1
|
Rebelo A, Almeida A, Peixe L, Antunes P, Novais C. Unraveling the Role of Metals and Organic Acids in Bacterial Antimicrobial Resistance in the Food Chain. Antibiotics (Basel) 2023; 12:1474. [PMID: 37760770 PMCID: PMC10525130 DOI: 10.3390/antibiotics12091474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antimicrobial resistance (AMR) has a significant impact on human, animal, and environmental health, being spread in diverse settings. Antibiotic misuse and overuse in the food chain are widely recognized as primary drivers of antibiotic-resistant bacteria. However, other antimicrobials, such as metals and organic acids, commonly present in agri-food environments (e.g., in feed, biocides, or as long-term pollutants), may also contribute to this global public health problem, although this remains a debatable topic owing to limited data. This review aims to provide insights into the current role of metals (i.e., copper, arsenic, and mercury) and organic acids in the emergence and spread of AMR in the food chain. Based on a thorough literature review, this study adopts a unique integrative approach, analyzing in detail the known antimicrobial mechanisms of metals and organic acids, as well as the molecular adaptive tolerance strategies developed by diverse bacteria to overcome their action. Additionally, the interplay between the tolerance to metals or organic acids and AMR is explored, with particular focus on co-selection events. Through a comprehensive analysis, this review highlights potential silent drivers of AMR within the food chain and the need for further research at molecular and epidemiological levels across different food contexts worldwide.
Collapse
Affiliation(s)
- Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, 4050-313 Porto, Portugal
- ESS, Polytechnic of Porto, 4200-072 Porto, Portugal
| | - Agostinho Almeida
- LAQV/REQUIMTE, Laboratory of Applied Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculty of Nutrition and Food Sciences (FCNAUP), University of Porto, 4150-180 Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (A.R.); (L.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
2
|
Strenkert D, Schmollinger S, Hu Y, Hofmann C, Holbrook K, Liu HW, Purvine SO, Nicora CD, Chen S, Lipton MS, Northen TR, Clemens S, Merchant SS. Zn deficiency disrupts Cu and S homeostasis in Chlamydomonas resulting in over accumulation of Cu and Cysteine. Metallomics 2023; 15:mfad043. [PMID: 37422438 PMCID: PMC10357957 DOI: 10.1093/mtomcs/mfad043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Growth of Chlamydomonas reinhardtii in zinc (Zn) limited medium leads to disruption of copper (Cu) homeostasis, resulting in up to 40-fold Cu over-accumulation relative to its typical Cu quota. We show that Chlamydomonas controls its Cu quota by balancing Cu import and export, which is disrupted in a Zn deficient cell, thus establishing a mechanistic connection between Cu and Zn homeostasis. Transcriptomics, proteomics and elemental profiling revealed that Zn-limited Chlamydomonas cells up-regulate a subset of genes encoding "first responder" proteins involved in sulfur (S) assimilation and consequently accumulate more intracellular S, which is incorporated into L-cysteine, γ-glutamylcysteine, and homocysteine. Most prominently, in the absence of Zn, free L-cysteine is increased ∼80-fold, corresponding to ∼2.8 × 109 molecules/cell. Interestingly, classic S-containing metal binding ligands like glutathione and phytochelatins do not increase. X-ray fluorescence microscopy showed foci of S accumulation in Zn-limited cells that co-localize with Cu, phosphorus and calcium, consistent with Cu-thiol complexes in the acidocalcisome, the site of Cu(I) accumulation. Notably, cells that have been previously starved for Cu do not accumulate S or Cys, causally connecting cysteine synthesis with Cu accumulation. We suggest that cysteine is an in vivo Cu(I) ligand, perhaps ancestral, that buffers cytosolic Cu.
Collapse
Affiliation(s)
- Daniela Strenkert
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Stefan Schmollinger
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Yuntao Hu
- Environmental Genomics and Systems Biology, Lawrence Berkeley National LaboratoryBerkeley CAUSA
| | | | - Kristen Holbrook
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Helen W Liu
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, US Department of Energy, Richland, WA 99352, USA
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, US Department of Energy, Richland, WA 99352, USA
| | - Si Chen
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Mary S Lipton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, US Department of Energy, Richland, WA 99352, USA
| | - Trent R Northen
- Environmental Genomics and Systems Biology, Lawrence Berkeley National LaboratoryBerkeley CAUSA
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley CAUSA
| | - Stephan Clemens
- Department of Plant Physiology, University of Bayreuth, Germany
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
- Environmental Genomics and Systems Biology, Lawrence Berkeley National LaboratoryBerkeley CAUSA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
3
|
Strenkert D, Schmollinger S, Hu Y, Hofmann C, Holbrook K, Liu HW, Purvine SO, Nicora CD, Chen S, Lipton MS, Northen TR, Clemens S, Merchant SS. Cysteine: an ancestral Cu binding ligand in green algae? BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532757. [PMID: 36993560 PMCID: PMC10055113 DOI: 10.1101/2023.03.15.532757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Growth of Chlamydomonas reinhardtii in zinc (Zn) limited medium leads to disruption of copper (Cu) homeostasis, resulting in up to 40-fold Cu over-accumulation relative to its typical Cu quota. We show that Chlamydomonas controls its Cu quota by balancing Cu import and export, which is disrupted in a Zn deficient cell, thus establishing a mechanistic connection between Cu and Zn homeostasis. Transcriptomics, proteomics and elemental profiling revealed that Zn-limited Chlamydomonas cells up-regulate a subset of genes encoding "first responder" proteins involved in sulfur (S) assimilation and consequently accumulate more intracellular S, which is incorporated into L-cysteine, γ-glutamylcysteine and homocysteine. Most prominently, in the absence of Zn, free L-cysteine is increased ~80-fold, corresponding to ~ 2.8 × 10 9 molecules/cell. Interestingly, classic S-containing metal binding ligands like glutathione and phytochelatins do not increase. X-ray fluorescence microscopy showed foci of S accumulation in Zn-limited cells that co-localize with Cu, phosphorus and calcium, consistent with Cu-thiol complexes in the acidocalcisome, the site of Cu(I) accumulation. Notably, cells that have been previously starved for Cu do not accumulate S or Cys, causally connecting cysteine synthesis with Cu accumulation. We suggest that cysteine is an in vivo Cu(I) ligand, perhaps ancestral, that buffers cytosolic Cu.
Collapse
|
4
|
Alotaibi BS, Khan M, Shamim S. Unraveling the Underlying Heavy Metal Detoxification Mechanisms of Bacillus Species. Microorganisms 2021; 9:1628. [PMID: 34442707 PMCID: PMC8402239 DOI: 10.3390/microorganisms9081628] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
The rise of anthropogenic activities has resulted in the increasing release of various contaminants into the environment, jeopardizing fragile ecosystems in the process. Heavy metals are one of the major pollutants that contribute to the escalating problem of environmental pollution, being primarily introduced in sensitive ecological habitats through industrial effluents, wastewater, as well as sewage of various industries. Where heavy metals like zinc, copper, manganese, and nickel serve key roles in regulating different biological processes in living systems, many heavy metals can be toxic even at low concentrations, such as mercury, arsenic, cadmium, chromium, and lead, and can accumulate in intricate food chains resulting in health concerns. Over the years, many physical and chemical methods of heavy metal removal have essentially been investigated, but their disadvantages like the generation of chemical waste, complex downstream processing, and the uneconomical cost of both methods, have rendered them inefficient,. Since then, microbial bioremediation, particularly the use of bacteria, has gained attention due to the feasibility and efficiency of using them in removing heavy metals from contaminated environments. Bacteria have several methods of processing heavy metals through general resistance mechanisms, biosorption, adsorption, and efflux mechanisms. Bacillus spp. are model Gram-positive bacteria that have been studied extensively for their biosorption abilities and molecular mechanisms that enable their survival as well as their ability to remove and detoxify heavy metals. This review aims to highlight the molecular methods of Bacillus spp. in removing various heavy metals ions from contaminated environments.
