1
|
Wang J, Zhang Y, Yang H, Tian E, Guo Z, Chen J, Qiao C, Jiang H, Guo J, Zhou Z, Luo Q, Shi S, Yao H, Lu Y, Zhang S. Advanced progress of vestibular compensation in vestibular neural networks. CNS Neurosci Ther 2024; 30:e70037. [PMID: 39268632 PMCID: PMC11393560 DOI: 10.1111/cns.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/12/2024] [Accepted: 08/27/2024] [Indexed: 09/17/2024] Open
Abstract
Vestibular compensation is the natural process of recovery that occurs with acute peripheral vestibular lesion. Here, we summarize the current understanding of the mechanisms underlying vestibular compensation, focusing on the role of the medial vestibular nucleus (MVN), the central hub of the vestibular system, and its associated neural networks. The disruption of neural activity balance between the bilateral MVNs underlies the vestibular symptoms after unilateral vestibular damage, and this balance disruption can be partially reversed by the mutual inhibitory projections between the bilateral MVNs, and their top-down regulation by other brain regions via different neurotransmitters. However, the detailed mechanism of how MVN is involved in vestibular compensation and regulated remains largely unknown. A deeper understanding of the vestibular neural network and the neurotransmitter systems involved in vestibular compensation holds promise for improving treatment outcomes and developing more effective interventions for vestibular disorders.
Collapse
Affiliation(s)
- Jun Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuejin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Huajing Yang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caijuan Qiao
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Hongqun Jiang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
| | - Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- National Clinical Research Center for Otolaryngologic Diseases, Jiangxi Branch Center, Nanchang, China
| | - Shiyu Shi
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyi Yao
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Histochemical Characterization of the Vestibular Y-Group in Monkey. THE CEREBELLUM 2020; 20:701-716. [PMID: 33083961 PMCID: PMC8629908 DOI: 10.1007/s12311-020-01200-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 12/18/2022]
Abstract
The Y-group plays an important role in the generation of upward smooth pursuit eye movements and contributes to the adaptive properties of the vertical vestibulo-ocular reflex. Malfunction of this circuitry may cause eye movement disorders, such as downbeat nystagmus. To characterize the neuron populations in the Y-group, we performed immunostainings for cellular proteins related to firing characteristics and transmitters (calretinin, GABA-related proteins and ion channels) in brainstem sections of macaque monkeys that had received tracer injections into the oculomotor nucleus. Two histochemically different populations of premotor neurons were identified: The calretinin-positive population represents the excitatory projection to contralateral upgaze motoneurons, whereas the GABAergic population represents the inhibitory projection to ipsilateral downgaze motoneurons. Both populations receive a strong supply by GABAergic nerve endings most likely originating from floccular Purkinje cells. All premotor neurons express nonphosphorylated neurofilaments and are ensheathed by strong perineuronal nets. In addition, they contain the voltage-gated potassium channels Kv1.1 and Kv3.1b which suggests biophysical similarities to high-activity premotor neurons of vestibular and oculomotor systems. The premotor neurons of Y-group form a homogenous population with histochemical characteristics compatible with fast-firing projection neurons that can also undergo plasticity and contribute to motor learning as found for the adaptation of the vestibulo-ocular reflex in response to visual-vestibular mismatch stimulation. The histochemical characterization of premotor neurons in the Y-group allows the identification of the homologue cell groups in human, including their transmitter inputs and will serve as basis for correlated anatomical-neuropathological studies of clinical cases with downbeat nystagmus.
