1
|
Ximin Y, Hashimoto H, Wada I, Hosokawa N. Visualization of ER-to-Golgi trafficking of procollagen X. Cell Struct Funct 2024; 49:67-81. [PMID: 39245571 DOI: 10.1247/csf.24024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Abstract
Collagen is the most abundant protein in the extracellular matrix of animals, and 28 types of collagen have been reported in humans. We previously analyzed the endoplasmic reticulum (ER)-to-Golgi transport of fibril-forming type III collagen (Hirata et al., 2022) and network-forming type IV collagen (Matsui et al., 2020), both of which have long collagenous triple-helical regions. To understand the ER-to-Golgi trafficking of various types of collagens, we analyzed the transport of short-chain type X collagen in this study. We fused cysteine-free GFP to the N-telopeptide region of procollagen X (GFP-COL10A1), as employed in our previous analysis of procollagens III and IV, and analyzed its transport by live-cell imaging. Procollagen X was transported to the Golgi apparatus via vesicular and tubular carriers containing ERGIC53 and RAB1B, similar to those used for procollagen III. Carriers containing procollagen X probably used the same transport processes as those containing conventional cargoes such as α1-antitrypsin. SAR1, TANGO1, SLY1/SCFD1, and BET3/TRAPPC3 were required for trafficking of procollagen X, which are different from the factors required for trafficking of procollagens III (SAR1, TANGO1, and CUL3) and IV (SAR1 and SLY1/SCFD1). These findings reveal that accommodation of various types of collagens with different shapes into carriers may require fine-tuning of the ER-to-Golgi transport machinery.Key words: collagen, GFP-procollagen X, ER-to-Golgi trafficking, export from ER, TANGO1.
Collapse
Affiliation(s)
- Yuan Ximin
- Laboratory of Molecular and Cellular Biology, Institute for Life and Medical Sciences, Kyoto University
| | - Hitoshi Hashimoto
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, School of Medicine
| | - Ikuo Wada
- Department of Cell Science, Institute of Biomedical Sciences, Fukushima Medical University, School of Medicine
| | - Nobuko Hosokawa
- Laboratory of Molecular and Cellular Biology, Institute for Life and Medical Sciences, Kyoto University
| |
Collapse
|
2
|
Morfin C, Sebastian A, Wilson SP, Amiri B, Murugesh DK, Hum NR, Christiansen BA, Loots GG. Mef2c regulates bone mass through Sost-dependent and -independent mechanisms. Bone 2024; 179:116976. [PMID: 38042445 DOI: 10.1016/j.bone.2023.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/04/2023]
Abstract
Mef2c is a transcription factor that mediates key cellular behaviors that promote endochondral ossification and bone formation. Previously, Mef2c has been shown to regulate Sost transcription via its osteocyte-specific enhancer, ECR5, and conditional deletions of Mef2cfl/fl with either Col1-Cre or Dmp1-Cre produced generalized high bone mass (HBM) consistent with Van Buchem Disease phenotypes. However, Sost-/-; Mef2cfl/fl; Dmp1-Cre mice produced a significantly higher bone mass phenotype that Sost-/- alone suggesting that Mef2c modulates bone mass through additional mechanisms, independent of Sost. To identify new Mef2c transcriptional targets important in bone metabolism, we profiled gene expression by single-cell RNA sequencing in subpopulations of cells isolated from Mef2cfl/fl; Dmp1-Cre and Mef2cfl/fl; Bglap-Cre femurs, both strains exhibiting similar high bone mass phenotypes. However, we found Mef2cfl/fl; Bglap-Cre to also display a growth plate defect characterized by an expansion of several osteoprogenitor subpopulations. Differential gene expression analysis identified a total of 96 up- and 2434 down- regulated genes in Mef2cfl/fl; Bglap-Cre and 176 up- and 1041 down- regulated genes in Mef2cfl/fl; Dmp1-Cre bone cell subpopulations compared to wildtype mice. Mef2c deletion affected the transcriptomes across several cell types including mesenchymal progenitors (MP), osteoprogenitors (OSP), osteoblast (OB), and osteocyte (OCY) subpopulations. Several energy metabolism genes such as Uqcrb, Ndufv2, Ndufs3, Ndufa13, Ndufb9, Ndufb5, Cox6a1, Cox5a, Atp5o, Atp5g2, Atp5b, Atp5 were significantly down regulated in Mef2c-deficient OBs and OCYs, in both strains. Binding motif analysis of promoter regions of differentially expressed genes identified Mef2c binding in Bone Sialoprotein (BSP/Ibsp), a gene known to cause increased trabecular BV/TV in the femurs of Ibsp-/- mice. Immunohistochemical analysis confirmed the absence of Ibsp protein in OBs and OCYs. These findings suggests that the HBM in Sost-/-; Mef2cfl/fl; Dmp1-Cre is caused by a multitude of transcriptional changes in genes that regulate bone formation, two of which are Sost and Ibsp.
Collapse
Affiliation(s)
- Cesar Morfin
- School of Natural Sciences, University of California, Merced, CA, United States; Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States; Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Aimy Sebastian
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Stephen P Wilson
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Beheshta Amiri
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Deepa K Murugesh
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Nicholas R Hum
- Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States
| | - Blaine A Christiansen
- Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States
| | - Gabriela G Loots
- School of Natural Sciences, University of California, Merced, CA, United States; Physical and Life Sciences Directorate, Lawrence Livermore, National Laboratories, Livermore, CA, United States; Department of Orthopaedic Surgery, University of California Davis Health, Sacramento, CA, United States.
| |
Collapse
|
3
|
Petrosyan E, Fares J, Lesniak MS, Koski TR, El Tecle NE. Biological principles of adult degenerative scoliosis. Trends Mol Med 2023; 29:740-752. [PMID: 37349248 DOI: 10.1016/j.molmed.2023.05.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/24/2023]
Abstract
The global aging population has led to an increase in geriatric diseases, including adult degenerative scoliosis (ADS). ADS is a spinal deformity affecting adults, particularly females. It is characterized by asymmetric intervertebral disc and facet joint degeneration, leading to spinal imbalance that can result in severe pain and neurological deficits, thus significantly reducing the quality of life. Despite improved management, molecular mechanisms driving ADS remain unclear. Current literature primarily comprises epidemiological and clinical studies. Here, we investigate the molecular mechanisms underlying ADS, with a focus on angiogenesis, inflammation, extracellular matrix remodeling, osteoporosis, sarcopenia, and biomechanical stress. We discuss current limitations and challenges in the field and highlight potential translational applications that may arise with a better understanding of these mechanisms.
Collapse
Affiliation(s)
- Edgar Petrosyan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Tyler R Koski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Najib E El Tecle
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Hauta-Alus HH, Holmlund-Suila EM, Valkama SM, Enlund-Cerullo M, Rosendahl J, Coghlan RF, Andersson S, Mäkitie O. Collagen X Biomarker (CXM), Linear Growth, and Bone Development in a Vitamin D Intervention Study in Infants. J Bone Miner Res 2022; 37:1653-1664. [PMID: 35838180 PMCID: PMC9544705 DOI: 10.1002/jbmr.4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/23/2022] [Accepted: 07/12/2022] [Indexed: 11/05/2022]
Abstract
Collagen X biomarker (CXM) is suggested to be a biomarker of linear growth velocity. However, early childhood data are limited. This study examines the relationship of CXM to the linear growth rate and bone development, including the possible modifying effects of vitamin D supplementation. We analyzed a cohort of 276 term-born children participating in the Vitamin D Intervention in Infants (VIDI) study. Infants received 10 μg/d (group-10) or 30 μg/d (group-30) vitamin D3 supplementation for the first 2 years of life. CXM and length were measured at 12 and 24 months of age. Tibial bone mineral content (BMC), volumetric bone mineral density (vBMD), cross-sectional area (CSA), polar moment of inertia (PMI), and periosteal circumference (PsC) were measured using peripheral quantitative computed tomography (pQCT) at 12 and 24 months. We calculated linear growth as length velocity (cm/year) and the growth rate in length (SD unit). The mean (SD) CXM values were 40.2 (17.4) ng/mL at 12 months and 38.1 (12.0) ng/mL at 24 months of age (p = 0.12). CXM associated with linear growth during the 2-year follow-up (p = 0.041) but not with bone (p = 0.53). Infants in group-30 in the highest tertile of CXM exhibited an accelerated mean growth rate in length compared with the intermediate tertile (mean difference [95% CI] -0.50 [-0.98, -0.01] SD unit, p = 0.044) but not in the group-10 (p = 0.062) at 12 months. Linear association of CXM and growth rate until 12 months was weak, but at 24 months CXM associated with both length velocity (B for 1 increment of √CXM [95% CI] 0.32 [0.12, 0.52] cm/yr, p = 0.002) and growth rate in length (0.20 [0.08, 0.32] SD unit, p = 0.002). To conclude, CXM may not reliably reflect linear growth from birth to 12 months of age, but its correlation with growth velocity improves during the second year of life. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Helena H Hauta-Alus
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism (CAMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Population Health Unit, National Institute for Health and Welfare (THL), Helsinki, Finland.,PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Elisa M Holmlund-Suila
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism (CAMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Saara M Valkama
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism (CAMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Enlund-Cerullo
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism (CAMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jenni Rosendahl
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism (CAMM), Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Outi Mäkitie
- Children's Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden.,Folkhälsan Institute of Genetics, Helsinki, Finland
| |
Collapse
|
5
|
Boneski PK, Madhu V, Tomlinson RE, Shapiro IM, van de Wetering K, Risbud MV. Abcc6 Null Mice-a Model for Mineralization Disorder PXE Shows Vertebral Osteopenia Without Enhanced Intervertebral Disc Calcification With Aging. Front Cell Dev Biol 2022; 10:823249. [PMID: 35186933 PMCID: PMC8850990 DOI: 10.3389/fcell.2022.823249] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Chronic low back pain is a highly prevalent health condition intricately linked to intervertebral disc degeneration. One of the prominent features of disc degeneration that is commonly observed with aging is dystrophic calcification. ATP-binding cassette sub-family C member 6 (ABCC6), a presumed ATP efflux transporter, is a key regulator of systemic levels of the mineralization inhibitor pyrophosphate (PPi). Mutations in ABCC6 result in pseudoxanthoma elasticum (PXE), a progressive human metabolic disorder characterized by mineralization of the skin and elastic tissues. The implications of ABCC6 loss-of-function on pathological mineralization of structures in the spine, however, are unknown. Using the Abcc6 -/- mouse model of PXE, we investigated age-dependent changes in the vertebral bone and intervertebral disc. Abcc6 -/- mice exhibited diminished trabecular bone quality parameters at 7 months, which remained significantly lower than the wild-type mice at 18 months of age. Abcc6 -/- vertebrae showed increased TRAP staining along with decreased TNAP staining, suggesting an enhanced bone resorption as well as decreased bone formation. Surprisingly, however, loss of ABCC6 resulted only in a mild, aging disc phenotype without evidence of dystrophic mineralization. Finally, we tested the utility of oral K3Citrate to treat the vertebral phenotype since it is shown to regulate hydroxyapatite mechanical behavior. The treatment resulted in inhibition of the osteoclastic response and an early improvement in mechanical properties of the bone underscoring the promise of potassium citrate as a therapeutic agent. Our data suggest that although ectopic mineralization is tightly regulated in the disc, loss of ABCC6 compromises vertebral bone quality and dysregulates osteoblast-osteoclast coupling.
