1
|
Kuchenmüller LL, Hoots EC, Clark TD. Hyperoxia disproportionally benefits the aerobic performance of large fish at elevated temperature. J Exp Biol 2024; 227:jeb247887. [PMID: 39234663 DOI: 10.1242/jeb.247887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/06/2024]
Abstract
Increasing evidence shows that larger fish are more vulnerable to acute warming than smaller individuals of the same species. This size-dependency of thermal tolerance has been ascribed to differences in aerobic performance, largely owing to a decline in oxygen supply relative to demand. To shed light on these ideas, we examined metabolic allometry in 130 rainbow trout ranging from 12 to 358 g under control conditions (17°C) and in response to acute heating (to 25°C), with and without supplemental oxygen (100% versus 150% air saturation). Under normoxia, high temperature caused an average 17% reduction in aerobic scope compared with 17°C. Aerobic performance disproportionally deteriorated in bigger fish as the scaling exponent (b) for aerobic scope declined from b=0.87 at 17°C to b=0.74 at 25°C. Hyperoxia increased maximum metabolic rate and aerobic scope at both temperatures and disproportionally benefited larger fish at 25°C as the scaling exponent for aerobic scope was reestablished to the same level as at 17°C (b=0.86). This suggests that hyperoxia may provide metabolic refuge for larger individuals, allowing them to sustain aerobic activities when facing acute warming. Notably, the elevated aerobic capacity afforded by hyperoxia did not appear to improve thermal resilience, as mortality in 25°C hyperoxia (13.8%, n=4) was similar to that in normoxia (12.1%, n=4), although we caution that this topic warrants more targeted research. We highlight the need for mechanistic investigations of the oxygen transport system to determine the consequences of differential metabolic scaling across temperature in a climate warming context.
Collapse
Affiliation(s)
- Luis L Kuchenmüller
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Elizabeth C Hoots
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3216, Australia
| |
Collapse
|
2
|
Pu P, Niu Z, Ma M, Tang X, Chen Q. Convergent High O 2 Affinity but Distinct ATP-Mediated Allosteric Regulation of Hemoglobins in Oviparous and Viviparous Eremias Lizards from the Qinghai-Tibet Plateau. Animals (Basel) 2024; 14:1440. [PMID: 38791658 PMCID: PMC11117339 DOI: 10.3390/ani14101440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The functional adaptation and underlying molecular mechanisms of hemoglobins (Hbs) have primarily concentrated on mammals and birds, with few reports on reptiles. This study aimed to investigate the convergent and species-specific high-altitude adaptation mechanisms of Hbs in two Eremias lizards from the Qinghai-Tibet Plateau. The Hbs of high-altitude E. argus and E. multiocellata were characterized by significantly high overall and intrinsic Hb-O2 affinity compared to their low-altitude populations. Despite the similarly low Cl- sensitivities, the Hbs of high-altitude E. argus exhibited higher ATP sensitivity and ATP-dependent Bohr effects than that of E. multiocellata, which could facilitate O2 unloading in respiring tissues. Eremias lizards Hbs exhibited similarly low temperature sensitivities and relatively high Bohr effects at lower temperatures, which could help to stably deliver and release O2 to cold extremities at low temperatures. The oxygenation properties of Hbs in high-altitude populations might be attributed to varying ratios of β2/β1 globin and substitutions on the β2-type globin. Notably, the Asn12Ala in lowland E. argus could cause localized destabilization of the E-helix in the tetrameric Hb by elimination of hydrogen bonds, thereby resulting in its lowest O2 affinity. This study provides a valuable reference for the high-altitude adaptation mechanisms of hemoglobins in reptiles.
Collapse
Affiliation(s)
- Peng Pu
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| | - Ming Ma
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, No. 222 Tianshui South Road, Lanzhou 730000, China; (Z.N.); (M.M.); (X.T.)
| |
Collapse
|
3
|
Rivera M, Mjaavatten A, Smith SB, Baez M, Wilson CAM. Temperature dependent mechanical unfolding and refolding of a protein studied by thermo-regulated optical tweezers. Biophys J 2023; 122:513-521. [PMID: 36587240 PMCID: PMC9941719 DOI: 10.1016/j.bpj.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/15/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023] Open
Abstract
Temperature is a useful system variable to gather kinetic and thermodynamic information from proteins. Usually, free energy and the associated entropic and enthalpic contributions are obtained by quantifying the conformational equilibrium based on melting experiments performed in bulk conditions. Such experiments are suitable only for those small single-domain proteins whose side reactions of irreversible aggregation are unlikely to occur. Here, we avoid aggregation by pulling single-protein molecules in a thermo-regulated optical tweezers. Thus, we are able to explore the temperature dependence of the thermodynamic and kinetic parameters of MJ0366 from Methanocaldococcus jannaschii at the single-molecule level. By performing force-ramp experiments between 2°C and 40°C, we found that MJ0366 has a nonlinear dependence of free energy with temperature and a specific heat change of 2.3 ± 1.2 kcal/mol∗K. These thermodynamic parameters are compatible with a two-state unfolding/refolding mechanism for MJ0366. However, the kinetics measured as a function of the temperature show a complex behavior, suggesting a three-state folding mechanism comprising a high-energy intermediate state. The combination of two perturbations, temperature and force, reveals a high-energy species in the folding mechanism of MJ0366 not detected in force-ramp experiments at constant temperature.
Collapse
Affiliation(s)
- Maira Rivera
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile; ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile; Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | | | | | - Mauricio Baez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| | - Christian A M Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
4
|
Morrison PR, Bernal D, Sepulveda CA, Brauner CJ. The effect of temperature on haemoglobin-oxygen binding affinity in regionally endothermic and ectothermic sharks. J Exp Biol 2023; 226:286204. [PMID: 36576038 DOI: 10.1242/jeb.244979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/20/2022] [Indexed: 12/29/2022]
Abstract
Haemoglobin (Hb)-O2 binding affinity typically decreases with increasing temperature, but several species of ectothermic and regionally endothermic fishes exhibit reduced Hb thermal sensitivity. Regionally endothermic sharks, including the common thresher shark (Alopias vulpinus) and lamnid sharks such as the shortfin mako shark (Isurus oxyrinchus), can maintain select tissues and organs warmer than ambient temperature by retaining metabolic heat with vascular heat exchangers. In the ectothermic bigeye thresher shark (Alopias superciliosus), diurnal movements above and below the thermocline subject the tissues, including the blood, to a wide range of operating temperatures. Therefore, blood-O2 transport must occur across internal temperature gradients in regionally endothermic species, and over the range of environmental temperatures encountered by the ectothermic bigeye thresher shark. While previous studies have shown temperature-independent Hb-O2 affinity in lamnid sharks, including shortfin mako, the Hb-O2 affinity of the common and bigeye thresher sharks is unknown. Therefore, we examined the effect of temperature on whole-blood Hb-O2 affinity in common thresher shark and bigeye thresher shark. For comparison, analyses were also conducted on the shortfin mako shark and two ectothermic species, blue shark (Prionace glauca) and spiny dogfish (Squalus acanthias). Blood-O2 binding affinity was temperature independent for common thresher shark and shortfin mako shark, which should prevent internal temperature gradients from negatively affecting blood-O2 transport. Blue shark and spiny dogfish blood-O2 affinity decreased with increasing temperature, as expected, but bigeye thresher shark blood exhibited both a reduced temperature dependence and a high Hb-O2 affinity, which likely prevents large changes in environment temperature and low environmental oxygen from affecting O2 uptake.
Collapse
Affiliation(s)
- Phillip R Morrison
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| | - Diego Bernal
- Department of Biology, University of Massachusetts, Dartmouth, MA 02747, USA
| | | | - Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
| |
Collapse
|
5
|
Coates CJ, Belato FA, Halanych KM, Costa-Paiva EM. Structure-Function Relationships of Oxygen Transport Proteins in Marine Invertebrates Enduring Higher Temperatures and Deoxygenation. THE BIOLOGICAL BULLETIN 2022; 243:134-148. [PMID: 36548976 DOI: 10.1086/722472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
AbstractPredictions for climate change-to lesser and greater extents-reveal a common scenario in which marine waters are characterized by a deadly trio of stressors: higher temperatures, lower oxygen levels, and acidification. Ectothermic taxa that inhabit coastal waters, such as shellfish, are vulnerable to rapid and prolonged environmental disturbances, such as heatwaves, pollution-induced eutrophication, and dysoxia. Oxygen transport capacity of the hemolymph (blood equivalent) is considered the proximal driver of thermotolerance and respiration in many invertebrates. Moreover, maintaining homeostasis under environmental duress is inextricably linked to the activities of the hemolymph-based oxygen transport or binding proteins. Several protein groups fulfill this role in marine invertebrates: copper-based extracellular hemocyanins, iron-based intracellular hemoglobins and hemerythrins, and giant extracellular hemoglobins. In this brief text, we revisit the distribution and multifunctional properties of oxygen transport proteins, notably hemocyanins, in the context of climate change, and the consequent physiological reprogramming of marine invertebrates.
Collapse
|
6
|
Fago A. New insights into survival strategies to oxygen deprivation in anoxia-tolerant vertebrates. Acta Physiol (Oxf) 2022; 235:e13841. [PMID: 35548887 PMCID: PMC9287066 DOI: 10.1111/apha.13841] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/23/2022]
Abstract
Hypoxic environments pose a severe challenge to vertebrates and even short periods of oxygen deprivation are often lethal as they constrain aerobic ATP production. However, a few ectotherm vertebrates are capable of surviving long‐term hypoxia or even anoxia with little or no damage. Among these, freshwater turtles and crucian carp are the recognized champions of anoxia tolerance, capable of overwintering in complete oxygen deprivation for months at freezing temperatures by entering a stable hypometabolic state. While all steps of the oxygen cascade are adjusted in response to oxygen deprivation, this review draws from knowledge of freshwater turtles and crucian carp to highlight mechanisms regulating two of these steps, namely oxygen transport in the blood and oxygen utilization in mitochondria during three sequential phases: before anoxia, when hypoxia develops, during anoxia, and after anoxia at reoxygenation. In cold hypoxia, reduced red blood cell concentration of ATP plays a crucial role in increasing blood oxygen affinity and/or reducing oxygen unloading to tissues, to adjust aerobic metabolism to decrease ambient oxygen. In anoxia, metabolic rewiring of oxygen utilization keeps largely unaltered NADH/NAD+ ratios and limits ADP degradation and succinate buildup. These critical adjustments make it possible to restart mitochondrial respiration and energy production with little generation of reactive oxygen species at reoxygenation when oxygen is again available. Inhibition of key metabolic enzymes seems to play crucial roles in these responses, in particular mitochondrial complex V, although identifying the nature of such inhibition(s) in vivo remains a challenge for future studies.
