sarcopenia results in the loss of independence, which imposes a large financial burden on healthcare systems worldwide. A critical facet of sarcopenia is the diminished ability for aged muscle to regenerate, repair and remodel. Over the years, research has focused on elucidating underlying mechanisms of sarcopenia and the impaired ability of muscle to respond to stimuli with aging. Muscle-specific stem cells, termed satellite cells (SC), play an important role in maintaining muscle health throughout the lifespan. It is well established that SC are essential in skeletal muscle regeneration, and it has been hypothesized that a reduction and/or dysregulation of the SC pool, may contribute to accelerated loss of skeletal muscle mass that is observed with advancing age. The preservation of skeletal muscle tissue and its ability to respond to stimuli may be impacted by reduced SC content and impaired function observed with aging. Aging is also associated with a reduction in capillarization of skeletal muscle. We have recently demonstrated that the distance between type II fibre-associated SC and capillaries is greater in older compared to younger adults. The greater distance between SC and capillaries in older adults may contribute to the dysregulation in SC activation ultimately impairing muscle's ability to remodel and, in extreme circumstances, regenerate. This viewpoint will highlight the importance of optimal SC activation in addition to skeletal muscle capillarization to maximize the regenerative potential of skeletal muscle in older adults.
Collapse
Affiliation(s)
- Sophie Joanisse
- Department of Kinesiology, McMaster University, Hamilton, Ont., Canada
| | | | | | | | | |
Collapse
|
9
|
Joanisse S, Nederveen JP, Baker JM, Snijders T, Iacono C, Parise G. Exercise conditioning in old mice improves skeletal muscle regeneration. FASEB J 2016; 30:3256-68. [PMID: 27306336 DOI: 10.1096/fj.201600143rr] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022]
Abstract
Skeletal muscle possesses the ability to regenerate after injury, but this ability is impaired or delayed with aging. Regardless of age, muscle retains the ability to positively respond to stimuli, such as exercise. We examined whether exercise is able to improve regenerative response in skeletal muscle of aged mice. Twenty-two-month-old male C57Bl/6J mice (n = 20) underwent an 8-wk progressive exercise training protocol [old exercised (O-Ex) group]. An old sedentary (O-Sed) and a sedentary young control (Y-Ctl) group were included. Animals were subjected to injections of cardiotoxin into the tibialis anterior muscle. The tibialis anterior were harvested before [O-Ex/O-Sed/Y-Ctl control (CTL); n = 6], 10 d (O-Ex/O-Sed/Y-Ctl d 10; n = 8), and 28 d (O-Ex/O-Sed/Y-Ctl d 28; n = 6) postinjection. Average fiber cross-sectional area was reduced in all groups at d 10 (CTL: O-Ex: 2499 ± 140; O-Sed: 2320 ± 165; Y-Ctl: 2474 ± 269; d 10: O-Ex: 1191 ± 100; O-Sed: 1125 ± 99; Y-Ctl: 1481 ± 167 µm(2); P < 0.05), but was restored to control values in O-Ex and Y-Ctl groups at d 28 (O-Ex: 2257 ± 181; Y-Ctl: 2398 ± 171 µm(2); P > 0.05). Satellite cell content was greater at CTL in O-Ex (2.6 ± 0.4 satellite cells/100 fibers) compared with O-Sed (1.0 ± 0.1% satellite cells/100 fibers; P < 0.05). Exercise conditioning appears to improve ability of skeletal muscle to regenerate after injury in aged mice.-Joanisse, S., Nederveen, J. P., Baker, J. M., Snijders, T., Iacono, C., Parise, G. Exercise conditioning in old mice improves skeletal muscle regeneration.
Collapse
Affiliation(s)
- Sophie Joanisse
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Joshua P Nederveen
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Jeff M Baker
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Tim Snijders
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Carlo Iacono
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and
| | - Gianni Parise
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada; and Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
10
|
Smythe G. Role of Growth Factors in Modulation of the Microvasculature in Adult Skeletal Muscle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:161-83. [PMID: 27003400 DOI: 10.1007/978-3-319-27511-6_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-natal skeletal muscle is a highly plastic tissue that has the capacity to regenerate rapidly following injury, and to undergo significant modification in tissue mass (i.e. atrophy/hypertrophy) in response to global metabolic changes. These processes are reliant largely on soluble factors that directly modulate muscle regeneration and mass. However, skeletal muscle function also depends on an adequate blood supply. Thus muscle regeneration and changes in muscle mass, particularly hypertrophy, also demand rapid changes in the microvasculature. Recent evidence clearly demonstrates a critical role for soluble growth factors in the tight regulation of angiogenic expansion of the muscle microvasculature. Furthermore, exogenous modulation of these factors has the capacity to impact directly on angiogenesis and thus, indirectly, on muscle regeneration, growth and performance. This chapter reviews recent developments in understanding the role of growth factors in modulating the skeletal muscle microvasculature, and the potential therapeutic applications of exogenous angiogenic and anti-angiogenic mediators in promoting effective growth and regeneration, and ameliorating certain diseases, of skeletal muscle.
