1
|
Shang J, Jiao J, Wang J, Yan M, Li Q, Shabuerjiang L, Huang G, Song Q, Wen Y, Zhang X, Wu K, Cui Y, Liu X. Chrysin inhibits ferroptosis of cerebral ischemia/reperfusion injury via regulating HIF-1α/CP loop. Biomed Pharmacother 2024; 174:116500. [PMID: 38555815 DOI: 10.1016/j.biopha.2024.116500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024] Open
Abstract
Chrysin is a natural flavonoid with powerful neuroprotective capacity. Cerebral ischemia/reperfusion injury (CIRI) is associated with oxidative stress and ferroptosis. Hypoxia-inducible factor 1α (HIF-1α) and ceruloplasmin (CP) are the critical targets for oxidation reactions and iron transport. But the regulatory mechanism between them is still unclear. Transient middle cerebral artery occlusion (tMCAO) model in rats and oxygen and glucose deprivation/re-oxygenation (OGD/R) model in PC12 cells were applied. Pathological tissue staining and biochemical kit were used to evaluate the effect of chrysin. The relationship between HIF-1α and CP was verified by transcriptomics, qRT-PCR and Western blot. In CIRI, HIF-1α/CP loop was discovered to be the regulatory pathway of ferroptosis. CIRI led to activation and nuclear translocation of HIF-1α, which promoted CP transcription and translation, and downstream ferroptosis. Inhibition of HIF-1α had opposite effect on CP and ferroptosis regulation. Overexpression of CP increased the expression of HIF-1α, nevertheless, inhibited the nuclear translocation of HIF-1α and alleviated CIRI. Silencing CP promoted HIF-1α elevation in nucleus and aggravated CIRI. Mechanistically, chrysin restrained HIF-1α nuclear translocation, thereby inhibiting CP transcription and translation, which in turn reduced downstream HIF-1α expression and mitigated ferroptosis in CIRI. Our results highlight chrysin restrains ferroptosis in CIRI through HIF-1α/CP loop.
Collapse
Affiliation(s)
- Jinfeng Shang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jiakang Jiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jingyi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mingxue Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qiannan Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Lizha Shabuerjiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Guijinfeng Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Qi Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yinlian Wen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaolu Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Kai Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yiran Cui
- Department of pharmacy, Beijing Hospital of Traditional Chinese Medicine Affiliated to Capital Medical University, Beijing 100010, China
| | - Xin Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
2
|
Chrysin protects against cerebral ischemia-reperfusion injury in hippocampus via restraining oxidative stress and transition elements. Biomed Pharmacother 2023; 161:114534. [PMID: 36933376 DOI: 10.1016/j.biopha.2023.114534] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Chrysin is a natural flavonoid compound that has antioxidant and neuroprotective effects. Cerebral ischemia reperfusion (CIR) is closely connected with increased oxidative stress in the hippocampal CA1 region and homeostasis disorder of transition elements such as iron (Fe), copper (Cu) and zinc (Zn). This exploration was conducted to elucidate the antioxidant and neuroprotective effects of chrysin based on transient middle cerebral artery occlusion (tMCAO) in rats. Experimentally, sham group, model group, chrysin (50.0 mg/kg) group, Ginaton (21.6 mg/kg) group, Dimethyloxallyl Glycine (DMOG, 20.0 mg/kg) + chrysin group and DMOG group were devised. The rats in each group were performed to behavioral evaluation, histological staining, biochemical kit detection, and molecular biological detection. The results indicated that chrysin restrained oxidative stress and the rise of transition element levels, and regulated transition element transporter levels in tMCAO rats. DMOG activated hypoxia-inducible factor-1 subunit alpha (HIF-1α), reversed the antioxidant and neuroprotective effects of chrysin, and increased transition element levels. In a word, our findings emphasize that chrysin plays a critical role in protecting CIR injury via inhibiting HIF-1α against enhancive oxidative stress and raised transition metal levels.
Collapse
|
3
|
Martínez de Toda I, González-Sánchez M, Díaz-Del Cerro E, Valera G, Carracedo J, Guerra-Pérez N. Sex differences in markers of oxidation and inflammation. Implications for ageing. Mech Ageing Dev 2023; 211:111797. [PMID: 36868323 DOI: 10.1016/j.mad.2023.111797] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Sexual dimorphism is a key factor to consider in the ageing process given the impact that it has on life expectancy. The oxidative-inflammatory theory of ageing states that the ageing process is the result of the establishment of oxidative stress which, due to the interplay of the immune system, translates into inflammatory stress, and that both processes are responsible for the damage and loss of function of an organism. We show that there are relevant gender differences in a number of oxidative and inflammatory markers and propose that they may account for the differential lifespan between sexes, given that males display, in general, higher oxidation and basal inflammation. In addition, we explain the significant role of circulating cell-free DNA as a marker of oxidative damage and an inductor of inflammation, connecting both processes and having the potential to become a useful ageing marker. Finally, we discuss how oxidative and inflammatory changes take place differentially with ageing in each sex, which could also have an impact on the sex-differential lifespan. Further research including sex as an essential variable is needed to understand the grounds of sex differences in ageing and to better comprehend ageing itself.
Collapse
Affiliation(s)
- Irene Martínez de Toda
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Mónica González-Sánchez
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Gemma Valera
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Julia Carracedo
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| | - Natalia Guerra-Pérez
- Department of Genetics, Physiology, and Microbiology. Unit of Animal Physiology, Faculty of Biology, Complutense University of Madrid, 28040 Madrid, Spain; Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain.
| |
Collapse
|
4
|
Roy C, Avril S, Legendre C, Lelièvre B, Vellenriter H, Boni S, Cayon J, Guillet C, Guilloux Y, Chérel M, Hindré F, Garcion E. A role for ceruloplasmin in the control of human glioblastoma cell responses to radiation. BMC Cancer 2022; 22:843. [PMID: 35918659 PMCID: PMC9347084 DOI: 10.1186/s12885-022-09808-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/16/2022] [Indexed: 11/08/2022] Open
Abstract
Background Glioblastoma (GB) is the most common and most aggressive malignant brain tumor. In understanding its resistance to conventional treatments, iron metabolism and related pathways may represent a novel avenue. As for many cancer cells, GB cell growth is dependent on iron, which is tightly involved in red-ox reactions related to radiotherapy effectiveness. From new observations indicating an impact of RX radiations on the expression of ceruloplasmin (CP), an important regulator of iron metabolism, the aim of the present work was to study the functional effects of constitutive expression of CP within GB lines in response to beam radiation depending on the oxygen status (21% O2 versus 3% O2). Methods and results After analysis of radiation responses (Hoechst staining, LDH release, Caspase 3 activation) in U251-MG and U87-MG human GB cell lines, described as radiosensitive and radioresistant respectively, the expression of 9 iron partners (TFR1, DMT1, FTH1, FTL, MFRN1, MFRN2, FXN, FPN1, CP) were tested by RTqPCR and western blots at 3 and 8 days following 4 Gy irradiation. Among those, only CP was significantly downregulated, both at transcript and protein levels in the two lines, with however, a weaker effect in the U87-MG, observable at 3% O2. To investigate specific role of CP in GB radioresistance, U251-MG and U87-MG cells were modified genetically to obtain CP depleted and overexpressing cells, respectively. Manipulation of CP expression in GB lines demonstrated impact both on cell survival and on activation of DNA repair/damage machinery (γH2AX); specifically high levels of CP led to increased production of reactive oxygen species, as shown by elevated levels of superoxide anion, SOD1 synthesis and cellular Fe2 + . Conclusions Taken together, these in vitro results indicate for the first time that CP plays a positive role in the efficiency of radiotherapy on GB cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09808-6.
Collapse
Affiliation(s)
- Charlotte Roy
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Sylvie Avril
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Claire Legendre
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Bénédicte Lelièvre
- Centre Régional de Pharmacovigilance, Laboratoire de Pharmacologie-Toxicologie, CHU Angers, 4 rue Larrey, F-49100, Angers, France
| | - Honorine Vellenriter
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France
| | - Sébastien Boni
- Université d'Angers, SFR ICAT, Lentivec, F-49000, Angers, France
| | - Jérôme Cayon
- Université d'Angers, SFR ICAT, PACeM, F-49000, Angers, France
| | | | - Yannick Guilloux
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
| | - Michel Chérel
- Nantes Université, Inserm UMR 1307, CNRS UMR 6075, Université d'Angers, CRCI2NA, F-44000, Nantes, France
| | - François Hindré
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France.,Université d'Angers, SFR ICAT, PRIMEX, F-49000, Angers, France
| | - Emmanuel Garcion
- Université d'Angers, Inserm UMR 1307, CNRS UMR 6075, Nantes Université, CRCI2NA, F-49000, Angers, France. .,Université d'Angers, SFR ICAT, PACeM, F-49000, Angers, France. .,Université d'Angers, SFR ICAT, PRIMEX, F-49000, Angers, France. .,GLIAD - Design and Application of Innovative Local Treatments in Glioblastoma, CRCI2NA, Team 5, Inserm UMR 1307, CNRS UMR 6075, Institut de Biologie en Santé (IBS) - CHU, 4 rue Larrey, Angers, France.
| |
Collapse
|
5
|
Liu Z, Wang M, Zhang C, Zhou S, Ji G. Molecular Functions of Ceruloplasmin in Metabolic Disease Pathology. Diabetes Metab Syndr Obes 2022; 15:695-711. [PMID: 35264864 PMCID: PMC8901420 DOI: 10.2147/dmso.s346648] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/04/2022] [Indexed: 12/12/2022] Open
Abstract
Ceruloplasmin (CP) is a multicopper oxidase and antioxidant that is mainly produced in the liver. CP not only plays a crucial role in the metabolic balance of copper and iron through its oxidase function but also exhibits antioxidant activity. In addition, CP is an acute-phase protein. In addition to being associated with aceruloplasminemia and neurodegenerative diseases such as Wilson's disease, Alzheimer's disease, and Parkinson's disease, CP also plays an important role in metabolic diseases, which are caused by metabolic disorders and vigorous metabolism, mainly including diabetes, obesity, hyperlipidemia, etc. Based on the physiological functions of CP, we provide an overview of the association of type 2 diabetes, obesity, hyperlipidemia, coronary heart disease, CP oxidative stress, inflammation, and metabolism of copper and iron. Studies have shown that metabolic diseases are closely related to systemic inflammation, oxidative stress, and disorders of copper and iron metabolism. Therefore, we conclude that CP, which can reduce the formation of free radicals in tissues, can be induced during inflammation and infection, and can correct the metabolic disorder of copper and iron, has protective and diagnostic effects on metabolic diseases.