Collapse
Affiliation(s)
- Angela Fago
- Department of Biology Aarhus University Aarhus Denmark
| |
Collapse
|
7
|
Changes in Optical Properties of Model Cholangiocarcinoma after Plasmon-Resonant Photothermal Treatment. PHOTONICS 2022. [DOI: 10.3390/photonics9030199] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The heating degree of the inner layers of tumor tissue is an important parameter required to optimize plasmonic photothermal therapy (PPT). This study reports the optical properties of tissue layers of transplanted cholangiocarcinoma and covering tissues in rats without treatment (control group) and after PPT using gold nanorods (experimental group). PPT was carried out for 15 min, and the temperature on the skin surface reached 54.8 ± 1.6 °С. The following samples were cut out ex vivo and studied: skin, subcutaneous connective tissue, tumor capsule, top, center, and bottom part of the tumor. The samples’ absorption and reduced scattering coefficients were calculated using the inverse adding–doubling method at 350–2250 nm wavelength. Diffuse reflectance spectra of skin surface above tumors were measured in vivo in the control and experimental groups before and immediately after PPT in the wavelength range of 350–2150 nm. Our results indicate significant differences between the optical properties of the tissues before and after PPT. The differences are attributed to edema and hemorrhage in the surface layers, tissue dehydration of the deep tumor layers, and morphological changes during the heating.
Collapse
|
8
|
Webb KL, Dominelli PB, Baker SE, Klassen SA, Joyner MJ, Senefeld JW, Wiggins CC. Influence of High Hemoglobin-Oxygen Affinity on Humans During Hypoxia. Front Physiol 2022; 12:763933. [PMID: 35095551 PMCID: PMC8795792 DOI: 10.3389/fphys.2021.763933] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023] Open
Abstract
Humans elicit a robust series of physiological responses to maintain adequate oxygen delivery during hypoxia, including a transient reduction in hemoglobin-oxygen (Hb-O2) affinity. However, high Hb-O2 affinity has been identified as a beneficial adaptation in several species that have been exposed to high altitude for generations. The observed differences in Hb-O2 affinity between humans and species adapted to high altitude pose a central question: is higher or lower Hb-O2 affinity in humans more advantageous when O2 availability is limited? Humans with genetic mutations in hemoglobin structure resulting in high Hb-O2 affinity have shown attenuated cardiorespiratory adjustments during hypoxia both at rest and during exercise, providing unique insight into this central question. Therefore, the purpose of this review is to examine the influence of high Hb-O2 affinity during hypoxia through comparison of cardiovascular and respiratory adjustments elicited by humans with high Hb-O2 affinity compared to those with normal Hb-O2 affinity.
Collapse
Affiliation(s)
- Kevin L. Webb
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Stephen A. Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Chad C. Wiggins,
| |
Collapse
|
9
|
Steuer NB, Schlanstein PC, Hannig A, Sibirtsev S, Jupke A, Schmitz-Rode T, Kopp R, Steinseifer U, Wagner G, Arens J. Extracorporeal Hyperoxygenation Therapy (EHT) for Carbon Monoxide Poisoning: In-Vitro Proof of Principle. MEMBRANES 2021; 12:membranes12010056. [PMID: 35054581 PMCID: PMC8779470 DOI: 10.3390/membranes12010056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/28/2021] [Indexed: 11/23/2022]
Abstract
Carbon monoxide (CO) poisoning is the leading cause of poisoning-related deaths globally. The currently available therapy options are normobaric oxygen (NBO) and hyperbaric oxygen (HBO). While NBO lacks in efficacy, HBO is not available in all areas and countries. We present a novel method, extracorporeal hyperoxygenation therapy (EHT), for the treatment of CO poisoning that eliminates the CO by treating blood extracorporeally at elevated oxygen partial pressure. In this study, we proof the principle of the method in vitro using procine blood: Firstly, we investigated the difference in the CO elimination of a hollow fibre membrane oxygenator and a specifically designed batch oxygenator based on the bubble oxygenator principle at elevated pressures (1, 3 bar). Secondly, the batch oxygenator was redesigned and tested for a broader range of pressures (1, 3, 5, 7 bar) and temperatures (23, 30, 37 °C). So far, the shortest measured carboxyhemoglobin half-life in the blood was 21.32 min. In conclusion, EHT has the potential to provide an easily available and effective method for the treatment of CO poisoning.
Collapse
Affiliation(s)
- Niklas B. Steuer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (P.C.S.); (A.H.); (U.S.); (G.W.); (J.A.)
- Correspondence: ; Tel.:+49-241-80-88764
| | - Peter C. Schlanstein
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (P.C.S.); (A.H.); (U.S.); (G.W.); (J.A.)
| | - Anke Hannig
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (P.C.S.); (A.H.); (U.S.); (G.W.); (J.A.)
| | - Stephan Sibirtsev
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany; (S.S.); (A.J.)
| | - Andreas Jupke
- Fluid Process Engineering (AVT.FVT), RWTH Aachen University, Forckenbeckstraße 51, 52074 Aachen, Germany; (S.S.); (A.J.)
| | - Thomas Schmitz-Rode
- Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany;
| | - Rüdger Kopp
- Department of Intensive Care Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Ulrich Steinseifer
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (P.C.S.); (A.H.); (U.S.); (G.W.); (J.A.)
| | - Georg Wagner
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (P.C.S.); (A.H.); (U.S.); (G.W.); (J.A.)
| | - Jutta Arens
- Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, Medical Faculty, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany; (P.C.S.); (A.H.); (U.S.); (G.W.); (J.A.)
- Department of Biomechanical Engineering, Faculty of Engineering Technology, University of Twente, De Horst 2, 7522LW Enschede, The Netherlands
| |
Collapse
|
10
|
Pu P, Zhao Y, Niu Z, Cao W, Zhang T, He J, Wang J, Tang X, Chen Q. Comparison of hematological traits and oxygenation properties of hemoglobins from highland and lowland Asiatic toad (Bufo gargarizans). J Comp Physiol B 2021; 191:1019-1029. [PMID: 33876256 DOI: 10.1007/s00360-021-01368-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/13/2021] [Accepted: 04/07/2021] [Indexed: 01/09/2023]
Abstract
The Asiatic toad (Bufo gargarizans) belonging to the family of Bufonidae (Anura: Amphibia) is successfully residing on the Qinghai-Tibetan Plateau (QTP). To investigate whether the oxygen delivery undergoes adaptive adjustments to high-altitude environments in Asian toads inhabiting the QTP (Zoige County, 3446 m), choosing low-altitude populations (Chengdu City, 500 m) as control, we measured hematological traits, O2 affinities of whole blood, Hb-O2 affinities of purified Hbs, their sensitivities to temperature, and allosteric effectors (H+, Cl- and ATP). Our results showed that high-altitude Asiatic toads possessed significantly increased hemoglobin concentration, hematocrit, and red blood cell count, but significantly decreased erythrocyte volume compared with low-altitude toads. The whole blood and purified Hbs of high-altitude Asiatic toads both exhibited significantly higher O2 affinities compared with low-altitude toads. Substantially increased intrinsic Hb-O2 affinities of high-altitude Asiatic toads Hbs are likely to be the main reason for its elevated Hb-O2 affinities given the anionic cofactor sensitivities of high- and low-altitude toads were similar. The Hbs of high-altitude toads were also characterized by distinctly strong Bohr effects at the low temperature and low-temperature sensitivities. The adaptive adjustments of hematological traits could enhance the blood-O2 carrying capacity of high-altitude Asiatic toads. The increased Hb-O2 affinities could safeguard the pulmonary O2 uploading under hypoxia. The strong Bohr effects at the low temperature could help the release of O2 in metabolic tissues and cold limbs, while low-temperature sensitivity could minimize the effect of temperature fluctuation on the Hb-O2 affinity.
Collapse
Affiliation(s)
- Peng Pu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yao Zhao
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Wangjie Cao
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jie He
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jinzhou Wang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
11
|
Wu G, Liu Y, Rui C, Zhan S, Wang J, Cai S, Shi X, Ding Y. An oxygenated perfluorocarbon emulsion improves liver graft preservation evaluated in DCD livers of male sprague dawley rats. Transpl Int 2021; 34:2087-2097. [PMID: 34309081 DOI: 10.1111/tri.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 11/28/2022]
Abstract
The application of perfluorocarbons, which can carry large quantities of oxygen, in organ preservation was limited by their poor solubility in water. A stable form of perfluorocarbon dispersed in suitable buffers is urgently needed. Perfluorocarbon emulsion was designed and characterized with respect to size distribution, rheology, stability, and oxygen-carrying capacity. The state of DCD rat donor livers preserved by the oxygenated perfluorocarbon emulsion was studied after ex vivo reperfusion by using biochemistry, pathology, and immunohistochemistry methods. Perfluorocarbon emulsion was successfully prepared by high-pressure homogenization. Optimized perfluorocarbon emulsion showed nanoscale size distribution, good stability, and higher oxygen loading capacity than that of HTK solution or water. The state of preserved livers after cardiac death rat liver was improved significantly after static cold storage for 48 hours in this oxygenated perfluorocarbon emulsion. The ATP content and down-regulation of HIF-1a expression after preservation of the liver graft by the oxygenated perfluorocarbon emulsion suggested the advantage of adequate oxygen supply for adequate time. This perfluorocarbon emulsion reported here might be considered a promising system for oxygenated donor liver storage by attenuation of hypoxia.
