1
|
Orlando GS, Tobey NA, Wang P, Abdulnour-Nakhoul S, Orlando RC. Regulatory volume decrease in human esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2002; 283:G932-7. [PMID: 12223353 DOI: 10.1152/ajpgi.00455.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In vivo human esophageal epithelial cells are regularly exposed to hyposmolal stress. This stress, however, only becomes destructive when the surface epithelial cell (barrier) layers are breached and there is contact of the hyposmolal solution with the basolateral cell membranes. The present investigation was designed to examine the effects of hyposmolal stress in the latter circumstance using as a model for human esophageal epithelial cells the noncancer-derived HET-1A cell line. Cell volume and the response to hyposmolal stress in suspensions of HET-1A cells were determined by cell passage through a Coulter Counter Multisizer II. HET-1A cells behaved as osmometers over the range of 280 to 118 mosmol/kg H(2)O with rapid increases in cell volume < or = 15-20% above baseline. Following swelling, the cells exhibited regulatory volume decrease (RVD), restoring baseline volume within 30 min, despite continued hyposmolal stress. With the use of pharmacologic agents and ion substitutions, RVD appeared to result from rapid activation of parallel K(+) and Cl(-) conductance pathways and this was subsequently joined by activation of a KCl cotransporter. Exposure to hyposmolal stress in an acidic environment, pH 6.6, inhibited, but did not abolish, RVD. These data indicate that human esophageal epithelial cells can protect against hyposmolal stress by RVD and that the redundancy in mechanisms may, to some extent, serve as added protection in patients with reflux disease when hyposmolal stress may occur in an acidic environment.
Collapse
Affiliation(s)
- Geraldine S Orlando
- Department of Medicine, Tulane University School of Medicine and Veterans Administration Medical Center, New Orleans, Louisiana 70112 - 2699, USA.
| | | | | | | | | |
Collapse
|
2
|
Egée S, Lapaix F, Cossins AR, Thomas SL. The role of anion and cation channels in volume regulatory responses in trout red blood cells. Bioelectrochemistry 2000; 52:133-49. [PMID: 11129237 DOI: 10.1016/s0302-4598(00)00096-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
(1) An outwardly rectifying chloride channel (ORCC) of large conductance has been detected under isotonic conditions (320 mosM 1(-1)) in the plasma membrane of trout red blood cells (RBCs) using the excised inside-out configuration. The channel, with a permeability ratio P(Cl)/Pcation of 12, was inhibited by the Cl- channel blockers 5-nitro-2-(3-phenylpropylamino)-benzoate (NPPB) (50 microM), and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) (100 microM) in the bathing solution. (2) In hypotonic conditions (215 mosM 1(-1)), 44% of cell-attached patches showed spontaneous single channel activity identified as nonselective cationic (NSC) channels. A second group, corresponding to 7% of cell-attached patches, showed spontaneous activity corresponding to a channel type presenting outward rectification and anionic selectivity. Finally, 49% of patches displayed a complex spontaneous signal corresponding to the superimposition of inward and outward currents probably due to activation of different channel types. (3) Giga-seals obtained without suction in intact cells under isotonic conditions possessed NSC channels that were quiescent but which could be activated either by mechanical deformation of cell membrane or by hypotonic cell swelling. (4) Hypotonically swollen RBCs exhibited regulatory volume decrease (RVD) over 3 h, which was linked to a fivefold to sixfold increase in unidirectional fluxes of K+, a net loss of intracellular K+ and net gain of extracellular Na+. RVD and the hypotonically activated, unidirectional K+ influx continued after replacement of Cl- by methylsulfonate (MeSF) albeit more slowly. (5) The NSC channel inhibitor, barium, and the Cl- channel inhibitor, NPPB, both inhibited the RVD response by approximately 50% in Cl- containing saline. When Cl- was replaced by MeSF, the inhibition was > 90% suggesting that NSC channels and ORCC play key roles in the chloride-independent component of RVD.
Collapse
Affiliation(s)
- S Egée
- Centre National de la Recherche Scientifique, UPR 9042, Roscoff, France
| | | | | | | |
Collapse
|
3
|
Kaloyianni M, Trachana V, Boukla A. Regulation of cation transport pathways and glycolytic enzyme activity by alterations in red cell volume. Cell Biochem Funct 1999; 17:75-88. [PMID: 10377953 DOI: 10.1002/(sici)1099-0844(199906)17:2<75::aid-cbf807>3.0.co;2-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the presence of NH4Cl and hypotonic solutions, Rana balcanica red cells respond by increasing their volume. The stimulation of cellular volume by hypotonicity is more rapid than that of NH4Cl, while the maximum value is less than that observed in the presence of NH4Cl. Depending on the cause of swelling, (nct uptake of NH4Cl or decrease in external osmolality) cells show specific responses. The NH4Cl treatment causes a significant increase in intracellular Na+, from 5.14 +/- 0.78 to 29.84 +/- 0.47 mmoles l-1 cell, while hypotonicity leads to a significant decrease of this cation, to 3.85 +/- 0.25 mmoles l-1 cell in relation to the control, after 30 min of incubation of Rana balcanica erythrocytes. In addition, amiloiride significantly reverses the NH4Cl effect with respect to intracellular Na+. Both treatments cause a significant K+ loss in comparison with controls. Two glycolytic enzymes glyceraldehyde phosphate dehydrogenase (GAPDH) and pyruvate kinase (PK) of Rana balcanica haemolysate were found to respond to the NH4Cl effect by significantly decreasing their activity.