Collapse
Affiliation(s)
- Paige K. Boneski
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Vedavathi Madhu
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Ryan E. Tomlinson
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Irving M. Shapiro
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Koen van de Wetering
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine and PXE International Center of Excellence in Research and Clinical Care, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Makarand V. Risbud
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
6
|
Twomey-Kozak J, Desai S, Liu W, Li NY, Lemme N, Chen Q, Owens BD, Jayasuriya CT. Distal-Less Homeobox 5 Is a Therapeutic Target for Attenuating Hypertrophy and Apoptosis of Mesenchymal Progenitor Cells. Int J Mol Sci 2020; 21:ijms21144823. [PMID: 32650430 PMCID: PMC7404054 DOI: 10.3390/ijms21144823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023] Open
Abstract
Chondrocyte hypertrophy is a hallmark of osteoarthritis (OA) pathology. In the present study, we elucidated the mechanism underlying the relationship between the hypertrophy/apoptotic phenotype and OA pathogenesis in bone marrow-derived mesenchymal stem cells (BM-MSCs) via gene targeting of distal-less homeobox 5 (DLX5). Our primary objectives were (1) to determine whether DLX5 is a predictive biomarker of cellular hypertrophy in human osteoarthritic tissues; (2) To determine whether modulating DLX5 activity can regulate cell hypertrophy in mesenchymal stem/progenitor cells from marrow and cartilage. Whole transcriptome sequencing was performed to identify differences in the RNA expression profile between human-cartilage-derived mesenchymal progenitors (C-PCs) and bone-marrow-derived mesenchymal progenitors (BM-MSCs). Ingenuity Pathway Analysis (IPA) software was used to compare molecular pathways known to regulate hypertrophic terminal cell differentiation. RT-qPCR was used to measure DLX5 and hypertrophy marker COL10 in healthy human chondrocytes and OA chondrocytes. DLX5 was knocked down or overexpressed in BM-MSCs and C-PCs and RT-qPCR were used to measure the expression of hypertrophy/terminal differentiation markers following DLX5 modulation. Apoptotic cell activity was characterized by immunostaining for cleaved caspase 3/7. We demonstrate that DLX5 and downstream hypertrophy markers were significantly upregulated in BM-MSCs, relative to C-PCs. DLX5 and COL10 were also significantly upregulated in cells from OA knee joint tissues, relative to normal non-arthritic joint tissues. Knocking down DLX5 in BM-MSCs inhibited cell hypertrophy and apoptotic activity without attenuating their chondrogenic potential. Overexpression of DLX5 in C-PCs stimulated hypertrophy markers and increased apoptotic cell activity. Modulating DLX5 activity regulates cell hypertrophy and apoptosis in BM-MSCs and C-PCs. These findings suggest that DLX5 is a biomarker of OA changes in human knee joint tissues and confirms the DLX5 mechanism contributes to hypertrophy and apoptosis in BM-MSCs.
Collapse
|
7
|
Holzer T, Probst K, Etich J, Auler M, Georgieva VS, Bluhm B, Frie C, Heilig J, Niehoff A, Nüchel J, Plomann M, Seeger JM, Kashkar H, Baris OR, Wiesner RJ, Brachvogel B. Respiratory chain inactivation links cartilage-mediated growth retardation to mitochondrial diseases. J Cell Biol 2019; 218:1853-1870. [PMID: 31085560 PMCID: PMC6548139 DOI: 10.1083/jcb.201809056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/12/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022] Open
Abstract
Children with mitochondrial diseases often present with slow growth and short stature, but the underlying mechanism remains unclear. In this study, Holzer et al. provide in vivo evidence that mitochondrial respiratory chain dysfunction induces cartilage degeneration coincident with altered metabolism, impaired extracellular matrix formation, and cell death at the cartilage–bone junction. In childhood, skeletal growth is driven by transient expansion of cartilage in the growth plate. The common belief is that energy production in this hypoxic tissue mainly relies on anaerobic glycolysis and not on mitochondrial respiratory chain (RC) activity. However, children with mitochondrial diseases causing RC dysfunction often present with short stature, which indicates that RC activity may be essential for cartilage-mediated skeletal growth. To elucidate the role of the mitochondrial RC in cartilage growth and pathology, we generated mice with impaired RC function in cartilage. These mice develop normally until birth, but their later growth is retarded. A detailed molecular analysis revealed that metabolic signaling and extracellular matrix formation is disturbed and induces cell death at the cartilage–bone junction to cause a chondrodysplasia-like phenotype. Hence, the results demonstrate the overall importance of the metabolic switch from fetal glycolysis to postnatal RC activation in growth plate cartilage and explain why RC dysfunction can cause short stature in children with mitochondrial diseases.
Collapse
Affiliation(s)
- Tatjana Holzer
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Kristina Probst
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Julia Etich
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Markus Auler
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Veronika S Georgieva
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Björn Bluhm
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Christian Frie
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Juliane Heilig
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopedics, German Sport University Cologne, Cologne, Germany.,Cologne Center for Musculoskeletal Biomechanics, University of Cologne, Cologne, Germany
| | - Julian Nüchel
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Markus Plomann
- Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Jens M Seeger
- Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology, and Hygiene, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Olivier R Baris
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.,Center of Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Bent Brachvogel
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, Cologne, Germany .,Center for Biochemistry, Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Taylor RW, Mitchell GK, Andrade JL, Svoboda KK. Expression of Collagen Types I, II, IX, and X in the Mineralizing Turkey Gastrocnemius Tendon. Anat Rec (Hoboken) 2019; 303:1664-1669. [DOI: 10.1002/ar.24091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 11/10/2022]
Affiliation(s)
| | - Georgia K. Mitchell
- Roseman University of Health Sciences, College of Dental Medicine Henderson Nevada
| | - Jon Lee Andrade
- Carnegie Mellon University Mellon College of Science Pittsburgh Pennsylvania
| | - Kathy K. Svoboda
- Texas A&M College of Dentistry, Biomedical Sciences Dallas Texas
| |
Collapse
|
9
|
Al Kaissi A, Ghachem MB, Nabil NM, Kenis V, Melchenko E, Morenko E, Grill F, Ganger R, Kircher SG. Schmid's Type of Metaphyseal Chondrodysplasia: Diagnosis and Management. Orthop Surg 2018; 10:241-246. [PMID: 30027601 DOI: 10.1111/os.12382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/17/2017] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVES There are several types of metaphyseal chondrodysplasia and various clinical types have been differentiated. The Schmid type of metaphyseal chondrodysplasia is the most common. Diffuse metaphyseal flaring, irregularity, and growth plate widening, which are most severe in the knees, are the most striking radiological features of this disease. The Schmid type of metaphyseal dysostosis is characterized by failure of normal mineralization of the zone of provisional calcification, leading to widened physes and enlarged knobby metaphyses, effectively causing shortening of the tubular bones, splaying of the metaphyses, coxa vara, and bow legs. Orthopaedic interventions were primarily performed on the lower extremities. METHODS Twelve children (seven girls and five boys) aged 7-10 years were enrolled in this study. Moderate short stature was a uniform feature associated with predominant involvement of the proximal femora and bow legs resulted in the development of angular deformities. A waddling gait was a consequence of coxa vara in eight children. Valgus osteotomy of the proximal femur was planned after physeal closure for the group of children with coxa vara. Hemiepiphysiodesis was performed to re-align the genu varum in three children. RESULTS Other forms of metaphyseal dysostosis were ruled based on full clinical and radiographic phenotypes, with confirmation through molecular pathology. Mutations in the COL10A1 gene located on chromosome 6q21-q22.3 were confirmed. Re-alignment was accomplished in our group of patients. CONCLUSION The most striking clinical features of Schmid metaphyseal chondrodysplasia which appear within the first 2-3 years of life are: moderate short limbs and short stature, a waddling gait, and increasing shortness of stature with age. The Schmid type of metaphyseal chondrodysplasia is a disorder that arises from defective type X collagen, which is typically found in the hypertrophic zone of the physes. Moderate short stature and a waddling gait associated with pain are the most common clinical presentations. Osteotomies to correct bow legs are sometimes combined with lengthening procedures. Recurrence of the deformities with growth is not uncommon; therefore, hemiepiphysiodesis or stapling might be indicated in some cases.
Collapse
Affiliation(s)
- Ali Al Kaissi
- First Medical Department, Hanusch Hospital, Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of WGKK and AUVA Trauma Centre Meidling, Vienna, Austria.,Paediatric Department, Orthopaedic Hospital of Speising, Vienna, Austria
| | - Maher B Ghachem
- Paediatric Orthopaedic Surgery Department, Children Hospital, Tunis, Tunisia
| | - Nesseb M Nabil
- Paediatric Orthopaedic Surgery Department, Children Hospital, Tunis, Tunisia
| | - Vladimir Kenis
- Department of Foot and Ankle Surgery, Neuroorthopaedics and Systemic Disorders, Pediatric Orthopedic Institute n.a. H. Turner, Saint-Petersburg, Russia
| | - Eugene Melchenko
- Department of Foot and Ankle Surgery, Neuroorthopaedics and Systemic Disorders, Pediatric Orthopedic Institute n.a. H. Turner, Saint-Petersburg, Russia
| | - Ekatrina Morenko
- Department of Foot and Ankle Surgery, Neuroorthopaedics and Systemic Disorders, Pediatric Orthopedic Institute n.a. H. Turner, Saint-Petersburg, Russia
| | - Franz Grill
- Paediatric Department, Orthopaedic Hospital of Speising, Vienna, Austria
| | - Rudolf Ganger
- Paediatric Department, Orthopaedic Hospital of Speising, Vienna, Austria
| | - Susanne G Kircher
- Institute of Medical Chemistry, Medical University of Vienna, Austria
| |
Collapse
|
10
|
Parmar PA, St-Pierre JP, Chow LW, Spicer CD, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM. Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels. Acta Biomater 2017; 51:75-88. [PMID: 28087486 PMCID: PMC5360098 DOI: 10.1016/j.actbio.2017.01.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 12/14/2022]
Abstract
Recapitulation of the articular cartilage microenvironment for regenerative medicine applications faces significant challenges due to the complex and dynamic biochemical and biomechanical nature of native tissue. Towards the goal of biomaterial designs that enable the temporal presentation of bioactive sequences, recombinant bacterial collagens such as Streptococcal collagen-like 2 (Scl2) proteins can be employed to incorporate multiple specific bioactive and biodegradable peptide motifs into a single construct. Here, we first modified the backbone of Scl2 with glycosaminoglycan-binding peptides and cross-linked the modified Scl2 into hydrogels via matrix metalloproteinase 7 (MMP7)-cleavable or non-cleavable scrambled peptides. The cross-linkers were further functionalized with a tethered RGDS peptide creating a system whereby the release from an MMP7-cleavable hydrogel could be compared to a system where release is not possible. The release of the RGDS peptide from the degradable hydrogels led to significantly enhanced expression of collagen type II (3.9-fold increase), aggrecan (7.6-fold increase), and SOX9 (5.2-fold increase) by human mesenchymal stem cells (hMSCs) undergoing chondrogenesis, as well as greater extracellular matrix accumulation compared to non-degradable hydrogels (collagen type II; 3.2-fold increase, aggrecan; 4-fold increase, SOX9; 2.8-fold increase). Hydrogels containing a low concentration of the RGDS peptide displayed significantly decreased collagen type I and X gene expression profiles, suggesting a major advantage over either hydrogels functionalized with a higher RGDS peptide concentration, or non-degradable hydrogels, in promoting an articular cartilage phenotype. These highly versatile Scl2 hydrogels can be further manipulated to improve specific elements of the chondrogenic response by hMSCs, through the introduction of additional bioactive and/or biodegradable motifs. As such, these hydrogels have the possibility to be used for other applications in tissue engineering. Statement of Significance Recapitulating aspects of the native tissue biochemical microenvironment faces significant challenges in regenerative medicine and tissue engineering due to the complex and dynamic nature of the tissue. The ability to take advantage of, mimic, and modulate cell-mediated processes within novel naturally-derived hydrogels is of great interest in the field of biomaterials to generate constructs that more closely resemble the biochemical microenvironment and functions of native biological tissues such as articular cartilage. Towards this goal, the temporal presentation of bioactive sequences such as RGDS on the chondrogenic differentiation of human mesenchymal stem cells is considered important as it has been shown to influence the chondrogenic phenotype. Here, a novel and versatile platform to recreate a high degree of biological complexity is proposed, which could also be applicable to other tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Paresh A Parmar
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia; Division of Biomaterials and Regenerative Medicine, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177 Stockholm, Sweden
| | - Jean-Philippe St-Pierre
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lesley W Chow
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Christopher D Spicer
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | - Yong Y Peng
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | | | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Molly M Stevens
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Division of Biomaterials and Regenerative Medicine, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177 Stockholm, Sweden.