Collapse
Affiliation(s)
- Guoyi Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nan-jing, China
| | - Yu Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | | | - Shanshan Zhan
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nan-jing, China
| | - Jun Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery (Fudan University), Ministry of Education, Shanghai, China
| | | | - Xiaolei Shi
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nan-jing, China
| | - Yitao Ding
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nan-jing, China
| |
Collapse
|
12
|
Larsen EH, Hoffmann E, Hedrick MS, Wang T. August Krogh's contribution to the rise of physiology during the first half the 20th century. Comp Biochem Physiol A Mol Integr Physiol 2021; 256:110931. [DOI: 10.1016/j.cbpa.2021.110931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Gomez Isaza DF, Cramp RL, Franklin CE. Simultaneous exposure to nitrate and low pH reduces the blood oxygen-carrying capacity and functional performance of a freshwater fish. CONSERVATION PHYSIOLOGY 2020; 8:coz092. [PMID: 31988749 PMCID: PMC6977012 DOI: 10.1093/conphys/coz092] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/12/2019] [Accepted: 11/05/2019] [Indexed: 05/31/2023]
Abstract
Human activities present aquatic species with numerous of environmental challenges, including excessive nutrient pollution (nitrate) and altered pH regimes (freshwater acidification). In isolation, elevated nitrate and acidic pH can lower the blood oxygen-carrying capacity of aquatic species and cause corresponding declines in key functional performance traits such as growth and locomotor capacity. These factors may pose considerable physiological challenges to organisms but little is known about their combined effects. To characterise the energetic and physiological consequences of simultaneous exposure to nitrate and low pH, we exposed spangled perch (Leiopotherapon unicolor) to a combination of nitrate (0, 50 or 100 mg L-1) and pH (pH 7.0 or 4.0) treatments in a factorial experimental design. Blood oxygen-carrying capacity (haemoglobin concentration, methaemoglobin concentrations and oxygen equilibrium curves), aerobic scope and functional performance traits (growth, swimming performance and post-exercise recovery) were assessed after 28 days of exposure. The oxygen-carrying capacity of fish exposed to elevated nitrate (50 and 100 mg L-1) was compromised due to reductions in haematocrit, functional haemoglobin levels and a 3-fold increase in methaemoglobin concentrations. Oxygen uptake was also impeded due to a right shift in oxygen-haemoglobin binding curves of fish exposed to nitrate and pH 4.0 simultaneously. A reduced blood oxygen-carrying capacity translated to a lowered aerobic scope, and the functional performance of fish (growth and swimming performance and increased post-exercise recovery times) was compromised by the combined effects of nitrate and low pH. These results highlight the impacts on aquatic organisms living in environments threatened by excessive nitrate and acidic pH conditions.
Collapse
Affiliation(s)
- Daniel F Gomez Isaza
- School of Biological Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rebecca L Cramp
- School of Biological Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig E Franklin
- School of Biological Science, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
14
|
Signore AV, Yang YZ, Yang QY, Qin G, Moriyama H, Ge RL, Storz JF. Adaptive Changes in Hemoglobin Function in High-Altitude Tibetan Canids Were Derived via Gene Conversion and Introgression. Mol Biol Evol 2020; 36:2227-2237. [PMID: 31362306 PMCID: PMC6759075 DOI: 10.1093/molbev/msz097] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A key question in evolutionary biology concerns the relative importance of different sources of adaptive genetic variation, such as de novo mutations, standing variation, and introgressive hybridization. A corollary question concerns how allelic variants derived from these different sources may influence the molecular basis of phenotypic adaptation. Here, we use a protein-engineering approach to examine the phenotypic effect of putatively adaptive hemoglobin (Hb) mutations in the high-altitude Tibetan wolf that were selectively introgressed into the Tibetan mastiff, a high-altitude dog breed that is renowned for its hypoxia tolerance. Experiments revealed that the introgressed coding variants confer an increased Hb–O2 affinity in conjunction with an enhanced Bohr effect. We also document that affinity-enhancing mutations in the β-globin gene of Tibetan wolf were originally derived via interparalog gene conversion from a tandemly linked β-globin pseudogene. Thus, affinity-enhancing mutations were introduced into the β-globin gene of Tibetan wolf via one form of intragenomic lateral transfer (ectopic gene conversion) and were subsequently introduced into the Tibetan mastiff genome via a second form of lateral transfer (introgression). Site-directed mutagenesis experiments revealed that the increased Hb–O2 affinity requires a specific two-site combination of amino acid replacements, suggesting that the molecular underpinnings of Hb adaptation in Tibetan mastiff (involving mutations that arose in a nonexpressed gene and which originally fixed in Tibetan wolf) may be qualitatively distinct from functionally similar changes in protein function that could have evolved via sequential fixation of de novo mutations during the breed’s relatively short duration of residency at high altitude.
Collapse
Affiliation(s)
| | - Ying-Zhong Yang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Quan-Yu Yang
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Ga Qin
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, NE
| | - Ri-Li Ge
- Research Center for High Altitude Medicine, Qinghai University, Xining, China
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE
| |
Collapse
|
15
|
Pu P, Lu S, Niu Z, Zhang T, Zhao Y, Yang X, Zhao Y, Tang X, Chen Q. Oxygenation properties and underlying molecular mechanisms of hemoglobins in plateau zokor ( Eospalax baileyi). Am J Physiol Regul Integr Comp Physiol 2019; 317:R696-R708. [PMID: 31508994 DOI: 10.1152/ajpregu.00335.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plateau zokor (Eospalax baileyi) is a species of subterranean rodent endemic to the Tibetan Plateau. It is well adapted to the cold and hypoxic and hypercapnic burrow. To study the oxygenation properties of plateau zokor hemoglobins (Hbs), we measured intrinsic Hb-O2 affinities and their sensitivities to pH (Bohr effect); CO2; Cl-, 2,3-diphosphoglycerate (DPG); and temperature using purified Hbs from zokor and mouse. The optimal deoxyHb model of plateau zokor was constructed and used to study its structural characteristics by molecular dynamics simulations. O2 binding results revealed that plateau zokor Hbs exhibit remarkably high intrinsic Hb-O2 affinity, low CO2 effects compared with human and the relatively low anion allosteric effector sensitivities (DPG and Cl-) at normal temperature, which would safeguard the pulmonary Hb-O2 loading under hypoxic and hypercapnic conditions. Furthermore, the high anion allosteric effector sensitivities at low temperature and low temperature sensitivities of plateau zokor Hbs would facilitate the releasing of O2 in cold extremities and metabolic tissues. However, the high Hb-O2 affinity of plateau zokor is not compensated by high pH sensitivity as the Bohr factors of plateau zokor Hbs were as low as those of mouse. The results of molecular dynamics simulations revealed the reduced hydrogen bonding between the α1β1- and α2β2-dimer interface of deoxyHb in zokor compared with mouse. It may be the primary mechanism of the high intrinsic Hb-O2 affinities in zokor. Specifically, substitution of the 131Ser→Asn in the α2-chain weakened the connection between α1- and β2-subunit.
Collapse
Affiliation(s)
- Peng Pu
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Songsong Lu
- Faculty of Forestry, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhiyi Niu
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Tao Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Yaofeng Zhao
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Xingwen Yang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Yao Zhao
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
16
|
Nikinmaa M, Berenbrink M, Brauner CJ. Regulation of erythrocyte function: Multiple evolutionary solutions for respiratory gas transport and its regulation in fish. Acta Physiol (Oxf) 2019; 227:e13299. [PMID: 31102432 DOI: 10.1111/apha.13299] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 01/01/2023]
Abstract
Gas transport concepts in vertebrates have naturally been formulated based on human blood. However, the first vertebrates were aquatic, and fish and tetrapods diverged hundreds of millions years ago. Water-breathing vertebrates live in an environment with low and variable O2 levels, making environmental O2 an important evolutionary selection pressure in fishes, and various features of their gas transport differ from humans. Erythrocyte function in fish is of current interest, because current environmental changes affect gas transport, and because especially zebrafish is used as a model in biomedical studies, making it important to understand the differences in gas transport between fish and mammals to be able to carry out meaningful studies. Of the close to thirty thousand fish species, teleosts are the most species-numerous group. However, two additional radiations are discussed: agnathans and elasmobranchs. The gas transport by elasmobranchs may be closest to the ancestors of tetrapods. The major difference in their haemoglobin (Hb) function to humans is their high urea tolerance. Agnathans differ from other vertebrates by having Hbs, where cooperativity is achieved by monomer-oligomer equilibria. Their erythrocytes also lack the anion exchange pathway with profound effects on CO2 transport. Teleosts are characterized by highly pH sensitive Hbs, which can fail to become fully O2 -saturated at low pH. An adrenergically stimulated Na+ /H+ exchanger has evolved in their erythrocyte membrane, and plasma-accessible carbonic anhydrase can be differentially distributed among their tissues. Together, and differing from other vertebrates, these features can maximize O2 unloading in muscle while ensuring O2 loading in gills.
Collapse
Affiliation(s)
| | - Michael Berenbrink
- Institute of Integrative Biology, Department of Evolution, Ecology and Behaviour University of Liverpool Liverpool UK
| | - Colin J. Brauner
- Department of Zoology University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
17
|
Signore AV, Paijmans JLA, Hofreiter M, Fago A, Weber RE, Springer MS, Campbell KL. Emergence of a Chimeric Globin Pseudogene and Increased Hemoglobin Oxygen Affinity Underlie the Evolution of Aquatic Specializations in Sirenia. Mol Biol Evol 2019; 36:1134-1147. [PMID: 30828717 PMCID: PMC6526914 DOI: 10.1093/molbev/msz044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/13/2019] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
As limits on O2 availability during submergence impose severe constraints on aerobic respiration, the oxygen binding globin proteins of marine mammals are expected to have evolved under strong evolutionary pressures during their land-to-sea transition. Here, we address this question for the order Sirenia by retrieving, annotating, and performing detailed selection analyses on the globin repertoire of the extinct Steller’s sea cow (Hydrodamalis gigas), dugong (Dugong dugon), and Florida manatee (Trichechus manatus latirostris) in relation to their closest living terrestrial relatives (elephants and hyraxes). These analyses indicate most loci experienced elevated nucleotide substitution rates during their transition to a fully aquatic lifestyle. While most of these genes evolved under neutrality or strong purifying selection, the rate of nonsynonymous/synonymous replacements increased in two genes (Hbz-T1 and Hba-T1) that encode the α-type chains of hemoglobin (Hb) during each stage of life. Notably, the relaxed evolution of Hba-T1 is temporally coupled with the emergence of a chimeric pseudogene (Hba-T2/Hbq-ps) that contributed to the tandemly linked Hba-T1 of stem sirenians via interparalog gene conversion. Functional tests on recombinant Hb proteins from extant and ancestral sirenians further revealed that the molecular remodeling of Hba-T1 coincided with increased Hb–O2 affinity in early sirenians. Available evidence suggests that this trait evolved to maximize O2 extraction from finite lung stores and suppress tissue O2 offloading, thereby facilitating the low metabolic intensities of extant sirenians. In contrast, the derived reduction in Hb–O2 affinity in (sub)Arctic Steller’s sea cows is consistent with fueling increased thermogenesis by these once colossal marine herbivores.