Collapse
Affiliation(s)
- Gayle Smythe
- Faculty of Science, Charles Sturt University, Albury, NSW, 789, 2640, Australia.
| |
Collapse
|
11
|
Bentov I, Reed MJ. The effect of aging on the cutaneous microvasculature. Microvasc Res 2015; 100:25-31. [PMID: 25917013 PMCID: PMC4461519 DOI: 10.1016/j.mvr.2015.04.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/27/2015] [Accepted: 04/17/2015] [Indexed: 01/12/2023]
Abstract
Aging is associated with a progressive loss of function in all organs. Under normal conditions the physiologic compensation for age-related deficits is sufficient, but during times of stress the limitations of this reserve become evident. Explanations for this reduction in reserve include the changes in the microcirculation that occur during the normal aging process. The microcirculation is defined as the blood flow through arterioles, capillaries and venules, which are the smallest vessels in the vasculature and are embedded within organs and tissues. Optimal strategies to maintain the microvasculature following surgery and other stressors must use multifactorial approaches. Using skin as the model organ, we will review the anatomical and functional changes in the microcirculation with aging, and some of the available clinical strategies to potentially mitigate the effect of these changes on important clinical outcomes.
Collapse
Affiliation(s)
- Itay Bentov
- Department of Anesthesiology and Pain Medicine, Harborview Medical Center, University of Washington, Seattle, USA.
| | - May J Reed
- Division of Gerontology and Geriatric Medicine, Department of Medicine, Harborview Medical Center, University of Washington, Seattle, USA
| |
Collapse
|
12
|
Tanner CB, Madsen SR, Hallowell DM, Goring DMJ, Moore TM, Hardman SE, Heninger MR, Atwood DR, Thomson DM. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1. Am J Physiol Endocrinol Metab 2013; 305:E1018-29. [PMID: 23982155 PMCID: PMC3798697 DOI: 10.1152/ajpendo.00227.2013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training.
Collapse
MESH Headings
- AMP-Activated Protein Kinases
- Adaptation, Physiological
- Animals
- Capillaries/physiology
- Citrate (si)-Synthase/metabolism
- Citric Acid Cycle
- Female
- Gene Expression Regulation, Enzymologic
- Male
- Mice
- Mice, Knockout
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/metabolism
- Motor Activity
- Motor Skills
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/cytology
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/metabolism
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Pyruvate Dehydrogenase Acetyl-Transferring Kinase
- RNA, Messenger/metabolism
- Succinate Dehydrogenase/metabolism
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Colby B Tanner
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, Utah
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Crawford RS, Albadawi H, Robaldo A, Peck MA, Abularrage CJ, Yoo HJ, Lamuraglia GM, Watkins MT. Divergent systemic and local inflammatory response to hind limb demand ischemia in wild-type and ApoE-/- mice. J Surg Res 2013; 183:952-62. [PMID: 23528286 DOI: 10.1016/j.jss.2013.02.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND We designed studies to determine whether the ApoE-/- phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE-/- phenotype is an experimental model for atherosclerosis in humans. METHODS Aged female ApoE-/- and C57BL6 mice underwent femoral artery ligation, then were divided into sedentary and demand ischemia (exercise) groups on day 14. We assessed baseline and postexercise limb perfusion and hind limb function. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, we harvested plasma and skeletal muscle from ischemic limbs from sedentary and exercised mice. We assayed muscle for angiogenic and proinflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. RESULTS Hind limb ischemia was similar in ApoE-/- and C57 mice before the onset of exercise. Under sedentary conditions, plasma vascular endothelial cell growth factor and interleukin-6, but not keratinocyte chemoattractant factor (KC) or macrophage inflammatory protein-2 (MIP-2), were higher in ApoE (P < 0.0001). After exercise, plasma levels of vascular endothelial cell growth factor, KC, and MIP-2, but not IL-6, were lower in ApoE (P < 0.004). The cytokines KC and MIP-2 in muscle were greater in exercised ApoE-/- mice compared with C57BL6 mice (P = 0.01). Increased poly-ADP-ribose activity and mature muscle regeneration were associated with demand ischemia in the C57BL6 mice, compared with the ApoE-/- mice (P = 0.01). CONCLUSIONS Demand limb ischemia in the ApoE-/- phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration.