Collapse
Affiliation(s)
- M Kaloyianni
- Zoology Department, School of Biology, Aristotle University of Thessaloniki, Greece
| | | | | |
Collapse
|
4
|
Isenring P, Jacoby SC, Payne JA, Forbush B. Comparison of Na-K-Cl cotransporters. NKCC1, NKCC2, and the HEK cell Na-L-Cl cotransporter. J Biol Chem 1998; 273:11295-301. [PMID: 9556622 DOI: 10.1074/jbc.273.18.11295] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Na-K-Cl cotransporter (NKCC) mediates the coupled movement of ions into most animal cells, playing important roles in maintenance of cell volume and in epithelial Cl transport. Two forms of NKCC have been described: NKCC1, the "housekeeping" isoform that is also responsible for Cl accumulation in secretory epithelial cells, and NKCC2, which mediates apical Na+K+Cl entry into renal epithelial cells. Here we examine the kinetic properties of NKCC1, NKCC2, and the endogenous HEK-293 cell cotransporter. Stable expression of rabbit NKCC2A was obtained in HEK-293 cells utilizing a chimera (h1r2A0.7) in which the 5'-untranslated region and cDNA encoding 104 amino acids of the N terminus are replaced by the corresponding sequence of NKCC1. h1r2A0.7 exhibits Na and Cl affinities near those of NKCC1, but it has a 4-fold lower Rb affinity, and a 3-fold higher affinity for the inhibitor bumetanide. The activity of h1r2A0.7 is increased on incubation in low [Cl] media as is NKCC1, but the resting level of activity is higher in h1r2A0.7 and activation is more rapid. h1r2A0.7 exhibits an appropriate volume response, unlike NKCC1 for which concomitant changes in [Cl]i appear to be the overriding factor. These results support a model in which apical NKCC2 activity is matched to basolateral Cl exit through changes in [Cl]i. Reverse transcriptase-polymerase chain reaction of HEK-293 cell mRNA is positive with NKCC1 primers and negative with NKCC2 primers. Surprisingly, we found that the behavior of the endogenous HEK cell Na-K-Cl cotransporter is unlike either of the two forms which have been described: compared with NKCC1, HEK cell cotransporter has a 2.5-fold lower Na affinity, an 8-fold lower Rb affinity, and a 4-fold higher bumetanide affinity. These results suggest the presence of a novel isoform of NKCC in HEK-293 cells.
Collapse
Affiliation(s)
- P Isenring
- Cellular & Molecular Physiology Department, Yale University, New Haven, Connecticut 06510, USA.
| | | | | | | |
Collapse
|
5
|
Lytle C, McManus TJ, Haas M. A model of Na-K-2Cl cotransport based on ordered ion binding and glide symmetry. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C299-309. [PMID: 9486118 DOI: 10.1152/ajpcell.1998.274.2.c299] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In the duck red blood cell, Na-K-2Cl cotransport exhibits two modes of ion movement: net cotransport and obligate cation exchange. In high-K cells, the predominant exchange is K/K (or K/Rb). In high-Na cells, it becomes Na/Na (or Na/Li). Both represent partial reactions in which a fully loaded carrier releases part of its cargo, rebinds fresh ions, and returns back across the membrane fully loaded. Net cotransport occurs when the carrier unloads completely and returns empty. This mode has a fixed stoichiometry of 1Na:1K:2Cl under all conditions tested. The ion requirements of the two exchanges differ: K/K exchange requires only K and Cl outside but all three ions inside. Na/Na exchange requires all three ions outside but only Na inside. We propose a simple model in which the carrier can only move when either fully loaded or completely empty and in which the ions bind in a strictly ordered sequence. For example, externally, a Na binds first and then a Cl, followed by a K and a second Cl. Internally, the first on is the first off (glide symmetry), so the Na is released first and then the first Cl, followed by the K and finally by the second Cl. Only then can the empty form return to the outside to start a new cycle.
Collapse
Affiliation(s)
- C Lytle
- Division of Biomedical Sciences, University of California, Riverside 92521, USA
| | | | | |
Collapse
|
6
|
al-Rohil Gharaibeh NS, al-Sheyyab M. Inhibition of K+ transport in human sickle cell erythrocytes by okadaic acid and sodium fluoride. Clin Exp Pharmacol Physiol 1997; 24:841-3. [PMID: 9363366 DOI: 10.1111/j.1440-1681.1997.tb02700.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. The effect of okadaic acid and sodium fluoride on swelling- and N-ethylmaleimide (NEM)-stimulated KCl cotransport was examined in blood cells from homozygote sickle cell anaemia patients. 2. Blood was drawn into heparin or EDTA by vein puncture from sickle cell patients previously diagnosed in the haematology clinics of Princess Badee'a Teaching Hospital. A standard method for measuring flux by using radioactive rubidium was used. 3. Okadaic acid strongly inhibited swelling-stimulated KCl cotransport if added before swelling. Okadaic acid and sodium fluoride added before NEM inhibited the activation of transport by NEM. Okadaic acid added after NEM did not inhibit transport. 4. The inhibition of the effects of NEM by okadaic acid and sodium fluoride indicates that activation of the flux by NEM requires the action of phosphatase.
Collapse
Affiliation(s)
- N S al-Rohil Gharaibeh
- Department of Physiology and Biochemistry, Princess Badee'a Teaching Hospital, Jordan University of Science and Technology, Irbid, Jordan.
| | | |
Collapse
|
7
|
Mackert BM, Staub F, Peters J, Baethmann A, Kempski O. Anoxia in vitro does not induce neuronal swelling or death. J Neurol Sci 1996. [DOI: 10.1016/0022-510x(96)00063-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Kim HD, Bowen JW, James-Kracke MR, Landon LA, Camden JM, Burnett JE, Turner JT. Potentiation of regulatory volume decrease by P2U purinoceptors in HSG-PA cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1996; 270:C86-97. [PMID: 8772433 DOI: 10.1152/ajpcell.1996.270.1.c86] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
HSG-PA human salivary gland duct cells exhibit progressively increased regulatory volume decrease (RVD) in response to decreased medium osmolarity. The P2U purinoceptor agonist UTP causes a potentiation of RVD, the extent of which is most pronounced in 220 mosM medium and is least apparent in 180 mosM medium. We examined the underlying mechanisms for this effect. Exposure of HSG-PA cells to UTP promotes Ca2+ mobilization, hyperpolarization, and net K+ efflux, suggesting the participation of Ca(2+)-activated K+ channels in RVD. To delineate the anion counterpart of K+ movement during RVD, cell swelling in the presence of gramicidin, which abolishes the membrane potential, was measured. In response to a sudden dilution in hypotonic media, gramicidin-treated cells swelled immediately, followed by a "secondary swelling" in 180 but not in 220 mosM medium. The results suggest that in 180 mosM cells perform spontaneous RVD mediated by increased anion conductance. In 220 mosM medium in which RVD is minimal, the increase in anion conductance is marginal. In our model of RVD in which cells were challenged by UTP, the ensuing hyperpolarization provides the driving force for net Cl- efflux, which is confirmed by tracer flux studies during purinoceptor-activated RVD. Thus RVD, which has long been regarded as a self-sufficient cellular program, appears to be subject to extracellular control in HSG-PA cells through receptor-mediated processes.