Collapse
Affiliation(s)
- Anthony V Signore
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada.,School of Biological Sciences, University of Nebraska, Lincoln, NE
| | | | - Michael Hofreiter
- Institute of Biochemistry and Biology, University of Potsdam, Germany
| | - Angela Fago
- Department of Bioscience, Zoophysiology, Aarhus University, Denmark
| | - Roy E Weber
- Department of Bioscience, Zoophysiology, Aarhus University, Denmark
| | - Mark S Springer
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
18
|
Nelson C, Barlow SL, Berenbrink M. ATP-induced reversed thermal sensitivity of O 2 binding in both major haemoglobin polymorphs of the non-endothermic Atlantic cod, Gadus morhua. ACTA ACUST UNITED AC 2019; 222:jeb.200279. [PMID: 31160424 DOI: 10.1242/jeb.200279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/23/2019] [Indexed: 11/20/2022]
Abstract
Atlantic cod is a species that is affected by climate change, with some populations being exposed to higher temperatures than others. The two polymorphs of its major haemoglobin type (HbI) show an inverse change in frequency along a latitudinal temperature cline in the North East Atlantic, which has been associated with differences in population performance and behavioural traits. An earlier study at the northern distribution limit of the species reported differential temperature sensitivities of red blood cell oxygen (O2) affinity between the northern cold-water HbI-2 polymorph and its southern, warm-water HbI-1 counter-part, which has since widely been held as adaptive for the species across its distributional range. The present study critically re-examined this hypothesis by comparing the thermal sensitivity of O2 binding in both purified HbI polymorphs from the southern, high-temperature distribution limit of the species under controlled conditions of allosteric modifiers of Hb function. Contrary to the prevailing view, the O2 affinity of the major HbI polymorphs did not differ from each other under any of the tested conditions. Depending on pH and ATP concentration, the temperature-sensitive and temperature-insensitive Hb-O2 affinity phenotypes - previously exclusively ascribed to HbI-1 and HbI-2, respectively - could be induced in both HbI polymorphs. These results are the first to establish a molecular mechanism behind a reversed temperature dependence of red blood cell O2 affinity in a non-endotherm fish and lay the basis for future studies on alternative mechanisms behind the differences in distribution, performance and behavioural traits associated with the different HbI polymorphs of Atlantic cod.
Collapse
Affiliation(s)
- Charlotte Nelson
- Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK .,Department of Zoology, The University of British Columbia, Biological Sciences Building, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Samantha L Barlow
- Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Michael Berenbrink
- Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
19
|
Retrospective comparison of equine hemoglobin oxygen saturation measured by a human-specific co-oximeter, or derived from an algorithm using temperature-corrected and -uncorrected oxygen tension. Vet Anaesth Analg 2019; 46:636-642. [PMID: 31377121 DOI: 10.1016/j.vaa.2019.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Hemoglobin oxygen saturation (SO2) is measured by co-oximetry (SO2cox) or calculated from partial pressure of oxygen (PO2) using algorithms (SO2alg). To compare venous and systemic arterial blood sample data retrospectively and to examine whether temperature correction of PO2 is important. STUDY DESIGN Retrospective study. ANIMALS A group of 21 healthy, adult, sedated or anesthetized horses. METHODS Mixed-venous and systemic arterial blood samples (1 mL) were anaerobically collected using commercial preheparinized syringes from the right ventricle and facial artery, respectively. Blood was analyzed using a commercial gas analyzer and human-specific co-oximeter within 10 minutes of collection or stored on ice and analyzed within 30 minutes. PO2 was measured at 37 °C and corrected using body temperature (Tcore) from a pulmonary artery catheter thermistor. SO2cox and hemoglobin subtypes were measured by co-oximetry (37 °C). An algorithm developed for Thoroughbred horse blood was used to calculate SO2alg using PO2 at 37 °C and SO2algcorr with PO2 corrected to Tcore. SO2alg and SO2algcorr were each paired with SO2cox using Bland-Altman (repeated measures) ratio of SO2alg/SO2cox (204 samples). RESULTS SO2alg overestimated SO2cox when PO2 was <80 mmHg (10.7 kPa); ratio and limits of agreement: 1.2 (0.9-1.6) but became accurate when PO2 was ≥80 mmHg: 1.0 (1.0-1.0). With all data, SO2algcorr did not differ from SO2alg:1.1 (0.8-1.4). Methemoglobin (FMetHb) and carboxyhemoglobin (FCOHb) were significantly higher in venous [FMetHb: median (range): 1.8 (0-2.9)%; FCOHb: 0.1 (0-2)%] than in arterial blood [FMetHb: 0.5 (0-2.2)%; FCOHb: 0 (0-0.3)%]. CONCLUSIONS The algorithm appeared robust when PO2 was ≥80 mmHg (10.7 kPa) but overestimated when PO2 was lower. Temperature correction was not important within 34.9-37.3 °C. CLINICAL RELEVANCE SO2alg overestimation in venous blood can result in calculation of higher intrapulmonary shunt fraction than SO2cox values.
Collapse
|
20
|
Campbell KL, Gaudry MJ, He K, Suzuki H, Zhang YP, Jiang XL, Weber RE. Altered hemoglobin co-factor sensitivity does not underlie the evolution of derived fossorial specializations in the family Talpidae. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:150-155. [DOI: 10.1016/j.cbpb.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/22/2017] [Accepted: 01/02/2018] [Indexed: 11/28/2022]
|
21
|
Upper respiratory tract nociceptor stimulation and stress response following acute and repeated Cyfluthrin inhalation in normal and pregnant rats: Physiological rat-specific adaptions can easily be misunderstood as adversities. Toxicol Lett 2018; 282:8-24. [DOI: 10.1016/j.toxlet.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 11/22/2022]
|
22
|
Russo R, Giordano D, Paredi G, Marchesani F, Milazzo L, Altomonte G, Del Canale P, Abbruzzetti S, Ascenzi P, di Prisco G, Viappiani C, Fago A, Bruno S, Smulevich G, Verde C. The Greenland shark Somniosus microcephalus-Hemoglobins and ligand-binding properties. PLoS One 2017; 12:e0186181. [PMID: 29023598 PMCID: PMC5638460 DOI: 10.1371/journal.pone.0186181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 09/26/2017] [Indexed: 11/18/2022] Open
Abstract
A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 ± 120 years), the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same α globin combined with two copies of three very similar β subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology. They display identical electronic absorption and resonance Raman spectra, indicating that their heme-pocket structures are identical or highly similar. The quaternary transition equilibrium between the relaxed (R) and the tense (T) states is more dependent on physiological allosteric effectors than in human hemoglobin, as also demonstrated in polar teleost hemoglobins. Similar to other cartilaginous fishes, we found no evidence for functional differentiation among the three isoforms. The very similar ligand-binding properties suggest that regulatory control of O2 transport may be at the cellular level and that it may involve changes in the cellular concentrations of allosteric effectors and/or variations of other systemic factors. The hemoglobins of this polar shark have evolved adaptive decreases in O2 affinity in comparison to temperate sharks.
Collapse
Affiliation(s)
- Roberta Russo
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
| | - Daniela Giordano
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Gianluca Paredi
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 23/A, Parma, Italy
| | - Francesco Marchesani
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 23/A, Parma, Italy
| | - Lisa Milazzo
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3–13, Sesto Fiorentino (FI), Italy
| | - Giovanna Altomonte
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
- Dipartimento di Biologia, Università Roma 3, Viale Marconi 448, Roma, Italy
| | - Pietro Del Canale
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, Parma, Italy
| | - Stefania Abbruzzetti
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, Parma, Italy
- NEST Istituto Nanoscienze, CNR, Piazza San Silvestro 12, Pisa, Italy
| | - Paolo Ascenzi
- Laboratorio Interdipartimentale di Microscopia Elettronica, Università RomaTre, Via della Vasca Navale 79, Roma, Italy
| | - Guido di Prisco
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
| | - Cristiano Viappiani
- Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università degli Studi di Parma, Parco Area delle Scienze 7A, Parma, Italy
- NEST Istituto Nanoscienze, CNR, Piazza San Silvestro 12, Pisa, Italy
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Stefano Bruno
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parco Area delle Scienze 23/A, Parma, Italy
| | - Giulietta Smulevich
- Dipartimento di Chimica “Ugo Schiff”, Università di Firenze, Via della Lastruccia 3–13, Sesto Fiorentino (FI), Italy
| | - Cinzia Verde
- Institute of Biosciences and BioResources, CNR, Via Pietro Castellino 111, Naples, Italy
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
- Dipartimento di Biologia, Università Roma 3, Viale Marconi 448, Roma, Italy
- * E-mail: ,
| |
Collapse
|
23
|
Weber RE, Jarvis JUM, Fago A, Bennett NC. O 2 binding and CO 2 sensitivity in haemoglobins of subterranean African mole rats. ACTA ACUST UNITED AC 2017; 220:3939-3948. [PMID: 28851819 DOI: 10.1242/jeb.160457] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/23/2017] [Indexed: 01/05/2023]
Abstract
Inhabiting deep and sealed subterranean burrows, mole rats exhibit a remarkable suite of specializations, including eusociality (living in colonies with single breeding queens), extraordinary longevity, cancer immunity and poikilothermy, and extreme tolerance of hypoxia and hypercapnia. With little information available on adjustments in haemoglobin (Hb) function that may mitigate the impact of exogenous and endogenous constraints on the uptake and internal transport of O2, we measured haematological characteristics, as well as Hb-O2 binding affinity and sensitivity to pH (Bohr effect), CO2, temperature and 2,3-diphosphoglycerate (DPG, the major allosteric modulator of Hb-O2 affinity in red blood cells) in four social and two solitary species of African mole rats (family Bathyergidae) originating from different biomes and soil types across Central and Southern Africa. We found no consistent patterns in haematocrit (Hct) and blood and red cell DPG and Hb concentrations or in intrinsic Hb-O2 affinity and its sensitivity to pH and DPG that correlate with burrowing, sociality and soil type. However, the results reveal low specific (pH independent) effects of CO2 on Hb-O2 affinity compared with humans that predictably safeguard pulmonary loading under hypoxic and hypercapnic burrow conditions. The O2 binding characteristics are discussed in relation to available information on the primary structure of Hbs from adult and developmental stages of mammals subjected to hypoxia and hypercapnia and the molecular mechanisms underlying functional variation in rodent Hbs.