Collapse
Affiliation(s)
- Zhidong Liu
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Miao Wang
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Chunbo Zhang
- School of Pharmacy, Nanchang University, Nanchang, Jiangxi, 330031, People’s Republic of China
| | - Shigao Zhou
- Department of Internal Medicine of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
| | - Guang Ji
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, People’s Republic of China
- Correspondence: Guang Ji, Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, People’s Republic of China, Tel +86 18156416071, Fax +86 21-64385700, Email
| |
Collapse
|
6
|
Isaev NK, Stelmashook EV, Genrikhs EE. Role of zinc and copper ions in the pathogenetic mechanisms of traumatic brain injury and Alzheimer's disease. Rev Neurosci 2021; 31:233-243. [PMID: 31747384 DOI: 10.1515/revneuro-2019-0052] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/24/2019] [Indexed: 12/24/2022]
Abstract
The disruption of homeostasis of zinc (Zn2+) and copper (Cu2+) ions in the central nervous system is involved in the pathogenesis of many neurodegenerative diseases, such as amyotrophic lateral sclerosis, Wilson's, Creutzfeldt-Jakob, Parkinson's, and Alzheimer's diseases (AD), and traumatic brain injury (TBI). The last two pathological conditions of the brain are the most common; moreover, it is possible that TBI is a risk factor for the development of AD. Disruptions of Zn2+ and Cu2+ homeostasis play an important role in the mechanisms of pathogenesis of both TBI and AD. This review attempts to summarize and systematize the currently available research data on this issue. The neurocytotoxicity of Cu2+ and Zn2+, the synergism of the toxic effect of calcium and Zn2+ ions on the mitochondria of neurons, and the interaction of Zn2+ and Cu2+ with β-amyloid (Abeta) and tau protein are considered.
Collapse
Affiliation(s)
- Nickolay K Isaev
- M.V. Lomonosov Moscow State University, N.A. Belozersky Institute of Physico-Chemical Biology, Biological Faculty, Moscow 119991, Russia.,Research Center of Neurology, Moscow 125367, Russia
| | | | | |
Collapse
|
7
|
Sterling JP, Lombardi VC. Decreasing the Likelihood of Multiple Organ Dysfunction Syndrome in Burn Injury with Early Antioxidant Treatment. Antioxidants (Basel) 2021; 10:antiox10081192. [PMID: 34439439 PMCID: PMC8389021 DOI: 10.3390/antiox10081192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 01/21/2023] Open
Abstract
Major burn trauma initiates a cascade of physiological events that cause profound stress on the body, resulting in significant complications which often lead to death. An understanding of these events may afford earlier and more precise interventions which, in turn, may reduce these complications, thus, improving patient outcomes. Burn trauma is associated with numerous inflammatory events that result in the release of free radicals, which promote oxidative stress and subsequent tissue damage. These mass-inflammatory events affect the body systemically, leading to several detrimental responses including complement activation, excessive histamine release, decrease in blood pressure, release of reactive oxygen species, and ultimately multiple organ dysfunction syndrome (MODS). However, recent studies conducted on the use of antioxidants as a part of a burn treatment protocol have shown promising results. In this review, we will discuss the current research and advancements in the treatment of burn trauma with the use of antioxidants, and how the early administration of antioxidant can possibly reduce the risk of developing MODS.
Collapse
Affiliation(s)
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, Reno, NV 89557, USA
- Correspondence: ; Tel.: +1-775-682-8278
| |
Collapse
|
8
|
Puchkova LV, Kiseleva IV, Polishchuk EV, Broggini M, Ilyechova EY. The Crossroads between Host Copper Metabolism and Influenza Infection. Int J Mol Sci 2021; 22:ijms22115498. [PMID: 34071094 PMCID: PMC8197124 DOI: 10.3390/ijms22115498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 12/15/2022] Open
Abstract
Three main approaches are used to combat severe viral respiratory infections. The first is preemptive vaccination that blocks infection. Weakened or dead viral particles, as well as genetic constructs carrying viral proteins or information about them, are used as an antigen. However, the viral genome is very evolutionary labile and changes continuously. Second, chemical agents are used during infection and inhibit the function of a number of viral proteins. However, these drugs lose their effectiveness because the virus can rapidly acquire resistance to them. The third is the search for points in the host metabolism the effect on which would suppress the replication of the virus but would not have a significant effect on the metabolism of the host. Here, we consider the possibility of using the copper metabolic system as a target to reduce the severity of influenza infection. This is facilitated by the fact that, in mammals, copper status can be rapidly reduced by silver nanoparticles and restored after their cancellation.
Collapse
Affiliation(s)
- Ludmila V. Puchkova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
| | - Irina V. Kiseleva
- Department of Virology, Institute of Experimental Medicine, 197376 St. Petersburg, Russia;
| | | | - Massimo Broggini
- Istituto di Ricerche Farmacologiche “Mario Negri”, IRCCS, 20156 Milan, Italy;
| | - Ekaterina Yu. Ilyechova
- International Research Laboratory of Trace Elements Metabolism, ADTS Institute, RC AFMLCS, ITMO University, 197101 St. Petersburg, Russia;
- Department of Molecular Genetics, Institute of Experimental Medicine, 197376 St. Petersburg, Russia
- Correspondence: ; Tel.: +7-921-760-5274
| |
Collapse
|
9
|
Piacenza F, Giacconi R, Costarelli L, Basso A, Bürkle A, Moreno-Villanueva M, Dollé MET, Jansen E, Grune T, Weber D, Stuetz W, Gonos ES, Schön C, Bernhardt J, Grubeck-Loebenstein B, Sikora E, Toussaint O, Debacq-Chainiaux F, Franceschi C, Capri M, Hervonen A, Hurme M, Slagboom E, Breusing N, Mocchegiani E, Malavolta M. Age, sex and BMI influence on copper, zinc and their major serum carrier proteins in a large European population including Nonagenarian Offspring from MARK-AGE study. J Gerontol A Biol Sci Med Sci 2021; 76:2097-2106. [PMID: 33983441 DOI: 10.1093/gerona/glab134] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 11/12/2022] Open
Abstract
The analysis of copper (Cu) and zinc (Zn) along with their major serum carriers, albumin (Alb) and ceruloplasmin (Cp), could provide information on the capacity of humans to maintain homeostasis of metals (metallostasis). However, their relationship with aging, sex, BMI, as well as with nutritional and inflammatory markers was never investigated in a large-scale study. Here, we report results from the European large-scale cross-sectional study MARK-AGE in which Cu, Zn, Alb, Cp as well as nutritional and inflammatory parameters were determined in 2424 age-stratified subjects (35-75 years) including the general population (RASIG), nonagenarian offspring (GO), a well-studied genetic model of longevity, and spouses of GO (SGO). In RASIG, Cu to Zn ratio and Cp to Alb ratio were higher in women than in men. Both ratios increased with aging because Cu and Cp increased and Alb and Zn decreased. Cu, Zn, Alb and Cp were found associated with several inflammatory as well as nutritional biomarkers.GO showed higher Zn levels and higher Zn to Alb ratio compared to RASIG, but we did not observe significant differences with SGO, likely as a consequence of the low sample size of SGO and the shared environment. Our results show that aging, sex, BMI and GO status are characterized by different levels of Cu, Zn and their serum carrier proteins. These data and their relationship with inflammatory biomarkers support the concept that loss of metallostasis is a characteristic of inflammaging.
Collapse
Affiliation(s)
- Francesco Piacenza
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Robertina Giacconi
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Laura Costarelli
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Andrea Basso
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - María Moreno-Villanueva
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany.,Human Performance Research Centre, Department of Sport Science, University of Konstanz, Konstanz, Germany
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Eugène Jansen
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany.,NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - Wolfgang Stuetz
- Institute of Nutritional Sciences, University of Hohenheim, Stuttgart, Germany
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, Athens, Greece
| | | | | | | | - Ewa Sikora
- Laboratory of the Molecular Bases of Ageing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Olivier Toussaint
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | | | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia. Lobachevsky State University of Nizhny Novgorod, Russia
| | - Miriam Capri
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy.CIG-Interdepartmental Center "L. Galvani", Alma Mater Studiorum, University of Bologna, Bologna, Italy.,Interdepartmental Center "Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate)", Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | | | - Mikko Hurme
- Medical School, University of Tampere, Tampere, Finland
| | - Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Nicolle Breusing
- Department of Applied Nutritional Science/Dietetics, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Eugenio Mocchegiani
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| | - Marco Malavolta
- Translational Research Center of Nutrition and Ageing, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
10
|
Copper Toxicity Is Not Just Oxidative Damage: Zinc Systems and Insight from Wilson Disease. Biomedicines 2021; 9:biomedicines9030316. [PMID: 33804693 PMCID: PMC8003939 DOI: 10.3390/biomedicines9030316] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Essential metals such as copper (Cu) and zinc (Zn) are important cofactors in diverse cellular processes, while metal imbalance may impact or be altered by disease state. Cu is essential for aerobic life with significant functions in oxidation-reduction catalysis. This redox reactivity requires precise intracellular handling and molecular-to-organismal levels of homeostatic control. As the central organ of Cu homeostasis in vertebrates, the liver has long been associated with Cu storage disorders including Wilson Disease (WD) (heritable human Cu toxicosis), Idiopathic Copper Toxicosis and Endemic Tyrolean Infantile Cirrhosis. Cu imbalance is also associated with chronic liver diseases that arise from hepatitis viral infection or other liver injury. The labile redox characteristic of Cu is often discussed as a primary mechanism of Cu toxicity. However, work emerging largely from the study of WD models suggests that Cu toxicity may have specific biochemical consequences that are not directly attributable to redox activity. This work reviews Cu toxicity with a focus on the liver and proposes that Cu accumulation specifically impacts Zn-dependent processes. The prospect that Cu toxicity has specific biochemical impacts that are not entirely attributable to redox may promote further inquiry into Cu toxicity in WD and other Cu-associated disorders.