Collapse
Affiliation(s)
- H D Kim
- Department of Pharmacology, School of Medicine, University of Missouri, Columbia 65212, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
al-Habori M. Cell volume and ion transport regulation. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1994; 26:319-34. [PMID: 8187929 DOI: 10.1016/0020-711x(94)90052-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- M al-Habori
- Department of Medicine, Medical School, University of Sanaa, Republic of Yemen
| |
Collapse
|
10
|
Kaji DM. Na+/K+/2Cl- cotransport in medullary thick ascending limb cells: kinetics and bumetanide binding. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1152:289-99. [PMID: 8218329 DOI: 10.1016/0005-2736(93)90260-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We examined the properties of Na+/K+/2Cl- cotransport in cultured mouse mTAL cells with respect to its kinetics, the contribution of K/K exchange to K fluxes mediated by the cotransporter, and [3H]bumetanide binding and turnover numbers in media with varying osmolality. The addition of bumetanide, the replacement of external Na+ or the replacement of external Cl- resulted in an almost identical (approx. 50%) decrease in K+ influx, suggesting that Na(+)-dependent, Cl(-)-dependent, BS K+ influx was a measure of Na+/K+/2Cl- cotransport. The kinetics of the BS K+ influx revealed a high affinity for external Na+ (apparent Km 7 mM) and external K+ (apparent Km 1.3 mM), but a very low affinity for external Cl- (apparent Km 67 mM with a two-site model). Of interest was the finding that none of the K+ (86Rb+) efflux was sensitive to bumetanide, suggesting the absence of cotransport mediated K/K exchange in this cell type. Specific [3H]bumetanide binding was a saturable function of free bumetanide concentration with a Kd of 0.20 microM and maximum binding (Bmax) of 0.63 pmol/mg, or about 53,000 sites per cell. Simultaneous transport and bumetanide binding assays yielded a turnover number of 255 min-1. The omission of external Na+, K+ or Cl- reduced specific [3H]bumetanide binding to values indistinguishable from zero. Changing medium osmolarity resulted in a co-ordinate change in BS K+ influx and bumetanide binding, with a monotonic increase in both transport and bumetanide binding with increase in osmolality from 200 to 400 mosmol/kg. About 85% of the cotransporter sites were located on the apical side, as in the intact mTAL tubule. The simultaneous measurement of BS ion transport and [3H]bumetanide binding in the mTAL cell may provide valuable insights into the regulation of Na+/K+/2Cl- cotransport in this nephron segment.
Collapse
Affiliation(s)
- D M Kaji
- Renal Section, Veterans Affairs Medical Center, Bronx, New York
| |
Collapse
|
11
|
Abstract
Hereditary stomatocytosis and allied conditions represent a series of diseases in which abnormal movements of univalent cations across the plasma membrane play an important part in cellular disease. The primary problem lies not in the active transporters but in the basal permeability of the membrane, which is always increased, and the extent of the increase correlates with the cellular dysfunction. A number of structural abnormalities have been described in these membranes, but the most consistent and convincing is the deficiency of a hitherto uncharacterized integral membrane protein of molecular weight 31 kDa in the severe, 'overhydrated' form of the disease. The true function of this protein remains enigmatic, but its deficiency in this condition indicates that it may have a role in the regulation of cation transport.
Collapse
MESH Headings
- Adult
- Anemia, Hemolytic, Congenital/blood
- Anemia, Hemolytic, Congenital/genetics
- Anemia, Hemolytic, Congenital/pathology
- Anemia, Hemolytic, Congenital/veterinary
- Animals
- Biological Transport
- Blood Proteins/chemistry
- Blood Proteins/deficiency
- Blood Proteins/metabolism
- Blood Proteins/physiology
- Carrier Proteins/blood
- Cations, Monovalent/blood
- Cell Membrane Permeability
- Child
- Dog Diseases/blood
- Dog Diseases/genetics
- Dogs
- Erythrocyte Membrane/metabolism
- Erythrocyte Membrane/ultrastructure
- Erythrocytes, Abnormal/ultrastructure
- Female
- Goat Diseases/blood
- Goat Diseases/genetics
- Goats
- Humans
- Membrane Proteins
- Potassium/blood
- Sheep
- Sheep Diseases/blood
- Sheep Diseases/genetics
- Sodium/blood
Collapse
Affiliation(s)
- G W Stewart
- Department of Medicine, University College and Middlesex School of Medicine, Rayne Institute, London, UK
| |
Collapse
|
12
|
Rugolo M, Mastrocola T, De Luca M, Romeo G, Galietta LJ. A volume-sensitive chloride conductance revealed in cultured human keratinocytes by 36Cl- efflux and whole-cell patch clamp recording. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1112:39-44. [PMID: 1420267 DOI: 10.1016/0005-2736(92)90251-g] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Cl- transport mechanism responsible for the stimulation of 36Cl- efflux after exposure to hypotonic medium (210 mosmol/kg) was investigated in human keratinocytes. The involvement of the anion exchanger and of the Cl-/cation cotransporters was ruled out by the finding that replacement of extracellular Cl- by the poorly permeant anion gluconate, and the addition of bumetanide and furosemide, inhibitors of the Na+/K+/Cl- and K+/Cl- cotransporters, respectively, failed to significantly reduce the activation of Cl- efflux by hypotonic medium. 'Whole cell' configuration of the patch clamp technique directly revealed the presence of a macroscopic Cl- current, which was evoked by incubation with hypotonic medium and was reversed by elevation of the extracellular osmolality. Volume-sensitive current showed outward rectification of the current-voltage relationship and time-dependent inactivation at depolarizing voltages. This current was Cl- selective, because the zero-current reversal potential approached the Cl- equilibrium potential, when extracellular Cl- was replaced by gluconate. 0.1 mM 1,9-dideoxyforskolin significantly reduced either 36Cl- efflux and the Cl- current, suggesting that the Cl- efflux and the macroscopic current activated after exposure to hypotonic medium are mediated by the same pathway. Electronic cell sizing showed that in keratinocytes hypotonic swelling was not followed by a significant regulatory volume decrease response.