Collapse
Affiliation(s)
- Roy E Weber
- Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| | | | - Angela Fago
- Department of Bioscience, Aarhus University, C.F. Møllers Alle 3, Aarhus C 8000, Denmark
| | - Nigel C Bennett
- Zoology and Entomology Department, University of Pretoria, Private Bag X04, Onderstepoort 0110, South Africa
| |
Collapse
|
24
|
Barlow SL, Metcalfe J, Righton DA, Berenbrink M. Life on the edge: O2 binding in Atlantic cod red blood cells near their southern distribution limit is not sensitive to temperature or haemoglobin genotype. ACTA ACUST UNITED AC 2017; 220:414-424. [PMID: 28148818 PMCID: PMC5312735 DOI: 10.1242/jeb.141044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 11/14/2016] [Indexed: 01/19/2023]
Abstract
Atlantic cod are a commercially important species believed to be threatened by warming seas near their southern, equatorward upper thermal edge of distribution. Limitations to circulatory O2 transport, in particular cardiac output, and the geographic distribution of functionally different haemoglobin (Hb) genotypes have separately been suggested to play a role in setting thermal tolerance in this species. The present study assessed the thermal sensitivity of O2 binding in Atlantic cod red blood cells with different Hb genotypes near their upper thermal distribution limit and modelled its consequences for the arterio-venous O2 saturation difference, Sa–vO2, another major determinant of circulatory O2 supply rate. The results showed statistically indistinguishable red blood cell O2 binding between the three HbI genotypes in wild-caught Atlantic cod from the Irish Sea (53° N). Red blood cells had an unusually low O2 affinity, with reduced or even reversed thermal sensitivity between pH 7.4 and 7.9, and 5.0 and 20.0°C. This was paired with strongly pH-dependent affinity and cooperativity of red blood cell O2 binding (Bohr and Root effects). Modelling of Sa–vO2 at physiological pH, temperature and O2 partial pressures revealed a substantial capacity for increases in Sa–vO2 to meet rising tissue O2 demands at 5.0 and 12.5°C, but not at 20°C. Furthermore, there was no evidence for an increase of maximal Sa–vO2 with temperature. It is suggested that Atlantic cod at such high temperatures may solely depend on increases in cardiac output and blood O2 capacity, or thermal acclimatisation of metabolic rate, for matching circulatory O2 supply to tissue demand. Highlighted Article: Red blood cell oxygen binding affinity in Atlantic cod near their southern, warmer limit of distribution is largely temperature independent and not affected by functional differences between their major haemoglobin genotypes.
Collapse
Affiliation(s)
- Samantha L Barlow
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| | - Julian Metcalfe
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft NR33 0HT, UK
| | - David A Righton
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Lowestoft NR33 0HT, UK
| | - Michael Berenbrink
- Department of Evolution, Ecology and Behaviour, Institute of Integrative Biology, The University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
25
|
Baalsrud HT, Voje KL, Tørresen OK, Solbakken MH, Matschiner M, Malmstrøm M, Hanel R, Salzburger W, Jakobsen KS, Jentoft S. Evolution of Hemoglobin Genes in Codfishes Influenced by Ocean Depth. Sci Rep 2017; 7:7956. [PMID: 28801564 PMCID: PMC5554263 DOI: 10.1038/s41598-017-08286-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 07/11/2017] [Indexed: 11/09/2022] Open
Abstract
Understanding the genetic basis of adaptation is one of the main enigmas of evolutionary biology. Among vertebrates, hemoglobin has been well documented as a key trait for adaptation to different environments. Here, we investigate the role of hemoglobins in adaptation to ocean depth in the diverse teleost order Gadiformes, with species distributed at a wide range of depths varying in temperature, hydrostatic pressure and oxygen levels. Using genomic data we characterized the full hemoglobin (Hb) gene repertoire for subset of species within this lineage. We discovered a correlation between expanded numbers of Hb genes and ocean depth, with the highest numbers in species occupying shallower, epipelagic regions. Moreover, we demonstrate that the Hb genes have functionally diverged through diversifying selection. Our results suggest that the more variable environment in shallower water has led to selection for a larger Hb gene repertoire and that Hbs have a key role in adaptive processes in marine environments.
Collapse
Affiliation(s)
- Helle Tessand Baalsrud
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Kjetil Lysne Voje
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Ole Kristian Tørresen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Monica Hongrø Solbakken
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Michael Matschiner
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway.,Institute of Fisheries Ecology, Johann Heinrich von Thünen-Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Hamburg, Germany
| | - Martin Malmstrøm
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Reinhold Hanel
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Walter Salzburger
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway.,Institute of Fisheries Ecology, Johann Heinrich von Thünen-Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries, Hamburg, Germany
| | - Kjetill S Jakobsen
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway. .,Department of Natural Sciences, Centre for Coastal Research, University of Agder, Kristiansand, Norway.
| |
Collapse
|
26
|
Regulation of blood oxygen transport in hibernating mammals. J Comp Physiol B 2017; 187:847-856. [DOI: 10.1007/s00360-017-1085-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/19/2016] [Accepted: 03/07/2017] [Indexed: 12/23/2022]
|
27
|
Simoniello P, Esposito MG, Trinchella F, Motta CM, Scudiero R. Alterations in brain morphology and HSP70 expression in lizard embryos exposed to thermal stress. C R Biol 2016; 339:380-90. [DOI: 10.1016/j.crvi.2016.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/30/2016] [Accepted: 07/13/2016] [Indexed: 12/25/2022]
|
28
|
Val AL, Paula-Silva MDN, Almeida-Val VMF, Wood CM. In vitro effects of increased temperature and decreased pH on blood oxygen affinity of 10 fish species of the Amazon. JOURNAL OF FISH BIOLOGY 2016; 89:264-279. [PMID: 27264614 DOI: 10.1111/jfb.13009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 04/07/2016] [Indexed: 06/05/2023]
Abstract
Blood-O2 affinities (P50 ) were measured over a physiologically relevant pH range at 31 (highest temperature average of Rio Negro over the last 8 years), 33 and 35° C for 10 species of the Rio Negro, aiming to test the acute effects of temperature foreseen by the IPCC (Intergovernmental Panel on Climate Change) for coming years. The animals were collected during an expedition to the Anavilhanas Islands of the Rio Negro, 110 km upstream from Manaus (2° 23' 41″ S; 60° 55' 14″ W). Hoplias malabaricus showed higher blood-O2 sensitivity to pH changes (Bohr effect, Φ = Δlog10 P50 ΔpH(-1) ) at both 31° C (Φ = -0·44) and 35° C (Φ = -0·26) compared to Osteoglossum bicirrhosum (Φ = -0·54 at 31° C and Φ = -0·58 at 35° C), but lower P50 under most conditions, and a greater sensitivity of P50 to temperature. Two out of the 10 analysed species had significant increases of P50 (lower blood-O2 affinity) at the highest temperature throughout the pH range tested. For all other species, a minor increase of P50 over the assay-tested temperatures was observed, although all presented a normal Bohr effect. Overall, a diversity of intensities of pH and temperature effects on blood-O2 affinities was observed, which seems to be connected to the biological characteristics of the analysed species. Thermal disturbances in their habitats, likely to occur due to the global warming, would impair blood-O2 binding and unloading in some of the analysed fish species. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- A L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, AM, Brazil
| | - M de N Paula-Silva
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, AM, Brazil
| | - V M F Almeida-Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, AM, Brazil
| | - C M Wood
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon, Manaus, AM, Brazil
- Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
29
|
Benedik PS, Hamlin SK. The physiologic role of erythrocytes in oxygen delivery and implications for blood storage. Crit Care Nurs Clin North Am 2016; 26:325-35. [PMID: 25169686 DOI: 10.1016/j.ccell.2014.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Erythrocytes are not just oxygen delivery devices but play an active metabolic role in modulating microvascular blood flow. Hemoglobin and red blood cell morphology change as local oxygen levels fall, eliciting the release of adenosine triphosphate and nitric oxide to initiate local vasodilation. Aged erythrocytes undergo physical and functional changes such that some of the red cell's most physiologically helpful attributes are diminished. This article reviews the functional anatomy and applied physiology of the erythrocyte and the microcirculation with an emphasis on how erythrocytes modulate microvascular function. The effects of cell storage on the metabolic functions of the erythrocyte are also briefly discussed.
Collapse
Affiliation(s)
- Penelope S Benedik
- Department of Acute and Continuing Care, School of Nursing, University of Texas Health Science Center at Houston, 6901 Bertner Street, SON 682, Houston, TX 77030, USA.
| | - Shannan K Hamlin
- Nursing Research and Evidence-Based Practice, Houston Methodist Hospital, 6565 Fannin, MGJ 11-017, Houston, TX 77030, USA
| |
Collapse
|
30
|
Jensen B, Storz JF, Fago A. Bohr effect and temperature sensitivity of hemoglobins from highland and lowland deer mice. Comp Biochem Physiol A Mol Integr Physiol 2016; 195:10-4. [PMID: 26808972 DOI: 10.1016/j.cbpa.2016.01.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/20/2016] [Accepted: 01/20/2016] [Indexed: 01/30/2023]
Abstract
An important means of physiological adaptation to environmental hypoxia is an increased oxygen (O2) affinity of the hemoglobin (Hb) that can help secure high O2 saturation of arterial blood. However, the trade-off associated with a high Hb-O2 affinity is that it can compromise O2 unloading in the systemic capillaries. High-altitude deer mice (Peromyscus maniculatus) have evolved an increased Hb-O2 affinity relative to lowland conspecifics, but it is not known whether they have also evolved compensatory mechanisms to facilitate O2 unloading to respiring tissues. Here we investigate the effects of pH (Bohr effect) and temperature on the O2-affinity of high- and low-altitude deer mouse Hb variants, as these properties can potentially facilitate O2 unloading to metabolizing tissues. Our experiments revealed that Bohr factors for the high- and low-altitude Hb variants are very similar in spite of the differences in O2-affinity. The Bohr factors of deer mouse Hbs are also comparable to those of other mammalian Hbs. In contrast, the high- and low-altitude variants of deer mouse Hb exhibited similarly low temperature sensitivities that were independent of red blood cell anionic cofactors, suggesting an appreciable endothermic allosteric transition upon oxygenation. In conclusion, high-altitude deer mice have evolved an adaptive increase in Hb-O2 affinity, but this is not associated with compensatory changes in sensitivity to changes in pH or temperature. Instead, it appears that the elevated Hb-O2 affinity in high-altitude deer mice is compensated by an associated increase in the tissue diffusion capacity of O2 (via increased muscle capillarization), which promotes O2 unloading.