Collapse
|
11
|
Culbertson EM, Khan AA, Muchenditsi A, Lutsenko S, Sullivan DJ, Petris MJ, Cormack BP, Culotta VC. Changes in mammalian copper homeostasis during microbial infection. Metallomics 2021; 12:416-426. [PMID: 31976503 DOI: 10.1039/c9mt00294d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Animals carefully control homeostasis of Cu, a metal that is both potentially toxic and an essential nutrient. During infection, various shifts in Cu homeostasis can ensue. In mice infected with Candida albicans, serum Cu progressively rises and at late stages of infection, liver Cu rises, while kidney Cu declines. The basis for these changes in Cu homeostasis was poorly understood. We report here that the progressive rise in serum Cu is attributable to liver production of the multicopper oxidase ceruloplasmin (Cp). Through studies using Cp-/- mice, we find this elevated Cp helps recover serum Fe levels at late stages of infection, consistent with a role for Cp in loading transferrin with Fe. Cp also accounts for the elevation in liver Cu seen during infection, but not for the fluctuations in kidney Cu. The Cu exporting ATPase ATP7B is one candidate for kidney Cu control, but we find no change in the pattern of kidney Cu loss during infection of Atp7b-/- mice, implying alternative mechanisms. To test whether fungal infiltration of kidney tissue was required for kidney Cu loss, we explored other paradigms of infection. Infection with the intravascular malaria parasite Plasmodium berghei caused a rise in serum Cu and decrease in kidney Cu similar to that seen with C. albicans. Thus, dynamics in kidney Cu homeostasis appear to be a common feature among vastly different infection paradigms. The implications for such Cu homeostasis control in immunity are discussed.
Collapse
Affiliation(s)
- Edward M Culbertson
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| | - Aslam A Khan
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Abigael Muchenditsi
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Svetlana Lutsenko
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David J Sullivan
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Michael J Petris
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | - Brendan P Cormack
- Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Rieber M. Cancer Pro-oxidant Therapy Through Copper Redox Cycling: Repurposing Disulfiram and Tetrathiomolybdate. Curr Pharm Des 2020; 26:4461-4466. [DOI: 10.2174/1381612826666200628022113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022]
Abstract
Background:
Copper (Cu) is a transition metal active in Fenton redox cycling from reduced Cu+ and
H2O2, to oxidized Cu2+ and the hydroxyl radical (·OH) highly reactive oxygen species (ROS). At homeostatic Cu
levels, ROS promote cell proliferation, migration, angiogenesis, and wound repair. To limit ROS toxicity, cells
use Cu-dependent chaperone proteins, Cu-binding ceruloplasmin, and Cu-modulated enzymes like superoxide
dismutases (SOD) like SOD1 and SOD3 to scavenge excess superoxide anions which favour Cu+ reduction, and
mitochondrial cytochrome c oxidase, important in aerobic energy production. Because Cu helps drive tumor cell
proliferation by promoting growth factor-independent receptor tyrosine kinase signaling, and Cu-dependent
MEK1 involved in oncogenic BRAF-V600E signaling, further augmenting bioavailable Cu may promote ROS overproduction,
cancer progression and eventually tumor cell death. For these reasons, the following clinically approved
copper chelators are being repurposed as anti-cancer agents: a) ammonium tetrathiomolybdate (TTM)
used to treat Wilson’s disease (copper overload) and Menkes disease (copper deficiency); b) Disulfiram (DSF),
used against alcoholism, since it inhibits Aldehyde Dehydrogenase (ALDH1) enzyme, important in ethanol detoxification,
and a key target against cancer stem cells. Moreover, TTM and DSF are also relevant in cancer clinical
trials, because they increase the uptake of both Cu and Platinum (Pt)-containing anti-cancer drugs, since Pt
and Cu share the same CTR1 copper transporter.
Purpose:
The majority of reports on Cu chelators dealt separately with either TTM, DSF or others. Here, we
compare in parallel, the anti-cancer efficacy of low doses of TTM and DSF, asking whether they can be synergistic
or antagonistic. The relevance of their unequal ROS inducing abilities and their different behavior as ionophores
is also addressed.
Significance:
The potential of Cu chelators as repurposed anti-cancer drugs, should be greater in patients with
higher endogenous Cu levels. Since platinum and Cu share uptake receptors, the synergism by drugs containing
these metals should not be under-estimated. The potential of disulfiram or its metabolically active Cu-containing
form, to inhibit ALDH1-positive tumor cells is therapeutically very important.
Collapse
Affiliation(s)
- Manuel Rieber
- IVIC, Cancer Cell Biology Laboratory, CMBC, Caracas 1020A, Venezuela
| |
Collapse
|
13
|
Nada W, Abdel Moety D. Oxidative stress markers in senile cataract and primary open-angle glaucoma. DELTA JOURNAL OF OPHTHALMOLOGY 2018. [DOI: 10.4103/djo.djo_33_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
14
|
Samygina VR, Sokolov AV, Bourenkov G, Schneider TR, Anashkin VA, Kozlov SO, Kolmakov NN, Vasilyev VB. Rat ceruloplasmin: a new labile copper binding site and zinc/copper mosaic. Metallomics 2017; 9:1828-1838. [PMID: 29177316 DOI: 10.1039/c7mt00157f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ceruloplasmin (Cp) is a copper-containing multifunctional oxidase of plasma, an antioxidant, an acute-phase protein and a free radical scavenger. The structural organization of Cp causes its sensitivity to proteolysis and ROS (reactive oxygen species), which can alter some of the important Cp functions. Elucidation of the orthorhombic crystal structure of rat Cp at 2.3 Å resolution revealed the basis for stronger resistance of rat Cp to proteolysis and a new labile copper binding site. The presence of this site appears as a very rare and distinctive feature of rat Cp as was shown by sequence alignment of ceruloplasmin, hephaestin and zyklopen in the Deuterostomia taxonomic group. The trigonal crystal form of rat Cp at 3.2 Å demonstrates unexpected partial substitution of copper by zinc.
Collapse
Affiliation(s)
- V R Samygina
- Shubnikov Institute of Crystallography of FSRC "Crystallography and Photonics" RAS, Leninsky pr.59, Moscow 117333, Russia. and NRC Kurchatov Institute, Kurchatov pl. 1, Moscow 123098, Russia
| | - A V Sokolov
- Institute of Experimental Medicine, ul. Academica Pavlova, 12, Saint-Petersburg 197376, Russia and Saint-Petersburg State Universisty, Universitetskaya nab. 7-9, Saint-Petersburg 199034, Russia and Centre of Preclinical Translational Research, Almazov National Medical Research Centre, ul. Dolgoozernaya, 43, Saint-Petersburg 197371, Russia
| | - G Bourenkov
- EMBL, Notkestrasse 85, 22607 Hamburg, Germany
| | | | - V A Anashkin
- Shubnikov Institute of Crystallography of FSRC "Crystallography and Photonics" RAS, Leninsky pr.59, Moscow 117333, Russia. and Belozersky Institute of Physico-Chemical Biology and Department of Chemistry, Lomonosov Moscow State University, Moscow 119899, Russia
| | - S O Kozlov
- Institute of Experimental Medicine, ul. Academica Pavlova, 12, Saint-Petersburg 197376, Russia
| | - N N Kolmakov
- Institute of Experimental Medicine, ul. Academica Pavlova, 12, Saint-Petersburg 197376, Russia
| | - V B Vasilyev
- Institute of Experimental Medicine, ul. Academica Pavlova, 12, Saint-Petersburg 197376, Russia and Saint-Petersburg State Universisty, Universitetskaya nab. 7-9, Saint-Petersburg 199034, Russia
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Studies have shown that chronic inflammatory disorders, such as rheumatoid arthritis, systemic lupus erythematosus, and psoriasis are associated with an increased risk of atherosclerotic cardiovascular disease. The mechanism by which inflammation increases cardiovascular disease is likely multifactorial but changes in HDL structure and function that occur during inflammation could play a role. RECENT FINDINGS HDL levels decrease with inflammation and there are marked changes in HDL-associated proteins. Serum amyloid A markedly increases whereas apolipoprotein A-I, lecithin:cholesterol acyltransferase, cholesterol ester transfer protein, paraoxonase 1, and apolipoprotein M decrease. The exact mechanism by which inflammation decreases HDL levels is not defined but decreases in apolipoprotein A-I production, increases in serum amyloid A, increases in endothelial lipase and secretory phospholipase A2 activity, and decreases in lecithin:cholesterol acyltransferase activity could all contribute. The changes in HDL induced by inflammation reduce the ability of HDL to participate in reverse cholesterol transport and protect LDL from oxidation. SUMMARY During inflammation multiple changes in HDL structure occur leading to alterations in HDL function. In the short term, these changes may be beneficial resulting in an increase in cholesterol in peripheral cells to improve host defense and repair but over the long term these changes may increase the risk of atherosclerosis.
Collapse
Affiliation(s)
- Kenneth R Feingold
- Metabolism Section, Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, California, USA
| | | |
Collapse
|
16
|
What is the concentration of hydrogen peroxide in blood and plasma? Arch Biochem Biophys 2016; 603:48-53. [PMID: 27173735 DOI: 10.1016/j.abb.2016.05.005] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/29/2016] [Accepted: 05/03/2016] [Indexed: 01/21/2023]
Abstract
The concentration of hydrogen peroxide (H2O2) in blood and plasma is a measurement that has often been made, but the absolute values remain unsettled due the great variability of results actually published in the literature. As in every tissue, the concentration of H2O2 in blood and plasma is determined by the dynamics of its production versus its removal. The major sources of H2O2 in cells will only be briefly described as they are already well documented, The production of H2O2 in red blood cells will be described as it is less well known. But, the concentration of H2O2 within cells is more problematic. Intracellular H2O2 concentration has been estimated based on the kinetics of production and elimination, while its determination is technically difficult. Furthermore, compartmentalization and gradients result in its quantitation only as an average. The sources of extracellular H2O2, particularly in plasma, will also be described briefly. The major question addressed here however, is the actual concentration of H2O2 in plasma, which has been studied extensively, but still remains controversial.