Collapse
Affiliation(s)
- Badriyah Shadid Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Maryam Khan
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| | - Saba Shamim
- Institute of Molecular Biology and Biotechnology (IMBB), Defence Road Campus, The University of Lahore, Lahore 55150, Pakistan;
| |
Collapse
|
5
|
Adekanmbi AO, Adelowo OO, Okoh AI, Fagade OE. Metal-resistance encoding gene-fingerprints in some bacteria isolated from wastewaters of selected printeries in Ibadan, South-western Nigeria. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2019. [DOI: 10.1080/16583655.2018.1561968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Abimbola O. Adekanmbi
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Olawale O. Adelowo
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Anthony I. Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| | - Obasola E. Fagade
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
6
|
Rensing C, Moodley A, Cavaco LM, McDevitt SF. Resistance to Metals Used in Agricultural Production. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0025-2017. [PMID: 29676247 PMCID: PMC11633777 DOI: 10.1128/microbiolspec.arba-0025-2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Indexed: 12/12/2022] Open
Abstract
Metals and metalloids have been used alongside antibiotics in livestock production for a long time. The potential and acute negative impact on the environment and human health of these livestock feed supplements has prompted lawmakers to ban or discourage the use of some or all of these supplements. This article provides an overview of current use in the European Union and the United States, detected metal resistance determinants, and the proteins and mechanisms responsible for conferring copper and zinc resistance in bacteria. A detailed description of the most common copper and zinc metal resistance determinants is given to illustrate not only the potential danger of coselecting antibiotic resistance genes but also the potential to generate bacterial strains with an increased potential to be pathogenic to humans. For example, the presence of a 20-gene copper pathogenicity island is highlighted since bacteria containing this gene cluster could be readily isolated from copper-fed pigs, and many pathogenic strains, including Escherichia coli O104:H4, contain this potential virulence factor, suggesting a potential link between copper supplements in livestock and the evolution of pathogens.
Collapse
Affiliation(s)
- Christopher Rensing
- Institute of Environmental Microbiology, College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Arshnee Moodley
- Veterinary Clinical Microbiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Lina M Cavaco
- Department for Bacteria, Parasites, and Fungi, Infectious Disease Preparedness, Statens Serum Institut and Faculty of Health and Medical Sciences, University of Copenhagen, 2300 Copenhagen, Denmark
| | | |
Collapse
|
7
|
Solioz M. Copper Homeostasis in Gram-Positive Bacteria. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2018. [DOI: 10.1007/978-3-319-94439-5_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
8
|
|
9
|
Migocka M. Copper-transporting ATPases: The evolutionarily conserved machineries for balancing copper in living systems. IUBMB Life 2015; 67:737-45. [PMID: 26422816 DOI: 10.1002/iub.1437] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 09/14/2015] [Indexed: 12/29/2022]
Abstract
Copper ATPases (Cu-ATPases) are ubiquitous transmembrane proteins using energy from ATP to transport copper across different biological membranes of prokaryotic and eukaryotic cells. As they belong to the P-ATPase family, Cu-ATPases contain a characteristic catalytic domain with an evolutionarily conserved aspartate residue phosphorylated by ATP to form a phosphoenzyme intermediate, as well as transmembrane helices containing a cation-binding cysteine-proline-cysteine/histidine/serine (CPx) motif for catalytic activation and cation translocation. In addition, most Cu-ATPases possess the N-terminal Cu-binding CxxC motif required for regulation of enzyme activity. In cells, the Cu-ATPases receive copper from soluble chaperones and maintain intracellular copper homeostasis by efflux of copper from the cell or transport of the metal into the intracellular compartments. In addition, copper pumps play an essential role in cuproprotein biosynthesis by the uptake of copper into the cell or delivery of the metal into the chloroplasts and thylakoid lumen or into the lumen of the secretory pathway, where the metal ion is incorporated into copper-dependent enzymes. In the recent years, significant progress has been made toward understanding the function and regulation of Cu-transporting ATPases in archaea, bacteria, yeast, humans, and plants, providing new insights into the specific physiological roles of these essential proteins in various organisms and revealing some conservative regulatory mechanisms of Cu-ATPase activity. In this review, the structural, biochemical, and functional properties of Cu-ATPases from phylogenetically different organisms are summarized and discussed, with particular attention given to the recent insights into the molecular biology of copper pumps in plants.
Collapse
Affiliation(s)
- Magdalena Migocka
- Department of Plant Molecular Physiology, Institute of Experimental Biology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
10
|
Assessing the genetic diversity of Cu resistance in mine tailings through high-throughput recovery of full-length copA genes. Sci Rep 2015; 5:13258. [PMID: 26286020 PMCID: PMC4541151 DOI: 10.1038/srep13258] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/16/2015] [Indexed: 11/17/2022] Open
Abstract
Characterizing the genetic diversity of microbial copper (Cu) resistance at the community level remains challenging, mainly due to the polymorphism of the core functional gene copA. In this study, a local BLASTN method using a copA database built in this study was developed to recover full-length putative copA sequences from an assembled tailings metagenome; these sequences were then screened for potentially functioning CopA using conserved metal-binding motifs, inferred by evolutionary trace analysis of CopA sequences from known Cu resistant microorganisms. In total, 99 putative copA sequences were recovered from the tailings metagenome, out of which 70 were found with high potential to be functioning in Cu resistance. Phylogenetic analysis of selected copA sequences detected in the tailings metagenome showed that topology of the copA phylogeny is largely congruent with that of the 16S-based phylogeny of the tailings microbial community obtained in our previous study, indicating that the development of copA diversity in the tailings might be mainly through vertical descent with few lateral gene transfer events. The method established here can be used to explore copA (and potentially other metal resistance genes) diversity in any metagenome and has the potential to exhaust the full-length gene sequences for downstream analyses.
Collapse
|
11
|
Zhang S, Wang D, Wang Y, Hasman H, Aarestrup FM, Alwathnani HA, Zhu YG, Rensing C. Genome sequences of copper resistant and sensitive Enterococcus faecalis strains isolated from copper-fed pigs in Denmark. Stand Genomic Sci 2015. [PMID: 26203344 PMCID: PMC4511184 DOI: 10.1186/s40793-015-0021-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Six strains of Enterococcus faecalis (S1, S12, S17, S18, S19 and S32) were isolated from copper fed pigs in Denmark. These Gram-positive bacteria within the genus Enterococcus are able to survive a variety of physical and chemical challenges by the acquisition of diverse genetic elements. The genome of strains S1, S12, S17, S18, S19 and S32 contained 2,615, 2,769, 2,625, 2,804, 2,853 and 2,935 protein-coding genes, with 41, 42, 27, 42, 32 and 44 genes encoding antibiotic and metal resistance, respectively. Differences between Cu resistant and sensitive E. faecalis strains, and possible co-transfer of Cu and antibiotic resistance determinants were detected through comparative genome analysis.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark ; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, HuaZhong Agricultural University, Wuhan, China
| | - Yihua Wang
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark
| | - Henrik Hasman
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frank M Aarestrup
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Hend A Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China ; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Christopher Rensing
- Department of Plant and Environmental Science, University of Copenhagen, Frederiksberg, Denmark ; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
12
|
Abstract
Copper is an essential nutrient that is toxic to cells when present in excess. The fungal pathogen Candida albicans employs several mechanisms to survive in the presence of excess copper, but the molecular pathways that govern these responses are not completely understood. We report that deletion of GPA2, which specifies a G-protein α subunit, confers increased resistance to excess copper and propose that the increased resistance is due to a combination of decreased copper uptake and an increase in copper chelation by metallothioneins. This is supported by our observations that a gpa2Δ/Δ mutant has reduced expression of the copper uptake genes, CTR1 and FRE7, and a marked decrease in copper accumulation following exposure to high copper levels. Furthermore, deletion of GPA2 results in an increased expression of the copper metallothionein gene, CRD2. Gpa2p functions upstream in the cyclic AMP (cAMP)-protein kinase A (PKA) pathway to govern hyphal morphogenesis. The copper resistance phenotype of the gpa2Δ/Δ mutant can be reversed by artificially increasing the intracellular concentration of cAMP. These results provide evidence for a novel role of the PKA pathway in regulation of copper homeostasis. Furthermore, the connection between the PKA pathway and copper homeostasis appears to be conserved in the pathogen Cryptococcus neoformans but not in the nonpathogenic Saccharomyces cerevisiae.