Collapse
Affiliation(s)
- Birgitte Jensen
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| | - Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
31
|
Storz JF, Natarajan C, Moriyama H, Hoffmann FG, Wang T, Fago A, Malte H, Overgaard J, Weber RE. Oxygenation properties and isoform diversity of snake hemoglobins. Am J Physiol Regul Integr Comp Physiol 2015; 309:R1178-91. [PMID: 26354849 DOI: 10.1152/ajpregu.00327.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/02/2015] [Indexed: 11/22/2022]
Abstract
Available data suggest that snake hemoglobins (Hbs) are characterized by a combination of unusual structural and functional properties relative to the Hbs of other amniote vertebrates, including oxygenation-linked tetramer-dimer dissociation. However, standardized comparative data are lacking for snake Hbs, and the Hb isoform composition of snake red blood cells has not been systematically characterized. Here we present the results of an integrated analysis of snake Hbs and the underlying α- and β-type globin genes to characterize 1) Hb isoform composition of definitive erythrocytes, and 2) the oxygenation properties of isolated isoforms as well as composite hemolysates. We used species from three families as subjects for experimental studies of Hb function: South American rattlesnake, Crotalus durissus (Viperidae); Indian python, Python molurus (Pythonidae); and yellow-bellied sea snake, Pelamis platura (Elapidae). We analyzed allosteric properties of snake Hbs in terms of the Monod-Wyman-Changeux model and Adair four-step thermodynamic model. Hbs from each of the three species exhibited high intrinsic O2 affinities, low cooperativities, small Bohr factors in the absence of phosphates, and high sensitivities to ATP. Oxygenation properties of the snake Hbs could be explained entirely by allosteric transitions in the quaternary structure of intact tetramers, suggesting that ligation-dependent dissociation of Hb tetramers into αβ-dimers is not a universal feature of snake Hbs. Surprisingly, the major Hb isoform of the South American rattlesnake is homologous to the minor HbD of other amniotes and, contrary to the pattern of Hb isoform differentiation in birds and turtles, exhibits a lower O2 affinity than the HbA isoform.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska;
| | | | - Hideaki Moriyama
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska
| | - Federico G Hoffmann
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Starkville, Mississippi; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, Mississippi; and
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Hans Malte
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Johannes Overgaard
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
32
|
Campbell K, Hofreiter M. Resurrecting phenotypes from ancient DNA sequences: promises and perspectives. CAN J ZOOL 2015. [DOI: 10.1139/cjz-2014-0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anatomical changes in extinct mammalian lineages over evolutionary time, such as the loss of fingers and teeth and the rapid increase in body size that accompanied the late Miocene dispersal of the progenitors of Steller’s sea cows (Hydrodamalis gigas (Zimmermann, 1780)) into North Pacific waters and the convergent development of a thick pelage and accompanying reductions in ear and tail surface area of woolly mammoths (Mammuthus primigenius (Blumenbach, 1799)) and woolly rhinoceros (Coelodonta antiquitatis (Blumenbach, 1799)), are prime examples of adaptive evolution underlying the exploitation of new habitats. It is likely, however, that biochemical specializations adopted during these evolutionary transitions were of similar or even greater biological importance. As these “living” processes do not fossilize, direct information regarding the physiological attributes of extinct species has largely remained beyond the range of scientific inquiry. However, the ability to retrieve genomic sequences from ancient DNA samples, combined with ectopic expression systems, now permit the evolutionary origins and structural and functional properties of authentic prehistoric proteins to be examined in great detail. Exponential technical advances in ancient DNA retrieval, enrichment, and sequencing will soon permit targeted generation of complete genomes from hundreds of extinct species across the last one million years that, in combination with emerging in vitro expression, genome engineering, and cell differentiation techniques, promises to herald an exciting new trajectory of evolutionary research at the interface of biochemistry, genomics, palaeontology, and cell biology.
Collapse
Affiliation(s)
- K.L. Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - M. Hofreiter
- Faculty of Mathematics and Life Sciences, Institute of Biochemistry and Biology, Unit of General Zoology–Evolutionary Adaptive Genomics, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476 Potsdam, Germany
| |
Collapse
|
33
|
Damsgaard C, Phuong LM, Huong DTT, Jensen FB, Wang T, Bayley M. High affinity and temperature sensitivity of blood oxygen binding in Pangasianodon hypophthalmus due to lack of chloride-hemoglobin allosteric interaction. Am J Physiol Regul Integr Comp Physiol 2015; 308:R907-15. [PMID: 25810388 DOI: 10.1152/ajpregu.00470.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 03/23/2015] [Indexed: 01/19/2023]
Abstract
Air-breathing fishes represent interesting organisms in terms of understanding the physiological changes associated with the terrestrialization of vertebrates, and, further, are of great socio-economic importance for aquaculture in Southeast Asia. To understand how environmental factors, such as high temperature, affect O2 transport in air-breathing fishes, this study assessed the effects of temperature on O2 binding of blood and Hb in the economically important air-breathing fish Pangasianodon hypophthalmus. To determine blood O2 binding properties, blood was drawn from resting cannulated fishes and O2 binding curves made at 25°C and 35°C. To determine the allosteric regulation and thermodynamics of Hb O2 binding, Hb was purified, and O2 equilibria were recorded at five temperatures in the absence and presence of ATP and Cl(-). Whole blood had a high O2 affinity (O2 tension at half saturation P50 = 4.6 mmHg at extracellular pH 7.6 and 25°C), a high temperature sensitivity of O2 binding (apparent heat of oxygenation ΔH(app) = -28.3 kcal/mol), and lacked a Root effect. Further, the data on Hb revealed weak ATP binding and a complete lack of Cl(-) binding to Hb, which, in part, explains the high O2 affinity and high temperature sensitivity of blood O2 binding. This study demonstrates how a potent mechanism for increasing O2 affinity is linked to increased temperature sensitivity of O2 transport and provides a basic framework for a better understanding of how hypoxia-adapted species will react to increasing temperatures.
Collapse
Affiliation(s)
- Christian Damsgaard
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark;
| | - Le My Phuong
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark; College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Do Thi Thanh Huong
- College of Aquaculture and Fisheries, Can Tho University, Can Tho City, Vietnam
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Odense, Denmark; and
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - Mark Bayley
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Oellermann M, Lieb B, Pörtner HO, Semmens JM, Mark FC. Blue blood on ice: modulated blood oxygen transport facilitates cold compensation and eurythermy in an Antarctic octopod. Front Zool 2015; 12:6. [PMID: 25897316 PMCID: PMC4403823 DOI: 10.1186/s12983-015-0097-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 02/16/2015] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The Antarctic Ocean hosts a rich and diverse fauna despite inhospitable temperatures close to freezing, which require specialist adaptations to sustain animal activity and various underlying body functions. While oxygen transport has been suggested to be key in setting thermal tolerance in warmer climates, this constraint is relaxed in Antarctic fishes and crustaceans, due to high levels of dissolved oxygen. Less is known about how other Antarctic ectotherms cope with temperatures near zero, particularly the more active invertebrates like the abundant octopods. A continued reliance on the highly specialised blood oxygen transport system of cephalopods may concur with functional constraints at cold temperatures. We therefore analysed the octopod's central oxygen transport component, the blue blood pigment haemocyanin, to unravel strategies that sustain oxygen supply at cold temperatures. RESULTS To identify adaptive compensation of blood oxygen transport in octopods from different climatic regions, we compared haemocyanin oxygen binding properties, oxygen carrying capacities as well as haemolymph protein and ion composition between the Antarctic octopod Pareledone charcoti, the South-east Australian Octopus pallidus and the Mediterranean Eledone moschata. In the Antarctic Pareledone charcoti at 0°C, oxygen unloading by haemocyanin was poor but supported by high levels of dissolved oxygen. However, lower oxygen affinity and higher oxygen carrying capacity compared to warm water octopods, still enabled significant contribution of haemocyanin to oxygen transport at 0°C. At warmer temperatures, haemocyanin of Pareledone charcoti releases most of the bound oxygen, supporting oxygen supply at 10°C. In warm water octopods, increasing oxygen affinities reduce the ability to release oxygen from haemocyanin at colder temperatures. Though, unlike Eledone moschata, Octopus pallidus attenuated this increase below 15°C. CONCLUSIONS Adjustments of haemocyanin physiological function and haemocyanin concentrations but also high dissolved oxygen concentrations support oxygen supply in the Antarctic octopus Pareledone charcoti at near freezing temperatures. Increased oxygen supply by haemocyanin at warmer temperatures supports extended warm tolerance and thus eurythermy of Pareledone charcoti. Limited haemocyanin function towards colder temperatures in Antarctic and warm water octopods highlights the general role of haemocyanin oxygen transport in constraining cold tolerance in octopods.