Collapse
Affiliation(s)
- Robert S Crawford
- Division of Vascular and Endovascular Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ambrosio F, Ferrari RJ, Distefano G, Plassmeyer JM, Carvell GE, Deasy BM, Boninger ML, Fitzgerald GK, Huard J. The synergistic effect of treadmill running on stem-cell transplantation to heal injured skeletal muscle. Tissue Eng Part A 2010; 16:839-49. [PMID: 19788347 DOI: 10.1089/ten.tea.2009.0113] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Muscle-derived stem-cell (MDSC) transplantation presents a promising method for the treatment of muscle injuries. This study investigated the ability of exercise to enhance MDSC transplantation into the injured muscle. Mice were divided into four groups: contusion + phosphate-buffered saline (C + PBS; n = 14 muscles), C + MDSC transplantation (n = 12 muscles), C + PBS + treadmill running (C + PBS + TM; n = 17 muscles), and C + MDSC + TM (n = 13 muscles). One day after injury, the TM groups began running for 1 or 5 weeks. Two days after injury, muscles of C + MDSC and C + MDSC + TM groups were injected with MDSCs. One or 5 weeks later, the number and differentiation of transplanted MDSCs, myofiber regeneration, collagen I formation, and vascularity were assessed histologically. In vitro, MDSCs were subjected to mechanical stimulation, and growth kinetics were quantified. In vitro, mechanical stimulation decreased the MDSC population doubling time (18.6 +/- 1.6 h) and cell division time (10.9 +/- 0.7 h), compared with the controls (population doubling time: 23.0 +/- 3.4 h; cell division time: 13.3 +/- 1.1 h) (p = 0.01 and 0.03, respectively). In vivo, 5 weeks of TM increased the myogenic contribution of transplanted MDSCs, compared with the controls (p = 0.02). C + MDSC, C + PBS + TM, and C + MDSC + TM demonstrated decreased fibrosis at 5 weeks, compared with the C + PBS controls (p = 0.00, p = 0.03, and p = 0.02, respectively). Results suggest that the mechanical stimulation favors MDSC proliferation, both in vitro and in vivo, and that exercise enhances MDSC transplantation after injury.
Collapse
Affiliation(s)
- Fabrisia Ambrosio
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Exercise-induced VEGF transcriptional activation in brain, lung and skeletal muscle. Respir Physiol Neurobiol 2009; 170:16-22. [PMID: 19853064 DOI: 10.1016/j.resp.2009.10.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2009] [Revised: 09/21/2009] [Accepted: 10/13/2009] [Indexed: 11/20/2022]
Abstract
Muscle VEGF expression is upregulated by exercise. Whether this VEGF response is regulated by transcription and/or post-transcriptional mechanisms is unknown. Hypoxia may be responsible: myocyte P(O2) falls greatly during exercise and VEGF is a hypoxia-responsive gene. Whether exercise induces VEGF expression in other organs important to acute physical activity is also unknown. To address these questions, we created a VEGF-Luciferase reporter mouse and measured VEGF transcription, mRNA and protein responses to (a) acute exercise and (b) short-term hypoxia (FI(O2) = 0.06) in brain (brainstem, cerebellum, cortex, hippocampus and striatum), muscle, lung, heart and liver. Exercise increased VEGF transcription, mRNA and protein in brain (hippocampus only), lungs and skeletal muscles, but not liver or heart. Hypoxia increased VEGF expression only in brain (cortex, hippocampus and striatum). New transcription appears to be a major exercise-induced regulatory step for increasing VEGF expression in muscle, lung and brain. Hippocampal VEGF expression was the only component of the exercise response recapitulated by hypoxia equivalent to the Everest summit.
Collapse
|
16
|
Leick L, Hellsten Y, Fentz J, Lyngby SS, Wojtaszewski JFP, Hidalgo J, Pilegaard H. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice. Am J Physiol Endocrinol Metab 2009; 297:E92-103. [PMID: 19401459 DOI: 10.1152/ajpendo.00076.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to test the hypothesis that PGC-1alpha is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1alpha-dependent mechanism. Whole body PGC-1alpha knockout (KO) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1alpha KO mice, VEGF protein expression was approximately 60-80% lower and the capillary-to-fiber ratio approximately 20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1alpha KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased skeletal muscle VEGF protein expression approximately 50% in WT mice but with no effect in PGC-1alpha KO mice. Furthermore, a training-induced prevention of an age-associated decline in VEGF protein content was observed in WT but not in PGC-1alpha KO muscles. In addition, repeated AICAR treatments increased skeletal muscle VEGF protein expression approximately 15% in WT but not in PGC-1alpha KO mice. This study shows that PGC-1alpha is essential for exercise-induced upregulation of skeletal muscle VEGF expression and for a training-induced prevention of an age-associated decline in VEGF protein content. Furthermore, the findings suggest an AMPK-mediated regulation of VEGF expression through PGC-1alpha.