Collapse
|
13
|
Abstract
As a trace element copper has an important role in cellular function like many other transition metals. Its ability to undergo redox changes [Cu(I) ↔ Cu(II)] makes copper an ideal cofactor in enzymes catalyzing electron transfers. However, this redox change makes copper dangerous for a cell since it is able to be involved in Fenton-like reactions creating reactive oxygen species (ROS). Cu(I) also is a strong soft metal and can attack and destroy iron-sulfur clusters thereby releasing iron which can in turn cause oxidative stress. Therefore, copper homeostasis has to be highly balanced to ensure proper cellular function while avoiding cell damage.Throughout evolution bacteria and archaea have developed a highly regulated balance in copper metabolism. While for many prokaryotes copper uptake seems to be unspecific, others have developed highly sophisticated uptake mechanisms to ensure the availability of sufficient amounts of copper. Within the cytoplasm copper is sequestered by various proteins and molecules, including specific copper chaperones, to prevent cellular damage. Copper-containing proteins are usually located in the cytoplasmic membrane with the catalytic domain facing the periplasm, in the periplasm of Gram-negative bacteria, or they are secreted, limiting the necessity of copper to accumulate in the cytoplasm. To prevent cellular damage due to excess copper, bacteria and archaea have developed various copper detoxification strategies. In this chapter we attempt to give an overview of the mechanisms employed by bacteria and archaea to handle copper and the importance of the metal for cellular function as well as in the global nutrient cycle.
Collapse
Affiliation(s)
- Christopher Rensing
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1870, Frederiksberg C, Denmark
| | | |
Collapse
|
14
|
Nies DH, Herzberg M. A fresh view of the cell biology of copper in enterobacteria. Mol Microbiol 2012; 87:447-54. [PMID: 23217080 DOI: 10.1111/mmi.12123] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 11/27/2022]
Abstract
Copper ions are essential but also very toxic. Copper resistance in bacteria is based on export of the toxic ion, oxidation from Cu(I) to Cu(II), and sequestration by copper-binding metal chaperones, which deliver copper ions to efflux systems or metal-binding sites of copper-requiring proteins. In their publication in this issue, Osman et al. (2013) demonstrate how tightly copper resistance, homeostasis and delivery pathways are interwoven in Salmonella enterica sv. Typhimurium. Copper is transported from the cytoplasm by the two P-type ATPases CopA and GolT to the periplasm and transferred to SodCII by CueP, a periplasmic copper chaperone. When copper levels are higher, SodCII is also able to bind copper without the help of CueP. This scheme raises the question as to why copper ions present in the growth medium have to make the detour through the cytoplasm. The data presented in the publication by Osman et al. (2013) change our view of the cell biology of copper in enterobacteria.
Collapse
Affiliation(s)
- Dietrich H Nies
- Molecular Microbiology, Institute for Biology/Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle/Saale, Germany.
| | | |
Collapse
|
15
|
Samanovic MI, Ding C, Thiele DJ, Darwin KH. Copper in microbial pathogenesis: meddling with the metal. Cell Host Microbe 2012; 11:106-15. [PMID: 22341460 DOI: 10.1016/j.chom.2012.01.009] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Transition metals such as iron, zinc, copper, and manganese are essential for the growth and development of organisms ranging from bacteria to mammals. Numerous studies have focused on the impact of iron availability during bacterial and fungal infections, and increasing evidence suggests that copper is also involved in microbial pathogenesis. Not only is copper an essential cofactor for specific microbial enzymes, but several recent studies also strongly suggest that copper is used to restrict pathogen growth in vivo. Here, we review evidence that animals use copper as an antimicrobial weapon and that, in turn, microbes have developed mechanisms to counteract the toxic effects of copper.
Collapse
Affiliation(s)
- Marie I Samanovic
- Department of Microbiology, New York University School of Medicine, 550 First Avenue, Medical Science Building 236, New York, NY 10016, USA
| | | | | | | |
Collapse
|
16
|
|
17
|
Gao X, Zhuge B, Fang H, Zhuge J. The construction of a new integrative vector with a new selective marker of copper resistance for glycerol producer Candida glycerinogenes. Curr Microbiol 2012; 64:357-64. [PMID: 22237983 DOI: 10.1007/s00284-011-0075-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/22/2011] [Indexed: 11/29/2022]
Abstract
Candida glycerinogenes WL2002-5 has been used for industrial-scale fermentation of glycerol and may be a promising genetic host due to its tolerance to high osmotic pressure and fast growth. It resists many kinds of drugs, such as G418/hygromycin/cycloheximide. In previous studies, only Zeocin was used as a drug-resistant marker. But Zeocin is so expensive that it largely limits the genetic and molecular study. Here, we constructed a eukaryotic integrative vector pGAPZU, based on pGAPZB, to gain a new selectable marker of copper resistance for this strain. The results showed that the CUP1 gene of Saccharomyces cerevisiae elevated copper resistance of C. glycerinogenes. The C. glycerinogenes transformed with recombinant vector pGUC, obtained from introducing CUP1 gene into plasmid pGAPZU, could resist 21 mM copper, while the minimum inhibitory concentration (MIC) of wild type was 18 mM in solid YEPD medium. With copper resistance as a selective marker, research cost was largely reduced from 114.0 $/L with Zeocin as selective marker to 0.1 $/L. The new expression vector pGUC and selective marker of copper resistance gene establish a good foundation for further study on this industrial strain.
Collapse
Affiliation(s)
- Xiaona Gao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, Research Centre of Industrial Microorganisms, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | | | | | | |
Collapse
|
18
|
|
19
|
Response of gram-positive bacteria to copper stress. J Biol Inorg Chem 2009; 15:3-14. [PMID: 19774401 DOI: 10.1007/s00775-009-0588-3] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 09/01/2009] [Indexed: 01/05/2023]
Abstract
The Gram-positive bacteria Enterococcus hirae, Lactococcus lactis, and Bacillus subtilis have received wide attention in the study of copper homeostasis. Consequently, copper extrusion by ATPases, gene regulation by copper, and intracellular copper chaperoning are understood in some detail. This has provided profound insight into basic principles of how organisms handle copper. It also emerged that many bacterial species may not require copper for life, making copper homeostatic systems pure defense mechanisms. Structural work on copper homeostatic proteins has given insight into copper coordination and bonding and has started to give molecular insight into copper handling in biological systems. Finally, recent biochemical work has shed new light on the mechanism of copper toxicity, which may not primarily be mediated by reactive oxygen radicals.