Collapse
Affiliation(s)
- Michael Oellermann
- />Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Bernhard Lieb
- />Institute of Zoology, Johannes Gutenberg-Universität, Müllerweg 6, 55099 Mainz, Germany
| | - Hans-O Pörtner
- />Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Jayson M Semmens
- />Fisheries, Aquaculture and Coasts Centre, Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Hobart, Tasmania 7001 Australia
| | - Felix C Mark
- />Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
35
|
Lilly LE, Bonaventura J, Lipnick MS, Block BA. Effect of temperature acclimation on red blood cell oxygen affinity in Pacific bluefin tuna (Thunnus orientalis) and yellowfin tuna (Thunnus albacares). Comp Biochem Physiol A Mol Integr Physiol 2015; 181:36-44. [DOI: 10.1016/j.cbpa.2014.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/17/2014] [Accepted: 11/18/2014] [Indexed: 11/16/2022]
|
36
|
Mateják M, Kulhánek T, Matoušek S. Adair-based hemoglobin equilibrium with oxygen, carbon dioxide and hydrogen ion activity. Scandinavian Journal of Clinical and Laboratory Investigation 2015; 75:113-20. [DOI: 10.3109/00365513.2014.984320] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Malte CL, Jakobsen SL, Wang T. A critical evaluation of automated blood gas measurements in comparative respiratory physiology. Comp Biochem Physiol A Mol Integr Physiol 2014; 178:7-17. [DOI: 10.1016/j.cbpa.2014.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/23/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
|
38
|
Weber RE, Fago A, Campbell KL. Enthalpic partitioning of the reduced temperature sensitivity of O2 binding in bovine hemoglobin. Comp Biochem Physiol A Mol Integr Physiol 2014; 176:20-5. [PMID: 24983927 DOI: 10.1016/j.cbpa.2014.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/09/2014] [Accepted: 06/19/2014] [Indexed: 11/19/2022]
Abstract
The oxygenation enthalpy of the heme groups of hemoglobin (Hb) is inherently exothermic, resulting in decreased Hb-O2 affinity with rising temperature. However, oxygenation is coupled with endothermic dissociation of allosteric effectors (e.g. protons, chloride ions and organic phosphates) from the protein, which reduces the overall oxygenation enthalpy. The evolution of Hbs with reduced temperature sensitivity ostensibly safeguards O2 unloading in cold extremities of regionally-heterothermic vertebrates permitting energy-saving reductions in heat loss. Ungulate (e.g. bovine) Hbs have long served as a model system in this regard in that they exhibit numerically low oxygenation enthalpies that are thought to correlate with the presence of an additional Cl(-) binding site (compared to human Hb) comprised of three cationic residues at positions 8, 76 and 77 of the β-chains of Hb. However, ungulate Hbs also exhibit distinctive amino acid exchanges at the N-termini of the β-chains that stabilize the low-affinity deoxystructure of the Hb, mimicking the action of organic phosphates. In order to assess the relative contributions from these two effects, we measured the temperature sensitivity of Hb-O2 affinity in bovine and human Hbs in the absence and presence of Cl(-) ions under strictly controlled pH conditions. The data indicate that Cl(-)-binding accounts for a minority (~30%) of the total reduction in the oxygenation enthalpy manifested in bovine compared to human Hb, whereas the majority of this reduction is ascribable to structural differences, including increased β-chain hydrophobicity that would increase the heat of oxygenation-linked conformational change in bovine Hb.
Collapse
Affiliation(s)
- Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, DK 8000 Aarhus C, Denmark.
| | - Angela Fago
- Zoophysiology, Department of Bioscience, Aarhus University, DK 8000 Aarhus C, Denmark.
| | - Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada.
| |
Collapse
|
39
|
Revsbech IG, Tufts DM, Projecto-Garcia J, Moriyama H, Weber RE, Storz JF, Fago A. Hemoglobin function and allosteric regulation in semi-fossorial rodents (family Sciuridae) with different altitudinal ranges. ACTA ACUST UNITED AC 2014; 216:4264-71. [PMID: 24172889 DOI: 10.1242/jeb.091397] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Semi-fossorial ground squirrels face challenges to respiratory gas transport associated with the chronic hypoxia and hypercapnia of underground burrows, and such challenges are compounded in species that are native to high altitude. During hibernation, such species must also contend with vicissitudes of blood gas concentrations and plasma pH caused by episodic breathing. Here, we report an analysis of hemoglobin (Hb) function in six species of marmotine ground squirrels with different altitudinal distributions. Regardless of their native altitude, all species have high Hb-O2 affinities, mainly due to suppressed sensitivities to allosteric effectors [2,3-diphosphoglycerate (DPG) and chloride ions]. This suppressed anion sensitivity is surprising given that all canonical anion-binding sites are conserved. Two sciurid species, the golden-mantled and thirteen-lined ground squirrel, have Hb-O2 affinities that are characterized by high pH sensitivity and low thermal sensitivity relative to the Hbs of humans and other mammals. The pronounced Bohr effect is surprising in light of highly unusual amino acid substitutions at the C-termini that are known to abolish the Bohr effect in human HbA. Taken together, the high O2 affinity of sciurid Hbs suggests an enhanced capacity for pulmonary O2 loading under hypoxic and hypercapnic conditions, while the large Bohr effect should help to ensure efficient O2 unloading in tissue capillaries. In spite of the relatively low thermal sensitivities of the sciurid Hbs, our results indicate that the effect of hypothermia on Hb oxygenation is the main factor contributing to the increased blood-O2 affinity in hibernating ground squirrels.
Collapse
Affiliation(s)
- Inge G Revsbech
- Zoophysiology, Department of Bioscience, Aarhus University, C.F. Møllers Allè 3, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
40
|
Enthalpic consequences of reduced chloride binding in Andean frog (Telmatobius peruvianus) hemoglobin. J Comp Physiol B 2014; 184:613-21. [DOI: 10.1007/s00360-014-0823-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 10/25/2022]
|
41
|
Meier K, Hansen MM, Normandeau E, Mensberg KLD, Frydenberg J, Larsen PF, Bekkevold D, Bernatchez L. Local adaptation at the transcriptome level in brown trout: evidence from early life history temperature genomic reaction norms. PLoS One 2014; 9:e85171. [PMID: 24454810 PMCID: PMC3891768 DOI: 10.1371/journal.pone.0085171] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 11/23/2013] [Indexed: 01/19/2023] Open
Abstract
Local adaptation and its underlying molecular basis has long been a key focus in evolutionary biology. There has recently been increased interest in the evolutionary role of plasticity and the molecular mechanisms underlying local adaptation. Using transcriptome analysis, we assessed differences in gene expression profiles for three brown trout (Salmo trutta) populations, one resident and two anadromous, experiencing different temperature regimes in the wild. The study was based on an F2 generation raised in a common garden setting. A previous study of the F1 generation revealed different reaction norms and significantly higher QST than FST among populations for two early life-history traits. In the present study we investigated if genomic reaction norm patterns were also present at the transcriptome level. Eggs from the three populations were incubated at two temperatures (5 and 8 degrees C) representing conditions encountered in the local environments. Global gene expression for fry at the stage of first feeding was analysed using a 32k cDNA microarray. The results revealed differences in gene expression between populations and temperatures and population × temperature interactions, the latter indicating locally adapted reaction norms. Moreover, the reaction norms paralleled those observed previously at early life-history traits. We identified 90 cDNA clones among the genes with an interaction effect that were differently expressed between the ecologically divergent populations. These included genes involved in immune- and stress response. We observed less plasticity in the resident as compared to the anadromous populations, possibly reflecting that the degree of environmental heterogeneity encountered by individuals throughout their life cycle will select for variable level of phenotypic plasticity at the transcriptome level. Our study demonstrates the usefulness of transcriptome approaches to identify genes with different temperature reaction norms. The responses observed suggest that populations may vary in their susceptibility to climate change.
Collapse
Affiliation(s)
- Kristian Meier
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Eric Normandeau
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Québec, Canada
| | - Karen-Lise D. Mensberg
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jane Frydenberg
- Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | | | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Louis Bernatchez
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Pavillon Charles-Eugène-Marchand, Université Laval, Québec, Canada
| |
Collapse
|
42
|
Weber RE, Fago A, Malte H, Storz JF, Gorr TA. Lack of conventional oxygen-linked proton and anion binding sites does not impair allosteric regulation of oxygen binding in dwarf caiman hemoglobin. Am J Physiol Regul Integr Comp Physiol 2013; 305:R300-12. [PMID: 23720132 PMCID: PMC3743003 DOI: 10.1152/ajpregu.00014.2013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/22/2013] [Indexed: 11/22/2022]
Abstract
In contrast to other vertebrate hemoglobins (Hbs) whose high intrinsic O2 affinities are reduced by red cell allosteric effectors (mainly protons, CO2, organic phosphates, and chloride ions), crocodilian Hbs exhibit low sensitivity to organic phosphates and high sensitivity to bicarbonate (HCO3(-)), which is believed to augment Hb-O2 unloading during diving and postprandial alkaline tides when blood HCO3(-) levels and metabolic rates increase. Examination of α- and β-globin amino acid sequences of dwarf caiman (Paleosuchus palpebrosus) revealed a unique combination of substitutions at key effector binding sites compared with other vertebrate and crocodilian Hbs: β82Lys→Gln, β143His→Val, and β146His→Tyr. These substitutions delete positive charges and, along with other distinctive changes in residue charge and polarity, may be expected to disrupt allosteric regulation of Hb-O2 affinity. Strikingly, however, P. palpebrosus Hb shows a strong Bohr effect, and marked deoxygenation-linked binding of organic phosphates (ATP and DPG) and CO2 as carbamate (contrasting with HCO3(-) binding in other crocodilians). Unlike other Hbs, it polymerizes to large complexes in the oxygenated state. The highly unusual properties of P. palpebrosus Hb align with a high content of His residues (potential sites for oxygenation-linked proton binding) and distinctive surface Cys residues that may form intermolecular disulfide bridges upon polymerization. On the basis of its singular properties, P. palpebrosus Hb provides a unique opportunity for studies on structure-function coupling and the evolution of compensatory mechanisms for maintaining tissue O2 delivery in Hbs that lack conventional effector-binding residues.