Collapse
|
17
|
Sarnat-Kucharczyk M, Rokicki W, Zalejska-Fiolka J, Pojda-Wilczek D, Mrukwa-Kominek E. Determination of Serum Ceruloplasmin Concentration in Patients with Primary Open Angle Glaucoma with Cataract and Patients with Cataract Only: A Pilot Study. Med Sci Monit 2016; 22:1384-8. [PMID: 27109647 PMCID: PMC4847557 DOI: 10.12659/msm.895352] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background The aim of this article was to describe the role of ceruloplasmin and to report preliminary results of ceruloplasmin concentrations in patients with primary open-angle glaucoma (POAG) with cataract and in patients with only cataract. Glaucoma, a neurodegenerative disease, is a heterogeneous group of conditions characterized by loss of retinal ganglion cells (RGC), their axons, progressive optic nerve damage, and visual field deterioration. Material/Methods The POAG group included 30 patients and the cataract group included 25 patients. Results Ceruloplasmin plays an essential role in iron metabolism and inactivating free radicals. In the presented pilot study, serum ceruloplasmin level was lower in the POAG group in comparison to the group with only cataract. Conclusions In treating persistent inflammation in the course of glaucoma, antiglaucoma drugs may increase the permeability of the blood-ocular barrier, which may be connected with the lower concentration of serum ceruloplasmin in the glaucoma patients group.
Collapse
Affiliation(s)
- Monika Sarnat-Kucharczyk
- Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wojciech Rokicki
- Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Dorota Pojda-Wilczek
- Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Ewa Mrukwa-Kominek
- Department of Ophthalmology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
18
|
Martitz J, Becker NP, Renko K, Stoedter M, Hybsier S, Schomburg L. Gene-specific regulation of hepatic selenoprotein expression by interleukin-6. Metallomics 2015; 7:1515-21. [PMID: 26399395 DOI: 10.1039/c5mt00211g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sepsis is a severe inflammatory disease resulting in excessive production of pro-inflammatory cytokines including interleukin-6 (IL-6), causing oxidative stress, tissue damage and organ dysfunction. Health benefits have been observed upon selenium (Se) supplementation in severe sepsis. Selenium is incorporated into selenoproteins implicated in anti-oxidative defence, thyroid hormone metabolism and immunoregulation. Selenium metabolism is controlled by hepatocytes synthesizing and secreting the Se transporter selenoprotein P (SePP). The circulating SePP declines in sepsis causing low serum Se levels. Dysregulation of the hepatic selenoenzyme deiodinase type 1 (DIO1) potentially contributes to the low T3 (thyroid hormone) syndrome observed in severe diseases. We hypothesized that IL-6 affects hepatic selenoprotein biosynthesis directly. Testing human hepatocytes in culture, IL-6 reduced the concentrations of SePP mRNA and secreted SePP in a dose-dependent manner. In parallel, expression of DIO1 declined at the mRNA, protein and enzyme activity level. The effects of IL-6 on glutathione peroxidase (GPX) expression were isozyme-specific; GPX1 remained unaffected, while transcript concentrations of GPX2 increased and those of GPX4 decreased. This pattern of IL-6-dependent effects was mirrored in reporter gene experiments with SePP, DIO1, GPX1, and GPX2 promoter constructs pointing to direct transcriptional effects of IL-6. The redirection of hepatic selenoprotein biosynthesis by IL-6 may represent a central regulatory circuit responsible for the decline of serum Se and low T3 concentrations in sepsis. Accordingly, therapeutic IL-6 targeting may be effective for improving the Se and thyroid hormone status, adjuvant Se supplementation success and survival in sepsis.
Collapse
Affiliation(s)
- J Martitz
- Institut für Experimentelle Endokrinologie, Charité- Universitätsmedizin Berlin, CVK, Südring 10, D-13353 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Dubick MA, Barr JL, Keen CL, Atkins JL. Ceruloplasmin and Hypoferremia: Studies in Burn and Non-Burn Trauma Patients. Antioxidants (Basel) 2015; 4:153-69. [PMID: 26785343 PMCID: PMC4665565 DOI: 10.3390/antiox4010153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/25/2015] [Accepted: 02/28/2015] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Normal iron handling appears to be disrupted in critically ill patients leading to hypoferremia that may contribute to systemic inflammation. Ceruloplasmin (Cp), an acute phase reactant protein that can convert ferrous iron to its less reactive ferric form facilitating binding to ferritin, has ferroxidase activity that is important to iron handling. Genetic absence of Cp decreases iron export resulting in iron accumulation in many organs. The objective of this study was to characterize iron metabolism and Cp activity in burn and non-burn trauma patients to determine if changes in Cp activity are a potential contributor to the observed hypoferremia. MATERIAL AND METHODS Under Brooke Army Medical Center Institutional Review Board approved protocols, serum or plasma was collected from burn and non-burn trauma patients on admission to the ICU and at times up to 14 days and measured for indices of iron status, Cp protein and oxidase activity and cytokines. RESULTS Burn patients showed evidence of anemia and normal or elevated ferritin levels. Plasma Cp oxidase activity in burn and trauma patients were markedly lower than controls on admission and increased to control levels by day 3, particularly in burn patients. Plasma cytokines were elevated throughout the 14 days study along with evidence of an oxidative stress. No significant differences in soluble transferrin receptor were noted among groups on admission, but levels in burn patients were lower than controls for the first 5 days after injury. CONCLUSION This study further established the hypoferremia and inflammation associated with burns and trauma. To our knowledge, this is the first study to show an early decrease in Cp oxidase activity in burn and non-burn trauma patients. The results support the hypothesis that transient loss of Cp activity contributes to hypoferremia and inflammation. Further studies are warranted to determine if decreased Cp activity increases the risk of iron-induced injury following therapeutic interventions such as transfusions with blood that has undergone prolonged storage in trauma resuscitation.
Collapse
Affiliation(s)
- Michael A Dubick
- Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX 78234, USA.
| | - Johnny L Barr
- Army Institute of Surgical Research, 3698 Chambers Pass, JBSA Fort Sam Houston, TX 78234, USA.
| | - Carl L Keen
- Departments of Nutrition and Internal Medicine, University of California, Davis, CA 95616, USA.
| | - James L Atkins
- Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
20
|
Hammadah M, Fan Y, Wu Y, Hazen SL, Tang WHW. Prognostic value of elevated serum ceruloplasmin levels in patients with heart failure. J Card Fail 2014; 20:946-52. [PMID: 25128745 PMCID: PMC4250410 DOI: 10.1016/j.cardfail.2014.08.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 07/23/2014] [Accepted: 08/07/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Ceruloplasmin (Cp) is a copper-binding acute-phase protein that is increased in inflammatory states and deficient in Wilson's disease. Recent studies demonstrate that increased levels of Cp are associated with increased risk of developing heart failure. Our objective was to test the hypothesis that serum Cp provides incremental and independent prediction of survival in stable patients with heart failure. METHODS AND RESULTS We measured serum Cp levels in 890 patients with stable heart failure undergoing elective cardiac evaluation that included coronary angiography. We examined the role of Cp levels in predicting survival over 5 years of follow-up. Mean Cp level was 26.6 ± 6.9 mg/dL and demonstrated relatively weak correlation with B-type natriuretic peptide (BNP; r = 0.187; P < .001). Increased Cp levels were associated with increased 5-year all-cause mortality (quartile [Q] 4 vs Q1 hazard ratio [HR] 1.9, 95% confidence interval [CI] 1.4-2.8; P < .001). When controlled for coronary disease traditional risk factors, creatinine clearance, dialysis, body mass index, medications, history of myocardial infarction, BNP, left ventricular ejection fraction (LVEF), heart rate, QRS duration, left bundle branch blockage, and implantable cardioverter-defibrillator placement, higher Cp remained an independent predictor of increased mortality (Q4 vs Q1 HR 1.7, 95% CI 1.1-2.6; P < .05). Model quality was improved with addition of Cp to the aforementioned covariables (net reclassification improvement of 9.3%; P < .001). CONCLUSIONS Ceruloplasmin is an independent predictor of all-cause mortality in patients with heart failure. Measurement of Cp may help to identify patients at heightened mortality risk.
Collapse
Affiliation(s)
- Muhammad Hammadah
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio
| | - Yiying Fan
- Department of Mathematics, Cleveland State University, Cleveland, Ohio
| | - Yuping Wu
- Department of Mathematics, Cleveland State University, Cleveland, Ohio
| | - Stanley L Hazen
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio; Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - W H Wilson Tang
- Department of Cardiovascular Medicine, Heart and Vascular Institute, Cleveland Clinic, Cleveland, Ohio; Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
| |
Collapse
|
21
|
Bond JJ, Pernthaner A, Zhang K, Rosanowski SM, Clerens S, Bisset SA, Sutherland IAS, Koolaard JP, Hein WR. Efferent intestinal lymph protein responses in nematode-resistant, -resilient and -susceptible lambs under challenge with Trichostrongylus colubriformis. J Proteomics 2014; 109:356-67. [PMID: 25072800 DOI: 10.1016/j.jprot.2014.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 11/17/2022]
Abstract
UNLABELLED The mechanisms underlying resistance to challenge by gastrointestinal nematode parasites in sheep are complex. Using DIGE, we profiled ovine lymph proteins in lambs with host resistance (R), resilience (Ri) or susceptibility (S) to a daily trickle challenge with the nematode Trichostrongylus colubriformis. Efferent intestinal lymph was collected prior to infection (day 1) and on days 5 and 10 post-infection. Eight proteins identified by LC-MS/MS, showed differences relating to host genotype. Of these, Serpin A3-3 and Serpin A3-7 have not been reported previously in the lymph proteome. Three acute phase proteins showed significant differences relating to interactions between breeding line and parasite challenge, including complement C3β, C3α and haptoglobin (Hp) β. In the R lambs C3α was significantly up regulated (P<0.05) on day 10, while in the Ri lambs Hp β was significantly down regulated (P<0.05). In the S lambs, levels of C3β were up regulated and levels of Hp β down regulated (both P<0.05) on day 10. Hence we demonstrate that acute phase inflammation proteins contribute to differences in the innate immune response of sheep to challenge by T. colubriformis. The findings may lead to the development of new approaches to combat nematode infestations in sheep production systems. BIOLOGICAL SIGNIFICANCE Breeding lines of sheep with resistance (R), resilience (Ri) or susceptibility (S) to nematode infections provide an experimental model to examine the biological mechanisms underlying the ability of some sheep to expel worms and remain healthy without the use of an anthelmintic. Using proteomics we identified differences in the expression of acute phase lymph proteins in the R, Ri and S lambs. The results will assist the development of alternative control strategies to manage nematode infections in livestock.