Collapse
|
20
|
Page MD, Kropat J, Hamel PP, Merchant SS. Two Chlamydomonas CTR copper transporters with a novel cys-met motif are localized to the plasma membrane and function in copper assimilation. THE PLANT CELL 2009; 21:928-43. [PMID: 19318609 PMCID: PMC2671701 DOI: 10.1105/tpc.108.064907] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Revised: 02/27/2009] [Accepted: 03/09/2009] [Indexed: 05/21/2023]
Abstract
Inducible high-affinity copper uptake is key to copper homeostasis in Chlamydomonas reinhardtii. We generated cDNAs and updated gene models for four genes, CTR1, CTR2, CTR3, and COPT1, encoding CTR-type copper transporters in Chlamydomonas. The expression of CTR1, CTR2, and CTR3 increases in copper deficient cells and in response to hypoxia or Ni(2+) supplementation; this response depends on the transcriptional activator CRR1. A copper response element was identified by mutational analysis of the 5' upstream region of CTR1. Functional analyses identify CTR1 and CTR2 as the assimilatory transporters of Chlamydomonas based on localization to the plasma membrane and ability to rescue a Saccharomyces cerevisiae mutant defective in high-affinity copper transport. The Chlamydomonas CTRs contain a novel Cys-Met motif (CxxMxxMxxC-x(5/6)-C), which occurs also in homologous proteins in other green algae, amoebae, and pathogenic fungi. CTR3 appears to have arisen by duplication of CTR2, but CTR3 lacks the characteristic transmembrane domains found in the transporters, suggesting that it may be a soluble protein. Thus, Chlamydomonas CTR genes encode a distinct subset of the classical CTR family of Cu(I) transporters and represent new targets of CRR1-dependent signaling.
Collapse
Affiliation(s)
- M Dudley Page
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | | | |
Collapse
|
21
|
Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis. J Bacteriol 2009; 191:2362-70. [PMID: 19168619 DOI: 10.1128/jb.01616-08] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Copper is an essential cofactor for many enzymes, and at over a threshold level, it is toxic for all organisms. To understand the mechanisms underlying copper homeostasis of the gram-positive bacterium Bacillus subtilis, we have performed microarray studies under copper-limiting conditions. These studies revealed that the ycnJ gene encodes a protein that plays an important role in copper metabolism, as it shows a significant, eightfold upregulation under copper-limiting conditions and its disruption causes a growth-defective phenotype under copper deprivation as well as a reduced intracellular content of copper. Native gel shift experiments with the periplasmic N-terminal domain of the YcnJ membrane protein (135 residues) disclosed its strong affinity to Cu(II) ions in vitro. Inspection of the upstream sequence of ycnJ revealed that the ycnK gene encodes a putative transcriptional regulator, whose deletion caused an elevated expression of ycnJ, especially under conditions of copper excess. Further studies demonstrated that the recently identified copper efflux regulator CsoR also is involved in the regulation of ycnJ expression, leading to a new model for copper homeostasis in B. subtilis.
Collapse
|
22
|
Structural model of the CopA copper ATPase of Enterococcus hirae based on chemical cross-linking. Biometals 2008; 22:363-75. [PMID: 18979168 DOI: 10.1007/s10534-008-9173-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/13/2008] [Indexed: 10/21/2022]
Abstract
The CopA copper ATPase of Enterococcus hirae belongs to the family of heavy metal pumping CPx-type ATPases and shares 43% sequence similarity with the human Menkes and Wilson copper ATPases. Due to a lack of suitable protein crystals, only partial three-dimensional structures have so far been obtained for this family of ion pumps. We present a structural model of CopA derived by combining topological information obtained by intramolecular cross-linking with molecular modeling. Purified CopA was cross-linked with different bivalent reagents, followed by tryptic digestion and identification of cross-linked peptides by mass spectrometry. The structural proximity of tryptic fragments provided information about the structural arrangement of the hydrophilic protein domains, which was integrated into a three-dimensional model of CopA. Comparative modeling of CopA was guided by the sequence similarity to the calcium ATPase of the sarcoplasmic reticulum, Serca1, for which detailed structures are available. In addition, known partial structures of CPx-ATPase homologous to CopA were used as modeling templates. A docking approach was used to predict the orientation of the heavy metal binding domain of CopA relative to the core structure, which was verified by distance constraints derived from cross-links. The overall structural model of CopA resembles the Serca1 structure, but reveals distinctive features of CPx-type ATPases. A prominent feature is the positioning of the heavy metal binding domain. It features an orientation of the Cu binding ligands which is appropriate for the interaction with Cu-loaded metallochaperones in solution. Moreover, a novel model of the architecture of the intramembranous Cu binding sites could be derived.
Collapse
|
23
|
Ke W, Xiong Z, Chen S, Wang Z. Differences of Cu accumulation and Cu-induced ATPase activity in roots of two populations of Elsholtzia haichowensis Sun. ENVIRONMENTAL TOXICOLOGY 2008; 23:193-199. [PMID: 18214917 DOI: 10.1002/tox.20323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Two populations of Elsholtzia haichowensis, which are from an uncontaminated site (Hong'an) and a Cu mine site (Tonglushan) in Hubei province, China, were studied for ATPase activities and Cu accumulation of roots under hydroponic conditions. The root tolerance indices were markedly higher in Tonglushan population than in Hong'an population under Cu stress conditions. The root Cu concentration in Tonglushan population was significantly lower than that in Hong'an population in all Cu treatments. The Cu-stimulated ATPase activity increased significantly under 1 microM Cu, reached a peak at 5 microM Cu and then, began to decrease. However, no significant change of ATPase activity was observed in Hong'an population except for an obvious decrease in 80 microM Cu treatment. These results showed that Cu-ATPase might exist in the root plasma membrane of Tonglushan population and play a possible role in resistance to copper.
Collapse
Affiliation(s)
- Wenshan Ke
- School of Life Science, Hubei University, Wuhan 430062, People's Republic of China.
| | | | | | | |
Collapse
|
24
|
Abstract
To identify components of the copper homeostatic mechanism of Lactococcus lactis, we employed two-dimensional gel electrophoresis to detect changes in the proteome in response to copper. Three proteins upregulated by copper were identified: glyoxylase I (YaiA), a nitroreductase (YtjD), and lactate oxidase (LctO). The promoter regions of these genes feature cop boxes of consensus TACAnnTGTA, which are the binding site of CopY-type copper-responsive repressors. A genome-wide search for cop boxes revealed 28 such sequence motifs. They were tested by electrophoretic mobility shift assays for the interaction with purified CopR, the CopY-type repressor of L. lactis. Seven of the cop boxes interacted with CopR in a copper-sensitive manner. They were present in the promoter region of five genes, lctO, ytjD, copB, ydiD, and yahC; and two polycistronic operons, yahCD-yaiAB and copRZA. Induction of these genes by copper was confirmed by real-time quantitative PCR. The copRZA operon encodes the CopR repressor of the regulon; a copper chaperone, CopZ; and a putative copper ATPase, CopA. When expressed in Escherichia coli, the copRZA operon conferred copper resistance, suggesting that it functions in copper export from the cytoplasm. Other member genes of the CopR regulon may similarly be involved in copper metabolism.