Collapse
|
3
|
Cohen B, Yakushin SB, Cho C. Hypothesis: The Vestibular and Cerebellar Basis of the Mal de Debarquement Syndrome. Front Neurol 2018; 9:28. [PMID: 29459843 PMCID: PMC5807657 DOI: 10.3389/fneur.2018.00028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
The Mal de Debarquement syndrome (MdDS) generally follows sea voyages, but it can occur after turbulent flights or spontaneously. The primary features are objective or perceived continuous rocking, swaying, and/or bobbing at 0.2 Hz after sea voyages or 0.3 Hz after flights. The oscillations can continue for months or years and are immensely disturbing. Associated symptoms appear to be secondary to the incessant sensation of movement. We previously suggested that the illness can be attributed to maladaptation of the velocity storage integrator in the vestibular system, but the actual neural mechanisms driving the MdDS are unknown. Here, based on experiments in subhuman primates, we propose a series of postulates through which the MdDS is generated: (1) The MdDS is produced in the velocity storage integrator by activation of vestibular-only (VO) neurons on either side of the brainstem that are oscillating back and forth at 0.2 or 0.3 Hz. (2) The groups of VO neurons are driven by signals that originate in Purkinje cells in the cerebellar nodulus. (3) Prolonged exposure to roll, either on the sea or in the air, conditions the roll-related neurons in the nodulus. (4) The prolonged exposure causes a shift of the pitch orientation vector from its original position aligned with gravity to a position tilted in roll. (5) Successful treatment involves exposure to a full-field optokinetic stimulus rotating around the spatial vertical countering the direction of the vestibular imbalance. This is done while rolling the head at the frequency of the perceived rocking, swaying, or bobbing. We also note experiments that could be used to verify these postulates, as well as considering potential flaws in the logic. Important unanswered questions: (1) Why does the MdDS predominantly affect women? (2) What aspect of roll causes the prolongation of the tilted orientation vector, and why is it so prolonged in some individuals? (3) What produces the increase in symptoms of some patients when returning home after treatment, and how can this be avoided? We also posit that the same mechanisms underlie the less troublesome and shorter duration Mal de Debarquement.
Collapse
Affiliation(s)
- Bernard Cohen
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sergei B Yakushin
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Catherine Cho
- Department of Neurology, NYU School of Medicine, New York, NY, United States.,Department of Otolaryngology, NYU School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Popratiloff A, Peusner KD. GABA and glycine immunolabeling in the chicken tangential nucleus. Neuroscience 2010; 175:328-43. [PMID: 21129450 DOI: 10.1016/j.neuroscience.2010.11.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/16/2010] [Accepted: 11/23/2010] [Indexed: 11/20/2022]
Abstract
In the vestibular nuclei, GABAergic and glycinergic neurons play important roles in signal processing for normal function, during development, and after peripheral vestibular lesions. The chicken tangential nucleus is a major avian vestibular nucleus, whose principal cells are projection neurons with axons transmitting signals to the oculomotor nuclei and/or cervical spinal cord. Antibodies against GABA, glycine and glutamate were applied to study immunolabeling in the tangential nucleus of 5-7 days old chicken using fluorescence detection and confocal imaging. All the principal cells and primary vestibular fibers were negative for GABA and glycine, but positive for glutamate. GABA is the predominant inhibitory neurotransmitter in the tangential nucleus, labeling most of the longitudinal fibers in transverse tissue sections and more than 50% of all synaptic terminals. A large fraction of GABAergic terminals were derived from the longitudinal fibers, with fewer horizontal GABAergic fibers detected. GABA synapses terminated mainly on dendrites in the tangential nucleus. In contrast, glycine labeling represented about one-third of all synaptic terminals, and originated from horizontally-coursing fibers. A distinct pool of glycine-positive terminals was found consistently around the principal cell bodies. While no GABA or glycine-positive neuron cell bodies were found in the tangential nucleus, several pools of immunopositive neurons were present in the neighboring vestibular nuclei, mainly in the descending vestibular and superior vestibular nuclei. GABA and glycine double-labeling experiments revealed little colocalization of these two neurotransmitters in synaptic terminals or fibers in the tangential nucleus. Our data support the concept of GABA and glycine playing critical roles as inhibitory neurotransmitters in the tangential nucleus. The two inhibitory neurotransmitters have distinct and separate origins and display contrasting subcellular termination patterns, which underscore their discrete roles in vestibular signal processing.