| |
Collapse
|
11
|
Queirolo V, Galli D, Masselli E, Borzì RM, Martini S, Vitale F, Gobbi G, Carubbi C, Mirandola P. PKCε is a regulator of hypertrophic differentiation of chondrocytes in osteoarthritis. Osteoarthritis Cartilage 2016; 24:1451-60. [PMID: 27072078 DOI: 10.1016/j.joca.2016.04.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/23/2016] [Accepted: 04/02/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a common and highly debilitating degenerative disease whose complex pathogenesis and the multiplicity of the molecular processes involved, hinder its complete understanding. Protein Kinase C (PKC) novel isozyme PKCε recently proved to be an interesting molecule for further investigations as it can represent an intriguing, new actor in the acquisition of a OA phenotype by the chondrocyte. DESIGN PKCε was modulated in primary chondrocytes from human OA patient knee cartilage samples by means of short hairpin RNA (ShRNA) and the expression of cartilage specific markers observed at mRNA and protein level. The involvement of Histone deacetylases (HDACs) signaling pathway was also investigated through the use of specific inhibitors MS-275 and Inhibitor VIII. RESULTS PKCε loss induces up-regulation of Runt-domain transcription factor (RUNX2), Metalloproteinase 13 (MMP13) and Collagen X (COL10) as well as an enhanced calcium deposition in OA chondrocyte cultures. In parallel, PKCε knock-down also leads to SOX9 and Collagen II (COL2) down-modulation and to a lower deposition of glycosaminoglycans (GAGs) in the extracellular matrix (ECM). This novel regulatory role of PKCε over cartilage hypertrophic phenotype is exerted via an HDAC-mediated pathway, as HDAC2 and HDAC4 expression is modulated by PKCε. HDAC2 and HDAC4, in turn, are at least in part responsible for the modulation of the master transcription factors RUNX2 and SOX9, key regulators of chondrocyte phenotype. CONCLUSIONS PKCε prevents the phenotypic progression of the OA chondrocyte, acting on cartilage specific markers through the modulation of the transcription factors SOX9 and RUNX2. The loss of PKCε enhances, in fact, the OA hypertrophic phenotype, with clear implications in the pathophysiology of the disease.
Collapse
Affiliation(s)
- V Queirolo
- Department of Biomedical, Biotechnological &Translational Sciences (S.Bi.Bi.T.), University of Parma, Italy.
| | - D Galli
- Department of Biomedical, Biotechnological &Translational Sciences (S.Bi.Bi.T.), University of Parma, Italy.
| | - E Masselli
- Department of Biomedical, Biotechnological &Translational Sciences (S.Bi.Bi.T.), University of Parma, Italy.
| | - R M Borzì
- Laboratory of Immunorheumatology and Tissue Regeneration/RAMSES, Rizzoli Orthopedic Research Institute, Bologna, Italy.
| | - S Martini
- Department of Biomedical, Biotechnological &Translational Sciences (S.Bi.Bi.T.), University of Parma, Italy.
| | - F Vitale
- Curriculum of Physical Therapy & Rehabilitation, University of Padova, Italy.
| | - G Gobbi
- Department of Biomedical, Biotechnological &Translational Sciences (S.Bi.Bi.T.), University of Parma, Italy.
| | - C Carubbi
- Department of Biomedical, Biotechnological &Translational Sciences (S.Bi.Bi.T.), University of Parma, Italy.
| | - P Mirandola
- Department of Biomedical, Biotechnological &Translational Sciences (S.Bi.Bi.T.), University of Parma, Italy.
| |
Collapse
|
12
|
Parmar PA, Skaalure SC, Chow LW, St-Pierre JP, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM. Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells. Biomaterials 2016; 99:56-71. [PMID: 27214650 PMCID: PMC4910873 DOI: 10.1016/j.biomaterials.2016.05.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/15/2023]
Abstract
Tissue engineering strategies for repairing and regenerating articular cartilage face critical challenges to recapitulate the dynamic and complex biochemical microenvironment of native tissues. One approach to mimic the biochemical complexity of articular cartilage is through the use of recombinant bacterial collagens as they provide a well-defined biological 'blank template' that can be modified to incorporate bioactive and biodegradable peptide sequences within a precisely defined three-dimensional system. We customized the backbone of a Streptococcal collagen-like 2 (Scl2) protein with heparin-binding, integrin-binding, and hyaluronic acid-binding peptide sequences previously shown to modulate chondrogenesis and then cross-linked the recombinant Scl2 protein with a combination of matrix metalloproteinase 7 (MMP7)- and aggrecanase (ADAMTS4)-cleavable peptides at varying ratios to form biodegradable hydrogels with degradation characteristics matching the temporal expression pattern of these enzymes in human mesenchymal stem cells (hMSCs) during chondrogenesis. hMSCs encapsulated within the hydrogels cross-linked with both degradable peptides exhibited enhanced chondrogenic characteristics as demonstrated by gene expression and extracellular matrix deposition compared to the hydrogels cross-linked with a single peptide. Additionally, these combined peptide hydrogels displayed increased MMP7 and ADAMTS4 activities and yet increased compression moduli after 6 weeks, suggesting a positive correlation between the degradation of the hydrogels and the accumulation of matrix by hMSCs undergoing chondrogenesis. Our results suggest that including dual degradation motifs designed to respond to enzymatic activity of hMSCs going through chondrogenic differentiation led to improvements in chondrogenesis. Our hydrogel system demonstrates a bimodal enzymatically degradable biological platform that can mimic native cellular processes in a temporal manner. As such, this novel collagen-mimetic protein, cross-linked via multiple enzymatically degradable peptides, provides a highly adaptable and well defined platform to recapitulate a high degree of biological complexity, which could be applicable to numerous tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Paresh A Parmar
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Stacey C Skaalure
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Lesley W Chow
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Jean-Philippe St-Pierre
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | | | - Yong Y Peng
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | | | - John A M Ramshaw
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Molly M Stevens
- Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom; Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom.
| |
Collapse
|
13
|
Parmar PA, St-Pierre JP, Chow LW, Puetzer JL, Stoichevska V, Peng YY, Werkmeister JA, Ramshaw JAM, Stevens MM. Harnessing the Versatility of Bacterial Collagen to Improve the Chondrogenic Potential of Porous Collagen Scaffolds. Adv Healthc Mater 2016; 5:1656-66. [PMID: 27219220 PMCID: PMC5405340 DOI: 10.1002/adhm.201600136] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/09/2016] [Indexed: 12/21/2022]
Abstract
Collagen I foams are used in the clinic as scaffolds to promote articular cartilage repair as they provide a bioactive environment for cells with chondrogenic potential. However, collagen I as a base material does not allow for precise control over bioactivity. Alternatively, recombinant bacterial collagens can be used as "blank slate" collagen molecules to offer a versatile platform for incorporation of selected bioactive sequences and fabrication into 3D scaffolds. Here, we show the potential of Streptococcal collagen-like 2 (Scl2) protein foams modified with peptides designed to specifically and noncovalently bind hyaluronic acid and chondroitin sulfate to improve chondrogenesis of human mesenchymal stem cells (hMSCs) compared to collagen I foams. Specific compositions of functionalized Scl2 foams lead to improved chondrogenesis compared to both nonfunctionalized Scl2 and collagen I foams, as indicated by gene expression, extracellular matrix accumulation, and compression moduli. hMSCs cultured in functionalized Scl2 foams exhibit decreased collagens I and X gene and protein expression, suggesting an advantage over collagen I foams in promoting a chondrocytic phenotype. These highly modular foams can be further modified to improve specific aspects chondrogenesis. As such, these scaffolds also have the potential to be tailored for other regenerative medicine applications.
Collapse
Affiliation(s)
- Paresh A. Parmar
- Department of Materials, Department of Bioengineering, Institute of Biomedical Engineering, Imperial College London SW7 2AZ, UK; The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Jean-Philippe St-Pierre
- Department of Bioengineering Institute of Biomedical Engineering Imperial College London, SW7 2AZ, UK
| | - Lesley W. Chow
- Department of Bioengineering Institute of Biomedical Engineering Imperial College London, SW7 2AZ, UK
| | - Jennifer L. Puetzer
- Department of Bioengineering Institute of Biomedical Engineering Imperial College London, SW7 2AZ, UK
| | - Violet Stoichevska
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Yong Y. Peng
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Jerome A. Werkmeister
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - John A. M. Ramshaw
- The Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing, Bayview Avenue, Clayton, Victoria 3169, Australia
| | - Molly M. Stevens
- Department of Bioengineering Institute of Biomedical Engineering Imperial College London, SW7 2AZ, UK
| |
Collapse
|
14
|
He Y, Siebuhr AS, Brandt-Hansen NU, Wang J, Su D, Zheng Q, Simonsen O, Petersen KK, Arendt-Nielsen L, Eskehave T, Hoeck HC, Karsdal MA, Bay-Jensen AC. Type X collagen levels are elevated in serum from human osteoarthritis patients and associated with biomarkers of cartilage degradation and inflammation. BMC Musculoskelet Disord 2014; 15:309. [PMID: 25245039 PMCID: PMC4179849 DOI: 10.1186/1471-2474-15-309] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 09/18/2014] [Indexed: 12/14/2022] Open
Abstract
Background Osteoarthritis (OA) is the most common degenerative joint disease, of which the pathogenesis is inadequately understood. Hypertrophy-like changes have been observed as part of the progression of OA. The aim of the study was to develop and characterize a novel biomarker of chondrocytes hypertrophy and investigate how this marker was associated with cartilage degradation and inflammation in patients with various degrees of OA. Methods A competitive ELISA, C-Col10, applying a well-characterized monoclonal antibody was developed as a biomarker of chondrocyte hypertrophy through measurement of type X collagen (ColX). The levels of C-Col10, C2M (matrix metalloproteinase-derived fragments of type II collagen) and hsCRP (high sensitive C-reactive protein) were quantified by ELISAs in serum of 271 OA patients stratified by Kellgren-Lawrence (KL) score 0–4. Associations between serum levels of the three biomarkers (log transformed) were analyzed by Pearson’s correlation and differences in C-Col10 levels between patients with high and low levels of inflammation measured by hsCRP were analyzed by ANOVA. Results We developed a C-Col10 assay measuring the C-terminus of ColX. We found significantly higher levels of ColX in patients with KL score 2 compared to patients with no radiographic evidence of OA (KL0) (p = 0.04). Levels of ColX were significantly elevated in OA patients with above normal hsCRP levels (p < 0.0001), as well as significantly correlated with levels of C2M (r = 0.55, p < 0.0001), which suggested that chondrocyte hypertrophy was associated with inflammation and cartilage degradation. There was no correlation between C2M and hsCRP. Age and BMI adjustment didn’t change the results. Immuno-staining revealed that ColX was predominately located around the hypertrophic chondrocytes and the clustered chondrocytes indicating that C-Col10 measures may be linked to cartilage hypertrophic changes. Conclusions We developed a novel assay, C-Col10, for measurement of chondrocyte hypertrophy and found its levels significantly elevated in OA patients with KL score of 2, and also in OA patients with above normal hsCRP levels. Concentration of C-Col10 strongly correlated with levels of C2M, a marker of cartilage destruction. The data suggest that chondrocyte hypertrophy and subsequent collagen X fragmentation seem to be increased in a subset of patients with inflammatory OA. Electronic supplementary material The online version of this article (doi:10.1186/1471-2474-15-309) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Fernandes AM, Herlofsen SR, Karlsen TA, Küchler AM, Fløisand Y, Brinchmann JE. Similar properties of chondrocytes from osteoarthritis joints and mesenchymal stem cells from healthy donors for tissue engineering of articular cartilage. PLoS One 2013; 8:e62994. [PMID: 23671648 PMCID: PMC3650033 DOI: 10.1371/journal.pone.0062994] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 03/30/2013] [Indexed: 12/16/2022] Open
Abstract
Lesions of hyaline cartilage do not heal spontaneously, and represent a therapeutic challenge. In vitro engineering of articular cartilage using cells and biomaterials may prove to be the best solution. Patients with osteoarthritis (OA) may require tissue engineered cartilage therapy. Chondrocytes obtained from OA joints are thought to be involved in the disease process, and thus to be of insufficient quality to be used for repair strategies. Bone marrow (BM) derived mesenchymal stem cells (MSCs) from healthy donors may represent an alternative cell source. We have isolated chondrocytes from OA joints, performed cell culture expansion and tissue engineering of cartilage using a disc-shaped alginate scaffold and chondrogenic differentiation medium. We performed real-time reverse transcriptase quantitative PCR and fluorescence immunohistochemistry to evaluate mRNA and protein expression for a range of molecules involved in chondrogenesis and OA pathogenesis. Results were compared with those obtained by using BM-MSCs in an identical tissue engineering strategy. Finally the two populations were compared using genome-wide mRNA arrays. At three weeks of chondrogenic differentiation we found high and similar levels of hyaline cartilage-specific type II collagen and fibrocartilage-specific type I collagen mRNA and protein in discs containing OA and BM-MSC derived chondrocytes. Aggrecan, the dominant proteoglycan in hyaline cartilage, was more abundantly distributed in the OA chondrocyte extracellular matrix. OA chondrocytes expressed higher mRNA levels also of other hyaline extracellular matrix components. Surprisingly BM-MSC derived chondrocytes expressed higher mRNA levels of OA markers such as COL10A1, SSP1 (osteopontin), ALPL, BMP2, VEGFA, PTGES, IHH, and WNT genes, but lower levels of MMP3 and S100A4. Based on the results presented here, OA chondrocytes may be suitable for tissue engineering of articular cartilage.