Collapse
|
25
|
Stern BR, Solioz M, Krewski D, Aggett P, Aw TC, Baker S, Crump K, Dourson M, Haber L, Hertzberg R, Keen C, Meek B, Rudenko L, Schoeny R, Slob W, Starr T. Copper and human health: biochemistry, genetics, and strategies for modeling dose-response relationships. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2007; 10:157-222. [PMID: 17454552 DOI: 10.1080/10937400600755911] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Copper (Cu) and its alloys are used extensively in domestic and industrial applications. Cu is also an essential element in mammalian nutrition. Since both copper deficiency and copper excess produce adverse health effects, the dose-response curve is U-shaped, although the precise form has not yet been well characterized. Many animal and human studies were conducted on copper to provide a rich database from which data suitable for modeling the dose-response relationship for copper may be extracted. Possible dose-response modeling strategies are considered in this review, including those based on the benchmark dose and categorical regression. The usefulness of biologically based dose-response modeling techniques in understanding copper toxicity was difficult to assess at this time since the mechanisms underlying copper-induced toxicity have yet to be fully elucidated. A dose-response modeling strategy for copper toxicity was proposed associated with both deficiency and excess. This modeling strategy was applied to multiple studies of copper-induced toxicity, standardized with respect to severity of adverse health outcomes and selected on the basis of criteria reflecting the quality and relevance of individual studies. The use of a comprehensive database on copper-induced toxicity is essential for dose-response modeling since there is insufficient information in any single study to adequately characterize copper dose-response relationships. The dose-response modeling strategy envisioned here is designed to determine whether the existing toxicity data for copper excess or deficiency may be effectively utilized in defining the limits of the homeostatic range in humans and other species. By considering alternative techniques for determining a point of departure and low-dose extrapolation (including categorical regression, the benchmark dose, and identification of observed no-effect levels) this strategy will identify which techniques are most suitable for this purpose. This analysis also serves to identify areas in which additional data are needed to better define the characteristics of dose-response relationships for copper-induced toxicity in relation to excess or deficiency.
Collapse
Affiliation(s)
- Bonnie Ransom Stern
- Consulting in Health Sciences and Risk Assessment, BR Stern Associates, Annandale, Virginia 22003, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Portmann R, Poulsen KR, Wimmer R, Solioz M. CopY-like copper inducible repressors are putative 'winged helix' proteins. Biometals 2006; 19:61-70. [PMID: 16502332 DOI: 10.1007/s10534-005-5381-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Accepted: 04/13/2005] [Indexed: 11/25/2022]
Abstract
CopY of Enterococcus hirae is a well characterized copper-responsive repressor involved in copper homeostasis. In the absence of copper, it binds to the promoter. In high copper, the CopZ copper chaperone donates copper to CopY, thereby releasing it from the promoter and allowing transcription of the downstream copper homeostatic genes of the cop operon. We here show that the CopY-like repressors from E. hirae, Lactococcus lactis, and Streptococcus mutans have similar affinities not only for their native promoters, but also for heterologous cop promoters. CopZ of L. lactis accelerated the release of CopY from the promoter, suggesting that CopZ of L. lactis acts as copper chaperone, similar to CopZ in E. hirae. The consensus binding motif of the CopY-like repressors was shown to be TACAxxTGTA. The same binding motif is present in promoters controlled by BlaI of Bacillus licheniformis, MecI of Staphylococcus aureus and related repressors. BlaI and MecI have known structures and belong to the family of 'winged helix' proteins. In the N- terminal domain, they share significant sequence similarity with CopY of E. hirae. Moreover, they bind to the same TACAxxTGTA motif. NMR analysis of the N-terminal DNA binding domain of CopY of L. lactis showed that it contained the same alpha-helical content like the same regions of BlaI and MecI. These findings suggest that the DNA binding domains of CopY-like repressors are also of the 'winged helix' type.
Collapse
Affiliation(s)
- Reto Portmann
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, CH, 3010, Berne, Switzerland
| | | | | | | |
Collapse
|
27
|
Portmann R, Solioz M. Purification and functional reconstitution of the human Wilson copper ATPase, ATP7B. FEBS Lett 2005; 579:3589-95. [PMID: 15963506 DOI: 10.1016/j.febslet.2005.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Revised: 05/25/2005] [Accepted: 05/26/2005] [Indexed: 11/24/2022]
Abstract
Wilson disease is a disorder of copper metabolism, due to inherited mutations in the Wilson copper ATPase gene ATP7B. To purify and study the function of the ATPase, the enzyme was truncated by five of the six metal binding domains and endowed with an N-terminal histidine-tag for affinity purification. This construct, delta1-5WNDP, was able to functionally complement a yeast strain defective in its native copper ATPase CCC2. Delta1-5WNDP was purified by Ni-affinity chromatography and reconstituted into proteoliposomes. This allowed, for the first time, the functional study of the Wilson ATPase in a purified, reconstituted system.
Collapse
Affiliation(s)
- Reto Portmann
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, 3010 Berne, Switzerland
| | | |
Collapse
|
28
|
Arnesano F, Banci L, Bertini I, Ciofi‐Baffoni S. Perspectives in Inorganic Structural Genomics: A Trafficking Route for Copper. Eur J Inorg Chem 2004. [DOI: 10.1002/ejic.200300841] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fabio Arnesano
- Magnetic Resonance Center CERM and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy, Fax: (internat.) + 39‐055‐4574271
| | - Lucia Banci
- Magnetic Resonance Center CERM and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy, Fax: (internat.) + 39‐055‐4574271
| | - Ivano Bertini
- Magnetic Resonance Center CERM and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy, Fax: (internat.) + 39‐055‐4574271
| | - Simone Ciofi‐Baffoni
- Magnetic Resonance Center CERM and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy, Fax: (internat.) + 39‐055‐4574271
| |
Collapse
|
29
|
Portmann R, Magnani D, Stoyanov JV, Schmechel A, Multhaup G, Solioz M. Interaction kinetics of the copper-responsive CopY repressor with the cop promoter of Enterococcus hirae. J Biol Inorg Chem 2004; 9:396-402. [PMID: 15057514 DOI: 10.1007/s00775-004-0536-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 02/26/2004] [Indexed: 10/26/2022]
Abstract
In Enterococcus hirae, copper homeostasis is controlled by the cop operon, which encodes the copper-responsive repressor CopY, the copper chaperone CopZ, and two copper ATPases, CopA and CopB. The four genes are under control of CopY, which is a homodimeric zinc protein, [Zn(II)CopY]2. It acts as a copper-responsive repressor: when media copper is raised, CopY is released from the DNA, allowing transcription to proceed. This involves the conversion of [Zn(II)CopY]2 to [Cu(I)2CopY]2, which is no longer able to bind to the promoter. Binding analysis of [Zn(II)CopY]2 to orthologous promoters and to control DNA by surface plasmon resonance analysis defined the consensus sequence TACAnnTGTA as the repressor binding element, or " cop box", of Gram-positive bacteria. Association and dissociation rates for the CopY-DNA interaction in the absence and presence of added copper were determined. The dissociation rate of [Zn(II)CopY]2 from the promoter was 7.3 x 10(-6) s(-1) and was increased to 5 x 10(-5) s(-1) in the presence of copper. This copper-induced change may be the underlying mechanism of copper induction. Induction of the cop operon was also assessed in vivo with a biosensor containing a lux reporter system under the control of the E. hirae cop promoter. Half-maximal induction of this biosensor was observed at 5 microM media copper, which delineates the ambient copper concentration to which the cop operon responds in vivo.
Collapse
Affiliation(s)
- Reto Portmann
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, 3010 Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Arnesano F, Banci L, Bertini I, Felli IC, Luchinat C, Thompsett AR. A strategy for the NMR characterization of type II copper(II) proteins: the case of the copper trafficking protein CopC from Pseudomonas Syringae. J Am Chem Soc 2003; 125:7200-8. [PMID: 12797793 DOI: 10.1021/ja034112c] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
CopC from Pseudomonas syringae was found to be a protein capable of binding both Cu(I) and Cu(II) at two different sites. The solution structure of the apo protein is available, and structural information has been obtained on the Cu(I) bound form. We attempt here to set the limits for the determination of the solution structure of a Cu(II) protein, such as the Cu(II) bound form of CopC, in which the Cu(II) ion takes a type II coordination. The electron relaxation time is estimated from NMRD measurements to be 3 ns which leads to a correlation time for the nuclear spin-electron spin dipolar interaction of 2 ns. This information allowed us to tailor the NMR experiments and to fully exploit purely heteronuclear spectroscopy to assign as many signals as possible. In this way, 37 (13)C and 11 (15)N signals that completely escape detection with conventional approaches were assigned. Paramagnetic based structural constraints were obtained by measuring paramagnetic longitudinal relaxation enhancements (rho(para)) which allowed us to precisely locate the copper ion within the protein frame. Pseudocontact shifts (pcs's) were also used as constraints for 83 (1)H and 18 (13)C nuclei. With them, together with other standard structural constraints, a structure is obtained (and submitted to PDB) where information is only missing in a sphere with a 6 A radius from the copper ion. If we borrow information from EXAFS data, which show evidence of two copper coordinated histidines, then His 1 and His 91 are unambiguously identified as copper ligands. EXAFS data indicate two more light donor atoms (O/N) which could be from Asp 27 and Glu 89, whereas the NMRD data indicate the presence of a semicoordinated water molecule at 2.8 A (Cu-O distance) roughly orthogonal to the plane identified by the other four ligands. This represents the most extensively characterized structure of a type II Cu(II) protein obtained employing the most advanced NMR methods and with the aid of EXAFS data. The knowledge of the location of the Cu(II) in the protein is important for the copper transfer mechanism.