Collapse
Affiliation(s)
- A Popratiloff
- Department of Anatomy and Regenerative Biology, The George Washington University Medical Center, Washington, DC 20037, USA
| | | |
Collapse
|
5
|
Künzle H. The presence and absence of prosencephalic cell groups relaying striatal information to the medial and lateral thalamus in tenrec. J Anat 2008; 212:795-816. [PMID: 18510507 DOI: 10.1111/j.1469-7580.2008.00905.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although there are remarkable differences regarding the output organization of basal ganglia between mammals and non-mammals, mammalian species with poorly differentiated brain have scarcely been investigated in this respect. The aim of the present study was to identify the pallidal neurons giving rise to thalamic projections in the Madagascar lesser hedgehog tenrec (Afrotheria). Following tracer injections into the thalamus, retrogradely labelled neurons were found in the depth of the olfactory tubercle (particularly the hilus of the Callejal islands and the insula magna), in subdivisions of the diagonal band complex, the peripeduncular region and the thalamic reticular nucleus. No labelled cells were seen in the globus pallidus. Pallidal neurons were tentatively identified on the basis of their striatal afferents revealed hodologically using anterograde axonal tracer substances and immunohistochemically with antibodies against enkephalin and substance P. The data showed that the tenrec's medial thalamus received prominent projections from ventral pallidal cells as well as from a few neurons within and ventral to the cerebral peduncle. The only regions projecting to the lateral thalamus appeared to be the thalamic reticular nucleus (RTh) and the dorsal peripeduncular nucleus (PpD). On the basis of immunohistochemical data and the topography of its thalamic projections, the PpD was considered to be an equivalent to the pregeniculate nucleus in other mammals. There was no evidence of entopeduncular (internal pallidal) neurons being present within the RTh/PpD complex, neuropils of which did not stain for enkephalin and substance P. The ventrolateral portion of RTh, the only region eventually receiving a striatal input, projected to the caudolateral rather than the rostrolateral thalamus. Thus, the striatopallidal output organization in the tenrec appeared similar, in many respects, to the output organization in non-mammals. This paper considers the failure to identify entopeduncular neurons projecting to the rostrolateral thalamus in a mammal with a little differentiated cerebral cortex, and also stresses the discrepancy between this absence and the presence of a distinct external pallidal segment (globus pallidus).
Collapse
Affiliation(s)
- Heinz Künzle
- Anatomisches Institut, LM Universität München, Germany.
| |
Collapse
|
6
|
Künzle H. The striatum in the hedgehog tenrec: histochemical organization and cortical afferents. Brain Res 2005; 1034:90-113. [PMID: 15713262 DOI: 10.1016/j.brainres.2004.11.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2004] [Indexed: 11/28/2022]
Abstract
In order to get insight into the striopallidal organization in mammals with little differentiated brain the striatum of the lesser hedgehog tenrec (Afrotheria) was characterized histochemically and analysed with regard to its cortical afferents using axonal tracer substances. The majority of neocortical cells projecting to the striatum were found bilaterally in the layers 2 and 3 of the frontal hemisphere; caudalwards the relative number of cells increased somewhat in the upper layer 5. There was a topographical organization as far as the allocortical projections appeared confined to the ventral striatum, and the efferents from hippocampal, posterior paleocortical, somatosensory and audiovisual areas were distributed in largely different striatal territories. Projections from the anterior frontal cortex, on the other hand, terminated extensively upon the caudate-putamen and also involved the nucleus accumbens and the olfactory tubercle. In the latter region the molecular layer was especially involved. The entorhinal cortex also projected heavily to the olfactory tubercle but unlike other species it scarcely involved the nucleus accumbens. The cortical fibers were distributed in a relatively homogenous fashion within their striatal territory and there was little evidence for patches of high density terminations. Islands of low density labeling, however, were noted occasionally in the caudate-putamen. These islands were partly similar in size as the patches of neuropil staining obtained with anti-calretinin and anti-substance P. There were also hints for the presence of a shell-like region in the nucleus accumbens stained with anti-dopamine transporter and NADPh-diaphorase. The classical striosome-matrix markers such as calbindin, acetylcholinesterase and enkephalin, however, failed to reveal any compartmental organization.