Collapse
Affiliation(s)
- J J Bond
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand.
| | - A Pernthaner
- AgResearch Ltd, The Hopkirk Research Institute, Palmerston North, New Zealand
| | - K Zhang
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand; Centre for Biodiscovery, Victoria University of Wellington, Wellington, New Zealand
| | - S M Rosanowski
- AgResearch Ltd, The Hopkirk Research Institute, Palmerston North, New Zealand
| | - S Clerens
- AgResearch Ltd, Lincoln Research Centre, Christchurch, New Zealand
| | - S A Bisset
- AgResearch Ltd, The Hopkirk Research Institute, Palmerston North, New Zealand
| | - I A S Sutherland
- AgResearch Ltd, The Hopkirk Research Institute, Palmerston North, New Zealand
| | - J P Koolaard
- AgResearch Ltd, Grasslands Research Centre, Palmerston North, New Zealand
| | - W R Hein
- AgResearch Ltd, The Hopkirk Research Institute, Palmerston North, New Zealand
| |
Collapse
|
22
|
Harshavardhana B, Rath SK, Mukherjee M. Evaluation of serum ceruloplasmin in aggressive and chronic periodontitis patients. J Indian Soc Periodontol 2013; 17:333-7. [PMID: 24049334 PMCID: PMC3768184 DOI: 10.4103/0972-124x.115659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 05/09/2013] [Indexed: 12/02/2022] Open
Abstract
Background: Pro-inflammatory markers are seen to increase in inflammatory diseases like periodontitis. Detecting an increase in these markers is one of the diagnostic modality. One such marker, which can be detected, is the ceruloplasmin. Ceruloplasmin induces hypoxia and generates oxygen radicals at the site of aggressive periodontitis. It also causes a state of hypoferremia leading to increase in the natural resistance of the body. The aim of this study was to evaluate the serum levels of cerruloplasmin in both aggressive and chronic periodontitis patients. Materials and Methods: Blood samples were collected from aggressive periodontitis patients (n = 20), chronic periodontitis patients (n = 20) and periodontally healthy patients (n = 20). The serum was extracted from all the blood samples and ceruloplasmin levels were spectroscopically evaluated through a new kinetic method, which used a norfloxacin based reagent. Results: Serum ceruloplasmin levels were found to be significantly higher in aggressive periodontitis patients (P > 0.05) than in chronic periodontitis patients (P > 0.05) even though increase in the level of ceruloplasmin was found in chronic periodontitis. Periodontally healthy patients did not show increase in the levels of serum ceruloplasmin. The levels of serum ceruloplasmin also increased with the disease severity whose manifestations were increased bleeding on probing, increased pocket depth and increased attachment loss. Conclusion: Serum ceruloplasmin levels increased in both aggressive and chronic periodontitis patients, but more in aggressive periodontitis patients making it a potential marker for diagnosis of periodontitis.
Collapse
Affiliation(s)
- B Harshavardhana
- Department of Dental Surgery, Division of Periodontology, Armed Forces Medical College, Pune, Maharashtra, India
| | | | | |
Collapse
|
23
|
Abstract
Kidney function declines with age in the majority of the population. Although very few older people progress to end stage, the consequences of doing so are burdensome for the patient and very expensive for the society. Although some of the observed decline is likely due to changes in the vasculature, much is associated with the development of age-associated glomerulosclerosis. This article will review the well-established structural and functional changes in the glomerulus with age. The role of calorie restriction in modifying age-related pathology will be discussed. The importance of the podocyte as a critical cell in the aging process is considered using animal models and human biopsy material. Newer data on changes in gene expression driven by nuclear factor kappa beta (NFkB) and possible changes in biology in the glomerulus are discussed. The relationship between pathways involved in aging and the decline in kidney function is reviewed. There is speculation on the significance of these changes in relation to normal and pathological aging.
Collapse
Affiliation(s)
- Jocelyn E Wiggins
- University of Michigan Health System, Division of Geriatrics, Department of Internal Medicine, 1560 MSRBII, Box 5676, Ann Arbor, MI 48109-5676, USA.
| |
Collapse
|
24
|
Tiffany‐Castiglioni E, Hong S, Qian Y. Copper handling by astrocytes: Insights into neurodegenerative diseases. Int J Dev Neurosci 2011; 29:811-8. [DOI: 10.1016/j.ijdevneu.2011.09.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 12/14/2022] Open
Affiliation(s)
- Evelyn Tiffany‐Castiglioni
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasTX77843United States
| | | | - Yongchang Qian
- Department of Veterinary Integrative BiosciencesTexas A&M UniversityCollege StationTexasTX77843United States
| |
Collapse
|
25
|
|
26
|
Sidhu A, Miller PJ, Hollenbach AD. FOXO1 stimulates ceruloplasmin promoter activity in human hepatoma cells treated with IL-6. Biochem Biophys Res Commun 2010; 404:963-7. [PMID: 21185807 DOI: 10.1016/j.bbrc.2010.12.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 12/18/2010] [Indexed: 01/09/2023]
Abstract
FOXO1, a member of the winged-helix family of transcription factors, is a ubiquitously expressed protein involved in regulating a variety of cellular processes including glucose homeostasis, apoptosis, cell cycle control, muscle differentiation, and angiogenesis. In addition to these biological functions, FOXO1 is a key player in the oxidative stress response by stimulating the expression of metal-containing anti-oxidant proteins such as manganese superoxide dismutase, selenoprotein P, and catalase. Evidence in the literature suggests that FOXO1 may also be capable of regulating the expression of the anti-oxidant protein Ceruloplasmin (Cp), a six-copper-containing protein synthesized and secreted mainly by the liver. In the present report, we demonstrate that FOXO1 stimulates Cp promoter activity in conjunction with the cytokine IL-6. Through deletional analysis and in vitro binding studies, we determine the DNA sequence responsible for the FOXO1-dependent regulation of the Cp proximal promoter. Finally, we demonstrate that FOXO1 is capable of enhancing the expression of endogenous Cp in human hepatic carcinoma cells treated with IL-6. These results allow us to identify FOXO1 as a regulator of Cp expression to promote the anti-oxidant pathway in response to IL-6 signaling.
Collapse
Affiliation(s)
- Alpa Sidhu
- Department of Genetics, Louisiana State University Health Sciences Center, 533 Bolivar Street, CSRB 6th floor, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
27
|
Paradis M, Gagné J, Mateescu MA, Paquin J. The effects of nitric oxide-oxidase and putative glutathione-peroxidase activities of ceruloplasmin on the viability of cardiomyocytes exposed to hydrogen peroxide. Free Radic Biol Med 2010; 49:2019-27. [PMID: 20923703 DOI: 10.1016/j.freeradbiomed.2010.09.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 09/02/2010] [Accepted: 09/27/2010] [Indexed: 02/07/2023]
Abstract
Ceruloplasmin (CP), a ferroxidase (EC 1.16.3.1) and a scavenger of reactive oxygen species, is an important extracellular antioxidant. Bovine CP indeed protects the isolated heart under ischemia-reperfusion conditions. Human CP has been shown to also exhibit, in vitro, glutathione (GSH)-peroxidase and nitric oxide (NO)-oxidase/S-nitrosating activities. This work tested, using bovine CP, the hypothesis that both activities could provide cytoprotection during oxidative stress induced by hydrogen peroxide (H(2)O(2)), the former activity by consuming H(2)O(2) and the latter by shielding thiols from irreversible oxidation. In acellular assays, bovine CP stimulated the generation of the nitrosating NO(+) species from the NO donors propylaminepropylamine-NONOate (PAPA/NO), S-nitroso-N-acetylpenicillamine, and S-nitrosoglutathione. This NO-oxidase activity S-nitrosated GSH as well as CP itself and was not affected by H(2)O(2). In contrast to human CP, bovine CP consumed H(2)O(2) in an additive rather than synergistic manner in the presence of GSH. A nonenzymatic scavenging of H(2)O(2) could have masked the GSH-peroxidase activity. Cytoprotection was evaluated using neonatal rat cardiomyocytes. CP and PAPA/NO were not protective against the H(2)O(2)-induced loss of viability. In contrast, GSH provided a slight protection that increased more than additively in the presence of CP. This increase was canceled by PAPA/NO. CP's putative GSH-peroxidase activity can thus provide cytoprotection but is possibly affected by the S-nitrosation of a catalytically important cysteine residue.
Collapse
Affiliation(s)
- Mylène Paradis
- Département de Chimie et de Biochimie and Centre BioMed, Université du Québec à Montréal, Montreal, QC, Canada
| | | | | | | |
Collapse
|
28
|
Ceccarelli M, Bani D, Cinci L, Nistri S, Uliva C, Ragazzo E, Vannacci A, Manoni M, Gori AM, Abbate R, Gensini GF, Masini E. Anti-inflammatory effects of low molecular weight heparin derivative in a rat model of carrageenan-induced pleurisy. J Cell Mol Med 2010; 13:2704-12. [PMID: 20141620 DOI: 10.1111/j.1582-4934.2009.00658.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Low molecular weight heparin derivatives are characterized by low anti-coagulant activity and marked anti-inflammatory effects that allow for these molecules to be viewed as a new class of non-steroidal anti-inflammatory drugs (NSAIDs). We show here that K5NOSepiLMW, an O-sulphated heparin-like semi-synthetic polymer of the D-glucuronic acid-N-acetyleparoson disaccharide unit with low molecular weight, has marked anti-inflammatory effects in a rat model of acute inflammation, the carrageenan-induced pleurisy, commonly used to test NSAID efficacy. A 30-min. pre-treatment with K5NOSepiLMW (0.1, 0.5 and 1 mg/kg b.wt., given intrapleurally) attenuated the recruitment of leucocytes in the lung tissue and the pleural exudate, inhibited the induction of inducible nitric oxide synthase and cyclooxygenase-2 (COX-2), thereby abating the generation of nitric oxide and pro-inflammatory prostaglandins such as PgE(2) and PGF(1alpha), reduced the inflammation-induced nitroxidative lung tissue injury, as shown by tissue thiobarbituric acid-reactive substances and nitrotyrosine, and blunted the local generation of cytokines such as interleukin-1beta and tumour necrosis factor-alpha. All these parameters were markedly increased by intrapleural carrageenan in the absence of any pre-treatment. The anti-inflammatory action of K5NOSepiLMW is specific, as judged by the lack of therapeutic effects of B4/110, a biologically inactive cognate polysaccharide, given in the place of the authentic molecule. Moreover, K5NOSepiLMW showed similar effects as celecoxib (1 mg/kg b.wt), a COX-2 inhibitor and well-known NSAID. This study provides further insight into the mechanisms underlying the beneficial effects of heparin derivatives in inflammation and identifies K5NOSepiLMW as a novel, promising anti-inflammatory drug.