Collapse
Affiliation(s)
- Amilton M. Fernandes
- The Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Sarah R. Herlofsen
- The Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tommy A. Karlsen
- The Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Axel M. Küchler
- The Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Yngvar Fløisand
- Department of Hematology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Jan E. Brinchmann
- The Norwegian Center for Stem Cell Research, University of Oslo, Oslo, Norway
- Institute of Immunology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| |
Collapse
|
16
|
Hoppe S, Alini M, Benneker LM, Milz S, Boileau P, Zumstein MA. Tenocytes of chronic rotator cuff tendon tears can be stimulated by platelet-released growth factors. J Shoulder Elbow Surg 2013; 22:340-9. [PMID: 22521394 DOI: 10.1016/j.jse.2012.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 01/11/2012] [Accepted: 01/15/2012] [Indexed: 02/01/2023]
Abstract
BACKGROUND Bone-to-tendon healing after rotator cuff repairs is mainly impaired by poor tissue quality. The tenocytes of chronic rotator cuff tendon tears are not able to synthesize normal fibrocartilaginous extracellular matrix (ECM). We hypothesized that in the presence of platelet-released growth factors (PRGF), tenocytes from chronically retracted rotator cuff tendons proliferate and synthesize the appropriate ECM proteins. MATERIALS AND METHODS Tenocytes from 8 patients with chronic rotator cuff tears were cultured for 4 weeks in 2 different media: standard medium (Iscove's Modified Dulbecco's Media + 10% fetal calf serum + 1% nonessential amino acids + 0.5 μg/mL ascorbic acid) and media with an additional 10% PRGF. Cell proliferation was assessed at 7, 14, 21, and 28 days. Messenger (m)RNA levels of collagens I, II, and X, decorin, biglycan, and aggrecan were analyzed using real time reverse-transcription polymerase chain reaction. Immunocytochemistry was also performed. RESULTS The proliferation rate of tenocytes was significantly higher at all time points when cultured with PRGF. At 21 days, the mRNA levels for collagens I, II, and X, decorin, aggrecan, and biglycan were significantly higher in the PRGF group. The mRNA data were confirmed at protein level by immunocytochemistry. CONCLUSIONS PRGFs enhance tenocyte proliferation in vitro and promote synthesis of ECM to levels similar to those found with insertion of the normal human rotator cuffs. CLINICAL RELEVANCE Biologic augmentation of repaired rotator cuffs with PRGF may enhance the properties of the repair tissue. However, further studies are needed to determine if application of PRGF remains safe and effective in long-term clinical studies. LEVEL OF EVIDENCE Basic Science Study, Cell Biology.
Collapse
Affiliation(s)
- Sven Hoppe
- Orthopedic Sports Medicine, Department of Orthopedic Surgery and Traumatology, University of Bern, Inselspital, CH- 3010 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
17
|
Kitagawa F, Takei S, Imaizumi T, Tabata Y. Chondrogenic differentiation of immortalized human mesenchymal stem cells on zirconia microwell substrata. Tissue Eng Part C Methods 2012; 19:438-48. [PMID: 23102167 DOI: 10.1089/ten.tec.2012.0166] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human mesenchymal stem cells (hMSCs) that can differentiate into chondrocytes are a potential autologous cell source for repair of damaged tissue. Current methods usually induce the formation of all three chondrocyte phenotypes, hyaline, fibrous, and elastic, without the ability to selectively induce only one of them. By controlling the size of hMSC cell clusters, it may be possible to direct differentiation more uniformly toward hyaline chondrocytes. We designed new cell culture platforms containing microwells of different diameters. The platforms and wells were composed of a zirconia ceramics substratum. hMSCs briefly adhered to the substratum before releasing and entering the microwells. The physical restraints imposed by the microwells enabled hMSC clusters to homogenously differentiate into hyaline chondrocyte-like cells. Chondrogenic aggregates in microwells expressed the hyaline chondrocyte-specific genes Col II, aggrecan (ACAN), and cartilage oligomeric protein (COMP). The cultures also produced hyaline chondrocyte-specific matrix proteins Col II and ACAN homogenously throughout the aggregates. In contrast, chondrogenesis in pellet cultures was heterogeneous with the expression of nonhyaline chondrocyte genes CD105, Col X, and Col I. In these pellet cultures, hyaline and nonhyaline chondrocyte-specific matrix proteins were distributed heterogeneously. Thus, this novel ceramic microwell substratum technology efficiently directed the differentiation of hyaline chondrocyte-like cells from hMSCs. These results indicate that there is a close relationship between hMSC cluster size regulation in the microwells and differentiation tendency. This microwell culture differentiation method will provide a valuable experimental system for both experimental and potential clinical studies.
Collapse
Affiliation(s)
- Fumihiko Kitagawa
- Technology Development Center, Covalent Materials Co., Ltd., Kanagawa, Japan
| | | | | | | |
Collapse
|
18
|
Yamamoto K, Hojo H, Koshima I, Chung UI, Ohba S. Famotidine suppresses osteogenic differentiation of tendon cells in vitro and pathological calcification of tendon in vivo. J Orthop Res 2012; 30:1958-62. [PMID: 22592911 DOI: 10.1002/jor.22146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 04/26/2012] [Indexed: 02/04/2023]
Abstract
Heterotopic ossification or calcification follows any type of musculoskeletal trauma and is known to occur after arthroplasties of hip, knee, shoulder, or elbow; fractures; joint dislocations; or tendon ruptures. Histamine receptor H2 (Hrh2) has been shown to be effective for reducing pain and decreasing calcification in patients with calcifying tendinitis, which suggested that H2 blockers were effective for the treatment of tendon ossification or calcification. However, the detailed mechanisms of its action on tendon remain to be clarified. We investigated the mechanisms underlying H2 blocker-mediated suppression of tendon calcification, with a focus on the direct action of the drug on tendon cells. Famotidine treatment suppressed the mRNA expressions of Col10a1 and osteocalcin, ossification markers, in a tendon-derived cell line TT-D6, as well as a preosteoblastic one MC3T3-E1. Both of the cell lines expressed Hrh2; histamine treatment induced osteocalcin expression in these cells. Famotidine administration suppressed calcification in the Achilles tendon of ttw mice, a mouse model of ectopic ossification. These data suggest that famotidine inhibits osteogenic differentiation of tendon cells in vitro, and this inhibition may underlie the anti-calcification effects of the drug in vivo. This study points to the use of H2 blockers as a promising strategy for treating heterotopic ossification or calcification in tendon, and provides evidence in support of the clinical use of famotidine.
Collapse
Affiliation(s)
- Kenichi Yamamoto
- Center for Disease Biology and Integrative Medicine, Division of Clinical Biotechnology, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
19
|
Grskovic I, Kutsch A, Frie C, Groma G, Stermann J, Schlötzer-Schrehardt U, Niehoff A, Moss SE, Rosenbaum S, Pöschl E, Chmielewski M, Rappl G, Abken H, Bateman JF, Cheah KS, Paulsson M, Brachvogel B. Depletion of annexin A5, annexin A6, and collagen X causes no gross changes in matrix vesicle-mediated mineralization, but lack of collagen X affects hematopoiesis and the Th1/Th2 response. J Bone Miner Res 2012; 27:2399-412. [PMID: 22692895 DOI: 10.1002/jbmr.1682] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Numerous biochemical studies have pointed to an essential role of annexin A5 (AnxA5), annexin A6 (AnxA6), and collagen X in matrix vesicle-mediated biomineralization during endochondral ossification and in osteoarthritis. By binding to the extracellular matrix protein collagen X and matrix vesicles, annexins were proposed to anchor matrix vesicles in the extracellular space of hypertrophic chondrocytes to initiate the calcification of cartilage. However, mineralization appears to be normal in mice lacking AnxA5 and AnxA6, whereas collagen X-deficient mice show only subtle alterations in the growth plate organization. We hypothesized that the simultaneous lack of AnxA5, AnxA6, and collagen X in vivo induces more pronounced changes in the growth plate development and the initiation of mineralization. In this study, we generated and analyzed mice deficient for AnxA5, AnxA6, and collagen X. Surprisingly, mice were viable, fertile, and showed no obvious abnormalities. Assessment of growth plate development indicated that the hypertrophic zone was expanded in Col10a1(-/-) and AnxA5(-/-) AnxA6(-/-) Col10a1(-/-) newborns, whereas endochondral ossification and mineralization were not affected in 13-day- and 1-month-old mutants. In peripheral quantitative computed tomography, no changes in the degree of biomineralization were found in femora of 1-month- and 1-year-old mutants even though the diaphyseal circumference was reduced in Col10a1(-/-) and AnxA5(-/-) AnxA6(-/-) Col10a1(-/-) mice. The percentage of naive immature IgM(+) /IgM(+) B cells and peripheral T-helper cells were increased in Col10a1(-/-) and AnxA5(-/-) AnxA6(-/-) Col10a1(-/-) mutants, and activated splenic T cells isolated from Col10a1(-/-) mice secreted elevated levels of IL-4 and GM-CSF. Hence, collagen X is needed for hematopoiesis during endochondral ossification and for the immune response, but the interaction of annexin A5, annexin A6, and collagen X is not essential for physiological calcification of growth plate cartilage. Therefore, annexins and collagen X may rather fulfill functions in growth plate cartilage not directly linked to the mineralization process.
Collapse
Affiliation(s)
- Ivan Grskovic
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Sweeney E, Roberts D, Jacenko O. Altered matrix at the chondro-osseous junction leads to defects in lymphopoiesis. Ann N Y Acad Sci 2012; 1237:79-87. [PMID: 22082369 DOI: 10.1111/j.1749-6632.2011.06227.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The collagen X transgenic and null (ColX-Tg/KO) mice have revealed a link between endochondral ossification (EO) and hematopoiesis, and thus serve as model systems to study hematopoietic niches. The altered collagen X function in ColX-Tg/KO mice resulted not only in skeletal defects, which included changes in growth plate ultrastructure, altered localization of heparan sulfate proteoglycans (HSPG), and reduced trabecular bone, but also in hematopoietic defects, which included reduced B lymphocyte numbers throughout life without associated increases in B cell apoptosis. Consequently, the ColX-Tg/KO mice exhibited diminished in vitro and in vivo immune responses. Moreover, reduced expression of several hematopoietic and B lymphopoietic cytokines were measured from ColX-KO-derived hypertrophic chondrocyte and trabecular osteoblast cultures. Together, these data expand the current hematopoietic niche model by including the EO-derived extracellular matrix, for example, the collagen X/HSPG network, as well as the EO-derived hypertrophic chondrocytes and trabecular osteoblasts as hematopoietic signal mediating cells.