Collapse
Affiliation(s)
- Heinz Künzle
- Institute of Anatomy, University of Munich, Pettenkoferstrasse 11, 80336 Munich, Germany.
| |
Collapse
|
7
|
Shao M, Hirsch JC, Giaume C, Peusner KD. Spontaneous synaptic activity is primarily GABAergic in vestibular nucleus neurons of the chick embryo. J Neurophysiol 2003; 90:1182-92. [PMID: 12904504 DOI: 10.1152/jn.00076.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The principal cells of the chick tangential nucleus are vestibular nucleus neurons participating in the vestibular reflexes. In 16-day embryos, the application of glutamate receptor antagonists abolished the postsynaptic responses generated on vestibular-nerve stimulation, but spontaneous synaptic activity was largely unaffected. Here, spontaneous synaptic activity was characterized in principal cells from brain slices at E16 using whole cell voltage-clamp recordings. With KCl electrodes, the frequency of spontaneous inward currents was 3.1 Hz at -60 mV, and the reversal potential was +4 mV. Cs-gluconate pipette solution allowed the discrimination of glycine/GABA(A) versus glutamate receptor-mediated events according to their different reversal potentials. The ratio for spontaneous excitatory to inhibitory events was about 1:4. Seventy-four percent of the outward events were GABA(A), whereas 26% were glycine receptor-mediated events. Both pre- and postsynaptic GABA(B) receptor effects were shown, with presynaptic GABA(B) receptors inhibiting 40% of spontaneous excitatory postsynaptic currents (sEPSCs) and 53% of spontaneous inhibitory postsynaptic currents (sIPSCs). With TTX, the frequency decreased approximately 50% for EPSCs and 23% for IPSCs. These data indicate that the spontaneous synaptic activity recorded in the principal cells at E16 is primarily inhibitory, action potential-independent, and based on the activation of GABA(A) receptors that can be modulated by presynaptic GABA(B) receptors.
Collapse
Affiliation(s)
- Mei Shao
- Department of Anatomy and Cell Biology and Neuroscience Program, George Washington University Medical Center, Washington DC 20037, USA
| | | | | | | |
Collapse
|
8
|
Moreno-López B, Escudero M, Estrada C. Nitric oxide facilitates GABAergic neurotransmission in the cat oculomotor system: a physiological mechanism in eye movement control. J Physiol 2002; 540:295-306. [PMID: 11927688 PMCID: PMC2290225 DOI: 10.1113/jphysiol.2001.013308] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nitric oxide (NO) synthesis by prepositus hypoglossi (PH) neurons is necessary for the normal performance of horizontal eye movements. We have previously shown that unilateral injections of NO synthase (NOS) inhibitors into the PH nucleus of alert cats produce velocity imbalance without alteration of the eye position control, both during spontaneous eye movements and the vestibulo-ocular reflex (VOR). This NO effect is exerted on the dorsal PH neuropil, whose fibres increase their cGMP content when stimulated by NO. In an attempt to determine whether NO acts by modulation of a specific neurotransmission system, we have now compared the oculomotor effects of NOS inhibition with those produced by local blockade of glutamatergic, GABAergic or glycinergic receptors in the PH nucleus of alert cats. Both glutamatergic antagonists used, 2-amino-5-phosphonovaleric acid (APV) and 2,3-dihydro-6-nitro-7-sulphamoyl-benzo quinoxaline (NBQX), induced a nystagmus contralateral to that observed upon NOS inhibition, and caused exponential eye position drift. In contrast, bicuculline and strychnine induced eye velocity alterations similar to those produced by NOS inhibitors, suggesting that NO oculomotor effects were due to facilitation of some inhibitory input to the PH nucleus. To investigate the anatomical location of the putative NO target neurons, the retrograde tracer Fast Blue was injected in one PH nucleus, and the brainstem sections containing Fast Blue-positive neurons were stained with double immunohistochemistry for NO-sensitive cGMP and glutamic acid decarboxylase. GABAergic neurons projecting to the PH nucleus and containing NO-sensitive cGMP were found almost exclusively in the ipsilateral medial vestibular nucleus and marginal zone. The results suggest that the nitrergic PH neurons control their own firing rate by a NO-mediated facilitation of GABAergic afferents from the ipsilateral medial vestibular nucleus. This self-control mechanism could play an important role in the maintenance of the vestibular balance necessary to generate a stable and adequate eye position signal.