Collapse
Affiliation(s)
- M Rugolo
- Dipartimento di Biologia E.S., Università di Bologna, Italy
| | | | | | | | | |
Collapse
|
13
|
Mastrocola T, Flamigni A, Rugolo M. Hypotonic shock activated Cl- and K+ pathways in human fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1069:201-8. [PMID: 1718432 DOI: 10.1016/0005-2736(91)90125-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The exposure of human fibroblasts to hypotonic medium (200 mosmolal) evoked the activation of both 36Cl- influx and efflux, which were insensitive to inhibitors of the anion exchanger and of the anion/cation cotransport, and conversely were inhibited by the Cl(-)-channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). 36Cl- efflux was linked to a parallel efflux of 86Rb+; thus conductive K+ and Cl- pathways are activated during volume regulation in human fibroblasts. This conclusion is supported by evidence that, in hypotonic medium, 36Cl- influx and 86Rb+ efflux were both enhanced by depolarization of the plasma membrane. Depletion of the intracellular K+ content, obtained by preincubation with the ionophore gramicidin in Na(+)-free medium, had no effect on Cl- efflux in hypotonic medium. This result has been interpreted as evidence for independent activation of K+ and Cl- pathways. It is also concluded that the anion permeability is the rate-limiting factor in the response of human fibroblasts to hypotonic stress.
Collapse
Affiliation(s)
- T Mastrocola
- Dipartimento di Biologia Ev. Sp., Università di Bologna, Italia
| | | | | |
Collapse
|
14
|
Jennings ML, Schulz RK. Okadaic acid inhibition of KCl cotransport. Evidence that protein dephosphorylation is necessary for activation of transport by either cell swelling or N-ethylmaleimide. J Gen Physiol 1991; 97:799-817. [PMID: 1647439 PMCID: PMC2216490 DOI: 10.1085/jgp.97.4.799] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The mechanism of activation of KCl cotransport has been examined in rabbit red blood cells. Previous work has provided evidence that a net dephosphorylation is required for activation of transport by cell swelling. In the present study okadaic acid, an inhibitor of protein phosphatases, was used to test this idea in more detail. We find that okadaic acid strongly inhibits swelling-stimulated KCl cotransport. The IC50 for okadaic acid is approximately 40 nM, consistent with the involvement of type 1 protein phosphatase in transport activation. N-Ethylmaleimide (NEM) is well known to activate KCl cotransport in cells of normal volume. Okadaic acid, added before NEM, inhibits the activation of transport by NEM, indicating that a dephosphorylation is necessary for the NEM effect. Okadaic acid added after NEM inhibits transport only very slightly. After a brief exposure to NEM and rapid removal of unreacted NEM, KCl cotransport activates with a time delay that is similar to that for swelling activation. Okadaic acid causes a slight increase in the delay time. These findings are all consistent with the idea that NEM activates transport not by a direct action on the transport protein but by altering a phosphorylation-dephosphorylation cycle. The simplest hypothesis that is consistent with the data is that both cell swelling and NEM cause inhibition of a protein kinase. Kinase inhibition causes net dephosphorylation of some key substrate (not necessarily the transport protein); dephosphorylation of this substrate, probably by type 1 protein phosphatase, causes transport activation.
Collapse
Affiliation(s)
- M L Jennings
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
15
|
Delpire E, Cornet M, Gilles R. Volume regulation in rat pheochromocytoma cultured cells submitted to hypoosmotic conditions. ARCHIVES INTERNATIONALES DE PHYSIOLOGIE, DE BIOCHIMIE ET DE BIOPHYSIQUE 1991; 99:71-6. [PMID: 1713489 DOI: 10.3109/13813459109145906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mechanisms at work in cell volume regulation have been studied in PC12 cultured cells. Results show, for the first time to our knowledge, that the volume readjustment process occurring after application of a hypoosmotic saline is sensitive to amiloride, IBMX and forskoline. The process is also inhibited by quinine hydrochloride and trifluoperazine. Volume readjustment is concomtant with a decrease in K+ and Cl- intracellular levels. The decrease in K+ level can be related to an assymetrical change in the fluxes in and out of the ion as shown by flux kinetics studies using Rb86. These results are interpreted considering that the control of the activity of the ion channel pathways associated with volume readjustment in PC12 cells may implicate the Ca(2+)-calmodulin - cAMP system.
Collapse
Affiliation(s)
- E Delpire
- Laboratory of animal physiology, University of Liège, Belgium
| | | | | |
Collapse
|
16
|
Drewnowska K, Baumgarten CM. Regulation of cellular volume in rabbit ventricular myocytes: bumetanide, chlorothiazide, and ouabain. THE AMERICAN JOURNAL OF PHYSIOLOGY 1991; 260:C122-31. [PMID: 1987774 DOI: 10.1152/ajpcell.1991.260.1.c122] [Citation(s) in RCA: 108] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Video microscopy was used to study the regulation of cell volume in isolated rabbit ventricular myocytes. Myocytes rapidly (less than or equal to 2 min) swelled and shrank in hyposmotic and hyperosmotic solutions, respectively, and this initial volume response was maintained without a regulatory volume decrease or increase for 20 min. Relative cell volumes (normalized to isosmotic solution, 1T) were as follows: 1.41 +/- 0.01 in 0.6T, 1.20 +/- 0.04 in 0.8T, 0.71 +/- 0.04 in 1.8T, and 0.57 +/- 0.03 in 2.6T. These volume changes were significantly less than expected if all of the measured volume was osmotically active water. Changes in width and thickness were significantly greater than changes in cell length. The idea that cotransport contributes to cell volume regulation was tested by inhibiting Na(+)-K(+)-2Cl- cotransport with bumetanide (BUM) and Na(+)-Cl- cotransport with chlorothiazide (CTZ). Under isotonic conditions, a 10-min exposure to BUM (1 microM), CTZ (100 microM), or BUM (10 microM) plus CTZ (100 microM) decreased relative cell volume to 0.87 +/- 0.01, 0.86 +/- 0.02, and 0.82 +/- 0.04, respectively. BUM plus CTZ also modified the response to osmotic stress. Swelling in 2.6T medium was 76% greater and shrinkage in 0.6T medium was 29% less than in the absence of diuretics. In contrast to the rapid effects of diuretics, inhibition of the Na(+)-K+ pump with 10 microM ouabain for 20 min did not affect cell volume in 1T solution. Nevertheless, ouabain decreased swelling in 0.6T medium by 52% and increased shrinkage in 1.8T medium by 34%. These data suggest that under isotonic conditions Na(+)-K(+)-2Cl- and Na(+)-Cl- cotransport are critical in establishing cell volume, but osmoregulation can compensate for Na(+)-K+ pump inhibition for at least 20 min. Under anisotonic conditions, the Na(+)-K+ pump and Na(+)-K(+)-2Cl- and/or Na(+)-Cl- cotransport are important in myocyte volume regulation.