Collapse
Affiliation(s)
- Matteo Ceccarelli
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ceccarelli M, Bani D, Cinci L, Nistri S, Uliva C, Ragazzo E, Vannacci A, Manoni M, Gori AM, Abbate R, Gensini GF, Masini E. Anti-inflammatory effects of low molecular weight heparin derivative in a rat model of carrageenan-induced pleurisy. J Cell Mol Med 2010. [PMID: 20141620 DOI: 10.1111/j.1582-4934.2008.00658.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Low molecular weight heparin derivatives are characterized by low anti-coagulant activity and marked anti-inflammatory effects that allow for these molecules to be viewed as a new class of non-steroidal anti-inflammatory drugs (NSAIDs). We show here that K5NOSepiLMW, an O-sulphated heparin-like semi-synthetic polymer of the D-glucuronic acid-N-acetyleparoson disaccharide unit with low molecular weight, has marked anti-inflammatory effects in a rat model of acute inflammation, the carrageenan-induced pleurisy, commonly used to test NSAID efficacy. A 30-min. pre-treatment with K5NOSepiLMW (0.1, 0.5 and 1 mg/kg b.wt., given intrapleurally) attenuated the recruitment of leucocytes in the lung tissue and the pleural exudate, inhibited the induction of inducible nitric oxide synthase and cyclooxygenase-2 (COX-2), thereby abating the generation of nitric oxide and pro-inflammatory prostaglandins such as PgE(2) and PGF(1alpha), reduced the inflammation-induced nitroxidative lung tissue injury, as shown by tissue thiobarbituric acid-reactive substances and nitrotyrosine, and blunted the local generation of cytokines such as interleukin-1beta and tumour necrosis factor-alpha. All these parameters were markedly increased by intrapleural carrageenan in the absence of any pre-treatment. The anti-inflammatory action of K5NOSepiLMW is specific, as judged by the lack of therapeutic effects of B4/110, a biologically inactive cognate polysaccharide, given in the place of the authentic molecule. Moreover, K5NOSepiLMW showed similar effects as celecoxib (1 mg/kg b.wt), a COX-2 inhibitor and well-known NSAID. This study provides further insight into the mechanisms underlying the beneficial effects of heparin derivatives in inflammation and identifies K5NOSepiLMW as a novel, promising anti-inflammatory drug.
Collapse
Affiliation(s)
- Matteo Ceccarelli
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Dash PK, Redell JB, Hergenroeder G, Zhao J, Clifton GL, Moore A. Serum ceruloplasmin and copper are early biomarkers for traumatic brain injury-associated elevated intracranial pressure. J Neurosci Res 2010; 88:1719-26. [PMID: 20091772 DOI: 10.1002/jnr.22336] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
High intracranial pressure (ICP) is a prominent secondary pathology after traumatic brain injury (TBI) and is a major contributor to morbidity and mortality. Currently, there are no clinically proven methods for predicting which TBI patients will develop high ICP. In the present study, we examined whether the serum levels of the copper-binding protein ceruloplasmin are differentially altered in patients with elevated ICP (> or =25 mmHg) vs. those whose ICP remained below 20 mmHg throughout the study period. Consistent with its role as an acute-phase reactant, we found that ceruloplasmin levels were significantly increased by 3 days post-TBI compared with healthy volunteers. However, prior to this delayed increase, ceruloplasmin levels during the first 24 hr following injury were found to be significantly reduced in patients who subsequently developed high ICP. This decrease was found to have prognostic accuracy in delineating TBI patients based on their ICP status (cutoff of 140 microg/ml; sensitivity: 87%, specificity: 73%), Likewise, low total serum copper (below 1.32 microg/ml) was also found to be predictive of high ICP (sensitivity 86%, specificity 73%). These results suggest that initial serum ceruloplasmin/copper levels may have diagnostic value in predicting patients at risk for developing high intracranial pressure.
Collapse
Affiliation(s)
- Pramod K Dash
- Department of Neurobiology and Anatomy, The University of Texas Medical School, Houston, TX 77225, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Ceruloplasmin-induced aggregation of P19 neurons involves a serine protease activity and is accompanied by reelin cleavage. Neuroscience 2010; 167:633-43. [PMID: 20188154 DOI: 10.1016/j.neuroscience.2010.02.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Revised: 02/16/2010] [Accepted: 02/17/2010] [Indexed: 12/27/2022]
Abstract
The cytoarchitectural organization of the nervous system depends partly on extracellular serine proteases, including reelin. This 400K protein, which also exists as the N-terminally-derived 300K and 180K fragments, acts through binding to the lipoprotein receptors apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR). Ceruloplasmin (CP), a multifunctional protein found in the circulation and also expressed on glial cells, was shown to bind to, and induce aggregation of neurons newly differentiated from P19 embryonic stem cells. This indicated a potential developmental role of CP in neuronal organization, possibly in relation with reelin and other extracellular serine proteases. Therefore, we analysed the effect of cell-impermeant, large spectrum, serine protease inhibitors on CP-induced neuroaggregation and studied reelin expression. Soybean trypsin inhibitor and aprotinin (SBTI+Apro) inhibited CP neuroaggregative action. Undifferentiated and neurally-differentiating cultures secreted the 400K reelin. The 180K fragment was present during and after differentiation whereas the 300K species was barely detectable. However, CP stimulated generation of the 300K in the differentiated neuronal cultures, and SBTI+Apro abolished this CP effect. Time course profiles and function-blocking antibody indicated that neuroaggregation does not depend on the generation of the 300K fragment or on reelin action. CP neuroaggregative action thus involves a pericellular serine protease, different from reelin. On the other hand, the CP stimulation of reelin cleavage is in line with a possible role of CP in nervous system development. Since P19 cells express ApoER2 and VLDLR, they can help understanding relationships existing between CP, reelin and intervening protease(s).
Collapse
|
32
|
Iwata T, Kantarci A, Yagi M, Jackson T, Hasturk H, Kurihara H, Van Dyke TE. Ceruloplasmin induces polymorphonuclear leukocyte priming in localized aggressive periodontitis. J Periodontol 2009; 80:1300-6. [PMID: 19656030 DOI: 10.1902/jop.2009.090092] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Polymorphonuclear leukocytes (PMNs) from subjects with localized aggressive periodontitis (LAgP) present multiple functional abnormalities associated with a phenotypically primed PMN phenotype. Local inflammation is characterized by hypoxia, which leads to increased production of superoxide (O(2)(-)) by PMNs. Ceruloplasmin (CP) is also induced by hypoxia and inflammation. The aim of this study was to investigate the role of CP in O(2)(-) generation in PMNs from healthy subjects and patients with LAgP. METHODS PMNs were isolated from healthy subjects and those with LAgP (N = 36). Superoxide was measured by cytochrome-C reduction at 550 nm. Intracellular CP expression was analyzed by real-time polymerase chain reaction and Western blotting. Serum levels of CP were measured by enzyme-linked immunosorbent assay. Intracellular iron ion conversion was spectrophotometrically determined by measuring the absorbance of sigma-phenanthroline at 510 nm. RESULTS O(2)(-) generation was significantly higher in LAgP PMNs before and after stimulation with formyl-methionyl-leucyl-phenylalanine (100 nM). CP expression in PMNs and CP levels in serum were significantly higher in subjects with LAgP compared to the PMNs and serum samples from matched healthy donors (P <0.05). LAgP PMNs also had significantly higher levels of Fe(3+) and lower levels of Fe(2+) compared to healthy PMNs (P <0.05), suggesting increased iron conversion. Exogenous CP treatment of healthy PMNs resulted in significant increases in O(2)(-) generation and iron ion conversion similar to LAgP PMNs. CONCLUSION LAgP PMNs are primed to express higher levels of CP, leading to hypoxia-mediated O(2)(-) generation in PMNs and increased oxidative stress and neutrophil-mediated tissue injury in LAgP.
Collapse
Affiliation(s)
- Tomoyuki Iwata
- Department of Periodontology and Oral Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Kidney function declines with age in association with the development of age-associated glomerulosclerosis. The well-established structural and functional changes with age are reviewed briefly. The modification of aging pathology by calorie restriction is discussed. The role of the podocyte as a critical cell in the aging process is considered, using animal models and human biopsy material. Newer data on changes in gene expression and possible changes in biology in the glomerulus are discussed. There is speculation on the implications of this change in biology for human disease and progression.
Collapse
Affiliation(s)
- Jocelyn Wiggins
- Division of Geriatrics, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109-5676, USA.
| |
Collapse
|
34
|
Sokolov AV, Ageeva KV, Pulina MO, Cherkalina OS, Samygina VR, Vlasova II, Panasenko OM, Zakharova ET, Vasilyev VB. Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other. Free Radic Res 2009; 42:989-98. [DOI: 10.1080/10715760802566574] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Assemand E, Lacroix M, Chahine R, Nadeau R, Mateescu MA. Gamma-irradiated ceruloplasmin affords antifibrillatory protection against ischemia/reperfusion damage in the isolated rat heart. Int J Radiat Biol 2009; 83:309-17. [PMID: 17457756 DOI: 10.1080/09553000701311229] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE Ceruloplasmin (CP), an important serum antioxidant, was previously found to reduce the incidence of ventricular fibrillation (VF) induced by ischemia and reperfusion in isolated rat hearts. The present study investigated whether CP sterilized by gamma-irradiation maintains its antiarrhythmic capacity and in vitro antioxidant properties. MATERIALS AND METHODS Isolated rat hearts submitted to regional ischemia (15 min), were reperfused (10 min) with native CP or with CP irradiated at various doses (1-3 kGy) in the absence or presence of tyrosine (Tyr). RESULTS All untreated hearts showed VF at reperfusion, which were all irreversible ventricular fibrillation (IVF). No IVF were found in hearts treated with native CP or gamma-irradiated CP. Cardioprotection afforded by irradiated CP (with or without Tyr) was slightly higher than that obtained with native CP. No VF at all (100% prevention) was found in hearts treated with CP irradiated alone or in the presence of tyrosine at 3 kGy. Tyrosine and irradiated tyrosine had no cardiotoxic or protective effects on reperfusion-induced arrhythmias. The Oxygen Radical Absorbing Capacity (ORAC), measured in vitro with beta-phycoerythrin (beta-PE) fluorescent indicator, was slightly higher for gamma-irradiated CP in the presence of Tyr. CONCLUSIONS Ceruloplasmin sterilized by gamma-irradiation maintains antioxidant and antiarrhythmic effects in the post-ischemia reperfused isolated rat heart.