Collapse
Affiliation(s)
- Fabio Arnesano
- CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
What makes a heavy metal resistant bacterium heavy metal resistant? The mechanisms of action, physiological functions, and distribution of metal-exporting proteins are outlined, namely: CBA efflux pumps driven by proteins of the resistance-nodulation-cell division superfamily, P-type ATPases, cation diffusion facilitator and chromate proteins, NreB- and CnrT-like resistance factors. The complement of efflux systems of 63 sequenced prokaryotes was compared with that of the heavy metal resistant bacterium Ralstonia metallidurans. This comparison shows that heavy metal resistance is the result of multiple layers of resistance systems with overlapping substrate specificities, but unique functions. Some of these systems are widespread and serve in the basic defense of the cell against superfluous heavy metals, but some are highly specialized and occur only in a few bacteria. Possession of the latter systems makes a bacterium heavy metal resistant.
Collapse
Affiliation(s)
- Dietrich H Nies
- Institute of Microbiology, Molecular Microbiology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06099 Halle/Saale, Germany.
| |
Collapse
|
32
|
Abstract
Copper is an essential component of life because of its convenient redox potential of 200-800 mV when bound to protein. Extensive insight into copper homeostasis has only emerged in the last decade and Enterococcus hirae has served as a paradigm for many aspects of the process. The cop operon of E. hirae regulates copper uptake, availability, and export. It consists of four genes that encode a repressor, CopY, a copper chaperone, CopZ, and two CPx-type copper ATPases, CopA and CopB. Most of these components have been conserved across the three evolutionary kingdoms. The four Cop proteins have been studied in vivo as well as in vitro and their function is understood in some detail.
Collapse
Affiliation(s)
- Marc Solioz
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, 3010 Bern, Switzerland.
| | | |
Collapse
|
33
|
|
34
|
Affiliation(s)
- Zen Huat Lu
- Department of Clinical Pharmacology, University of Berne, 3010 Berne, Switzerland
| | | |
Collapse
|
35
|
Arnesano F, Banci L, Bertini I, Mangani S, Thompsett AR. A redox switch in CopC: an intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites. Proc Natl Acad Sci U S A 2003; 100:3814-9. [PMID: 12651950 PMCID: PMC153004 DOI: 10.1073/pnas.0636904100] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein CopC from Pseudomonas syringae has been found capable of binding copper(I) and copper(II) at two different sites, occupied either one at a time or simultaneously. The protein, consisting of 102 amino acids, is known to bind copper(II) in a position that is now found consistent with a coordination arrangement including His-1, Glu-27, Asp-89, and His-91. A full solution structure analysis is reported here for Cu(I)-CopC. The copper(I) site is constituted by His-48 and three of the four Met residues (40, 43, 46, 51), which are clustered in a Met-rich region. Both copper binding sites have been characterized through extended x-ray absorption fine structure studies. They represent novel coordination environments for copper in proteins. The two sites are approximately 30 A far apart and have little affinity for the ion in the other oxidation state. Oxidation of Cu(I)-CopC or reduction of Cu(II)-CopC causes migration of copper from one site to the other. This behavior is observed both in NMR and EXAFS studies and indicates that CopC can exchange copper between two sites activated by a redox switch. CopC resides in the periplasm of Gram-negative bacteria where there is a multicopper oxidase, CopA, which may modulate the redox state of copper. CopC and CopA are coded in the same operon, responsible for copper resistance. These peculiar and novel properties of CopC are discussed with respect to their relevance for copper homeostasis.
Collapse
Affiliation(s)
- Fabio Arnesano
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | | | | | | | | |
Collapse
|
36
|
A redox switch in CopC: an intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites. Proc Natl Acad Sci U S A 2003. [PMID: 12651950 DOI: 10.1073/pnas.0636904100] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The protein CopC from Pseudomonas syringae has been found capable of binding copper(I) and copper(II) at two different sites, occupied either one at a time or simultaneously. The protein, consisting of 102 amino acids, is known to bind copper(II) in a position that is now found consistent with a coordination arrangement including His-1, Glu-27, Asp-89, and His-91. A full solution structure analysis is reported here for Cu(I)-CopC. The copper(I) site is constituted by His-48 and three of the four Met residues (40, 43, 46, 51), which are clustered in a Met-rich region. Both copper binding sites have been characterized through extended x-ray absorption fine structure studies. They represent novel coordination environments for copper in proteins. The two sites are approximately 30 A far apart and have little affinity for the ion in the other oxidation state. Oxidation of Cu(I)-CopC or reduction of Cu(II)-CopC causes migration of copper from one site to the other. This behavior is observed both in NMR and EXAFS studies and indicates that CopC can exchange copper between two sites activated by a redox switch. CopC resides in the periplasm of Gram-negative bacteria where there is a multicopper oxidase, CopA, which may modulate the redox state of copper. CopC and CopA are coded in the same operon, responsible for copper resistance. These peculiar and novel properties of CopC are discussed with respect to their relevance for copper homeostasis.
Collapse
|
37
|
Rosen BP. Transport and detoxification systems for transition metals, heavy metals and metalloids in eukaryotic and prokaryotic microbes. Comp Biochem Physiol A Mol Integr Physiol 2002; 133:689-93. [PMID: 12443926 DOI: 10.1016/s1095-6433(02)00201-5] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transition metals, heavy metals and metalloids are usually toxic in excess, but a number of transition metals are essential trace elements. In all cells there are mechanisms for metal ion homeostasis that frequently involve a balance between uptake and efflux systems. This review will briefly describe ATP-coupled resistance pumps. ZntA and CadA are bacterial P-type ATPases that confers resistance to Zn(II), Cd(II) and Pb(II). Homologous copper pumps include the Menkes and Wilson disease proteins and CopA, an Escherichia coli pump that confers resistance to Cu(I). For resistance to arsenicals and antimonials there are several different families of transporters. In E. coli the ArsAB ATPase is a novel system that confers resistance to As(III) and Sb(III). Eukaryotic arsenic resistance transporters include Acr3p and Ycf1p of Saccharomyces cerevisiae. These systems provide resistance to arsenite [As(III)]. Arsenate [As(V)] detoxification involves reduction of As(V) to As(III), a process catalyzed by arsenate reductase enzymes. There are three families of arsenate reductases, two found in bacterial systems and a third identified in S. cerevisiae.
Collapse
Affiliation(s)
- Barry P Rosen
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
38
|
Abstract
NMR spectroscopy and X-ray crystallography in conjunction with extended X-ray absorption fine structure spectroscopy, have contributed to the elucidation of the structural biology of protein-mediated mechanisms of heavy metal homeostasis. Among the most striking aspects of these investigations are the remarkable similarity of metal-ion-transport and sequestering systems across different species, and the need to continue the research to confirm hypotheses for the molecular mechanisms of transfers of metal ions between proteins.