Collapse
Affiliation(s)
- Elizabeth Sweeney
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
21
|
Balasubramanian P, Prabhakaran MP, Sireesha M, Ramakrishna S. Collagen in Human Tissues: Structure, Function, and Biomedical Implications from a Tissue Engineering Perspective. POLYMER COMPOSITES – POLYOLEFIN FRACTIONATION – POLYMERIC PEPTIDOMIMETICS – COLLAGENS 2012. [DOI: 10.1007/12_2012_176] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Kim M, Kraft JJ, Volk AC, Pugarelli J, Pleshko N, Dodge GR. Characterization of a cartilage-like engineered biomass using a self-aggregating suspension culture model: molecular composition using FT-IRIS. J Orthop Res 2011; 29:1881-7. [PMID: 21630329 PMCID: PMC4617763 DOI: 10.1002/jor.21467] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 05/04/2011] [Indexed: 02/04/2023]
Abstract
Maintenance of chondrocyte phenotype and robust expression and organization of macromolecular components with suitable cartilaginous properties is an ultimate goal in cartilage tissue engineering. We used a self-aggregating suspension culture (SASC) method to produce an engineered cartilage, "cartilage tissue analog" (CTA). With an objective of understanding the stability of phenotype of the CTA over long periods, we cultured chondrocytes up to 4 years and analyzed the matrix. Both early (eCTAs) (6 months) and aged (aCTAs) (4 years) showed type II collagen throughout with higher concentrations near the edge. Using Fourier transform-infrared imaging spectroscopy (FT-IRIS), proteoglycan/collagen ratio of eCTA was 2.8 times greater than native cartilage at 1 week, but the ratio was balanced to native level (p = 0.017) by 36 weeks. Surprisingly, aCTAs maintained the hyaline characteristics, but there was evidence of calcification within the tissue with a distinct range of intensities. Mineral/matrix ratio of those aCTA with "intensive" calcification was significantly higher (p = 0.017) than the "partial," but when compared to native bone the ratio of "intensive" aCTAs was 2.4 times lower. In this study we utilized the imaging approach of FT-IRIS and have shown that a biomaterial formed is compositionally closely related to natural cartilage for long periods in culture. We show that this culture platform can maintain a CTA for extended periods of time (4 years) and under those conditions signs of mineralization can be found. This method of cartilage tissue engineering is a promising method to generate cartilaginous biomaterial and may have potential to be utilized in both cartilage and boney repairs.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Biological Sciences, University of Delaware, Newark, Delaware,Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, 422 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6081
| | - Jeffrey J. Kraft
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Andrew C. Volk
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Joan Pugarelli
- Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Nancy Pleshko
- Department of Mechanical Engineering, Temple University, Philadelphia, Pennsylvania
| | - George R. Dodge
- Department of Biological Sciences, University of Delaware, Newark, Delaware,Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, 422 Stemmler Hall, 36th Street and Hamilton Walk, Philadelphia, Pennsylvania 19104-6081
| |
Collapse
|
23
|
Hristova GI, Jarzem P, Ouellet JA, Roughley PJ, Epure LM, Antoniou J, Mwale F. Calcification in human intervertebral disc degeneration and scoliosis. J Orthop Res 2011; 29:1888-95. [PMID: 21590718 DOI: 10.1002/jor.21456] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 04/22/2011] [Indexed: 02/04/2023]
Abstract
Calcification is a pathological process that may lead to impairment of nutrient supply and disc metabolism in degenerative and scoliotic intervertebral discs (IVDs). The purpose of this study was to assess the calcification potential of IVDs in degenerative disc disease (DDD) and adolescent idiopathic scoliosis (AIS). For this purpose, 34 IVDs from 16 adult patients with DDD and 25 IVDs from 9 adolescent patients with AIS were obtained at surgery. The concave and convex parts of the scoliotic discs were analyzed separately. Von Kossa staining was performed to visualize calcium deposits, while type X collagen (COL X) expression associated with endochondral ossification was measured by immunohistochemistry. Alkaline phosphatase activity and calcium and inorganic phosphate concentrations were used as indicators of calcification potential. Results showed the presence of calcium deposits and COL X in degenerative and scoliotic IVDs, but not in control discs, and the level of the indicators of calcification potential was consistently higher in degenerative and scoliotic discs than in control discs. The results suggest that disc degeneration in adults is associated with ongoing mineral deposition and that mineralization in AIS discs might reflect a premature degenerative process.
Collapse
Affiliation(s)
- Gergana I Hristova
- SMBD-Jewish General Hospital, Lady Davis Institute for Medical Research, 3755 Cote Ste-Catherine Road, Montreal, Canada H3T 1E2 QC
| | | | | | | | | | | | | |
Collapse
|
24
|
Yang H, Zhao X, Xu Y, Wang L, He Q, Lundberg YW. Matrix recruitment and calcium sequestration for spatial specific otoconia development. PLoS One 2011; 6:e20498. [PMID: 21655225 PMCID: PMC3105080 DOI: 10.1371/journal.pone.0020498] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/28/2011] [Indexed: 11/19/2022] Open
Abstract
Otoconia are bio-crystals anchored to the macular sensory epithelium of the utricle and saccule in the inner ear for motion sensing and bodily balance. Otoconia dislocation, degeneration and ectopic calcification can have detrimental effects on balance and vertigo/dizziness, yet the mechanism underlying otoconia formation is not fully understood. In this study, we show that selected matrix components are recruited to form the crystal matrix and sequester Ca(2+) for spatial specific formation of otoconia. Specifically, otoconin-90 (Oc90) binds otolin through both domains (TH and C1q) of otolin, but full-length otolin shows the strongest interaction. These proteins have much higher expression levels in the utricle and saccule than other inner ear epithelial tissues in mice. In vivo, the presence of Oc90 in wildtype (wt) mice leads to an enrichment of Ca(2+) in the luminal matrices of the utricle and saccule, whereas absence of Oc90 in the null mice leads to drastically reduced matrix-Ca(2+). In vitro, either Oc90 or otolin can increase the propensity of extracellular matrix to calcify in cell culture, and co-expression has a synergistic effect on calcification. Molecular modeling and sequence analysis predict structural features that may underlie the interaction and Ca(2+)-sequestering ability of these proteins. Together, the data provide a mechanism for the otoconial matrix assembly and the role of this matrix in accumulating micro-environmental Ca(2+) for efficient CaCO(3) crystallization, thus uncover a critical process governing spatial specific otoconia formation.
Collapse
Affiliation(s)
- Hua Yang
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Xing Zhao
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Yinfang Xu
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Lili Wang
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| | - Quanyuan He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yunxia Wang Lundberg
- Vestibular Neurogenetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska, United States of America
| |
Collapse
|
25
|
Wang S, Qiu Y, Ma Z, Xia C, Zhu F, Zhu Z. Expression of Runx2 and type X collagen in vertebral growth plate of patients with adolescent idiopathic scoliosis. Connect Tissue Res 2010; 51:188-96. [PMID: 20073986 DOI: 10.3109/03008200903215590] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The different expression of type X collagen and Runx2 between the convex and concave side of vertebral growth plate in scoliosis may help to improve our understanding of the role that growth plate tissue play in the development or progression of idiopathic scoliosis. In this investigation, there were significant differences of the total expression of type X collagen, Runx2 protein, and Runx2 mRNA between convex side and concave side growth plates of the apex vertebrae (p < 0.05). The total expression of type X collagen in the concave side growth plates of the lower end vertebrae was higher than that in the same side growth plates of apex (p < 0.05). The total expression of Runx2 in the concave side growth plates in the upper and lower end vertebrae were higher than that in the concave side growth plates of apex (p < 0.05). The expression of type X collagen, Runx2, and Runx2 mRNA, the cell density of type X collagen and Runx2 positive chondrocytes, and histological changes between convex side and concave side of the vertebral growth plate indicated that the vertebral growth plate was affected by mechanical forces, which was a secondary change and could contribute to progression of adolescent idiopathic scoliosis.
Collapse
Affiliation(s)
- Shoufeng Wang
- Spine Surgery, Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
| | | | | | | | | | | |
Collapse
|
26
|
Harrington EK, Coon DJ, Kern MF, Svoboda KKH. PTH stimulated growth and decreased Col-X deposition are phosphotidylinositol-3,4,5 triphosphate kinase and mitogen activating protein kinase dependent in avian sterna. Anat Rec (Hoboken) 2010; 293:225-34. [PMID: 19957341 DOI: 10.1002/ar.21072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Type X collagen (Col-X) deposition is a marker of terminal differentiation during chondrogenesis, in addition to appositional growth and apoptosis. The parathyroid hormone/parathyroid hormone related peptide (PTH/PTHrP) receptor, or PPR, is a G-Protein coupled receptor (GPCR), which activates several downstream pathways, moderating chondrocyte differentiation, including suppression of Col-X deposition. An Avian sterna model was used to analyze the PPR GPCR downstream kinase role in growth rate and extracellular matrix (ECM) including Col-II, IX, and X. Phosphatidylinositol kinase (PI3K), mitogen activating protein kinase (MAPK) and protein kinase A (PKA) were inhibited with specific established inhibitors LY294002, PD98059, and H89, respectively to test the hypothesis that they could reverse/inhibit the PTH/PTHrP pathway. Excised E14 chick sterna were PTH treated with or without an inhibitor and compared to controls. Sternal length was measured every 24 hr. Cultured sterna were immuno-stained using specific antibodies for Col-II, IX, or X and examined via confocal microscopy. Increased growth in PTH-treated sterna was MAPK, PI3K, and PKA dose dependent, suggesting growth was regulated through multiple pathways. Col-X deposition was rescued in PTH-treated sterna in the presence of PI3K or MAPK inhibitors, but not with the PKA inhibitor. All three inhibitors moderately disrupted Col-II and Col-IX deposition. These results suggest that PTH can activate multiple pathways during chondrocyte differentiation.
Collapse
Affiliation(s)
- Erik Kern Harrington
- Department of Biomedical Sciences, Texas A&M Health Sciences Center, Dallas, 75246, USA
| | | | | | | |
Collapse
|
27
|
|
28
|
Abstract
The collagens represent a family of trimeric extracellular matrix molecules used by cells for structural integrity and other functions. The three alpha chains that form the triple helical part of the molecule are composed of repeating peptide triplets of glycine-X-Y. X and Y can be any amino acid but are often proline and hydroxyproline, respectively. Flanking the triple helical regions (i.e., Col domains) are non-glycine-X-Y regions, termed non-collagenous domains. These frequently contain recognizable peptide modules found in other matrix molecules. Proper tissue function depends on correctly assembled molecular aggregates being incorporated into the matrix. This review highlights some of the structural characteristics of collagen types I-XXVIII.
Collapse
|
29
|
Genge BR, Wu LNY, Wuthier RE. Mineralization of annexin-5-containing lipid-calcium-phosphate complexes: modulation by varying lipid composition and incubation with cartilage collagens. J Biol Chem 2008; 283:9737-48. [PMID: 18250169 PMCID: PMC2442302 DOI: 10.1074/jbc.m706523200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Revised: 01/31/2008] [Indexed: 11/06/2022] Open
Abstract
Matrix vesicles (MVs) in the growth plate bind to cartilage collagens and initiate mineralization of the extracellular matrix. Native MVs have been shown to contain a nucleational core responsible for mineral formation that is comprised of Mg(2+)-containing amorphous calcium phosphate and lipid-calcium-phosphate complexes (CPLXs) and the lipid-dependent Ca(2+)-binding proteins, especially annexin-5 (Anx-5), which greatly enhances mineral formation. Incorporation of non-Ca(2+)-binding MV lipids impedes mineral formation by phosphatidylserine (PS)-CPLX. In this study, nucleators based on amorphous calcium phosphate (with or without Anx-5) were prepared with PS alone, PS + phosphatidylethanolamine (PE), or PS + PE and other MV lipids. These were incubated in synthetic cartilage lymph containing no collagen or containing type II or type X collagen. Dilution of PS with PE and other MV lipids progressively retarded nucleation. Incorporation of Anx-5 restored nucleational activity to the PS:PE CPLX; thus PS and Anx-5 proved to be critical for nucleation of mineral. Without Anx-5, induction of mineral formation was slow unless high levels of Ca(2+) were used. The presence of type II collagen in synthetic cartilage lymph improved both the rate and amount of mineral formation but did not enhance nucleation. This stimulatory effect required the presence of the nonhelical telopeptides. Although type X collagen slowed induction, it also increased the rate and amount of mineral formation. Both type II and X collagens markedly increased mineral formation by the MV-like CPLX, requiring Anx-5 to do so. Thus, Anx-5 enhances nucleation by the CPLXs and couples this to propagation of mineral formation by the cartilage collagens.