Collapse
Affiliation(s)
- K Drewnowska
- Department of Physiology, Medical College of Virginia, Richmond 23298-0551
| | | |
Collapse
|
17
|
|
18
|
Lew VL, Freeman CJ, Ortiz OE, Bookchin RM. A mathematical model of the volume, pH, and ion content regulation in reticulocytes. Application to the pathophysiology of sickle cell dehydration. J Clin Invest 1991; 87:100-12. [PMID: 1985088 PMCID: PMC295002 DOI: 10.1172/jci114958] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We developed a mathematical model of the reticulocyte, seeking to explain how a cell with similar volume but much higher ionic traffic than the mature red cell (RBC) regulates its volume, pH, and ion content in physiological and abnormal conditions. Analysis of the fluxbalance required by reticulocytes to conserve volume and composition predicted the existence of previously unsuspected Na(+)-dependent Cl- entry mechanisms. Unlike mature RBCs, reticulocytes did not tend to return to their original state after brief perturbations. The model predicted hysteresis and drift in cell pH, volume, and ion contents after transient alterations in membrane permeability or medium composition; irreversible cell dehydration could thus occur by brief K+ permeabilization, transient medium acidification, or the replacement of external Na+ with an impermeant cation. Both the hysteresis and drift after perturbations were shown to depend on the pHi dependence of the K:Cl cotransport, a major reticulocyte transporter. This behavior suggested a novel mechanism for the generation of irreversibly sickled cells directly from reticulocytes, rather than in a stepwise, progressive manner from discocytes. Experimental tests of the model's predictions and the hypothesis are described in the following paper.
Collapse
Affiliation(s)
- V L Lew
- Physiological Laboratory, Cambridge University, United Kingdom
| | | | | | | |
Collapse
|
19
|
Jennings ML, Schulz RK. Swelling-activated KCl cotransport in rabbit red cells: flux is determined mainly by cell volume rather than shape. THE AMERICAN JOURNAL OF PHYSIOLOGY 1990; 259:C960-7. [PMID: 2260643 DOI: 10.1152/ajpcell.1990.259.6.c960] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The effect of cell shape on ouabain-insensitive 86Rb+ fluxes was examined in rabbit red blood cells. The purpose of the study was to assess the role of mechanical deformations of the membrane in the activation of KCl cotransport by cell swelling. Conversion of cells to echinocytes with low concentrations of amphiphilic agents (anionic and cationic detergents and dipyridamole) in an isotonic medium activates KCl cotransport only very slightly. Hypotonic swelling of echinocytes causes a large increase in KCl cotransport flux just as in swollen discocytes; both the rate and the extent of activation are unaffected by the shape change. Stomatocyte (cup cell) formation with 20 microM chlorpromazine in isotonic medium causes slight activation of KCl cotransport. The KCl cotransport flux induced by cell swelling is approximately 20% higher in swollen stomatocytes than in swollen discocytes. It is concluded that major changes in cell shape have only minor effects on the swelling sensor, signal transduction apparatus, and KCl cotransport protein. We interpret these findings as evidence against the idea that the cell detects its volume by way of a membrane-associated mechanical sensor. As an alternative to a mechanical volume sensor, a hypothetical mechanism for swelling activation of transport is presented in which dilution of the cytoplasm, by mass action alone, can have very large effects on KCl cotransport.
Collapse
Affiliation(s)
- M L Jennings
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
20
|
Kort JJ, Koch G. The Na+,K+,2Cl-cotransport system in HeLa cells: aspects of its physiological regulation. J Cell Physiol 1990; 145:253-61. [PMID: 2174063 DOI: 10.1002/jcp.1041450209] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have previously reported on the biochemical properties of a Na+,K+,2Cl-cotransport system in HeLa cells and here we deal with aspects of its physiological regulation. Na+,K+,2Cl-cotransport in HeLa cells was studied by 86Rb+ influx and 86Rb+/22Na+ efflux measurements. The effects of rat atrial natriuretic peptide (ANP), isoproterenol, and amino acids on 86Rb+ flux, mediated by the bumetanide-sensitive Na+,K+,2Cl-cotransport system and the ouabain-sensitive Na+/K(+)-pump, were investigated. ANP reduced bumetanide-sensitive 86Rb+ influx under isotonic as well as under hypertonic conditions. Similar decrease of bumetanide-sensitive 86Rb+ influx was observed in the presence of 8-bromo-cGMP, while neither isoproterenol as a beta-receptor agonist nor 8-bromo-cAMP-could alter bumetanide-sensitive 86Rb+ influx. Furthermore, efflux of 86Rb+ and 22Na+ was greatly reduced in the presence of bumetanide and ANP. Together with our recent findings, showing functionally active, high affinity receptors for ANP on HeLa cells (Kort and Koch, Biochim. Biophys. Res. Commun. 168: 148-154, 1990), this study indicates that ANP participates in the regulation of the Na+,K+,2Cl-cotransport system in HeLa cells. Further measurements revealed that amino acids as present in the growth medium (Joklik's minimal essential medium) and the amino acid derivative alpha-methyl-aminoisobutyric acid (metAIB, 1 and 5 mM, respectively) also reduced Na+,K+,2Cl-cotransport-mediated 86Rb+ uptake and diminished the stimulatory effect of hypertonicity on the contransporter. In addition, the Na+/K(+)-pump was markedly stimulated in the presence of amino acids, while neither ANP and 8-Br-GMP nor isoproterenol and 8-Br-cAMP had a significant effect on the activity of the Na+/K(+)-pump.