Collapse
Affiliation(s)
- Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0307, USA
| | | | | |
Collapse
|
39
|
Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, Huffman DL, O'Halloran TV. Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. Genome Res 2002; 12:255-71. [PMID: 11827945 DOI: 10.1101/gr.196802] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A comparative structural genomic analysis of a new class of metal-trafficking proteins can provide insights into the intracellular chemistry of reactive cofactors such as copper and zinc. Starting from the sequences of the metallochaperone Atx1 and from the first soluble domain of the copper-transporting ATPase Ccc2, both from yeast, a search on the available genomes was performed using a homology criterion and a metal-binding motif x'-x"-C-x'''-x''''-C. By limiting ourselves to 20% identity with any of the proteins found, several soluble copper-transport proteins were identified, as well as soluble domains of membrane-bound ATPases. Structural models were calculated using high-resolution solution structures as templates, and the models were validated using statistical and energy criteria. Residue conservation and substitution have been interpreted and discussed in terms of structure-function relationship. The potential energy surfaces have been analyzed in terms of protein-protein interactions. We find that metallochaperones and their physiological partner ATPases from several phylogenetic kingdoms recognize one another, via an interplay of electrostatics, hydrogen bonding, and hydrophobic interactions, in a manner that precisely orients the metal-binding side chains for rapid metal transfer between otherwise tight binding sites. Finally, other putative metal-transport proteins are mentioned that have low homology and/or a different metal-binding consensus motif and that appear to use similar structures for recognition and transfer. This analysis highlights the wealth and the complexity of the field.
Collapse
Affiliation(s)
- Fabio Arnesano
- Magnetic Resonance Center CERM and Department of Chemistry, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
40
|
Lu ZH, Solioz M. Copper-induced proteolysis of the CopZ copper chaperone of Enterococcus hirae. J Biol Chem 2001; 276:47822-7. [PMID: 11585824 DOI: 10.1074/jbc.m106218200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cop operon is a key element of copper homeostasis in Enterococcus hirae. It encodes two copper ATPases, CopA and CopB, the CopY repressor, and the CopZ metallochaperone. It was previously shown that the transcription of the operon is induced by copper. The concomitant increase in the levels of Cop proteins, particularly the CopB copper export ATPase, allows uncompromised growth of E. hirae in up to 5 mm ambient copper. We here show by Western blotting that the steady-state level of CopZ was increased only up to 0.5 mm copper. At higher copper concentrations, the level of CopZ was decreased and became undetectable at 5 mm media copper. When CopZ was overexpressed from a plasmid, the cells exhibited increased sensitivity to copper and oxidative stress, suggesting that high CopZ expression could become toxic to cells. In wild-type cells, the level of mRNA transcripts from the cop operon remained high in up to 5 mm copper, suggesting that CopZ was proteolyzed. Cell extracts were found to contain a copper-activated proteolytic activity that degraded CopZ in vitro. In this assay, Cu-CopZ was more susceptible to degradation than apo-CopZ. The growth of E. hirae in copper increased the copper-inducible proteolytic activity in extracts. Zymographic studies showed the presence of a copper-dependent protease in crude cell lysates. Thus, copper-stimulated proteolysis plays an important role in the regulation of copper homeostasis in E. hirae.
Collapse
Affiliation(s)
- Z H Lu
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, 3010 Berne, Switzerland
| | | |
Collapse
|
41
|
Bissig KD, Voegelin TC, Solioz M. Tetrathiomolybdate inhibition of the Enterococcus hirae CopB copper ATPase. FEBS Lett 2001; 507:367-70. [PMID: 11696373 DOI: 10.1016/s0014-5793(01)03009-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tetrathiomolybdate (TTM) avidly interacts with copper and has recently been employed to reduce excess copper in patients with Wilson disease. We found that TTM inhibits the purified Enterococcus hirae CopB copper ATPase with an IC(50) of 34 nM. Dithiomolybdate and trithiomolybdate, which commonly contaminate TTM, inhibited the copper ATPases with similar potency. Inhibition could be reversed by copper or silver, suggesting inhibition by substrate binding. These findings for the first time allowed an estimate of the high affinity of CopB for copper and silver. TTM is a new tool for the study of copper ATPases.
Collapse
Affiliation(s)
- K D Bissig
- Department of Clinical Pharmacology, University of Berne, Murtenstrasse 35, 3010, Berne, Switzerland
| | | | | |
Collapse
|
42
|
Wunderli-Ye H, Solioz M. Purification and functional analysis of the copper ATPase CopA of Enterococcus hirae. Biochem Biophys Res Commun 2001; 280:713-9. [PMID: 11162579 DOI: 10.1006/bbrc.2000.4176] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Enterococcus hirae ATPase CopA is a member of the recently discovered heavy metal ATPases and shares 43% sequence identity with the human Menkes and Wilson copper ATPases. To study CopA biochemically, it was overexpressed in E. coli with an N-terminal histidine tag and purified to homogeneity by nickel affinity chromatography. The purified CopA catalyzed ATP hydrolysis with a V(max) of 0.15 micromol/min/mg and a K(m) for ATP of 0.2 mM and had an optimum pH of 6.25. The activity was 3- to 4-fold stimulated by reconstitution into proteoliposomes. The enzyme formed an acylphosphate intermediate. Its kinetics of formation and the effects of inhibitors and metal ions upon it support a function of CopA in copper transport. Purification and functional reconstitution of CopA provides the basis to study copper transport in vitro.
Collapse
Affiliation(s)
- H Wunderli-Ye
- Department of Clinical Pharmacology, University of Berne, 3010 Berne, Switzerland
| | | |
Collapse
|
43
|
Weissman Z, Berdicevsky I, Cavari BZ, Kornitzer D. The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci U S A 2000; 97:3520-5. [PMID: 10737803 PMCID: PMC16272 DOI: 10.1073/pnas.97.7.3520] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The pathogenic yeast Candida albicans has higher resistance than the baker's yeast Saccharomyces cerevisiae to elevated concentrations of copper. To understand the basis of this differential resistance, we performed a functional screen for C. albicans genes involved in copper detoxification. Here, we report the isolation of two such genes: a metallothionein, CaCUP1, and a copper-transporting P-type ATPase, CaCRP1. Both genes are induced by extracellular copper. Gene disruptions indicated that the copper extrusion pump is responsible for the unusual resistance of C. albicans to copper, whereas the metallothionein is responsible for the residual copper resistance of the Cacrp1Delta mutant. We show further that under acidic and anaerobic conditions, such as prevail in the natural niche of C. albicans, the digestive tract of animals, CaCRP1 function becomes essential for survival in the presence of even very low copper concentrations. These observations suggest that copper in the gastrointestinal tract may present a toxic challenge to which enteric organisms had to adapt.
Collapse
Affiliation(s)
- Z Weissman
- Department of Molecular Microbiology, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | |
Collapse
|
44
|
Wimmer R, Herrmann T, Solioz M, Wüthrich K. NMR structure and metal interactions of the CopZ copper chaperone. J Biol Chem 1999; 274:22597-603. [PMID: 10428839 DOI: 10.1074/jbc.274.32.22597] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A recently discovered family of proteins that function as copper chaperones route copper to proteins that either require it for their function or are involved in its transport. In Enterococcus hirae the copper chaperone function is performed by the 8-kDa protein CopZ. This paper describes the NMR structure of apo-CopZ, obtained using uniformly (15)N-labeled CopZ overexpressed in Escherichia coli and NMR studies of the impact of Cu(I) binding on the CopZ structure. The protein has a betaalphabetabetaalphabeta fold, where the four beta-strands form an antiparallel twisted beta-sheet, and the two helices are located on the same side of the beta-sheet. A sequence motif GMXCXXC in the loop between the first beta-strand and the first alpha-helix contains the primary ligands, which bind copper(I). Binding of copper(I) caused major structural changes in this molecular region, as manifested by the fact that most NMR signals of the loop and the N-terminal part of the first helix were broadened beyond detection. This effect was strictly localized, because the remainder of the apo-CopZ structure was maintained after addition of Cu(I). NMR relaxation data showed a decreased correlation time of overall molecular tumbling for Cu(I)-CopZ when compared with apo-CopZ, indicating aggregation of Cu(I)-CopZ. The structure of CopZ is the first three-dimensional structure of a cupro-protein for which the metal ion is an exchangeable substrate rather than an integral part of the structure. Implications of the present structural work for the in vivo function of CopZ are discussed, whereby it is of special interest that the distribution of charged residues on the CopZ surface is highly uneven and suggests preferred recognition sites for other proteins that might be involved in copper transfer.