Collapse
Affiliation(s)
- Lotte Leick
- Department of Biology, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
17
|
The effect of muscle loading on skeletal muscle regenerative potential: an update of current research findings relating to aging and neuromuscular pathology. Am J Phys Med Rehabil 2009; 88:145-55. [PMID: 19169178 DOI: 10.1097/phm.0b013e3181951fc5] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Skeletal muscle is a dynamic tissue with a remarkable ability to continuously respond to environmental stimuli. Among its adaptive responses is the widely investigated ability of skeletal muscle to regenerate after loading or injury or both. Although significant basic science efforts have been dedicated to better understand the underlying mechanism controlling skeletal muscle regeneration, there has been relatively little impact in the clinical approaches used to treat skeletal muscle injuries and wasting. The purpose of this review article is to provide an overview of the basic biology of satellite cell function in response to muscle loading and to relate these findings in the context of aging and neuromuscular pathology for the rehabilitation medicine specialist.
Collapse
|
18
|
Zwetsloot KA, Westerkamp LM, Holmes BF, Gavin TP. AMPK regulates basal skeletal muscle capillarization and VEGF expression, but is not necessary for the angiogenic response to exercise. J Physiol 2008; 586:6021-35. [PMID: 18955383 DOI: 10.1113/jphysiol.2008.159871] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
5'-AMP-activated protein kinase (AMPK) is a metabolic fuel sensor that monitors cellular energy charge, while the vasculature is important for maintaining cellular energy homeostasis. Mice with muscle-specific inactive AMPK (AMPK DN) were used to investigate if AMPK regulates skeletal muscle capillarization and the angiogenic responses to exercise. Two hours of the AMP analogue AICAR (1.0 g kg(-1)) or systemic hypoxia (6% O(2)) increased vascular endothelial growth factor (VEGF) mRNA in wild-type (WT), but not in AMPK DN mice. In contrast, the increase in VEGF mRNA with acute exercise (1 h at 20 m min(-1), 10% gradient) was greater in AMPK DN compared to WT mice. Nuclear run-on assay demonstrated that exercise increased VEGF transcription, while hypoxia decreased VEGF transcription. There was no difference in VEGF transcription between WT and AMPK DN. There was a strong correlation between VEGF transcription and VEGF mRNA at rest and with exercise. Resting capillarization was lower in AMPK DN compared to WT. Wheel running (28 days) increased capillarization and this response was AMPK independent. Significant correlations between VEGF protein and muscle capillarization are consistent with VEGF being an important determinant of skeletal muscle capillarization. These data are to our knowledge the first to demonstrate in skeletal muscle in vivo that: (1) AMPK is necessary for hypoxia-induced VEGF mRNA stabilization, (2) acute exercise increases VEGF transcription, (3) inhibition of AMPK augments the VEGF mRNA response to acute exercise, and (4) AMPK regulates basal VEGF expression and capillarization, but is not necessary for exercise-induced angiogenesis.
Collapse
Affiliation(s)
- Kevin A Zwetsloot
- Department of Exercise and Sport Science, East Carolina University, Greenville, NC 27858, USA
| | | | | | | |
Collapse
|
19
|
Roy S, Khanna S, Sen CK. Redox regulation of the VEGF signaling path and tissue vascularization: Hydrogen peroxide, the common link between physical exercise and cutaneous wound healing. Free Radic Biol Med 2008; 44:180-92. [PMID: 18191754 DOI: 10.1016/j.freeradbiomed.2007.01.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 12/14/2006] [Accepted: 01/05/2007] [Indexed: 12/17/2022]
Abstract
Vascularization, under physiological or pathophysiological conditions, typically takes place by one or more of the following processes: angiogenesis, vasculogenesis, arteriogenesis, and lymphangiogenesis. Although all of these mechanisms of vascularization have sufficient contrasting features to warrant consideration under separate cover, one common feature shared by all is their sensitivity to the VEGF signaling pathway. Conditions such as wound healing and physical exercise result in increased production of reactive oxygen species such as H(2)O(2), and both are associated with increased tissue vascularization. Understanding these two scenarios of adult tissue vascularization in tandem offers the potential to unlock the significance of redox regulation of the VEGF signaling pathway. Does H(2)O(2) support tissue vascularization? H(2)O(2) induces the expression of the most angiogenic form of VEGF, VEGF-A, by a HIF-independent and Sp1-dependent mechanism. Ligation of VEGF-A to VEGFR2 results in signal transduction leading to tissue vascularization. Such ligation generates H(2)O(2) via an NADPH oxidase-dependent mechanism. Disruption of VEGF-VEGFR2 ligation-dependent H(2)O(2) production or decomposition of such H(2)O(2) stalls VEGFR2 signaling. Numerous antioxidants exhibit antiangiogenic properties. Current evidence lends firm credence to the hypothesis that low-level endogenous H(2)O(2) supports vascular growth.
Collapse
Affiliation(s)
- Sashwati Roy
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|