Collapse
Affiliation(s)
- J J Kort
- Department of Molecular Biology, University of Hamburg, Federal Republic of Germany
| | | |
Collapse
|
21
|
Edmonds BT, Koenig E. Calcium-dependent volume reduction in regenerating ganglion cell axons in vitro. J Neurosci Res 1990; 26:168-80. [PMID: 2164108 DOI: 10.1002/jnr.490260206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The effects of increasing [Ca2+]i on volume regulatory behavior was investigated by phase-contrast videomicroscopy in immature axons regenerating from goldfish retinal explants in vitro. Elevating [Ca2+]i by using EGTA-buffered, ionomycin-containing bathing media with either greater than or equal to 100 microM [Ca2+]o or 1 microM [Ca2+]o with N-methylglucamine substituted for Na+ caused axons to undergo a "syneresis." The syneresis was characterized by a marked loss in volume and condensation of axoplasm, accompanied by a proliferation of lateral processes, which resulted ultimately in an arrest of visible particle transport. The random appearance of dynamic phase-lucent axial protrusions in the distal axon, apparently caused by microtubules, was a frequent early manifestation. Syneresis was also produced by increasing the tonicity of the Cortland saline with sorbitol or treating axons with either valinomycin or with permeant cyclic AMP analogs in normal Cortland saline. In the latter case, extracellular Ca2+ was required. Preterminal axons showed an increase in phalloidin fluorescence after syneresis, suggesting polymerization and/or rearrangement of the actin cytoskeleton. Digitonin-permeabilized axonal field models, which maintained good morphology and particle transport, failed to develop a syneresis even when [Ca2+]o was increased to 250 microM. Cytochalasin D did not interfere with the development of a syneresis, but did suppress the proliferation of lateral processes. Syneresis could be blocked by high [K+]o, putative antagonists of Ca2(+)-activated K+ channels, or by calmidazolium, a calmodulin antagonist. The experimental findings suggest that cytoskeletal changes associated with volume reduction in growing retinal ganglion cell axons are secondary to a loss of cell water and that calcium/calmodulin-activated K+ channels very likely play a primary role in dehydration through the loss of K+ and osmotically obligated water.
Collapse
Affiliation(s)
- B T Edmonds
- Department of Physiology, State University of New York, Buffalo
| | | |
Collapse
|
22
|
Jennings ML, al-Rohil N. Kinetics of activation and inactivation of swelling-stimulated K+/Cl- transport. The volume-sensitive parameter is the rate constant for inactivation. J Gen Physiol 1990; 95:1021-40. [PMID: 2373997 PMCID: PMC2216352 DOI: 10.1085/jgp.95.6.1021] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Red blood cells of several species are known to exhibit a ouabain-insensitive, anion-dependent K+ (Rb+) flux that is stimulated by cell swelling. We have used rabbit red cells to study the kinetics of activation and inactivation of the flux upon step changes in tonicity. Sudden hypotonic swelling (210 mosmol) activates the flux after a lag period of 10 min at 37 degrees C and 30-50 min at 25 degrees C. In cells that were preswollen to activate the transporter, sudden shrinkage (by addition of hypertonic NaCl) causes a rapid inactivation of the flux; the time lag for inactivation is less than 2 min at 37 degrees C. A minimal model of the volume-sensitive KCl transport system requires two states of the transporter. The activated (A) state catalyzes transport at some finite rate (turnover number unknown because the number of transporters is unknown). The resting (R) state has a much lower or possibly zero transport rate. The interconversion between the states is characterized by unimolecular rate constants R k12 in equilibrium with k21 A. The rate of relaxation to any new steady state is equal to the sum of the rate constants k12 + k21. Because the rate of transport activation in a hypotonic medium is lower than the rate of inactivation in an isotonic medium, we conclude that the volume-sensitive rate process is inactivation (the A to R transition); that is, cell swelling activates transport by lowering k21. Three phosphatase inhibitors (fluoride, orthovanadate, and inorganic phosphate) all inhibit the swelling-activated flux and also slow down the rate of approach to the swollen steady state. This finding suggests that a net dephosphorylation is necessary for activation of the flux and that the net dephosphorylation takes place as a result of swelling-induced inhibition of a kinase rather than stimulation of a phosphatase.
Collapse
Affiliation(s)
- M L Jennings
- Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550
| | | |
Collapse
|
23
|
RUGOLO MICHELA. Hypotonic Medium-Activated Chloride Transport in Human Skin Fibroblasts. Ann N Y Acad Sci 1989. [DOI: 10.1111/j.1749-6632.1989.tb25135.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Kaji DM. Kinetics of volume-sensitive K transport in human erythrocytes: evidence for asymmetry. THE AMERICAN JOURNAL OF PHYSIOLOGY 1989; 256:C1214-23. [PMID: 2735397 DOI: 10.1152/ajpcell.1989.256.6.c1214] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The kinetic properties of volume-sensitive K fluxes in swollen human erythrocytes were investigated. Swelling-activated Cl-dependent K influx was a saturable function of external K concentration with a low affinity (apparent Km of 115-130 mM) and high capacity [maximal velocity (Vmax) = 20-30 mmol.l original cells-1.h-1 (mmol.loc-1.h-1)]. The Vmax and apparent Km for Cl-dependent K efflux were lower (Km = 47 mM; Vmax = 2.2 mmol.loc-1.h-1). The Hill coefficients for both K efflux and influx were close to unity, suggesting a single binding site for K. The increase of external K trans-stimulated K efflux, but the increase of intracellular K had no effect on Cl-dependent K influx in swollen cells. Under zero trans conditions, the Vmax (18 vs. 3 mmol.loc-1.h-1) and Km (138 vs. 32) were markedly different for influx and efflux, respectively. These results provide evidence for intrinsic functional asymmetry, such that the transporter is more prevalent and stable in the outward-facing conformation. The mean ratio of Km to Vmax for efflux (12.1) was 1.56 times larger than the same ratio for influx (7.8), but the difference between the means did not reach statistical significance. These kinetic observations are analyzed in terms of the simple carrier and the cotransport models.