Collapse
Affiliation(s)
- R Wimmer
- Institute of Molecular Biology and Biophysics, ETH Hönggerberg, CH-8093 Zurich, Switzerland
| | | | | | | |
Collapse
|
45
|
Peña MM, Lee J, Thiele DJ. A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 1999; 129:1251-60. [PMID: 10395584 DOI: 10.1093/jn/129.7.1251] [Citation(s) in RCA: 488] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The cellular uptake and intracellular distribution of the essential but highly toxic nutrient, copper, is a precisely orchestrated process. Copper homeostasis is coordinated by several proteins to ensure that it is delivered to specific subcellular compartments and copper-requiring proteins without releasing free copper ions that will cause damage to cellular components. Genetic studies in prokaryotic organisms and yeast have identified membrane-associated proteins that mediate the uptake or export of copper from cells. Within cells, small cytosolic proteins, called copper chaperones, have been identified that bind copper ions and deliver them to specific compartments and copper-requiring proteins. The identification of mammalian homologues of these proteins reveal a remarkable structural and functional conservation of copper metabolism between bacteria, yeast and humans. Furthermore, studies on the function and localization of the products of the Menkes and Wilson's disease genes, which are defective in patients afflicted with these diseases, have provided valuable insight into the mechanisms of copper balance and their role in maintaining appropriate copper distribution in mammals.
Collapse
Affiliation(s)
- M M Peña
- Department of Biological Chemistry, The University of Michigan Medical School, Ann Arbor, MI 48109-0606, USA
| | | | | |
Collapse
|
46
|
Wunderli-Ye H, Solioz M. Effects of promoter mutations on the in vivo regulation of the cop operon of Enterococcus hirae by copper(I) and copper(II). Biochem Biophys Res Commun 1999; 259:443-9. [PMID: 10362527 DOI: 10.1006/bbrc.1999.0807] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cop operon of Enterococcus hirae encodes a repressor, CopY, a copper chaperone, CopZ, and two copper ATPases, CopA and CopB. Regulation of the cop operon is bi-phasic, with copper addition as well as copper chelation leading to induction. Using a plasmid-borne system with a reporter gene, induction of wild-type and mutant cop promoters by high and low copper conditions was investigated. Only mutations that impaired the interaction of CopY with both DNA binding sites had a marked effect on regulation, leading to hyperinduction by copper(I) or copper(II). Chelation of copper(II), but not copper(I), also induced the operon, but induction by copper chelation was not significantly affected by the mutations. E. hirae mutants with reduced extracellular copper reductase activity exhibited the same induction kinetics as wild-type cells. These results show that copper addition and copper chelation induce the cop operon by different routes.
Collapse
Affiliation(s)
- H Wunderli-Ye
- Department of Clinical Pharmacology, University of Berne, Berne, 3010, Switzerland
| | | |
Collapse
|
47
|
|
48
|
Abstract
The cad operon of Staphylococcus aureus plasmid pI258, which confers cadmium resistance, encodes a transcriptional regulator, CadC, and CadA, an ATP-coupled Cd(II) pump that is a member of the superfamily of cation-translocating P-type ATPases. The Escherichia coli homologue of CadA, termed ZntA, is a Zn(II)/Cd(II) pump. The results described in this paper support the hypothesis that ZntA and CadA are Pb(II) pumps. First, CadC is a metal-responsive repressor that responds to soft metals in the order Pb>Cd>Zn. Second, both CadA and ZntA confer resistance to Pb(II). Third, transport of 65Zn(II) in everted membrane vesicles of E. coli catalyzed by either of these two P-type ATPase superfamily members is inhibited by Pb(II).
Collapse
Affiliation(s)
- C Rensing
- Department of Biochemistry and Molecular Biology, Wayne State University, School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
49
|
Kakinuma Y. Inorganic cation transport and energy transduction in Enterococcus hirae and other streptococci. Microbiol Mol Biol Rev 1998; 62:1021-45. [PMID: 9841664 PMCID: PMC98938 DOI: 10.1128/mmbr.62.4.1021-1045.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Energy metabolism by bacteria is well understood from the chemiosmotic viewpoint. We know that bacteria extrude protons across the plasma membrane, establishing an electrochemical potential that provides the driving force for various kinds of physiological work. Among these are the uptake of sugars, amino acids, and other nutrients with the aid of secondary porters and the regulation of the cytoplasmic pH and of the cytoplasmic concentration of potassium and other ions. Bacteria live in diverse habitats and are often exposed to severe conditions. In some circumstances, a proton circulation cannot satisfy their requirements and must be supplemented with a complement of primary transport systems. This review is concerned with cation transport in the fermentative streptococci, particularly Enterococcus hirae. Streptococci lack respiratory chains, relying on glycolysis or arginine fermentation for the production of ATP. One of the major findings with E. hirae and other streptococci is that ATP plays a much more important role in transmembrane transport than it does in nonfermentative organisms, probably due to the inability of this organism to generate a large proton potential. The movements of cations in streptococci illustrate the interplay between a variety of primary and secondary modes of transport.
Collapse
Affiliation(s)
- Y Kakinuma
- Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan.
| |
Collapse
|
50
|
Strausak D, Solioz M. CopY is a copper-inducible repressor of the Enterococcus hirae copper ATPases. J Biol Chem 1997; 272:8932-6. [PMID: 9083014 DOI: 10.1074/jbc.272.14.8932] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The cop operon of Enterococcus hirae effects copper homeostasis in this organism. It encodes a repressor, CopY, an activator, CopZ, and two P-type copper ATPases, CopA and CopB. Expression of all four genes is regulated by the ambient copper. In this regulation, CopY apparently acts as a copper-inducible repressor. By DNase I footprinting, it was shown that purified CopY protected two discrete sites in the region encompassing nucleotides -71 to -11 relative to the translational start site and containing hyphenated inverted repeats. Transcription is initiated between these repeats at nucleotide -42, in a domain that remained accessible to DNase I in the DNA-repressor complex. Chemical cross-linking revealed that CopY exists as a dimer in solution. In DNA band-shift assays, it was apparent that the CopY-DNA interaction occurred in two discrete steps. Half-maximal binding of repressor to the two operator sites was observed at 2 x 10(-9) M and 5 x 10(-9) M CopY, respectively. Copper ions released CopY from the promoter/operator with an apparent half-binding constant for Cu(I) of 20 microM. The site-directed mutations A-61T and A-30T essentially abolished the binding of CopY to the respective binding sites, and the double mutation A-61T/A-30T inactivated both binding sites. Thus, CopY is a copper-inducible repressor of the cop operon of E. hirae, exhibiting highly specific DNA-protein interactions with two sites on the cop promoter/operator and playing a key role in copper homeostasis in E. hirae.
Collapse
Affiliation(s)
- D Strausak
- Department of Clinical Pharmacology, University of Berne, 3010 Berne, Switzerland
| | | |
Collapse
|