Collapse
|
9
|
Tighilet B, Lacour M. Gamma amino butyric acid (GABA) immunoreactivity in the vestibular nuclei of normal and unilateral vestibular neurectomized cats. Eur J Neurosci 2001; 13:2255-67. [PMID: 11454029 DOI: 10.1046/j.0953-816x.2001.01622.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent neurochemical investigations of the central vestibular pathways have demonstrated that several neurotransmitters are involved in various operations required for stabilizing posture and gaze. Neurons of the vestibular nuclei (VN) receive GABAergic inhibitory afferents, and GABAergic neurons distributed throughout the vestibular complex are implicated in inhibitory vestibulo-ocular and vestibulo-spinal pathways. The aim of this study was to analyse the modifications of GABA immunoreactivity (GABA-ir) in the cat VN after unilateral vestibular neurectomy (UVN). Indeed, compensation of vestibular deficits is a good model for studying adult central nervous system (CNS) plasticity and the GABAergic system is involved in CNS plasticity. We studied GABA-ir by using a purified polyclonal antibody raised against GABA. Light microscopic preparations of thin (20 microm) sections of cat VN were used to quantify GABA-ir by an image analysing system measuring GABA-positive punctate structures and the number of GABA-positive neurons. Both the lesioned and intact sides were analysed in three populations of UVN cats killed at different times after injury (1 week, 3 weeks and 1 year). These data were compared to those collected in normal unlesioned and sham-operated cats. Results showed a spatial distribution of GABA-ir in the control cats that confirmed previous studies. GABA-ir neurons, fibres and nerve terminals were scattered in all parts of the VN. A higher concentration of GABA-positive neurons (small cells) was detected in the medial and inferior VN (MVN and IVN) and in the dorsal part of the lateral VN (LVNd). A higher level of GABA-positive punctate structures was observed in the MVN and in the prepositus hypoglossi (PH) nucleus. Lesion-induced changes were found at each survival time. One week after injury the number of GABA-positive neurons was significantly increased in the MVN, the IVN and the dorsal part of the LVN on the lesioned side and in the ventral part of the LVN on the intact side. One year later a bilateral increase in GABA-positive neurons was detected in the MVN whilst a bilateral decrease was observed in both the SVN and the ventral part of the LVN. Changes in the GABA-staining varicosities did not strictly coincide with the distribution of GABA-ir cells, suggesting that GABA-ir fibres and nerve terminals were also modified. One week and later after injury, higher GABA-staining varicosities were seen unilaterally in the ipsilateral MVN. In contrast, bilateral increases (in PH) and bilateral decreases (in SVN and the ventral part of the LVN) were recorded in the nearly (3 weeks) or fully (1 year) compensated cats. At this stage GABA-staining varicosities were significantly increased in the lesioned side of the MVN. These findings demonstrate the reorganization of the GABAergic system in the VN and its possible role in recovery process after UVN in the cat. The changes seen during the acute stage could be causally related to the VN neuron deafferentation, contributing to the static vestibular deficits. Those found in the compensated cats would be more functionally implicated in the dynamic aspects of vestibular compensation.