Collapse
Affiliation(s)
- D M Kaji
- Department of Medicine, Veterans Administration Medical Center, Bronx, New York 10468
| |
Collapse
|
25
|
Rugolo M, Mastocola T, Flamigni A, Lenaz G. Chloride transport in human fibroblasts is activated by hypotonic shock. Biochem Biophys Res Commun 1989; 160:1330-8. [PMID: 2543398 DOI: 10.1016/s0006-291x(89)80149-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Incubation of human skin fibroblasts in hypotonic media induced the activation of 36Cl- efflux which was roughly proportional to the decrease in the osmolality of the media. The efflux of 36Cl- was insensitive to DIDS plus furosemide and inhibited by addition of a Cl- channel blocker such as 5-nitro-2-(3-phenyl propylamino) benzoic acid (NPPB). We propose that a conductive pathway for Cl- transport, almost silent in isotonic conditions, is activated by exposing human fibroblasts to hypotonic shock, this conclusion being supported by evidence that also 36Cl- influx was enhanced by hypotonic medium.
Collapse
Affiliation(s)
- M Rugolo
- Dipartimento di Biologia Evoluzionistica e Sperimentale, Universita' di Bologna, Italy
| | | | | | | |
Collapse
|
26
|
Jessen F, Cherksey BD, Zeuthen T, Hoffmann EK. Isolation and reconstitution of furosemide-binding proteins from Ehrlich ascites tumor cells. J Membr Biol 1989; 108:139-51. [PMID: 2476561 DOI: 10.1007/bf01871025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Furosemide-binding proteins were isolated from cholate-solubilized membranes of Ehrlich ascites tumor cells by affinity chromatography, using furosemide as ligand. Solubilized proteins retarded by the affinity material were eluted by furosemide. In reducing and denaturing gels, the major proteins eluted by furosemide were 100 and 45 kDa. In nonreducing, non-denaturing gels, homodimers of both polypeptides were found, whereas no oligomeric proteins containing both polypeptides were seen. It is concluded that the furosemide gel binds two distinct dimeric proteins. The isolated proteins were reconstituted into phospholipid vesicles and the K+ transport activity of these vesicles was assayed by measurement of 86Rb+ uptake against a large opposing K+ gradient. The reconstituted system was found to contain a K+ transporting protein, which is sensitive to Ba2+ like the K+ channel previously demonstrated to be activated in intact cells after cell swelling.
Collapse
Affiliation(s)
- F Jessen
- Institute of Biological Chemistry A, August Krogh Institute, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
27
|
Abstract
Two methods have been described for the study of cation-chloride cotransport systems. The zero-trans efflux method is designed to determine stoichiometric relationships between cotransported ions under conditions where ion exchanges cannot occur. These exchanges (e.g., Na+/Na+, K+/K+) may occur as partial or incomplete reactions of a cotransport process and can lead to erroneous determinations of the stoichiometry of the cotransport process. The zero-trans efflux method can also be used to study the effects of cell volume, pH, and intracellular ion concentrations on cotransport processes. The valinomycin method is used to determine the electrogenicity or electroneutrality of transport, and in this regard can be used in conjunction with other methods such as those employing potential-sensitive dyes or microelectrodes. Other, more recently developed ionophores with specificity for lithium rather than potassium have now been used to study the effect of Em on the ATP-dependent Na+/K+ pump. It may be possible to use such ionophores to confirm the suspected electroneutrality of (K+ + Cl-) cotransport systems, as well as for other studies of specific potassium transport processes in which valinomycin obviously cannot be used. Both methods discussed in detail in this chapter, and particularly the valinomycin method, were originally devised for use in red blood cells in order to take advantage of (or circumvent) properties of the red cell membrane, such as its low permeability to sodium and potassium and relatively high permeability to chloride. However, valinomycin has been used successfully to demonstrate the electroneutrality of (Na+ + K+ + 2Cl-) cotransport in MDCK cells, and the zero-trans efflux method should be applicable to the study of transport processes in other types of cells in suspension, so long as the transport system being studied can be accurately defined (e.g., as an inhibitor-sensitive or chloride-dependent cation flux) and comprises a significant fraction of the total salt efflux.
Collapse
|
28
|
Pasantes Morales H, Schousboe A. Volume regulation in astrocytes: a role for taurine as an osmoeffector. J Neurosci Res 1988; 20:503-9. [PMID: 3184212 DOI: 10.1002/jnr.490200415] [Citation(s) in RCA: 198] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Astrocytes in culture regulate their volume under anisosmotic conditions by as yet unclear mechanisms. In a number of other cells this process involves a loss of intracellular osmotically active solutes, including taurine. The possibility that taurine participates as an osmoeffector in astrocytes was examined in cultured astrocytes exposed to hyposmolar conditions. Astrocytes responded to decreases in osmolarity by rapid swelling followed by a volume regulatory phase. Hyposmotic conditions induced a dramatic increase of 3H-taurine efflux, with a time course corresponding to the cell volume regulatory phase. Decreasing osmolarity from 310 to 254, 198 or 150 m osmoles resulted in the release of 8.2%, 17%, and 54%, respectively, of 3H-taurine previously accumulated by astrocytes. Endogenous taurine concentration decreased 64%. The efflux of 3-H GABA, 3H-glycine, or 3H-D-aspartate was much less affected under similar conditions. These results suggest a role for taurine as an osmoeffector in astrocytes.
Collapse
Affiliation(s)
- H Pasantes Morales
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México D.F
| | | |
Collapse
|
29
|
Stewart GW. Co-ordinated variations in chloride-dependent potassium transport and cell water in normal human erythrocytes. J Physiol 1988; 401:1-16. [PMID: 3171984 PMCID: PMC1191835 DOI: 10.1113/jphysiol.1988.sp017148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
1. The capacity of the loop-diuretic-sensitive Na+-K+-Cl- system in normal human erythrocytes shows tenfold interindividual variation between different donors, although the transport rate is constant from month to month for any one donor. 2. The present work shows that this variation in Na+-K+-Cl- transport is inversely correlated with a low-capacity loop-diuretic-insensitive K+ transport, which is chloride dependent and is stimulated by cell swelling in hypotonic media. 3. These variations in K+ transport from donor to donor are related to cell water. Those donors who show high loop-diuretic-sensitive Na+-K+-Cl- co-transport have lower cell water and vice versa.