Collapse
Affiliation(s)
- Brian R Genge
- Department of Chemistry and Biochemistry, Graduate Science Research Center, University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| | | | | |
Collapse
|
30
|
Genge BR, Wu LNY, Wuthier RE. In vitro modeling of matrix vesicle nucleation: synergistic stimulation of mineral formation by annexin A5 and phosphatidylserine. J Biol Chem 2007; 282:26035-45. [PMID: 17613532 DOI: 10.1074/jbc.m701057200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Annexins A5, A2, and A6 (Anx-A5, -A2, and -A6) are quantitatively major proteins of the matrix vesicle nucleational core that is responsible for mineral formation. Anx-A5 significantly activated the induction and propagation of mineral formation when incorporated into synthetic nucleation complexes made of amorphous calcium phosphate (ACP) and Anx-A5 or of phosphatidylserine (PS) plus ACP (PS-CPLX) and Anx-A5. Incorporation of Anx-A5 markedly shortened the induction time, greatly increasing the rate and overall amount of mineral formed when incubated in synthetic cartilage lymph. Constructed by the addition of Ca(2+) to PS, emulsions prepared in an intracellular phosphate buffer matched in ionic composition to the intracellular fluid of growth plate chondrocytes, these biomimetic PS-CPLX nucleators had little nucleational activity. However, incorporation of Anx-A5 transformed them into potent nucleators, with significantly greater activity than those made from ACP without PS. The ability of Anx-A5 to enhance the nucleation and growth of mineral appears to stem from its ability to form two-dimensional crystalline arrays on PS-containing monolayers. However, some stimulatory effect also may result from its ability to exclude Mg(2+) and HCO(-)(3) from nucleation sites. Comparing the various annexins for their ability to activate PS-CPLX nucleation yields the following: avian cartilage Anx-A5 > human placental Anx-A5 > avian liver Anx-A5 > or = avian cartilage Anx-A6 >> cartilage Anx-A2. The stimulatory effect of human placental Anx-A5 and avian cartilage Anx-A6 depended on the presence of PS, since in its absence they either had no effect or actually inhibited the nucleation activity of ACP. Anx-A2 did not significantly enhance mineralization.
Collapse
Affiliation(s)
- Brian R Genge
- Department of Chemistry and Biochemistry, Graduate Science Research Center, University of South Carolina, Columbia, South Carolina 29208, USA
| | | | | |
Collapse
|
31
|
Schulz RM, Bader A. Cartilage tissue engineering and bioreactor systems for the cultivation and stimulation of chondrocytes. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2007; 36:539-68. [PMID: 17318529 DOI: 10.1007/s00249-007-0139-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 01/23/2007] [Accepted: 01/29/2007] [Indexed: 12/14/2022]
Abstract
Damage to and degeneration of articular cartilage is a major health issue in industrialized nations. Articular cartilage has a particularly limited capacity for auto regeneration. At present, there is no established therapy for a sufficiently reliable and durable replacement of damaged articular cartilage. In this, as well as in other areas of regenerative medicine, tissue engineering methods are considered to be a promising therapeutic component. Nevertheless, there remain obstacles to the establishment of tissue-engineered cartilage as a part of the routine therapy for cartilage defects. One necessary aspect of potential tissue engineering-based therapies for cartilage damage that requires both elucidation and progress toward practical solutions is the reliable, cost effective cultivation of suitable tissue. Bioreactors and associated methods and equipment are the tools with which it is hoped that such a supply of tissue-engineered cartilage can be provided. The fact that in vivo adaptive physical stimulation influences chondrocyte function by affecting mechanotransduction leads to the development of specifically designed bioreactor devices that transmit forces like shear, hydrostatic pressure, compression, and combinations thereof to articular and artificial cartilage in vitro. This review summarizes the basic knowledge of chondrocyte biology and cartilage dynamics together with the exploration of the various biophysical principles of cause and effect that have been integrated into bioreactor systems for the cultivation and stimulation of chondrocytes.
Collapse
Affiliation(s)
- Ronny Maik Schulz
- Department of Cell Techniques and Applied Stem Cell Biology, Center of Biotechnology and Biomedicine, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
32
|
Wilson R, Freddi S, Chan D, Cheah KSE, Bateman JF. Misfolding of collagen X chains harboring Schmid metaphyseal chondrodysplasia mutations results in aberrant disulfide bond formation, intracellular retention, and activation of the unfolded protein response. J Biol Chem 2005; 280:15544-52. [PMID: 15695517 DOI: 10.1074/jbc.m410758200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Collagen X is a short chain collagen expressed specifically by the hypertrophic chondrocytes of the cartilage growth plate during endochondral bone formation. Accordingly, COL10A1 mutations disrupt growth plate function and cause Schmid metaphyseal chondrodysplasia (SMCD). SMCD mutations are almost exclusively located in the NC1 domain, which is crucial for both trimer formation and extracellular assembly. Several mutations are expected to reduce the level of functional collagen X due to NC1 domain misfolding or exclusion from stable trimer formation. However, other mutations may be tolerated within the structure of the assembled NC1 trimer, allowing mutant chains to exert a dominant-negative impact within the extracellular matrix. To address this, we engineered SMCD mutations that are predicted either to prohibit subunit folding and assembly (NC1del10 and Y598D, respectively) or to allow trimerization (N617K and G618V) and transfected these constructs into 293-EBNA and SaOS-2 cells. Although expected to form stable trimers, G618V and N617K chains (like Y598D and NC1del10 chains) were secreted very poorly compared with wild-type collagen X. Interestingly, all mutations resulted in formation of an unusual SDS-stable dimer, which dissociated upon reduction. As the NC1 domain sulfhydryl group is not solvent-exposed in the correctly folded NC1 monomer, disulfide bond formation would result only from a dramatic conformational change. In cells expressing mutant collagen X, we detected significantly increased amounts of the spliced form of X-box DNA-binding protein mRNA and up-regulation of BiP, two key markers for the unfolded protein response. Our data provide the first clear evidence for misfolding of SMCD collagen X mutants, and we propose that solvent exposure of the NC1 thiol may trigger the recognition and degradation of mutant collagen X chains.
Collapse
Affiliation(s)
- Richard Wilson
- Cell and Matrix Biology Research Unit, Murdoch Children's Research Institute, University of Melbourne, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | | | | | | | | |
Collapse
|
33
|
Kusafuka K, Luyten FP, De Bondt R, Hiraki Y, Shukunami C, Kayano T, Takemura T. Immunohistochemical evaluation of cartilage-derived morphogenic protein-1 and -2 in normal human salivary glands and pleomorphic adenomas. Virchows Arch 2003; 442:482-90. [PMID: 12707774 DOI: 10.1007/s00428-003-0761-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Accepted: 12/20/2002] [Indexed: 11/29/2022]
Abstract
Cartilage-derived morphogenic protein (CDMP)-1 and -2 belong to the bone morphogenetic protein (BMP) family in the transforming growth factor (TGF)-beta superfamily. CDMP-1 and CDMP-2 were reported to play essential roles in limb cartilage and limb-joint formation in developing mice. Although pleomorphic adenoma of the salivary glands is an epithelial tumor, it frequently shows ectopic cartilaginous formation. These findings suggested that CDMP-1 and -2 may play essential roles in chondroid formation in salivary pleomorphic adenoma. To evaluate this hypothesis, we examined the expression and localization of CDMP-1 and -2 immunohistochemically in 20 normal human salivary glands and 35 pleomorphic adenomas. CDMP-1 was immunolocalized in the striated ducts and the intercalated ducts in the normal salivary glands. CDMP-1 was immunolocalized in the cuboidal neoplastic myoepithelial cells around the chondroid areas of the pleomorphic adenomas, whereas these molecules were not localized in the spindle-shaped neoplastic myoepithelial cells of the myxoid element or the lacuna cells of the chondroid element in these tumors. CDMP-2 was expressed neither in normal salivary glands nor any of the elements of the pleomorphic adenomas. Type-II collagen and aggrecan were immunolocalized throughout the matrix around the lacuna cells of the chondroid element, whereas type-X collagen was not immunolocalized in any epithelial or stromal elements, including the chondroid elements. Aggrecan was deposited not only on the chondroid matrix, but also on the myxoid stroma and intercellular spaces of the tubulo-glandular structures, whereas chondromodulin-I was deposited on the chondroid matrix. These results indicated that the cuboidal neoplastic myoepithelial cells around the chondroid areas expressed CDMP-1 and suggested that this molecule may play a role in the differentiation of neoplastic myoepithelial cells in pleomorphic adenoma. The phenotype of the lacuna cells was similar to that of mature to upper hypertrophic chondrocytes of the authentic cartilage. In conclusion, pleomorphic adenoma expressed CDMP-1 but not CDMP-2.
Collapse
Affiliation(s)
- Kimihide Kusafuka
- Department of Pathology, Japanese Red Cross Medical Center, 4-1-22 Hiroo, 150-8935 Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
34
|
Naumann A, Dennis JE, Awadallah A, Carrino DA, Mansour JM, Kastenbauer E, Caplan AI. Immunochemical and mechanical characterization of cartilage subtypes in rabbit. J Histochem Cytochem 2002; 50:1049-58. [PMID: 12133908 DOI: 10.1177/002215540205000807] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cartilage is categorized into three general subgroups, hyaline, elastic, and fibrocartilage, based primarily on morphologic criteria and secondarily on collagen (Types I and II) and elastin content. To more precisely define the different cartilage subtypes, rabbit cartilage isolated from joint, nose, auricle, epiglottis, and meniscus was characterized by immunohistochemical (IHC) localization of elastin and of collagen Types I, II, V, VI, and X, by biochemical analysis of total glycosaminoglycan (GAG) content, and by biomechanical indentation assay. Toluidine blue staining and safranin-O staining were used for morphological assessment of the cartilage subtypes. IHC staining of the cartilage samples showed a characteristic pattern of staining for the collagen antibodies that varied in both location and intensity. Auricular cartilage is discriminated from other subtypes by interterritorial elastin staining and no staining for Type VI collagen. Epiglottal cartilage is characterized by positive elastin staining and intense staining for Type VI collagen. The unique pattern for nasal cartilage is intense staining for Type V collagen and collagen X, whereas articular cartilage is negative for elastin (interterritorially) and only weakly positive for collagen Types V and VI. Meniscal cartilage shows the greatest intensity of staining for Type I collagen, weak staining for collagens V and VI, and no staining with antibody to collagen Type X. Matching cartilage samples were categorized by total GAG content, which showed increasing total GAG content from elastic cartilage (auricle, epiglottis) to fibrocartilage (meniscus) to hyaline cartilage (nose, knee joint). Analysis of aggregate modulus showed nasal and auricular cartilage to have the greatest stiffness, epiglottal and meniscal tissue the lowest, and articular cartilage intermediate. This study illustrates the differences and identifies unique characteristics of the different cartilage subtypes in rabbits. The results provide a baseline of data for generating and evaluating engineered repair cartilage tissue synthesized in vitro or for post-implantation analysis.
Collapse
Affiliation(s)
- Andreas Naumann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
1. The histochemistry and ultrastructure of pheasant eggs were compared on the basis of blue or brown shell colour. 2. Differences in lectin histochemistry of the outer shell membrane calcification surface indicate a biochemical disruption of the calcification sites in blue eggs. 3. Significant differences were observed in all aspects of eggshell ultrastructure with blue eggs having thinner shells with structural defects. 4. Poor hatchability of blue eggs may reflect high rates of weight loss associated with a defective eggshell.