Collapse
Affiliation(s)
- B Tighilet
- UMR 6562 Neurobiologie Intégrative et Adaptative, Université de Provence/CNRS, 52 Faculté de St Jérôme-case 361, 13397 Marseille Cedex 20, France
| | | |
Collapse
|
10
|
Holstein GR, Martinelli GP, Cohen B. Ultrastructural features of non-commissural GABAergic neurons in the medial vestibular nucleus of the monkey. Neuroscience 1999; 93:183-93. [PMID: 10430482 DOI: 10.1016/s0306-4522(99)00140-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The ultrastructural characteristics of non-degenerating GABAergic neurons in rostrolateral medial vestibular nucleus were identified in monkeys following midline transection of vestibular commissural fibers. In the previous papers, we reported that most degenerated cells and terminals in this tissue were located in rostrolateral medial vestibular nucleus, and that many of these neurons were GABA-immunoreactive. In the present study, we examined the ultrastructural features of the remaining neuronal elements in this medial vestibular nucleus region, in order to identify and characterize the GABAergic cells that are not directly involved in the vestibular commissural pathway related to the velocity storage mechanism. Such cells are primarily small, with centrally-placed nuclei. Axosomatic synapses are concentrated on polar regions of the somata. The proximal dendrites of GABAergic cells are surrounded by boutons, although distal dendrites receive only occasional synaptic contacts. Two types of non-degenerated GABAergic boutons are distinguished. Type A terminals are large, with very densely-packed spherical synaptic vesicles and clusters of large, irregularly-shaped mitochondria with wide matrix spaces. Such boutons form symmetric synapses, primarily with small GABAergic and non-GABAergic dendrites. Type B terminals are smaller and contain a moderate density of round/pleomorphic vesicles, numerous small round or tubular mitochondria, cisterns and vacuoles. These boutons serve both pre- and postsynaptic roles in symmetric contacts with non-GABAergic axon terminals. On the basis of ultrastructural observations of immunostained tissue, we conclude that at least two types of GABAergic neurons are present in the rostrolateral portion of the monkey medial vestibular nucleus: neurons related to the velocity storage pathway, and a class of vestibular interneurons. A multiplicity of GABAergic bouton types are also observed, and categorized on the basis of subcellular morphology. We hypothesize that "Type A" boutons correspond to Purkinje cell afferents in rostrolateral medial vestibular nucleus, "Type B" terminals represent the axons of GABAergic medial vestibular nucleus interneurons, and "Type C" boutons take origin from vestibular commissural neurons of the velocity storage pathway.
Collapse
Affiliation(s)
- G R Holstein
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
11
|
Holstein GR, Martinelli GP, Cohen B. The ultrastructure of GABA-immunoreactive vestibular commissural neurons related to velocity storage in the monkey. Neuroscience 1999; 93:171-81. [PMID: 10430481 DOI: 10.1016/s0306-4522(99)00141-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The purpose of the present study was to visualize the synaptic interactions of GABAergic neurons involved in the mediation of velocity storage. In the previous report, ultrastructural studies of degenerating neurons were conducted following midline section of rostral medullary commissural fibers with subsequent behavioral testing. The midline lesion caused functionally discrete damage to the velocity storage component, but not to the direct pathway, of the angular vestibulo-ocular reflex, and the degenerating neurons were interpreted as potential participants in the velocity storage network. We concluded that at least some of the commissural axons mediating velocity storage originate from clusters of neurons in the lateral crescents of the rostral medial vestibular nucleus. In the present report, immunocytochemical evidence is presented that many vestibular commissural neurons, putatively involved in mediating velocity storage, are GABAergic. These cells have large nuclei, small round or narrow tubular mitochondria, occasional cisterns and vacuoles, but few other organelles. Their axons are thinly-myelinated, and terminate in boutons containing mitochondria of similar ultrastructural appearance and a moderate density of round/pleomorphic synaptic vesicles. Such terminals often form axoaxonic synapses, and less frequently axodendritic contacts, with non-GABAergic elements. On the basis of the present results, we conclude that a portion of the commissural neurons of the velocity storage pathway is GABAergic. The observation of GABAergic axoaxonic synapses in this pathway is interpreted as a structural basis for presynaptic inhibition of medial vestibular nucleus circuits by velocity storage-related commissural neurons. Conversely, substantial ultrastructural evidence for postsynaptic inhibition of non-GABAergic commissural cells argues for a dual role for GABAergic terminals mediating velocity storage: presynaptic inhibition of non-GABAergic vestibular cells by GABAergic velocity storage commissural axons, and postsynaptic inhibition of non-GABAergic velocity storage cells by GABAergic axons. Both pre- and postsynaptic inhibitory arrangements could provide the morphologic basis for disinhibitory activation of the velocity storage network within local neuronal circuits.