Collapse
Affiliation(s)
- G W Stewart
- Medical Unit, St Mary's Hospital Medical School, London
| |
Collapse
|
30
|
O'Grady SM, Palfrey HC, Field M. Characteristics and functions of Na-K-Cl cotransport in epithelial tissues. THE AMERICAN JOURNAL OF PHYSIOLOGY 1987; 253:C177-92. [PMID: 3303961 DOI: 10.1152/ajpcell.1987.253.2.c177] [Citation(s) in RCA: 276] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
This review summarizes our present understanding of Na-K-Cl cotransport and its physiological role in absorption and secretion of electrolytes and water in epithelial tissues. In the past several years an extensive literature about this cotransporter has developed due to its widespread distribution in a variety of cell types and its essential role in fluid and electrolyte transport in several epithelial tissues. We summarize this literature and speculate on the future characterization of this transport system. Although this review focuses on cotransport as it relates to absorptive and secretory processes in epithelia, important information concerning the pharmacology, stoichiometry, and regulation of Na-K-Cl cotransport in nonepithelial systems (i.e., erythrocytes, fibroblasts, squid axon, etc.) has been included to supplement areas that are less well established in the epithelial literature.
Collapse
|
31
|
Duhm J. Furosemide-sensitive K+ (Rb+) transport in human erythrocytes: modes of operation, dependence on extracellular and intracellular Na+, kinetics, pH dependency and the effect of cell volume and N-ethylmaleimide. J Membr Biol 1987; 98:15-32. [PMID: 3669063 DOI: 10.1007/bf01871042] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The effect of extracellular and intracellular Na+ (Nao+, Nai+) on ouabain-resistant, furosemide-sensitive (FS) Rb+ transport was studied in human erythrocytes under varying experimental conditions. The results obtained are consistent with the view that a (1 Na+ + 1 K+ + 2 Cl-) cotransport system operates in two different modes: mode i) promoting bidirectional 1:1 (Na+-K+) cotransport, and mode ii) a Nao+-independent 1:1 ki+ exchange requiring Nai+ which, however, is not extruded. The activities of the two modes of operation vary strictly in parallel to each other among erythrocytes of different donors and in cell fractions of individual donors separated according to density. Rb+ uptake through Rbo+/Ki+ exchange contributes about 25% to total Rb+ uptake in 145 mM NaCl media containing 5 mM RbCl at normal Nai+ (pH 7.4). Na+-K+ cotransport into the cells occurs largely additive to K+/K+ exchange. Inward Na+-Rb+ cotransport exhibits a substrate inhibition at high Rbo+. With increasing pH, the maximum rate of cotransport is accelerated at the expense of K+/K+ exchange (apparent pK close to pH 7.4). The apparent KmRbo+ of Na+-K+ cotransport is low (2 mM) and almost independent of pH, and high for K+/K+ exchange (10 to 15 mM), the affinity increasing with pH. The two modes are discussed in terms of a partial reaction scheme of (1 Na+ + 1 K+ + 2 Cl-) cotransport with ordered binding and debinding, exhibiting a glide symmetry (first on outside = first off inside) as proposed by McManus for duck erythrocytes (McManus, T.J., 1987, Fed. Proc., in press). N-ethylmaleimide (NEM) chemically induces a Cl--dependent K+ transport pathway that is independent of both Nao+ and Nai+. This pathway differs in many properties from the basal, Nao+-independent K+/K+ exchange active in untreated human erythrocytes at normal cell volume. Cell swelling accelerates a Nao+-independent FS K+ transport pathway which most probably is not identical to basal K+/K+ exchange. Ko+ less than Nao+ less than Lio+ less than Mgo2+ reduce furosemide-resistant Rb+ inward leakage relative to cholineo+.
Collapse
Affiliation(s)
- J Duhm
- Physiologisches Institut, Universität München, Germany
| |
Collapse
|
32
|
Volume Regulation in Cultured Cells. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/s0070-2161(08)60370-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
|
34
|
Hoffmann EK, Lambert IH, Simonsen LO. Separate, Ca2+-activated K+ and Cl- transport pathways in Ehrlich ascites tumor cells. J Membr Biol 1986; 91:227-44. [PMID: 2427725 DOI: 10.1007/bf01868816] [Citation(s) in RCA: 142] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The net loss of KCl observed in Ehrlich ascites cells during regulatory volume decrease (RVD) following hypotonic exposure involves activation of separate conductive K+ and Cl- transport pathways. RVD is accelerated when a parallel K+ transport pathway is provided by addition of gramicidin, indicating that the K+ conductance is rate limiting. Addition of ionophore A23187 plus Ca2+ also activates separate K+ and Cl- transport pathways, resulting in a hyperpolarization of the cell membrane. A calculation shows that the K+ and Cl- conductance is increased 14- and 10-fold, respectively. Gramicidin fails to accelerate the A23187-induced cell shrinkage, indicating that the Cl- conductance is rate limiting. An A23187-induced activation of 42K and 36Cl tracer fluxes is directly demonstrated. RVD and the A23187-induced cell shrinkage both are: inhibited by quinine which blocks the Ca2+-activated K+ channel, unaffected by substitution of NO-3 or SCN- for Cl-, and inhibited by the anti-calmodulin drug pimozide. When the K+ channel is blocked by quinine but bypassed by addition of gramicidin, the rate of cell shrinkage can be used to monitor the Cl- conductance. The Cl- conductance is increased about 60-fold during RVD. The volume-induced activation of the Cl- transport pathway is transient, with inactivation within about 10 min. The activation induced by ionophore A23187 in Ca2+-free media (probably by release of Ca2+ from internal stores) is also transient, whereas the activation is persistent in Ca2+-containing media. In the latter case, addition of excess EGTA is followed by inactivation of the Cl- transport pathway. These findings suggest that a transient increase in free cytosolic Ca2+ may account for the transient activation of the Cl- transport pathway. The activated anion transport pathway is unselective, carrying both Cl-, Br-, NO-3, and SCN-. The anti-calmodulin drug pimozide blocks the volume- or A23187-induced Cl- transport pathway and also blocks the activation of the K+ transport pathway. This is demonstrated directly by 42K flux experiments and indirectly in media where the dominating anion (SCN-) has a high ground permeability. A comparison of the A23187-induced K+ conductance estimated from 42K flux measurements at high external K+, and from net K+ flux measurements suggests single-file behavior of the Ca2+-activated K+ channel. The number of Ca2+-activated K+ channels is estimated at about 100 per cell.
Collapse
|
35
|
Chapter 3 Chloride-Dependent Cation Cotransport and Cellular Differentiation: A Comparative Approach. ACTA ACUST UNITED AC 1986. [DOI: 10.1016/s0070-2161(08)60354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|