Collapse
Affiliation(s)
- P D Richards
- Department of Anatomy, Faculty of Medicine, Pretoria University, Republic of South Africa.
| | | |
Collapse
|
36
|
Abstract
OBJECTIVE To determine whether human osteoarthritic (OA) cartilage loses its ability to remain avascular when placed into the in-vivo model of angiogenesis, the chick embryo chorio-allantoic membrane (CAM), and to determine specific changes that occur in the cartilage matrix when the cartilage is exposed to an active vasculature. DESIGN Articular cartilage from OA and non-OA joints was grafted onto the CAM for up to 5 days before fixing and processing for histological, histochemical and immunological examination for specific changes in proteoglycan and collagen. RESULTS OA cartilage, but not non-OA cartilage, showed invasion of its matrix by blood vessels from the CAM to various extents. Associated with these blood vessels was a loss of staining for proteoglycans and cartilage specific glycosaminoglycans (GAG). A deposition of collagen types I and X was also visualized around the invasive vessels. CONCLUSIONS OA cartilage loses or has already lost its ability to remain avascular when placed onto the chick CAM. Changes occur in the matrix around the invasive blood vessels, specifically a loss of proteoglycan and GAG, and the deposition of new collagen types, notably I and X.
Collapse
Affiliation(s)
- S A Fenwick
- Glenfield Hospital NHS Trust, University of Leicester, Groby Road, Leicester, LE3 9QP
| | | | | |
Collapse
|
37
|
Boos N, Nerlich AG, Wiest I, von der Mark K, Ganz R, Aebi M. Immunohistochemical analysis of type-X-collagen expression in osteoarthritis of the hip joint. J Orthop Res 1999; 17:495-502. [PMID: 10459754 DOI: 10.1002/jor.1100170406] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Conflicting data have been reported on the spatial distribution of type X-collagen expression in osteoarthritis, and no concise data exist on a possible correlation between type X-collagen expression and clinical and radiological alterations. Well defined clinical and radiological data were compared with histopathological and immunohistochemical findings to investigate the expression of type-X collagen in osteoarthritis of the hip joint. Femoral heads were obtained in toto from 11 patients undergoing routine hip arthroplasty for femoral neck fractures (n = 3) or osteoarthritis (n = 8) and from 13 patients (age: 12 days to 69 years) without any evidence of hip-joint pathology. Whole coronal sections from the femoral head were decalcified for routine histology and immunohistochemical analysis with use of type-specific monoclonal antibodies to type-X collagen. Our results demonstrate that type-X collagen is consistently found in osteoarthritic cartilage and is absent from normal adult cartilage (including the region of calcified cartilage). Except for the occurrence of type-X collagen in the middle zone of articular cartilage in advanced stages of osteoarthritis, there is no specific change in the staining pattern or intensity for the collagen during osteoarthritis, particularly when the staining is related to clinical and radiological parameters. Hardly more than 20% of the extracellular matrix stained for type-X collagen; therefore, we suggest that, in most cases, this type of collagen may not play a direct biomechanical role in the weakening of osteoarthritic cartilage but rather may contribute indirectly to a disturbance of the disc biomechanics by altering matrix-molecule interaction. However, expression of type-X collagen may indicate a change in chondrocyte phenotype that consistently coincides with the formation of chondrocyte clusters, one of the first alterations in osteoarthritis visible on histologic examination.
Collapse
Affiliation(s)
- N Boos
- Department of Orthopaedic Surgery, University of Bern, Switzerland.
| | | | | | | | | | | |
Collapse
|
38
|
Bailón-Plaza A, Lee AO, Veson EC, Farnum CE, van der Meulen MC. BMP-5 deficiency alters chondrocytic activity in the mouse proximal tibial growth plate. Bone 1999; 24:211-6. [PMID: 10071913 DOI: 10.1016/s8756-3282(98)00171-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The role of bone morphogenetic protein-5 (BMP-5) in regulating chondrocytic activity during endochondral ossification was examined in the mouse proximal tibial growth plate. Short ear mice homozygous for the SEA/Gn point mutation in the coding region for BMP-5 (King, J. A. et al. Dev Biol 166:112122; 1994) and heterozygous long ear littermates were examined at 5 and 9 weeks of age (n = 9/group, four groups). Animals were injected with oxytetracycline to estimate the rate of growth and with bromodeoxyuridine to identify proliferative chondrocytes. Age-related changes in chondrocytic stereological and kinetic parameters were compared by image analysis of 1-microm-thick growth plate sections. The number of proliferative chondrocytes did not vary with age in either genotype, but proliferative phase duration increased significantly (approximately 67%) with age in the long ear mice, whereas no change was detected in the short ear mice. The number of hypertrophic chondrocytes increased significantly (approximately 27%) in the short ears, whereas this number decreased significantly (approximately 40%) in the long ears. There was a small, but significant, increase in hypertrophic phase duration (approximately 45%) in short ear mice, but no change was detected in the long ears. These results indicate that BMP-5 deficiency prevents age-related decelerations in chondrocytic proliferation and initiation of hypertrophic differentiation, suggesting a role of BMP-5 in inhibiting these processes.
Collapse
Affiliation(s)
- A Bailón-Plaza
- Sibley School of Mechanical & Aerospace Engineering, Cornell University, Ithaca, NY 14853-7501, USA
| | | | | | | | | |
Collapse
|
39
|
Delezoide AL, Benoist-Lasselin C, Legeai-Mallet L, Le Merrer M, Munnich A, Vekemans M, Bonaventure J. Spatio-temporal expression of FGFR 1, 2 and 3 genes during human embryo-fetal ossification. Mech Dev 1998; 77:19-30. [PMID: 9784595 DOI: 10.1016/s0925-4773(98)00133-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Mutations in FGFR 1-3 genes account for various human craniosynostosis syndromes, while dwarfism syndromes have been ascribed exclusively to FGFR 3 mutations. However, the exact role of FGFR 1-3 genes in human skeletal development is not understood. Here we describe the expression pattern of FGFR 1-3 genes during human embryonic and fetal endochondral and membranous ossification. In the limb bud, FGFR 1 and FGFR 2 are initially expressed in the mesenchyme and in epidermal cells, respectively, but FGFR 3 is undetectable. At later stages, FGFR 2 appears as the first marker of prechondrogenic condensations. In the growing long bones, FGFR 1 and FGFR 2 transcripts are restricted to the perichondrium and periosteum, while FGFR 3 is mainly expressed in mature chondrocytes of the cartilage growth plate. Marked FGFR 2 expression is also observed in the periarticular cartilage. Finally, membranous ossification of the skull vault is characterized by co-expression of the FGFR 1-3 genes in preosteoblasts and osteoblasts. In summary, the simultaneous expression of FGFR 1-3 genes in cranial sutures might explain their involvement in craniosynostosis syndromes, whereas the specific expression of FGFR 3 in chondrocytes does correlate with the involvement of FGFR 3 mutations in inherited defective growth of human long bones.
Collapse
MESH Headings
- Bone and Bones/chemistry
- Bone and Bones/embryology
- Bone and Bones/physiology
- Cartilage/chemistry
- Cartilage/cytology
- Cartilage/physiology
- Cranial Sutures/chemistry
- Cranial Sutures/embryology
- Cranial Sutures/physiology
- Embryo, Mammalian/chemistry
- Embryo, Mammalian/metabolism
- Embryonic and Fetal Development/genetics
- Extremities/embryology
- Extremities/physiology
- Gene Expression Regulation, Developmental
- Genes/genetics
- Head/embryology
- Head/physiology
- Humans
- Immunohistochemistry
- In Situ Hybridization
- Limb Buds/chemistry
- Limb Buds/embryology
- Limb Buds/growth & development
- Mesoderm/chemistry
- Mesoderm/physiology
- Osteogenesis/genetics
- Protein-Tyrosine Kinases
- Receptor Protein-Tyrosine Kinases/genetics
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptor, Fibroblast Growth Factor, Type 3
- Receptors, Fibroblast Growth Factor/genetics
- Skull/chemistry
- Skull/embryology
- Skull/physiology
Collapse
Affiliation(s)
- A L Delezoide
- INSERM U 393 and Département de Génétique, Assistance Publique - Hôpitaux de Paris, Groupe Hospitalier Necker Enfants Malades, 149 rue de Sèvres, 75743, Paris Cedex 15, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Nurminskaya M, Magee C, Nurminsky D, Linsenmayer TF. Plasma transglutaminase in hypertrophic chondrocytes: expression and cell-specific intracellular activation produce cell death and externalization. J Cell Biol 1998; 142:1135-44. [PMID: 9722623 PMCID: PMC2132883 DOI: 10.1083/jcb.142.4.1135] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/1998] [Revised: 07/07/1998] [Indexed: 02/08/2023] Open
Abstract
We previously used subtractive hybridization to isolate cDNAs for genes upregulated in chick hypertrophic chondrocytes (Nurminskaya, M. , and T.F. Linsenmayer. 1996. Dev. Dyn. 206:260-271). Certain of these showed homology with the "A" subunit of human plasma transglutaminase (factor XIIIA), a member of a family of enzymes that cross-link a variety of intracellular and matrix molecules. We now have isolated a full-length cDNA for this molecule, and confirmed that it is avian factor XIIIA. Northern and enzymatic analyses confirm that the molecule is upregulated in hypertrophic chondrocytes (as much as eightfold). The enzymatic analyses also show that appreciable transglutaminase activity in the hypertrophic zone becomes externalized into the extracellular matrix. This externalization most likely is effected by cell death and subsequent lysis-effected by the transglutaminase itself. When hypertrophic chondrocytes are transfected with a cDNA construct encoding the zymogen of factor XIIIA, the cells convert the translated protein to a lower molecular weight form, and they initiate cell death, become permeable to macromolecules and eventually undergo lysis. Non-hypertrophic cells transfected with the same construct do not show these degenerative changes. These results suggest that hypertrophic chondrocytes have a novel, tissue-specific cascade of mechanisms that upregulate the synthesis of plasma transglutaminase and activate its zymogen. This produces autocatalytic cell death, externalization of the enzyme, and presumably cross-linking of components within the hypertrophic matrix. These changes may in turn regulate the removal and/or calcification of this hypertrophic matrix, which are its ultimate fates.
Collapse
Affiliation(s)
- M Nurminskaya
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | |
Collapse
|
41
|
Linsenmayer TF, Long F, Nurminskaya M, Chen Q, Schmid TM. Type X collagen and other up-regulated components of the avian hypertrophic cartilage program. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 60:79-109. [PMID: 9594572 DOI: 10.1016/s0079-6603(08)60890-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Elucidating the cellular and molecular processes involved in growth and remodeling of skeletal elements is important for our understanding of congenital limb deformities. These processes can be advantageously studied in the epiphyseal growth zone, the region in which all of the increase in length of a developing long bone is achieved. Here, young chondrocytes divide, mature, become hypertrophic, and ultimately are removed. During cartilage hypertrophy, a number of changes occur, including the acquisition of synthesis of new components, the most studied being type X collagen. In this review, which is based largely on our own work, we will first examine the structure and properties of the type X collagen molecule. We then will describe the supramolecular forms into which the molecule becomes assembled within tissues, and how this changes its physical properties, such as thermal stability. Certain of these studies involve a novel, immunohistochemical approach that utilizes an antitype X collagen monoclonal antibody that detects the native conformation of the molecule. We describe the developmental acquisition of the molecule, and its transcriptional regulation as deduced by in vivo footprinting, transient transfection, and gel-shift assays. We provide evidence that the molecule has unique diffusion and regulatory properties that combine to alter the hypertrophic cartilage matrix. These conclusions are derived from an in vitro system in which exogenously added type X collagen moves rapidly through the cartilage matrix and subsequently produces certain changes mimicking ones that have been shown normally to occur in vivo. These include altering the cartilage collagen fibrils and effecting changes in proteoglycans. Last, we describe the subtractive hybridization, isolation, and characterization of other genes up-regulated during cartilage hypertrophy, with specific emphasis on one of these--transglutaminase.