Collapse
Affiliation(s)
- G R Holstein
- Department of Neurology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
12
|
Sheliga BM, Yakushin SB, Silvers A, Raphan T, Cohen B. Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum. Ann N Y Acad Sci 1999; 871:94-122. [PMID: 10372065 DOI: 10.1111/j.1749-6632.1999.tb09178.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Eye velocity produced by the angular vestibulo-ocular reflex (aVOR) tends to align with the summed vector of gravity and other linear accelerations [gravito-inertial acceleration (GIA)]. Defined as "spatial orientation of the aVOR," we propose that it is controlled by the nodulus and uvula of the vestibulocerebellum. Here, electrical stimulation, injections of the GABAA agonist, muscimol, and single-cell recordings were utilized to investigate this spatial orientation. Stimulation, injection, and recording sites in the nodulus were determined in vivo by MRI and verified in histological sections. MRI proved to be a sensitive, reliable way to localize electrode placements. Electrical stimulation at sites in the nodulus and sublobule d of the uvula produced nystagmus whose slow-phase eye-velocity vectors were either head centric or spatially invariant. When head centric, the eye velocity vector remained within +/- 45 degrees of the vector obtained with the animal upright, regardless of head position with respect to gravity. When spatially oriented, the vector remained relatively constant in space in one on-side position, with respect to the vector determined with the animal upright. A majority of induced movements from the nodulus were spatially oriented. Spatially oriented movements were generally followed by after-nystagmus, which had the characteristics of optokinetic after-nystagmus (OKAN), including orientation to the GIA. After muscimol injections, horizontal-to-vertical cross-coupling was lost or reduced during OKAN in tilted positions. This supports the hypothesis that the nodulus mediates yaw-to-vertical or roll cross-coupling. The injections also shortened the yaw-axis time constant and produced contralateral horizontal spontaneous nystagmus, whose velocity varied as a function of head position with regard to gravity. Nodulus units were tested with static head tilt, sinusoidal oscillation around a spatial horizontal axis with the head in different orientations relative to the pitching plane, and off-vertical axis rotation (OVAR). The direction of the response vectors of the otolith-recipient units in the nodulus, determined from static and/or dynamic head tilts, were confirmed by OVAR. These vector directions lay close to the planes of the vertical canals in 7/10 units; many units also had convergent input from the vertical canals. It is postulated that the orientation properties of the aVOR result from a transfer of otolith input regarding head tilt along canal planes to canal-related zones of the nodulus. In turn, Purkinje cells in these zones project to vestibular nuclei neurons to control eye velocity around axes normal to these same canal planes.
Collapse
Affiliation(s)
- B M Sheliga
- Department of Neurology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|
13
|
Wearne S, Raphan T, Cohen B. Control of spatial orientation of the angular vestibuloocular reflex by the nodulus and uvula. J Neurophysiol 1998; 79:2690-715. [PMID: 9582239 DOI: 10.1152/jn.1998.79.5.2690] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Spatial orientation of the angular vestibuloocular reflex (aVOR) was studied in rhesus monkeys after complete and partial ablation of the nodulus and ventral uvula. Horizontal, vertical, and torsional components of slow phases of nystagmus were analyzed to determine the axes of eye rotation, the time constants (Tcs) of velocity storage, and its orientation vectors. The gravito-inertial acceleration vector (GIA) was tilted relative to the head during optokinetic afternystagmus (OKAN), centrifugation, and reorientation of the head during postrotatory nystagmus. When the GIA was tilted relative to the head in normal animals, horizontal Tcs decreased, vertical and/or roll time constants (Tc(vert/roll)) lengthened according to the orientation of the GIA, and vertical and/or roll eye velocity components appeared (cross-coupling). This shifted the axis of eye rotation toward alignment with the tilted GIA. Horizontal and vertical/roll Tcs varied inversely, with T(chor) being longest and T(cvert/roll) shortest when monkeys were upright, and the reverse when stimuli were