Collapse
Affiliation(s)
- Emma Assemand
- Department of Chemistry and Biochemistry, Université du Québec à Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
36
|
Stein T, Salomonis N, Nuyten DSA, van de Vijver MJ, Gusterson BA. A mouse mammary gland involution mRNA signature identifies biological pathways potentially associated with breast cancer metastasis. J Mammary Gland Biol Neoplasia 2009; 14:99-116. [PMID: 19408105 DOI: 10.1007/s10911-009-9120-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 04/06/2009] [Indexed: 12/15/2022] Open
Abstract
Mouse mammary gland involution resembles a wound healing response with suppressed inflammation. Wound healing and inflammation are also associated with tumour development, and a 'wound-healing' gene expression signature can predict metastasis formation and survival. Recent studies have shown that an involuting mammary gland stroma can promote metastasis. It could therefore be hypothesised that gene expression signatures from an involuting mouse mammary gland may provide new insights into the physiological pathways that promote breast cancer progression. Indeed, using the HOPACH clustering method, the human orthologues of genes that were differentially regulated at day 3 of mammary gland involution and showed prolonged expression throughout the first 4 days of involution distinguished breast cancers in the NKI 295 breast cancer dataset with low and high metastatic activity. Most strikingly, genes associated with copper ion homeostasis and with HIF-1 promoter binding sites were the most over-represented, linking this signature to hypoxia. Further, six out of the ten mRNAs with strongest up-regulation in cancers with poor survival code for secreted factors, identifying potential candidates that may be involved in stromal/matrix-enhanced metastasis formation/breast cancer development. This method therefore identified biological processes that occur during mammary gland involution, which may be critical in promoting breast cancer metastasis that could form a basis for future investigation, and supports a role for copper in breast cancer development.
Collapse
Affiliation(s)
- Torsten Stein
- Division of Cancer Sciences and Molecular Pathology, Section of Gene Regulation and Mechanisms of Disease, Western Infirmary, University of Glasgow, Glasgow, UK.
| | | | | | | | | |
Collapse
|
37
|
Berradi H, Bertho JM, Dudoignon N, Mazur A, Grandcolas L, Baudelin C, Grison S, Voisin P, Gourmelon P, Dublineau I. Renal Anemia Induced by Chronic Ingestion of Depleted Uranium in Rats. Toxicol Sci 2008; 103:397-408. [DOI: 10.1093/toxsci/kfn052] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
38
|
Roudkenar MH, Li L, Baba T, Kuwahara Y, Nakagawa H, Wang L, Kasaoka S, Ohkubo Y, Ono K, Fukumoto M. Gene expression profiles in mouse liver cells after exposure to different types of radiation. JOURNAL OF RADIATION RESEARCH 2008; 49:29-40. [PMID: 18049034 DOI: 10.1269/jrr.07078] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The liver is one of the target organs of radiation-induced cancers by internal exposures. In order to elucidate radiation-induced liver cancers including Thorotrast, we present a new approach to investigate in vivo effects of internal exposure to alpha-particles. Adopting boron neutron capture, we separately irradiated Kupffer cells and endothelial cells in mouse liver in vivo and analyzed the changes in gene transcriptions by an oligonucleotide microarray. Differential expression was defined as more than 3-fold for up-regulation and less than 1/3 for under-regulation, compared with non-irradiated controls. Of 6,050 genes examined, 68 showed differential expression compared with non-irradiated mice. Real-time polymerase chain reaction validated the results of the microarray analysis. Exposure to alpha-particles and gamma-rays produced different patterns of altered gene expression. Gene expression profiles revealed that the liver was in an inflammatory state characterized by up-regulation of positive acute phase protein genes, irrespective of the target cells exposed to radiation. In comparison with chemical and biological hepatotoxicants, inductions of Metallothionein 1 and Hemopexin, and suppressions of cytochrome P450s are characteristic of radiation exposure. Anti-inflammatory treatment could be helpful for the prevention and protection of radiation-induced hepatic injury.
Collapse
Affiliation(s)
- Mehryar Habibi Roudkenar
- Department of Pathology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Milanino R, Buchner V. Copper: role of the 'endogenous' and 'exogenous' metal on the development and control of inflammatory processes. REVIEWS ON ENVIRONMENTAL HEALTH 2006; 21:153-215. [PMID: 17243347 DOI: 10.1515/reveh.2006.21.3.153] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Roberto Milanino
- Dipartimento di Medicina e Salute Pubblica, Sezione di Farmacologia, Facoltà di Medicina e Chirurgia, Università di Verona, Policlinico GB Rossi, I-37134, Verona, Italy.
| | | |
Collapse
|
40
|
Wiggins JE, Goyal M, Wharram BL, Wiggins RC. Antioxidant ceruloplasmin is expressed by glomerular parietal epithelial cells and secreted into urine in association with glomerular aging and high-calorie diet. J Am Soc Nephrol 2006; 17:1382-7. [PMID: 16597684 DOI: 10.1681/asn.2005111239] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Biologic aging is accelerated by high-calorie intake, increased free radical production, and oxidation of key biomolecules. Fischer 344 rats that are maintained on an ad libitum diet develop oxidant injury and age-associated glomerulosclerosis by 24 mo. Calorie restriction prevents both oxidant injury and glomerulosclerosis. Ceruloplasmin (Cp) is a copper-containing ferroxidase that functions as an antioxidant in part by oxidizing toxic ferrous iron to nontoxic ferric iron. Glomerular Cp mRNA and protein expression were measured in ad libitum-fed and calorie-restricted rats at ages 2, 6, 17, and 24 mo. In ad libitum-fed rats, Cp mRNA expression increased six-fold (P < 0.01) and protein expression increased five-fold (P = 0.01) between 2 and 24 mo of age. In calorie-restricted rats, Cp mRNA expression increased three-fold (P < 0.01) and protein expression increased 1.6-fold (NS) between 2 and 24 mo of age. Both the cell-associated alternately spliced variant and secreted variants of Cp were expressed. Immunofluorescent analysis showed that Cp was expressed by the parietal epithelial cells that line the inner aspect of Bowman's capsule in the glomerulus. Cp also was present in urine, particularly of old ad libitum-fed rats with high tissue Cp expression. Cp expression by Bowman's capsule epithelial cells therefore occurred in direct proportion to known levels of oxidant activity (older age and high-calorie diet) and is secreted into the urine. It is suggested that Cp expression at this site may be part of the repertoire of the glomerular parietal epithelial cell to protect the glomerular podocytes and the downstream nephron from toxic effects of filtered molecules, including ferrous iron.
Collapse
Affiliation(s)
- Jocelyn E Wiggins
- University of Michigan Health System, Division of Nephrology, Department of Internal Medicine, 1570 MSRBII, Box 0676, Ann Arbor, MI 48109-0676, USA.
| | | | | | | |
Collapse
|
41
|
Nayak C, Nayak D, Raja A, Rao A. Time-level relationship between indicators of oxidative stress and Glasgow Coma Scale scores of severe head injury patients. Clin Chem Lab Med 2006; 44:460-3. [PMID: 16599841 DOI: 10.1515/cclm.2006.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Collapse
Affiliation(s)
- Chandrika Nayak
- Department of Biochemistry, Melaka Manipal Medical College (Manipal Campus), Manipal, India.
| | | | | | | |
Collapse
|
42
|
Abstract
Copper (Cu), a redox active metal, is an essential nutrient for all species studied to date. During the past decade, there has been increasing interest in the concept that marginal deficits of this element can contribute to the development and progression of a number of disease states including cardiovascular disease and diabetes. Deficits of this nutrient during pregnancy can result in gross structural malformations in the conceptus, and persistent neurological and immunological abnormalities in the offspring. Excessive amounts of Cu in the body can also pose a risk. Acute Cu toxicity can result in a number of pathologies, and in severe cases, death. Chronic Cu toxicity can result in liver disease and severe neurological defects. The concept that elevated ceruloplasmin is a risk factor for certain diseases is discussed. In this paper, we will review recent literature on the potential causes of Cu deficiency and Cu toxicity, and the pathological consequences associated with the above. Finally, we will review some of the potential biochemical lesions that might underlie these pathologies. Given that oxidative stress is a characteristic of Cu deficiency, the role of Cu in the oxidative defense system will receive special attention. The concept that excess Cu may be a precipitating factor in Alzheimer's disease is discussed.
Collapse
Affiliation(s)
- Janet Y Uriu-Adams
- Department of Nutrition, One Shields Ave., University of California-Davis, Davis, CA 95616, USA.
| | | |
Collapse
|
43
|
Arslan E, Demirkan F, Unal S, Aksoy A, Polat G, Kanik A. The relationship between patient stress and the blood levels of acute phase proteins in rhinoplasty: the report of a prospective study. J Psychosom Res 2005; 58:35-41. [PMID: 15771868 DOI: 10.1016/j.jpsychores.2004.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2003] [Accepted: 05/12/2004] [Indexed: 11/18/2022]
Abstract
OBJECTIVE This study aims to interrogate the relationship between patient stress and the levels of acute phase proteins (APP) in rhinoplasty. METHODS Twenty-six primary rhinoplasty patients were asked about the most stressful step of the rhinoplasty process, which were (1) deciding on the operation, (2) waiting in the preoperative room, (3) the first few postoperative hours, and (4) withdrawing the nasal pack, in order beginning from the most stressful one, preoperatively, and then postoperatively. C-reactive protein (CRP), alfa-1-acide glycoprotein (AAG), ceruloplasmin (CER), haptoglobulin (HPT), and alfa-1-antitrypsin (AT) have been studied in blood to detect a relation between the patient stress and the levels of APP. RESULTS Preoperatively, the "imagined" most stressful step was Step 4 (61.53%). Postoperatively, the "declared" most stressful step was Step 3 (50%). The blood levels of APP matched with the imagined rather than the declared stress. CONCLUSION Patient stress could be a preoperative issue, which should be eliminated preoperatively. Detailed description of the surgery and some pharmaceutics can inhibit the negative effects of the stressors and have a contribution to patient comfort.