Collapse
Affiliation(s)
- Roy E Weber
- Zoophysiology, Department of Bioscience, Aarhus University, Aarhus, Denmark.
| | | | | | | | | |
Collapse
|
43
|
Meir JU, Milsom WK. High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose. ACTA ACUST UNITED AC 2013; 216:2172-5. [PMID: 23470665 DOI: 10.1242/jeb.085282] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The bar-headed goose (Anser indicus) crosses the Himalaya twice a year at altitudes where oxygen (O2) levels are less than half those at sea level and temperatures are below -20°C. Although it has been known for over three decades that the major hemoglobin (Hb) component of bar-headed geese has an increased affinity for O2, enhancing O2 uptake, the effects of temperature and interactions between temperature and pH on bar-headed goose Hb-O2 affinity have not previously been determined. An increase in breathing of the hypoxic and extremely cold air experienced by a bar-headed goose at altitude (due to the enhanced hypoxic ventilatory response in this species) could result in both reduced temperature and reduced levels of CO2 at the blood-gas interface in the lungs, enhancing O2 loading. In addition, given the strenuous nature of flapping flight, particularly in thin air, blood leaving the exercising muscle should be warm and acidotic, facilitating O2 unloading. To explore the possibility that features of blood biochemistry in this species could further enhance O2 delivery, we determined the P50 (the partial pressure of O2 at which Hb is 50% saturated) of whole blood from bar-headed geese under conditions of varying temperature and [CO2]. We found that blood-O2 affinity was highly temperature sensitive in bar-headed geese compared with other birds and mammals. Based on our analysis, temperature and pH effects acting on blood-O2 affinity (cold alkalotic lungs and warm acidotic muscle) could increase O2 delivery by twofold during sustained flapping flight at high altitudes compared with what would be delivered by blood at constant temperature and pH.
Collapse
Affiliation(s)
- Jessica U Meir
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, BC, Canada, V6T 1Z4.
| | | |
Collapse
|
44
|
Szczesny P, Mykowiecka A, Pawłowski K, Grynberg M. Distinct protein classes in human red cell proteome revealed by similarity of phylogenetic profiles. PLoS One 2013; 8:e54471. [PMID: 23349899 PMCID: PMC3549994 DOI: 10.1371/journal.pone.0054471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 12/12/2012] [Indexed: 01/16/2023] Open
Abstract
The minimal set of proteins necessary to maintain a vertebrate cell forms an interesting core of cellular machinery. The known proteome of human red blood cell consists of about 1400 proteins. We treated this protein complement of one of the simplest human cells as a model and asked the questions on its function and origins. The proteome was mapped onto phylogenetic profiles, i.e. vectors of species possessing homologues of human proteins. A novel clustering approach was devised, utilising similarity in the phylogenetic spread of homologues as distance measure. The clustering based on phylogenetic profiles yielded several distinct protein classes differing in phylogenetic taxonomic spread, presumed evolutionary history and functional properties. Notably, small clusters of proteins common to vertebrates or Metazoa and other multicellular eukaryotes involve biological functions specific to multicellular organisms, such as apoptosis or cell-cell signaling, respectively. Also, a eukaryote-specific cluster is identified, featuring GTP-ase signalling and ubiquitination. Another cluster, made up of proteins found in most organisms, including bacteria and archaea, involves basic molecular functions such as oxidation-reduction and glycolysis. Approximately one third of erythrocyte proteins do not fall in any of the clusters, reflecting the complexity of protein evolution in comparison to our simple model. Basically, the clustering obtained divides the proteome into old and new parts, the former originating from bacterial ancestors, the latter from inventions within multicellular eukaryotes. Thus, the model human cell proteome appears to be made up of protein sets distinct in their history and biological roles. The current work shows that phylogenetic profiles concept allows protein clustering in a way relevant both to biological function and evolutionary history.
Collapse
Affiliation(s)
- Paweł Szczesny
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Plant Molecular Biology, Institute of Experimental Plant Biology, University of Warsaw, Warsaw, Poland
| | | | - Krzysztof Pawłowski
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (MG); (KP)
| | - Marcin Grynberg
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (MG); (KP)
| |
Collapse
|
45
|
Nikinmaa M. Climate change and ocean acidification-interactions with aquatic toxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:365-72. [PMID: 23063067 DOI: 10.1016/j.aquatox.2012.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 05/16/2023]
Abstract
The possibilities for interactions between toxicants and ocean acidification are reviewed from two angles. First, it is considered how toxicant responses may affect ocean acidification by influencing the carbon dioxide balance. Second, it is introduced, how the possible changes in environmental conditions (temperature, pH and oxygenation), expected to be associated with climate change and ocean acidification, may interact with the toxicant responses of organisms, especially fish. One significant weakness in available data is that toxicological research has seldom been connected with ecological and physiological/biochemical research evaluating the responses of organisms to temperature, pH or oxygenation changes occurring in the natural environment. As a result, although there are significant potential interactions between toxicants and natural environmental responses pertaining to climate change and ocean acidification, it is very poorly known if such interactions actually occur, and can be behind the observed disturbances in the function and distribution of organisms in our seas.
Collapse
|
46
|
Noguchi H, Campbell KL, Ho C, Unzai S, Park SY, Tame JRH. Structures of haemoglobin from woolly mammoth in liganded and unliganded states. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1441-9. [PMID: 23090393 DOI: 10.1107/s0907444912029459] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 06/28/2012] [Indexed: 11/11/2022]
Abstract
The haemoglobin (Hb) of the extinct woolly mammoth has been recreated using recombinant genes expressed in Escherichia coli. The globin gene sequences were previously determined using DNA recovered from frozen cadavers. Although highly similar to the Hb of existing elephants, the woolly mammoth protein shows rather different responses to chloride ions and temperature. In particular, the heat of oxygenation is found to be much lower in mammoth Hb, which appears to be an adaptation to the harsh high-latitude climates of the Pleistocene Ice Ages and has been linked to heightened sensitivity of the mammoth protein to protons, chloride ions and organic phosphates relative to that of Asian elephants. To elucidate the structural basis for the altered homotropic and heterotropic effects, the crystal structures of mammoth Hb have been determined in the deoxy, carbonmonoxy and aquo-met forms. These models, which are the first structures of Hb from an extinct species, show many features reminiscent of human Hb, but underline how the delicate control of oxygen affinity relies on much more than simple overall quaternary-structure changes.
Collapse
Affiliation(s)
- Hiroki Noguchi
- Protein Design Laboratory, Yokohama City University, Suehiro 1-7-29, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Signore AV, Stetefeld J, Weber RE, Campbell KL. Origin and mechanism of thermal insensitivity in mole hemoglobins: a test of the 'additional' chloride binding site hypothesis. ACTA ACUST UNITED AC 2012; 215:518-25. [PMID: 22246260 DOI: 10.1242/jeb.063669] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The structural and evolutionary origins underlying the effect of temperature on the O(2) binding properties of mammalian hemoglobins (Hbs) are poorly understood, despite their potential physiological importance. Previous work has shown that the O(2) affinities of the blood of the coast mole (Scapanus orarius) and the eastern mole (Scalopus aquaticus) are significantly less sensitive to temperature changes than that of the star-nosed mole (Condylura cristata). It was suggested that this difference may arise from the binding of 'additional' chloride ions within a cationic pocket between residues 8His, 76Lys and 77Asn on the β-like δ-globin chains of coast and eastern mole Hbs. To test this hypothesis, we deduced the primary sequences of star-nosed mole and American shrew mole (Neurotrichus gibbsii) Hb, measured the sensitivity of these respiratory proteins to allosteric effector molecules and temperature, and calculated their overall oxygenation enthalpies (ΔH'). Here we show that the variability in ΔH' seen among mole Hbs cannot be attributed to differential Cl(-) binding at δ8, δ76 and δ77, as the Cl(-) sensitivity of mole Hbs is unaffected by amino acid changes at this site (i.e. the proposed 'additional' Cl- binding site is not operational in mole Hbs). Rather, we demonstrate that the numerically low ΔH' of coast and eastern mole Hbs results from heightened proton binding relative to other mole Hbs. Comparative sequence analysis and molecular modelling moreover suggest that this attribute evolved in a common ancestor of these two fossorial lineages and arises from the development of a salt bridge between a pair of amino acid residues (δ125His and α34Glu/Asp) that are not present in other mole Hbs.
Collapse
Affiliation(s)
- Anthony V Signore
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, Manitoba R3T 2N2, Canada
| | | | | | | |
Collapse
|
48
|
Fähling M, Persson PB. Oxygen sensing, uptake, delivery, consumption and related disorders. Acta Physiol (Oxf) 2012; 205:191-3. [PMID: 22520692 DOI: 10.1111/j.1748-1716.2012.02432.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- M. Fähling
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin; Germany
| | - P. B. Persson
- Institute of Vegetative Physiology; Charité-Universitaetsmedizin Berlin; Berlin; Germany
| |
Collapse
|
49
|
Campbell KL, Signore AV, Harada M, Weber RE. Molecular and physicochemical characterization of hemoglobin from the high-altitude Taiwanese brown-toothed shrew (Episoriculus fumidus). J Comp Physiol B 2012; 182:821-9. [PMID: 22481377 DOI: 10.1007/s00360-012-0659-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 02/07/2012] [Accepted: 03/10/2012] [Indexed: 10/28/2022]
Abstract
Red-toothed shrews (subfamily Soricinae) exhibit the highest mass-specific rates of O₂ consumption recorded among eutherian mammals, though surprisingly no data appears to be available on the functional characteristics of their hemoglobin (Hb). As a first step in addressing this shortcoming, we investigated the O₂ binding characteristics of Taiwanese brown-toothed shrew (Episoriculus fumidus) Hb and its temperature and pH dependence in the absence and presence of anionic red blood cell effectors. Although comparative data regarding the intrinsic O₂ affinity of other shrew species are currently unavailable, our data suggest that the sensitivity of this high-elevation endemic species' Hb to allosteric effector molecules is similar to that of the two lowland species of white-toothed (crocidurine) shrews examined to date. The efficient exploitation of blood O₂ reserves by E. fumidus appears to be achieved via synergistic modulation of O₂ affinity by Cl⁻ and organic phosphates that moreover dramatically lowers the overall enthalpy of oxygenation of their Hb. Oxygen unloading is presumably further enhanced by a relatively high Bohr effect (ΔLog P₅₀/ΔpH = -0.69) and marked reduction in the titratable histidine content (predicted low proton buffering value) of the component globin chains relative to human HbA. Notably, however, the limited data available suggest these latter attributes may be widespread among shrews and hence likely are not adaptations to chronic altitudinal hypoxia per se.
Collapse
Affiliation(s)
- Kevin L Campbell
- Department of Biological Sciences, University of Manitoba, 50 Sifton Road, Winnipeg, MB R3T 2N2, Canada.
| | | | | | | |
Collapse
|
50
|
|