around the vertical or roll axes. Vertical or roll Tcs were longest when the axes of eye rotation were aligned with the spatial vertical, respectively. After complete nodulo-uvulectomy, T(chor) became longer, and periodic alternating nystagmus (PAN) developed in darkness. T(chor) could not be shortened in any of paradigms tested. In addition, yaw-to-vertical/roll cross-coupling was lost, and the axes of eye rotation remained fixed during nystagmus, regardless of the tilt of the GIA with respect to the head. After central portions of the nodulus and uvula were ablated, leaving lateral portions of the nodulus intact, yaw-to-vertical/roll cross-coupling and control of Tc(vert/roll) was lost or greatly reduced. However, control of Tchor was maintained, and T(chor) continued to vary as a function of the tilted GIA. Despite this, the eye velocity vector remained aligned with the head during yaw axis stimulation after partial nodulo-uvulectomy, regardless of GIA orientation to the head. The data were related to a three-dimensional model of the aVOR, which simulated the experimental results. The model provides a basis for understanding how the nodulus and uvula control processing within the vestibular nuclei responsible for spatial orientation of the aVOR. We conclude that the three-dimensional dynamics of the velocity storage system are determined in the nodulus and ventral uvula. We propose that the horizontal and vertical/roll Tcs are separately controlled in the nodulus and uvula with the dynamic characteristics of vertical/roll components modulated in central portions and the horizontal components laterally, presumably in a semicircular canal-based coordinate frame.
Collapse
Affiliation(s)
- S Wearne
- Department of Neurology, Mount Sinai School of Medicine, New York 10029, USA
| | | | | |
Collapse
|
14
|
Wackym PA, Balaban CD. Molecules, Motion, and Man. Otolaryngol Head Neck Surg 1998; 118:S16-24. [PMID: 9525485 DOI: 10.1016/s0194-59989870003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The application of cell and molecular biology techniques to vestibular research is resulting in rapid changes in our understanding of the fundamental mechanisms of vestibular function. The clinical problems encountered in space travel together with the acute and chronic vestibular dysfunction affecting many of the patients otolaryngologists care for have driven this research at a rapid pace. A review of these methods and highlights of the major advances are discussed. (Otolaryngol Head Neck Surg 1998;118:S16-S24.)
Collapse
Affiliation(s)
- P A Wackym
- Department of Otolaryngology, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | |
Collapse
|
15
|
Wearne S, Raphan T, Cohen B. Contribution of vestibular commissural pathways to spatial orientation of the angular vestibuloocular reflex. J Neurophysiol 1997; 78:1193-7. [PMID: 9307151 DOI: 10.1152/jn.1997.78.2.1193] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
During nystagmus induced by the angular vestibuloocular reflex (aVOR), the axis of eye velocity tends to align with the direction of gravito-inertial acceleration (GIA), a process we term "spatial orientation of the aVOR." We studied spatial orientation of the aVOR in rhesus and cynomolgus monkeys before and after midline section of the rostral medulla abolished all oculomotor functions related to velocity storage, leaving the direct optokinetic and vestibular pathways intact. Optokinetic afternystagmus and the bias component of off-vertical-axis rotation were lost, and the aVOR time constant was reduced to a value commensurate with the time constants of primary semicircular canal afferents. Spatial orientation of the aVOR, induced either during optokinetic or vestibular stimulation, was also lost. Vertical and roll aVOR time constants could no longer be lengthened in side-down or supine/prone positions, and static and dynamic tilts of the GIA no longer produced cross-coupling from the yaw to pitch and yaw to roll axes. Consequently, the induced nystagmus remained entirely in head coordinates after the lesion, regardless of the direction of the resultant GIA vector. Gains of the aVOR and of optokinetic nystagmus to steps of velocity were unaffected or slightly increased. These results are consistent with a model in which the direct aVOR pathways are organized in semicircular canal coordinates and spatial orientation is restricted to the indirect (velocity storage) pathways.
Collapse
Affiliation(s)
- S Wearne
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|