Collapse
Affiliation(s)
- Emrah Arslan
- Department of Plastic and Reconstructive Surgery, Mersin University School of Medicine, Zeytinlibahce Cad., Mersin 33079, Turkey.
| | | | | | | | | | | |
Collapse
|
44
|
Khovidhunkit W, Kim MS, Memon RA, Shigenaga JK, Moser AH, Feingold KR, Grunfeld C. Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host. J Lipid Res 2004; 45:1169-96. [PMID: 15102878 DOI: 10.1194/jlr.r300019-jlr200] [Citation(s) in RCA: 1037] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Infection and inflammation induce the acute-phase response (APR), leading to multiple alterations in lipid and lipoprotein metabolism. Plasma triglyceride levels increase from increased VLDL secretion as a result of adipose tissue lipolysis, increased de novo hepatic fatty acid synthesis, and suppression of fatty acid oxidation. With more severe infection, VLDL clearance decreases secondary to decreased lipoprotein lipase and apolipoprotein E in VLDL. In rodents, hypercholesterolemia occurs attributable to increased hepatic cholesterol synthesis and decreased LDL clearance, conversion of cholesterol to bile acids, and secretion of cholesterol into the bile. Marked alterations in proteins important in HDL metabolism lead to decreased reverse cholesterol transport and increased cholesterol delivery to immune cells. Oxidation of LDL and VLDL increases, whereas HDL becomes a proinflammatory molecule. Lipoproteins become enriched in ceramide, glucosylceramide, and sphingomyelin, enhancing uptake by macrophages. Thus, many of the changes in lipoproteins are proatherogenic. The molecular mechanisms underlying the decrease in many of the proteins during the APR involve coordinated decreases in several nuclear hormone receptors, including peroxisome proliferator-activated receptor, liver X receptor, farnesoid X receptor, and retinoid X receptor. APR-induced alterations initially protect the host from the harmful effects of bacteria, viruses, and parasites. However, if prolonged, these changes in the structure and function of lipoproteins will contribute to atherogenesis.
Collapse
Affiliation(s)
- Weerapan Khovidhunkit
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | | | | | | | | | | | | |
Collapse
|
45
|
Masini E, Pierpaoli S, Marzocca C, Mannaioni PF, Pietrangeli P, Mateescu MA, Zelli M, Federico R, Mondovì B. Protective effects of a plant histaminase in myocardial ischaemia and reperfusion injury in vivo. Biochem Biophys Res Commun 2003; 309:432-9. [PMID: 12951068 DOI: 10.1016/j.bbrc.2003.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Grass pea seedling histaminase (a copper-diamine oxidase) was found to exert a significant cardioprotection against post-ischaemic reperfusion damage. Electrocardiogram (ECG) recordings from the rats subjected in vivo to ischaemia and reperfusion showed ventricular tachycardia (VT) and ventricular fibrillations (VF) occurring in 9 out of 12 untreated rats whereas no ventricular arrhythmias were found under histaminase (80U/kg body weight) treatment (n=16 rats). Computer-assisted morphometry of the ischaemic reperfused hearts stained with nitroblue tetrazolium showed the extension of damaged myocardium (area at risk and infarct size) significantly reduced in rats treated with histaminase, in comparison with the non-treated rats, whereas no protection was found with the semicarbazide inactivated histaminase. Biochemical markers of ischaemia-reperfusion myocardial tissue damage: malonyldialdehyde (MDA), tissue calcium concentration, myeloperoxidase (MPO), and apoptosis indicator caspase-3 were significantly elevated in untreated post-ischaemic reperfused rats, but significantly reduced under histaminase protection. In conclusion, plant histaminase appears to protect hearts from ischaemia-reperfusion injury by more than one mechanism, essentially involving histamine oxidation, and possibly as reactive oxygen species scavenger, presenting good perspectives for a novel therapeutic approach in treatment of ischaemic heart pathology.
Collapse
Affiliation(s)
- Emanuela Masini
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale Pieraccini 6, 50139 Florence, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kamireddy R, Kavuri S, Devi S, Vemula H, Chandana D, Harinarayanan S, James R, Rao A. Oxidative stress in pediatric nephrotic syndrome. Clin Chim Acta 2002; 325:147-50. [PMID: 12367779 DOI: 10.1016/s0009-8981(02)00294-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Nephrotic syndrome (NS) is a stressful condition for children where oxidative damage would also influence the response of these patients to therapy. METHODS The present study was conducted in children with nephrotic syndrome during relapse and remission and in 10 age- and sex-matched healthy volunteers. Red cell glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) concentrations as well as plasma ceruloplasmin (CP) and vitamin E concentrations were analyzed in controls and in patients. RESULTS Erythrocyte superoxide dismutase concentrations were significantly increased in both the groups when compared to controls. Erythrocyte glutathione significantly decreased in nephrotic syndrome in remission along with plasma vitamin E concentrations in both the groups. A significant increase in plasma ceruloplasmin was observed in cases in remission. However, no significant change was observed in the concentrations of erythrocyte malondialdehyde. CONCLUSION Thus, antioxidant concentrations change considerably, indicating a compensatory mechanism to cope up with increased pro-oxidant status in such cases.
Collapse
Affiliation(s)
- Rajani Kamireddy
- Department of Biochemistry, Kasturba Medical College, Manipal-576 119, Karnataka, India
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Louro MO, Cocho JA, Mera A, Tutor JC. Immunochemical and enzymatic study of ceruloplasmin in rheumatoid arthritis. J Trace Elem Med Biol 2000; 14:174-8. [PMID: 11130855 DOI: 10.1016/s0946-672x(00)80007-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Forty adult patients (30 women and 10 men) with rheumatoid arthritis (RA), treated with nonsteroidal anti-inflammatory drugs, were studied. Serum levels of immunoreactive ceruloplasmin, oxidase activity of the ceruloplasmin and total copper, as well as the specific oxidase activity (enzyme activity per unit of mass) and the copper/immunoreactive ceruloplasmin relationship were significantly higher in the group of patients than in the healthy control group (p < 0.001). However, no significant difference was found for the concentration of non-ceruloplasmin copper between both groups. A statistically significant negative correlation was obtained for the concentration of serum thiobarbituric acid-reacting substances with the immunoreactive ceruloplasmin and its oxidase activity in the group of patients (p < 0.005). These results suggest that in RA increases of serum copper are produced at the expense of the fraction linked to the ceruloplasmin, diminishing the proportion of apoceruloplasmin and other forms poor in copper. Although the increase in the serum concentration of ceruloplasmin might offer an additional safeguard against oxidative stress. it does not appear to have a beneficial effect upon the activity of the illness as evaluated by means the biological inflammation markers C-reactive protein, erythrocyte sedimentation rate and sialic acid.
Collapse
Affiliation(s)
- M O Louro
- Laboratorio Central, Hospital General de Galicia, Clinico Universitario, Santiago de Compostela, Spain
| | | | | | | |
Collapse
|
48
|
Atanasiu R, Gouin L, Mateescu MA, Cardinal R, Nadeau R. Class III antiarrhythmic effects of ceruloplasmin on rat heart. Can J Physiol Pharmacol 1996. [DOI: 10.1139/y96-057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Mitchell IM, Brady L, Black J, Jamieson MP, Pollock JC, Logan RW. The acute phase response to cardiopulmonary bypass in children. Perfusion 1996; 11:103-12. [PMID: 8740351 DOI: 10.1177/026765919601100204] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The endocrine phase of the stress response to cardiopulmonary bypass in children is known to be subtly different from that seen in adults. The aim of this investigation was to determine whether there are similar differences in the acute phase response. Thirteen children were studied (mean age 2.65 years). Each child had congenital heart disease and underwent corrective cardiac surgery. Blood samples taken two days prior to operation and at 6, 9, 12, 24, 48 and 120 hours after were analysed for C-reactive protein, albumin, caeruloplasmin, zinc and copper concentrations. Metal:carrier protein molar ratios were also calculated. Results demonstrate changes which, although similar to those seen in adults, differed both quantitatively and qualitatively. This is explained by the concept of immaturity leading to a generally poor capacity for protein synthesis and a relative inability to respond to altered circumstances.
Collapse
Affiliation(s)
- I M Mitchell
- Department of Cardiac Surgery, Royal Hospital for Sick Children, Glasgow
| | | | | | | | | | | |
Collapse
|
50
|
Atanasiu R, Dumoulin MJ, Chahine R, Mateescu MA, Nadeau R. Antiarrhythmic effects of ceruloplasmin during reperfusion in the ischemic isolated rat heart. Can J Physiol Pharmacol 1995; 73:1253-61. [PMID: 8748974 DOI: 10.1139/y95-177] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The ability of ceruloplasmin, an important serum antioxidant, to reduce the vulnerability of the isolated rat heart to reperfusion arrhythmias has been investigated. Bovine plasma ceruloplasmin was purified by chromatography on aminoethyl-agarose. Isolated rat hearts were submitted to 15 min of regional ischemia and 10 min of reperfusion. The dose-effect relationship and the role of ceruloplasmin conformational integrity in cardioprotection were established by treatment of ischemic hearts with ceruloplasmin at various concentrations (0.25, 0.5, 1, and 2 microM) and at different degrees of conformational integrity (A610/A280 = 0.02, 0.04, and 0.06), 5 min before reperfusion. Deferoxamine (20-500 microM) was used as a positive control. As negative controls we used chemically inactivated ceruloplasmin (1 microM), heat-denatured ceruloplasmin (1 microM), and albumin (1-4 microM). In the control group during the first 5 min of reperfusion, the incidence of total ventricular fibrillation was 100% and of irreversible ventricular fibrillation was 83%. The incidence of reversible and irreversible ventricular fibrillation was significantly decreased in the ceruloplasmin-treated groups in both a dose and molecular integrity dependent manner. Ceruloplasmin had no effect on the incidence of ventricular tachycardia. Deferoxamine reduced the incidence of ventricular fibrillation to the same degree as ceruloplasmin but at concentrations much higher than those of ceruloplasmin. Chemically inactivated ceruloplasmin, heat-denatured ceruloplasmin, and albumin had no protective effects on reperfusion-induced arrhythmias.
Collapse
Affiliation(s)
- R Atanasiu
- Department of Physiology, Université de Montréal, Hôpital du Sacré-Coeur de Montréal, Canada
| | | | | | | | | |
Collapse
|