Collapse
Affiliation(s)
- T F Linsenmayer
- Department of Anatomy and Cellular Biology, Tufts University Medical School, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
42
|
Roberts S, Bains MA, Kwan A, Menage J, Eisenstein SM. Type X collagen in the human invertebral disc: an indication of repair or remodelling? THE HISTOCHEMICAL JOURNAL 1998; 30:89-95. [PMID: 10192549 DOI: 10.1023/a:1003278915981] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The short-chained type X collagen was once thought to be produced exclusively by hypertrophic chondrocytes during endochondral ossification. More recently, however, it has been found elsewhere, for example in articular cartilage. In the present study, the occurrence of type X collagen in the intervertebral disc has been investigated. Human disc tissues of varying pathologies were examined for the presence of type X collagen and expression of alpha1(X) mRNA by immunohistochemistry and in situ hybridization respectively. All samples of disc contained areas that were immunoreactive but to varying extents. In the disc itself, staining for the protein and alpha1(X) mRNA was seen frequently associated with cells of the nucleus pulposus, which were large and of hypertrophic appearance, most commonly found in degenerate discs, and also in areas of disorganized architecture, such as clefts. In addition, type X collagen, both protein and mRNA, was found in regions of the cartilage end-plate, which calcify ectopically in scoliotic patients. We suggest that type X collagen production may be a response of disc tissue cells to a stimulus, such as altered loading.
Collapse
Affiliation(s)
- S Roberts
- Centre for Spinal Studies, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, Shropshire, UK
| | | | | | | | | |
Collapse
|
43
|
Arias JL, Nakamura O, Fernández MS, Wu JJ, Knigge P, Eyre DR, Caplan AI. Role of type X collagen on experimental mineralization of eggshell membranes. Connect Tissue Res 1997; 36:21-33. [PMID: 9298621 DOI: 10.3109/03008209709160211] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Type X collagen is a transient and developmentally regulated collagen that has been postulated to be involved in controlling the later stages of endochondral bone formation. However, the role of this collagen in these events is not yet known. In order to understand the function of type X collagen, if any, in the process of biomineralization, the properties of type X collagen in eggshell membranes were further investigated. Specifically, calvaria-derived osteogenic cells were tested for their ability to mineralize eggshell membranes in vitro. Immunohistochemistry with specific monoclonal antibodies was used to correlate the presence or absence of type X collagen or its propeptide domains with the ability of shell membranes to be mineralized. The extent of mineralization was assessed by Von Kossa staining, scanning electron microscopy and energy-dispersive spectroscopy. The results indicate that the non-helical domains of type X collagen must be removed to facilitate the cell-mediated mineralization of eggshell membranes. In this tissue, intact type X collagen does not appear to stimulate or support cell-mediated mineralization. We postulate that the non-helical domains of type X collagen function in vivo to inhibit mineralization and thereby establish boundaries which are protected from mineral deposition.
Collapse
Affiliation(s)
- J L Arias
- Department of Animal Biology, Faculty of Veterinary and Animal Sciences, University of Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
44
|
Aigner T, Dudhia J. Phenotypic modulation of chondrocytes as a potential therapeutic target in osteoarthritis: a hypothesis. Ann Rheum Dis 1997; 56:287-91. [PMID: 9175928 PMCID: PMC1752376 DOI: 10.1136/ard.56.5.287] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- T Aigner
- Institute of Pathology, University of Erlangen-Nürnberg, Germany
| | | |
Collapse
|
45
|
Kwan KM, Pang MK, Zhou S, Cowan SK, Kong RY, Pfordte T, Olsen BR, Sillence DO, Tam PP, Cheah KS. Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: implications for function. J Biophys Biochem Cytol 1997; 136:459-71. [PMID: 9015315 PMCID: PMC2134813 DOI: 10.1083/jcb.136.2.459] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
There are conflicting views on whether collagen X is a purely structural molecule, or regulates bone mineralization during endochondral ossification. Mutations in the human collagen alpha1 (X) gene (COL10A1) in Schmid metaphyseal chondrodysplasia (SMCD) suggest a supportive role. But mouse collagen alpha1 (X) gene (Col10a1) null mutants were previously reported to show no obvious phenotypic change. We have generated collagen X deficient mice, which shows that deficiency does have phenotypic consequences which partly resemble SMCD, such as abnormal trabecular bone architecture. In particular, the mutant mice develop coxa vara, a phenotypic change common in human SMCD. Other consequences of the mutation are reduction in thickness of growth plate resting zone and articular cartilage, altered bone content, and atypical distribution of matrix components within growth plate cartilage. We propose that collagen X plays a role in the normal distribution of matrix vesicles and proteoglycans within the growth plate matrix. Collagen X deficiency impacts on the supporting properties of the growth plate and the mineralization process, resulting in abnormal trabecular bone. This hypothesis would accommodate the previously conflicting views of the function of collagen X and of the molecular pathogenesis of SMCD.
Collapse
Affiliation(s)
- K M Kwan
- Biochemistry Department, The University of Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pavasant P, Shizari T, Underhill CB. Hyaluronan synthesis by epiphysial chondrocytes is regulated by growth hormone, insulin-like growth factor-1, parathyroid hormone and transforming growth factor-beta 1. Matrix Biol 1996; 15:423-32. [PMID: 9049980 DOI: 10.1016/s0945-053x(96)90161-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In a previous study, we presented evidence that the synthesis of hyaluronan by hypertrophic chondrocytes is one of the principal factors driving the interstitial expansion of the growth plate (Pavasant et al., J. Cell Sci. 109: 327-334, 1996). To test this possibility further, we used two different approaches to examine the effects of hormones on the production of hyaluronan in the growth plate. In the first approach, we examined the growth plate of the lit/lit mouse that lacks growth hormone and found that its hypertrophic lacunae were smaller and contained less hyaluronan than those of wild type mice. Moreover, the ratios of hyaluronan staining density to total area of the lacunae were similar for the lit/lit and the wt/wt mice, indicating that the amount of hyaluronan is directly related to lacuna size. In the second approach, we examined the effects of hormones on segments of the epiphysial growth plate placed in organ culture. Under normal culture conditions, a band of hyaluronan staining progressed across the length of the growth plate, reflecting the maturation of chondrocytes into the hypertrophic stage. When insulin-like growth factor-1, a factor known to promote chondrocyte maturation, was added to the culture medium, the production of hyaluronan and the enlargement of the lacunae were stimulated. In contrast, when either parathyroid hormone or transforming growth factor-beta 1, both of which inhibit chondrocyte differentiation, was added to the medium of cultured segments, new pericellular hyaluronan was not detected and the lacunae did not enlarge. Taken together, these results indicate that factors that either stimulate or inhibit the maturation of epiphysial chondrocytes have a corresponding effect on the production of hyaluronan. This, in turn, further supports the importance of hyaluronan in the process of lacuna enlargement.
Collapse
Affiliation(s)
- P Pavasant
- Department of Cell Biology, Georgetown Medical Center, Washington, District of Columbia, USA
| | | | | |
Collapse
|
47
|
Basic N, Basic V, Bulic K, Grgic M, Kleinman HK, Luyten FP, Vukicevic S. TGF-beta and basement membrane matrigel stimulate the chondrogenic phenotype in osteoblastic cells derived from fetal rat calvaria. J Bone Miner Res 1996; 11:384-91. [PMID: 8852949 DOI: 10.1002/jbmr.5650110312] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Primary cultures of fetal rat calvarial cells contain a spectrum of osteogenic phenotypes including undifferentiated mesenchymal cells, osteoprogenitor cells, and osteoblasts. We recently demonstrated that rat calvarial osteoblast-like cells grown on basement membrane undergo profound morphological changes resembling a canalicular network in bone. In the present study, we examined the effect of reconstituted basement membrane Matrigel on chondroblastic versus osteoblastic differentiation of different cell subpopulations obtained by five consecutive enzymatic digestions of rat calvarial cell populations. We found that the appearance of canalicular cell processes decreased with the later digests. When cells from the fourth and fifth digest were grown on top of Matrigel for 7 days, the majority of the cell aggregates displayed chondrocytic characteristics but none of the cells became hypertrophic. When individual chondroblastic cell aggregates were subsequently transferred from Matrigel to plastic, they started expressing types I and X collagens, alkaline phosphatase, and osteocalcin. Within the next 7 days (days 8-14 of the experiment), the majority of cells increased in size, and at day 17 on plastic (day 24 of the experiment) mineralized bone nodules formed. The chondroblastic differentiation of calvarial cells grown on Matrigel could be inhibited by a specific transforming growth factor-beta 1 (TGF-beta 1) but not by a TGF-beta 2 antibody. Addition of recombinant TGF-beta 1 to similar cultures promoted the appearance of chondroblastic cell aggregates. The cartilage phenotype could not, on the contrary, be promoted by growing the cells on other extracellular matrices such as a collagen I gel. We suggest that TGF-beta 1 in concert with the basement membrane extracellular matrix induces chondroblastic differentiation of rat calvarial osteoprogenitor cells.
Collapse
Affiliation(s)
- N Basic
- Department of Anatomy, University of Zagreb, Croatia
| | | | | | | | | | | | | |
Collapse
|
48
|
Paschalis EP, Jacenko O, Olsen B, deCrombrugghe B, Boskey AL. The role of type X collagen in endochondral ossification as deduced by Fourier transform infrared microscopy analysis. Connect Tissue Res 1996; 35:371-7. [PMID: 9084677 DOI: 10.3109/03008209609029214] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Type X collagen has been implicated in the morphogenetic events of endochondral ossification (EO), including the calcification of hypertrophic cartilage and trabeculae prior to their replacement by bone and marrow. Recently, transgenic mice which expressed a truncated collagen X protein were reported to exhibit morphologic alterations in all tissues arising through EO. Fourier Transform InfraRed (FTIR) spectroscopy has previously been shown to provide quantitative and qualitative information about the relative amount of mineral and carbonate present, mineral composition, and crystal perfection. To determine the role of collagen X in mineralization, the "quality" of mineral crystals was analyzed in thin sections of calcified cartilage from tibia obtained from several independent transgenic mouse lines showing varying degrees of the mutant phenotype and mice without type X collagen expression, by means of Fourier Transform InfraRed microscopy (FTIRM). In the present paper, the term "mineral quality" is employed to describe crystallinity/crystal maturation, and acid phosphate content. The results indicate significant differences between normal and transgenic mice bone mineral, both in the amount present and the "quality" of the crystals. In contrast, the analysis of the mineral in mice without type X collagen expression was not different from their age/sex-matched controls.
Collapse
Affiliation(s)
- E P Paschalis
- Hospital for Special Surgery, Department of Ultrastructural Biochemistry, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
49
|
Chen P, Vukicevic S, Sampath TK, Luyten FP. Osteogenic protein-1 promotes growth and maturation of chick sternal chondrocytes in serum-free cultures. J Cell Sci 1995; 108 ( Pt 1):105-14. [PMID: 7738088 DOI: 10.1242/jcs.108.1.105] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the effect of recombinant human osteogenic protein-1 (OP-1, or bone morphogenetic protein-7), a member of the bone morphogenetic protein family, on growth and maturation of day 11, 15 and 17 chick sternal chondrocytes in high density monolayers, suspension and agarose cultures for up to 5 weeks. OP-1 dose-dependently (10-50 ng/ml) promoted chondrocyte maturation associated with enhanced alkaline phosphatase activity, and increased mRNA levels and protein synthesis of type X collagen in both the presence and absence of serum. In serum-free conditions, OP-1 promoted cell proliferation and chondrocyte maturation, without requiring either thyroid hormone or insulin, agents known to support chick chondrocyte differentiation in vitro. When grown in agarose under the same conditions, TGF-beta 1 and retinoic acid neither initiated nor promoted chondrocyte differentiation. The results demonstrate that OP-1, as the sole medium supplement, supports the maturation of embryonic chick sternal chondrocytes in vitro.
Collapse
Affiliation(s)
- P Chen
- Bone Research Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD 20892-1188, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Mechanical support in animals is performed by connective tissues. The soft tissues consist of collagen fibres embedded in a highly hydrated proteoglycan gel. By considering them as fibrous composite materials, a unifying theme can be found to explain their mechanical behaviour in terms of their structure and composition. Interactions between fibres and matrix are essential to their functioning in this way. Calculations are made of the maximum stress transfer per D-period required to enable collagen fibres of a given axial ratio to provide effective reinforcing. Weak non-specific interactions are shown to be sufficient. A mechanical function is proposed for type X collagen in the epiphyseal growth plate on the basis that it modifies and supplements the properties of the type II fibrils. This provides extra reinforcing and, hence, a greater stiffness to the cartilage to compensate for the reduced amount of extracellular matrix.
Collapse
Affiliation(s)
- R M Aspden
- Department of Orthopaedics, University of Aberdeen, Foresterhill, U.K
| |
Collapse
|